]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/dm.c
blktrace: port to tracepoints
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * One of these is allocated per bio.
36 */
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 atomic_t io_count;
41 struct bio *bio;
42 unsigned long start_time;
43 };
44
45 /*
46 * One of these is allocated per target within a bio. Hopefully
47 * this will be simplified out one day.
48 */
49 struct dm_target_io {
50 struct dm_io *io;
51 struct dm_target *ti;
52 union map_info info;
53 };
54
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 if (bio && bio->bi_private)
58 return &((struct dm_target_io *)bio->bi_private)->info;
59 return NULL;
60 }
61
62 #define MINOR_ALLOCED ((void *)-1)
63
64 /*
65 * Bits for the md->flags field.
66 */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73
74 /*
75 * Work processed by per-device workqueue.
76 */
77 struct dm_wq_req {
78 enum {
79 DM_WQ_FLUSH_DEFERRED,
80 } type;
81 struct work_struct work;
82 struct mapped_device *md;
83 void *context;
84 };
85
86 struct mapped_device {
87 struct rw_semaphore io_lock;
88 struct mutex suspend_lock;
89 spinlock_t pushback_lock;
90 rwlock_t map_lock;
91 atomic_t holders;
92 atomic_t open_count;
93
94 unsigned long flags;
95
96 struct request_queue *queue;
97 struct gendisk *disk;
98 char name[16];
99
100 void *interface_ptr;
101
102 /*
103 * A list of ios that arrived while we were suspended.
104 */
105 atomic_t pending;
106 wait_queue_head_t wait;
107 struct bio_list deferred;
108 struct bio_list pushback;
109
110 /*
111 * Processing queue (flush/barriers)
112 */
113 struct workqueue_struct *wq;
114
115 /*
116 * The current mapping.
117 */
118 struct dm_table *map;
119
120 /*
121 * io objects are allocated from here.
122 */
123 mempool_t *io_pool;
124 mempool_t *tio_pool;
125
126 struct bio_set *bs;
127
128 /*
129 * Event handling.
130 */
131 atomic_t event_nr;
132 wait_queue_head_t eventq;
133 atomic_t uevent_seq;
134 struct list_head uevent_list;
135 spinlock_t uevent_lock; /* Protect access to uevent_list */
136
137 /*
138 * freeze/thaw support require holding onto a super block
139 */
140 struct super_block *frozen_sb;
141 struct block_device *suspended_bdev;
142
143 /* forced geometry settings */
144 struct hd_geometry geometry;
145 };
146
147 #define MIN_IOS 256
148 static struct kmem_cache *_io_cache;
149 static struct kmem_cache *_tio_cache;
150
151 static int __init local_init(void)
152 {
153 int r = -ENOMEM;
154
155 /* allocate a slab for the dm_ios */
156 _io_cache = KMEM_CACHE(dm_io, 0);
157 if (!_io_cache)
158 return r;
159
160 /* allocate a slab for the target ios */
161 _tio_cache = KMEM_CACHE(dm_target_io, 0);
162 if (!_tio_cache)
163 goto out_free_io_cache;
164
165 r = dm_uevent_init();
166 if (r)
167 goto out_free_tio_cache;
168
169 _major = major;
170 r = register_blkdev(_major, _name);
171 if (r < 0)
172 goto out_uevent_exit;
173
174 if (!_major)
175 _major = r;
176
177 return 0;
178
179 out_uevent_exit:
180 dm_uevent_exit();
181 out_free_tio_cache:
182 kmem_cache_destroy(_tio_cache);
183 out_free_io_cache:
184 kmem_cache_destroy(_io_cache);
185
186 return r;
187 }
188
189 static void local_exit(void)
190 {
191 kmem_cache_destroy(_tio_cache);
192 kmem_cache_destroy(_io_cache);
193 unregister_blkdev(_major, _name);
194 dm_uevent_exit();
195
196 _major = 0;
197
198 DMINFO("cleaned up");
199 }
200
201 static int (*_inits[])(void) __initdata = {
202 local_init,
203 dm_target_init,
204 dm_linear_init,
205 dm_stripe_init,
206 dm_kcopyd_init,
207 dm_interface_init,
208 };
209
210 static void (*_exits[])(void) = {
211 local_exit,
212 dm_target_exit,
213 dm_linear_exit,
214 dm_stripe_exit,
215 dm_kcopyd_exit,
216 dm_interface_exit,
217 };
218
219 static int __init dm_init(void)
220 {
221 const int count = ARRAY_SIZE(_inits);
222
223 int r, i;
224
225 for (i = 0; i < count; i++) {
226 r = _inits[i]();
227 if (r)
228 goto bad;
229 }
230
231 return 0;
232
233 bad:
234 while (i--)
235 _exits[i]();
236
237 return r;
238 }
239
240 static void __exit dm_exit(void)
241 {
242 int i = ARRAY_SIZE(_exits);
243
244 while (i--)
245 _exits[i]();
246 }
247
248 /*
249 * Block device functions
250 */
251 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
252 {
253 struct mapped_device *md;
254
255 spin_lock(&_minor_lock);
256
257 md = bdev->bd_disk->private_data;
258 if (!md)
259 goto out;
260
261 if (test_bit(DMF_FREEING, &md->flags) ||
262 test_bit(DMF_DELETING, &md->flags)) {
263 md = NULL;
264 goto out;
265 }
266
267 dm_get(md);
268 atomic_inc(&md->open_count);
269
270 out:
271 spin_unlock(&_minor_lock);
272
273 return md ? 0 : -ENXIO;
274 }
275
276 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
277 {
278 struct mapped_device *md = disk->private_data;
279 atomic_dec(&md->open_count);
280 dm_put(md);
281 return 0;
282 }
283
284 int dm_open_count(struct mapped_device *md)
285 {
286 return atomic_read(&md->open_count);
287 }
288
289 /*
290 * Guarantees nothing is using the device before it's deleted.
291 */
292 int dm_lock_for_deletion(struct mapped_device *md)
293 {
294 int r = 0;
295
296 spin_lock(&_minor_lock);
297
298 if (dm_open_count(md))
299 r = -EBUSY;
300 else
301 set_bit(DMF_DELETING, &md->flags);
302
303 spin_unlock(&_minor_lock);
304
305 return r;
306 }
307
308 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
309 {
310 struct mapped_device *md = bdev->bd_disk->private_data;
311
312 return dm_get_geometry(md, geo);
313 }
314
315 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
316 unsigned int cmd, unsigned long arg)
317 {
318 struct mapped_device *md = bdev->bd_disk->private_data;
319 struct dm_table *map = dm_get_table(md);
320 struct dm_target *tgt;
321 int r = -ENOTTY;
322
323 if (!map || !dm_table_get_size(map))
324 goto out;
325
326 /* We only support devices that have a single target */
327 if (dm_table_get_num_targets(map) != 1)
328 goto out;
329
330 tgt = dm_table_get_target(map, 0);
331
332 if (dm_suspended(md)) {
333 r = -EAGAIN;
334 goto out;
335 }
336
337 if (tgt->type->ioctl)
338 r = tgt->type->ioctl(tgt, cmd, arg);
339
340 out:
341 dm_table_put(map);
342
343 return r;
344 }
345
346 static struct dm_io *alloc_io(struct mapped_device *md)
347 {
348 return mempool_alloc(md->io_pool, GFP_NOIO);
349 }
350
351 static void free_io(struct mapped_device *md, struct dm_io *io)
352 {
353 mempool_free(io, md->io_pool);
354 }
355
356 static struct dm_target_io *alloc_tio(struct mapped_device *md)
357 {
358 return mempool_alloc(md->tio_pool, GFP_NOIO);
359 }
360
361 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
362 {
363 mempool_free(tio, md->tio_pool);
364 }
365
366 static void start_io_acct(struct dm_io *io)
367 {
368 struct mapped_device *md = io->md;
369 int cpu;
370
371 io->start_time = jiffies;
372
373 cpu = part_stat_lock();
374 part_round_stats(cpu, &dm_disk(md)->part0);
375 part_stat_unlock();
376 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
377 }
378
379 static void end_io_acct(struct dm_io *io)
380 {
381 struct mapped_device *md = io->md;
382 struct bio *bio = io->bio;
383 unsigned long duration = jiffies - io->start_time;
384 int pending, cpu;
385 int rw = bio_data_dir(bio);
386
387 cpu = part_stat_lock();
388 part_round_stats(cpu, &dm_disk(md)->part0);
389 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
390 part_stat_unlock();
391
392 dm_disk(md)->part0.in_flight = pending =
393 atomic_dec_return(&md->pending);
394
395 /* nudge anyone waiting on suspend queue */
396 if (!pending)
397 wake_up(&md->wait);
398 }
399
400 /*
401 * Add the bio to the list of deferred io.
402 */
403 static int queue_io(struct mapped_device *md, struct bio *bio)
404 {
405 down_write(&md->io_lock);
406
407 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
408 up_write(&md->io_lock);
409 return 1;
410 }
411
412 bio_list_add(&md->deferred, bio);
413
414 up_write(&md->io_lock);
415 return 0; /* deferred successfully */
416 }
417
418 /*
419 * Everyone (including functions in this file), should use this
420 * function to access the md->map field, and make sure they call
421 * dm_table_put() when finished.
422 */
423 struct dm_table *dm_get_table(struct mapped_device *md)
424 {
425 struct dm_table *t;
426
427 read_lock(&md->map_lock);
428 t = md->map;
429 if (t)
430 dm_table_get(t);
431 read_unlock(&md->map_lock);
432
433 return t;
434 }
435
436 /*
437 * Get the geometry associated with a dm device
438 */
439 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
440 {
441 *geo = md->geometry;
442
443 return 0;
444 }
445
446 /*
447 * Set the geometry of a device.
448 */
449 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
450 {
451 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
452
453 if (geo->start > sz) {
454 DMWARN("Start sector is beyond the geometry limits.");
455 return -EINVAL;
456 }
457
458 md->geometry = *geo;
459
460 return 0;
461 }
462
463 /*-----------------------------------------------------------------
464 * CRUD START:
465 * A more elegant soln is in the works that uses the queue
466 * merge fn, unfortunately there are a couple of changes to
467 * the block layer that I want to make for this. So in the
468 * interests of getting something for people to use I give
469 * you this clearly demarcated crap.
470 *---------------------------------------------------------------*/
471
472 static int __noflush_suspending(struct mapped_device *md)
473 {
474 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
475 }
476
477 /*
478 * Decrements the number of outstanding ios that a bio has been
479 * cloned into, completing the original io if necc.
480 */
481 static void dec_pending(struct dm_io *io, int error)
482 {
483 unsigned long flags;
484
485 /* Push-back supersedes any I/O errors */
486 if (error && !(io->error > 0 && __noflush_suspending(io->md)))
487 io->error = error;
488
489 if (atomic_dec_and_test(&io->io_count)) {
490 if (io->error == DM_ENDIO_REQUEUE) {
491 /*
492 * Target requested pushing back the I/O.
493 * This must be handled before the sleeper on
494 * suspend queue merges the pushback list.
495 */
496 spin_lock_irqsave(&io->md->pushback_lock, flags);
497 if (__noflush_suspending(io->md))
498 bio_list_add(&io->md->pushback, io->bio);
499 else
500 /* noflush suspend was interrupted. */
501 io->error = -EIO;
502 spin_unlock_irqrestore(&io->md->pushback_lock, flags);
503 }
504
505 end_io_acct(io);
506
507 if (io->error != DM_ENDIO_REQUEUE) {
508 trace_block_bio_complete(io->md->queue, io->bio);
509
510 bio_endio(io->bio, io->error);
511 }
512
513 free_io(io->md, io);
514 }
515 }
516
517 static void clone_endio(struct bio *bio, int error)
518 {
519 int r = 0;
520 struct dm_target_io *tio = bio->bi_private;
521 struct mapped_device *md = tio->io->md;
522 dm_endio_fn endio = tio->ti->type->end_io;
523
524 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
525 error = -EIO;
526
527 if (endio) {
528 r = endio(tio->ti, bio, error, &tio->info);
529 if (r < 0 || r == DM_ENDIO_REQUEUE)
530 /*
531 * error and requeue request are handled
532 * in dec_pending().
533 */
534 error = r;
535 else if (r == DM_ENDIO_INCOMPLETE)
536 /* The target will handle the io */
537 return;
538 else if (r) {
539 DMWARN("unimplemented target endio return value: %d", r);
540 BUG();
541 }
542 }
543
544 dec_pending(tio->io, error);
545
546 /*
547 * Store md for cleanup instead of tio which is about to get freed.
548 */
549 bio->bi_private = md->bs;
550
551 bio_put(bio);
552 free_tio(md, tio);
553 }
554
555 static sector_t max_io_len(struct mapped_device *md,
556 sector_t sector, struct dm_target *ti)
557 {
558 sector_t offset = sector - ti->begin;
559 sector_t len = ti->len - offset;
560
561 /*
562 * Does the target need to split even further ?
563 */
564 if (ti->split_io) {
565 sector_t boundary;
566 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
567 - offset;
568 if (len > boundary)
569 len = boundary;
570 }
571
572 return len;
573 }
574
575 static void __map_bio(struct dm_target *ti, struct bio *clone,
576 struct dm_target_io *tio)
577 {
578 int r;
579 sector_t sector;
580 struct mapped_device *md;
581
582 /*
583 * Sanity checks.
584 */
585 BUG_ON(!clone->bi_size);
586
587 clone->bi_end_io = clone_endio;
588 clone->bi_private = tio;
589
590 /*
591 * Map the clone. If r == 0 we don't need to do
592 * anything, the target has assumed ownership of
593 * this io.
594 */
595 atomic_inc(&tio->io->io_count);
596 sector = clone->bi_sector;
597 r = ti->type->map(ti, clone, &tio->info);
598 if (r == DM_MAPIO_REMAPPED) {
599 /* the bio has been remapped so dispatch it */
600
601 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
602 tio->io->bio->bi_bdev->bd_dev,
603 clone->bi_sector, sector);
604
605 generic_make_request(clone);
606 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
607 /* error the io and bail out, or requeue it if needed */
608 md = tio->io->md;
609 dec_pending(tio->io, r);
610 /*
611 * Store bio_set for cleanup.
612 */
613 clone->bi_private = md->bs;
614 bio_put(clone);
615 free_tio(md, tio);
616 } else if (r) {
617 DMWARN("unimplemented target map return value: %d", r);
618 BUG();
619 }
620 }
621
622 struct clone_info {
623 struct mapped_device *md;
624 struct dm_table *map;
625 struct bio *bio;
626 struct dm_io *io;
627 sector_t sector;
628 sector_t sector_count;
629 unsigned short idx;
630 };
631
632 static void dm_bio_destructor(struct bio *bio)
633 {
634 struct bio_set *bs = bio->bi_private;
635
636 bio_free(bio, bs);
637 }
638
639 /*
640 * Creates a little bio that is just does part of a bvec.
641 */
642 static struct bio *split_bvec(struct bio *bio, sector_t sector,
643 unsigned short idx, unsigned int offset,
644 unsigned int len, struct bio_set *bs)
645 {
646 struct bio *clone;
647 struct bio_vec *bv = bio->bi_io_vec + idx;
648
649 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
650 clone->bi_destructor = dm_bio_destructor;
651 *clone->bi_io_vec = *bv;
652
653 clone->bi_sector = sector;
654 clone->bi_bdev = bio->bi_bdev;
655 clone->bi_rw = bio->bi_rw;
656 clone->bi_vcnt = 1;
657 clone->bi_size = to_bytes(len);
658 clone->bi_io_vec->bv_offset = offset;
659 clone->bi_io_vec->bv_len = clone->bi_size;
660 clone->bi_flags |= 1 << BIO_CLONED;
661
662 return clone;
663 }
664
665 /*
666 * Creates a bio that consists of range of complete bvecs.
667 */
668 static struct bio *clone_bio(struct bio *bio, sector_t sector,
669 unsigned short idx, unsigned short bv_count,
670 unsigned int len, struct bio_set *bs)
671 {
672 struct bio *clone;
673
674 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
675 __bio_clone(clone, bio);
676 clone->bi_destructor = dm_bio_destructor;
677 clone->bi_sector = sector;
678 clone->bi_idx = idx;
679 clone->bi_vcnt = idx + bv_count;
680 clone->bi_size = to_bytes(len);
681 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
682
683 return clone;
684 }
685
686 static int __clone_and_map(struct clone_info *ci)
687 {
688 struct bio *clone, *bio = ci->bio;
689 struct dm_target *ti;
690 sector_t len = 0, max;
691 struct dm_target_io *tio;
692
693 ti = dm_table_find_target(ci->map, ci->sector);
694 if (!dm_target_is_valid(ti))
695 return -EIO;
696
697 max = max_io_len(ci->md, ci->sector, ti);
698
699 /*
700 * Allocate a target io object.
701 */
702 tio = alloc_tio(ci->md);
703 tio->io = ci->io;
704 tio->ti = ti;
705 memset(&tio->info, 0, sizeof(tio->info));
706
707 if (ci->sector_count <= max) {
708 /*
709 * Optimise for the simple case where we can do all of
710 * the remaining io with a single clone.
711 */
712 clone = clone_bio(bio, ci->sector, ci->idx,
713 bio->bi_vcnt - ci->idx, ci->sector_count,
714 ci->md->bs);
715 __map_bio(ti, clone, tio);
716 ci->sector_count = 0;
717
718 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
719 /*
720 * There are some bvecs that don't span targets.
721 * Do as many of these as possible.
722 */
723 int i;
724 sector_t remaining = max;
725 sector_t bv_len;
726
727 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
728 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
729
730 if (bv_len > remaining)
731 break;
732
733 remaining -= bv_len;
734 len += bv_len;
735 }
736
737 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
738 ci->md->bs);
739 __map_bio(ti, clone, tio);
740
741 ci->sector += len;
742 ci->sector_count -= len;
743 ci->idx = i;
744
745 } else {
746 /*
747 * Handle a bvec that must be split between two or more targets.
748 */
749 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
750 sector_t remaining = to_sector(bv->bv_len);
751 unsigned int offset = 0;
752
753 do {
754 if (offset) {
755 ti = dm_table_find_target(ci->map, ci->sector);
756 if (!dm_target_is_valid(ti))
757 return -EIO;
758
759 max = max_io_len(ci->md, ci->sector, ti);
760
761 tio = alloc_tio(ci->md);
762 tio->io = ci->io;
763 tio->ti = ti;
764 memset(&tio->info, 0, sizeof(tio->info));
765 }
766
767 len = min(remaining, max);
768
769 clone = split_bvec(bio, ci->sector, ci->idx,
770 bv->bv_offset + offset, len,
771 ci->md->bs);
772
773 __map_bio(ti, clone, tio);
774
775 ci->sector += len;
776 ci->sector_count -= len;
777 offset += to_bytes(len);
778 } while (remaining -= len);
779
780 ci->idx++;
781 }
782
783 return 0;
784 }
785
786 /*
787 * Split the bio into several clones.
788 */
789 static int __split_bio(struct mapped_device *md, struct bio *bio)
790 {
791 struct clone_info ci;
792 int error = 0;
793
794 ci.map = dm_get_table(md);
795 if (unlikely(!ci.map))
796 return -EIO;
797
798 ci.md = md;
799 ci.bio = bio;
800 ci.io = alloc_io(md);
801 ci.io->error = 0;
802 atomic_set(&ci.io->io_count, 1);
803 ci.io->bio = bio;
804 ci.io->md = md;
805 ci.sector = bio->bi_sector;
806 ci.sector_count = bio_sectors(bio);
807 ci.idx = bio->bi_idx;
808
809 start_io_acct(ci.io);
810 while (ci.sector_count && !error)
811 error = __clone_and_map(&ci);
812
813 /* drop the extra reference count */
814 dec_pending(ci.io, error);
815 dm_table_put(ci.map);
816
817 return 0;
818 }
819 /*-----------------------------------------------------------------
820 * CRUD END
821 *---------------------------------------------------------------*/
822
823 static int dm_merge_bvec(struct request_queue *q,
824 struct bvec_merge_data *bvm,
825 struct bio_vec *biovec)
826 {
827 struct mapped_device *md = q->queuedata;
828 struct dm_table *map = dm_get_table(md);
829 struct dm_target *ti;
830 sector_t max_sectors;
831 int max_size = 0;
832
833 if (unlikely(!map))
834 goto out;
835
836 ti = dm_table_find_target(map, bvm->bi_sector);
837 if (!dm_target_is_valid(ti))
838 goto out_table;
839
840 /*
841 * Find maximum amount of I/O that won't need splitting
842 */
843 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
844 (sector_t) BIO_MAX_SECTORS);
845 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
846 if (max_size < 0)
847 max_size = 0;
848
849 /*
850 * merge_bvec_fn() returns number of bytes
851 * it can accept at this offset
852 * max is precomputed maximal io size
853 */
854 if (max_size && ti->type->merge)
855 max_size = ti->type->merge(ti, bvm, biovec, max_size);
856
857 out_table:
858 dm_table_put(map);
859
860 out:
861 /*
862 * Always allow an entire first page
863 */
864 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
865 max_size = biovec->bv_len;
866
867 return max_size;
868 }
869
870 /*
871 * The request function that just remaps the bio built up by
872 * dm_merge_bvec.
873 */
874 static int dm_request(struct request_queue *q, struct bio *bio)
875 {
876 int r = -EIO;
877 int rw = bio_data_dir(bio);
878 struct mapped_device *md = q->queuedata;
879 int cpu;
880
881 /*
882 * There is no use in forwarding any barrier request since we can't
883 * guarantee it is (or can be) handled by the targets correctly.
884 */
885 if (unlikely(bio_barrier(bio))) {
886 bio_endio(bio, -EOPNOTSUPP);
887 return 0;
888 }
889
890 down_read(&md->io_lock);
891
892 cpu = part_stat_lock();
893 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
894 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
895 part_stat_unlock();
896
897 /*
898 * If we're suspended we have to queue
899 * this io for later.
900 */
901 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
902 up_read(&md->io_lock);
903
904 if (bio_rw(bio) != READA)
905 r = queue_io(md, bio);
906
907 if (r <= 0)
908 goto out_req;
909
910 /*
911 * We're in a while loop, because someone could suspend
912 * before we get to the following read lock.
913 */
914 down_read(&md->io_lock);
915 }
916
917 r = __split_bio(md, bio);
918 up_read(&md->io_lock);
919
920 out_req:
921 if (r < 0)
922 bio_io_error(bio);
923
924 return 0;
925 }
926
927 static void dm_unplug_all(struct request_queue *q)
928 {
929 struct mapped_device *md = q->queuedata;
930 struct dm_table *map = dm_get_table(md);
931
932 if (map) {
933 dm_table_unplug_all(map);
934 dm_table_put(map);
935 }
936 }
937
938 static int dm_any_congested(void *congested_data, int bdi_bits)
939 {
940 int r = bdi_bits;
941 struct mapped_device *md = congested_data;
942 struct dm_table *map;
943
944 atomic_inc(&md->pending);
945
946 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
947 map = dm_get_table(md);
948 if (map) {
949 r = dm_table_any_congested(map, bdi_bits);
950 dm_table_put(map);
951 }
952 }
953
954 if (!atomic_dec_return(&md->pending))
955 /* nudge anyone waiting on suspend queue */
956 wake_up(&md->wait);
957
958 return r;
959 }
960
961 /*-----------------------------------------------------------------
962 * An IDR is used to keep track of allocated minor numbers.
963 *---------------------------------------------------------------*/
964 static DEFINE_IDR(_minor_idr);
965
966 static void free_minor(int minor)
967 {
968 spin_lock(&_minor_lock);
969 idr_remove(&_minor_idr, minor);
970 spin_unlock(&_minor_lock);
971 }
972
973 /*
974 * See if the device with a specific minor # is free.
975 */
976 static int specific_minor(int minor)
977 {
978 int r, m;
979
980 if (minor >= (1 << MINORBITS))
981 return -EINVAL;
982
983 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
984 if (!r)
985 return -ENOMEM;
986
987 spin_lock(&_minor_lock);
988
989 if (idr_find(&_minor_idr, minor)) {
990 r = -EBUSY;
991 goto out;
992 }
993
994 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
995 if (r)
996 goto out;
997
998 if (m != minor) {
999 idr_remove(&_minor_idr, m);
1000 r = -EBUSY;
1001 goto out;
1002 }
1003
1004 out:
1005 spin_unlock(&_minor_lock);
1006 return r;
1007 }
1008
1009 static int next_free_minor(int *minor)
1010 {
1011 int r, m;
1012
1013 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1014 if (!r)
1015 return -ENOMEM;
1016
1017 spin_lock(&_minor_lock);
1018
1019 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1020 if (r)
1021 goto out;
1022
1023 if (m >= (1 << MINORBITS)) {
1024 idr_remove(&_minor_idr, m);
1025 r = -ENOSPC;
1026 goto out;
1027 }
1028
1029 *minor = m;
1030
1031 out:
1032 spin_unlock(&_minor_lock);
1033 return r;
1034 }
1035
1036 static struct block_device_operations dm_blk_dops;
1037
1038 /*
1039 * Allocate and initialise a blank device with a given minor.
1040 */
1041 static struct mapped_device *alloc_dev(int minor)
1042 {
1043 int r;
1044 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1045 void *old_md;
1046
1047 if (!md) {
1048 DMWARN("unable to allocate device, out of memory.");
1049 return NULL;
1050 }
1051
1052 if (!try_module_get(THIS_MODULE))
1053 goto bad_module_get;
1054
1055 /* get a minor number for the dev */
1056 if (minor == DM_ANY_MINOR)
1057 r = next_free_minor(&minor);
1058 else
1059 r = specific_minor(minor);
1060 if (r < 0)
1061 goto bad_minor;
1062
1063 init_rwsem(&md->io_lock);
1064 mutex_init(&md->suspend_lock);
1065 spin_lock_init(&md->pushback_lock);
1066 rwlock_init(&md->map_lock);
1067 atomic_set(&md->holders, 1);
1068 atomic_set(&md->open_count, 0);
1069 atomic_set(&md->event_nr, 0);
1070 atomic_set(&md->uevent_seq, 0);
1071 INIT_LIST_HEAD(&md->uevent_list);
1072 spin_lock_init(&md->uevent_lock);
1073
1074 md->queue = blk_alloc_queue(GFP_KERNEL);
1075 if (!md->queue)
1076 goto bad_queue;
1077
1078 md->queue->queuedata = md;
1079 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1080 md->queue->backing_dev_info.congested_data = md;
1081 blk_queue_make_request(md->queue, dm_request);
1082 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1083 md->queue->unplug_fn = dm_unplug_all;
1084 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1085
1086 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1087 if (!md->io_pool)
1088 goto bad_io_pool;
1089
1090 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1091 if (!md->tio_pool)
1092 goto bad_tio_pool;
1093
1094 md->bs = bioset_create(16, 16);
1095 if (!md->bs)
1096 goto bad_no_bioset;
1097
1098 md->disk = alloc_disk(1);
1099 if (!md->disk)
1100 goto bad_disk;
1101
1102 atomic_set(&md->pending, 0);
1103 init_waitqueue_head(&md->wait);
1104 init_waitqueue_head(&md->eventq);
1105
1106 md->disk->major = _major;
1107 md->disk->first_minor = minor;
1108 md->disk->fops = &dm_blk_dops;
1109 md->disk->queue = md->queue;
1110 md->disk->private_data = md;
1111 sprintf(md->disk->disk_name, "dm-%d", minor);
1112 add_disk(md->disk);
1113 format_dev_t(md->name, MKDEV(_major, minor));
1114
1115 md->wq = create_singlethread_workqueue("kdmflush");
1116 if (!md->wq)
1117 goto bad_thread;
1118
1119 /* Populate the mapping, nobody knows we exist yet */
1120 spin_lock(&_minor_lock);
1121 old_md = idr_replace(&_minor_idr, md, minor);
1122 spin_unlock(&_minor_lock);
1123
1124 BUG_ON(old_md != MINOR_ALLOCED);
1125
1126 return md;
1127
1128 bad_thread:
1129 put_disk(md->disk);
1130 bad_disk:
1131 bioset_free(md->bs);
1132 bad_no_bioset:
1133 mempool_destroy(md->tio_pool);
1134 bad_tio_pool:
1135 mempool_destroy(md->io_pool);
1136 bad_io_pool:
1137 blk_cleanup_queue(md->queue);
1138 bad_queue:
1139 free_minor(minor);
1140 bad_minor:
1141 module_put(THIS_MODULE);
1142 bad_module_get:
1143 kfree(md);
1144 return NULL;
1145 }
1146
1147 static void unlock_fs(struct mapped_device *md);
1148
1149 static void free_dev(struct mapped_device *md)
1150 {
1151 int minor = MINOR(disk_devt(md->disk));
1152
1153 if (md->suspended_bdev) {
1154 unlock_fs(md);
1155 bdput(md->suspended_bdev);
1156 }
1157 destroy_workqueue(md->wq);
1158 mempool_destroy(md->tio_pool);
1159 mempool_destroy(md->io_pool);
1160 bioset_free(md->bs);
1161 del_gendisk(md->disk);
1162 free_minor(minor);
1163
1164 spin_lock(&_minor_lock);
1165 md->disk->private_data = NULL;
1166 spin_unlock(&_minor_lock);
1167
1168 put_disk(md->disk);
1169 blk_cleanup_queue(md->queue);
1170 module_put(THIS_MODULE);
1171 kfree(md);
1172 }
1173
1174 /*
1175 * Bind a table to the device.
1176 */
1177 static void event_callback(void *context)
1178 {
1179 unsigned long flags;
1180 LIST_HEAD(uevents);
1181 struct mapped_device *md = (struct mapped_device *) context;
1182
1183 spin_lock_irqsave(&md->uevent_lock, flags);
1184 list_splice_init(&md->uevent_list, &uevents);
1185 spin_unlock_irqrestore(&md->uevent_lock, flags);
1186
1187 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1188
1189 atomic_inc(&md->event_nr);
1190 wake_up(&md->eventq);
1191 }
1192
1193 static void __set_size(struct mapped_device *md, sector_t size)
1194 {
1195 set_capacity(md->disk, size);
1196
1197 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1198 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1199 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1200 }
1201
1202 static int __bind(struct mapped_device *md, struct dm_table *t)
1203 {
1204 struct request_queue *q = md->queue;
1205 sector_t size;
1206
1207 size = dm_table_get_size(t);
1208
1209 /*
1210 * Wipe any geometry if the size of the table changed.
1211 */
1212 if (size != get_capacity(md->disk))
1213 memset(&md->geometry, 0, sizeof(md->geometry));
1214
1215 if (md->suspended_bdev)
1216 __set_size(md, size);
1217 if (size == 0)
1218 return 0;
1219
1220 dm_table_get(t);
1221 dm_table_event_callback(t, event_callback, md);
1222
1223 write_lock(&md->map_lock);
1224 md->map = t;
1225 dm_table_set_restrictions(t, q);
1226 write_unlock(&md->map_lock);
1227
1228 return 0;
1229 }
1230
1231 static void __unbind(struct mapped_device *md)
1232 {
1233 struct dm_table *map = md->map;
1234
1235 if (!map)
1236 return;
1237
1238 dm_table_event_callback(map, NULL, NULL);
1239 write_lock(&md->map_lock);
1240 md->map = NULL;
1241 write_unlock(&md->map_lock);
1242 dm_table_put(map);
1243 }
1244
1245 /*
1246 * Constructor for a new device.
1247 */
1248 int dm_create(int minor, struct mapped_device **result)
1249 {
1250 struct mapped_device *md;
1251
1252 md = alloc_dev(minor);
1253 if (!md)
1254 return -ENXIO;
1255
1256 *result = md;
1257 return 0;
1258 }
1259
1260 static struct mapped_device *dm_find_md(dev_t dev)
1261 {
1262 struct mapped_device *md;
1263 unsigned minor = MINOR(dev);
1264
1265 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1266 return NULL;
1267
1268 spin_lock(&_minor_lock);
1269
1270 md = idr_find(&_minor_idr, minor);
1271 if (md && (md == MINOR_ALLOCED ||
1272 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1273 test_bit(DMF_FREEING, &md->flags))) {
1274 md = NULL;
1275 goto out;
1276 }
1277
1278 out:
1279 spin_unlock(&_minor_lock);
1280
1281 return md;
1282 }
1283
1284 struct mapped_device *dm_get_md(dev_t dev)
1285 {
1286 struct mapped_device *md = dm_find_md(dev);
1287
1288 if (md)
1289 dm_get(md);
1290
1291 return md;
1292 }
1293
1294 void *dm_get_mdptr(struct mapped_device *md)
1295 {
1296 return md->interface_ptr;
1297 }
1298
1299 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1300 {
1301 md->interface_ptr = ptr;
1302 }
1303
1304 void dm_get(struct mapped_device *md)
1305 {
1306 atomic_inc(&md->holders);
1307 }
1308
1309 const char *dm_device_name(struct mapped_device *md)
1310 {
1311 return md->name;
1312 }
1313 EXPORT_SYMBOL_GPL(dm_device_name);
1314
1315 void dm_put(struct mapped_device *md)
1316 {
1317 struct dm_table *map;
1318
1319 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1320
1321 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1322 map = dm_get_table(md);
1323 idr_replace(&_minor_idr, MINOR_ALLOCED,
1324 MINOR(disk_devt(dm_disk(md))));
1325 set_bit(DMF_FREEING, &md->flags);
1326 spin_unlock(&_minor_lock);
1327 if (!dm_suspended(md)) {
1328 dm_table_presuspend_targets(map);
1329 dm_table_postsuspend_targets(map);
1330 }
1331 __unbind(md);
1332 dm_table_put(map);
1333 free_dev(md);
1334 }
1335 }
1336 EXPORT_SYMBOL_GPL(dm_put);
1337
1338 static int dm_wait_for_completion(struct mapped_device *md)
1339 {
1340 int r = 0;
1341
1342 while (1) {
1343 set_current_state(TASK_INTERRUPTIBLE);
1344
1345 smp_mb();
1346 if (!atomic_read(&md->pending))
1347 break;
1348
1349 if (signal_pending(current)) {
1350 r = -EINTR;
1351 break;
1352 }
1353
1354 io_schedule();
1355 }
1356 set_current_state(TASK_RUNNING);
1357
1358 return r;
1359 }
1360
1361 /*
1362 * Process the deferred bios
1363 */
1364 static void __flush_deferred_io(struct mapped_device *md)
1365 {
1366 struct bio *c;
1367
1368 while ((c = bio_list_pop(&md->deferred))) {
1369 if (__split_bio(md, c))
1370 bio_io_error(c);
1371 }
1372
1373 clear_bit(DMF_BLOCK_IO, &md->flags);
1374 }
1375
1376 static void __merge_pushback_list(struct mapped_device *md)
1377 {
1378 unsigned long flags;
1379
1380 spin_lock_irqsave(&md->pushback_lock, flags);
1381 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1382 bio_list_merge_head(&md->deferred, &md->pushback);
1383 bio_list_init(&md->pushback);
1384 spin_unlock_irqrestore(&md->pushback_lock, flags);
1385 }
1386
1387 static void dm_wq_work(struct work_struct *work)
1388 {
1389 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1390 struct mapped_device *md = req->md;
1391
1392 down_write(&md->io_lock);
1393 switch (req->type) {
1394 case DM_WQ_FLUSH_DEFERRED:
1395 __flush_deferred_io(md);
1396 break;
1397 default:
1398 DMERR("dm_wq_work: unrecognised work type %d", req->type);
1399 BUG();
1400 }
1401 up_write(&md->io_lock);
1402 }
1403
1404 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1405 struct dm_wq_req *req)
1406 {
1407 req->type = type;
1408 req->md = md;
1409 req->context = context;
1410 INIT_WORK(&req->work, dm_wq_work);
1411 queue_work(md->wq, &req->work);
1412 }
1413
1414 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1415 {
1416 struct dm_wq_req req;
1417
1418 dm_wq_queue(md, type, context, &req);
1419 flush_workqueue(md->wq);
1420 }
1421
1422 /*
1423 * Swap in a new table (destroying old one).
1424 */
1425 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1426 {
1427 int r = -EINVAL;
1428
1429 mutex_lock(&md->suspend_lock);
1430
1431 /* device must be suspended */
1432 if (!dm_suspended(md))
1433 goto out;
1434
1435 /* without bdev, the device size cannot be changed */
1436 if (!md->suspended_bdev)
1437 if (get_capacity(md->disk) != dm_table_get_size(table))
1438 goto out;
1439
1440 __unbind(md);
1441 r = __bind(md, table);
1442
1443 out:
1444 mutex_unlock(&md->suspend_lock);
1445 return r;
1446 }
1447
1448 /*
1449 * Functions to lock and unlock any filesystem running on the
1450 * device.
1451 */
1452 static int lock_fs(struct mapped_device *md)
1453 {
1454 int r;
1455
1456 WARN_ON(md->frozen_sb);
1457
1458 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1459 if (IS_ERR(md->frozen_sb)) {
1460 r = PTR_ERR(md->frozen_sb);
1461 md->frozen_sb = NULL;
1462 return r;
1463 }
1464
1465 set_bit(DMF_FROZEN, &md->flags);
1466
1467 /* don't bdput right now, we don't want the bdev
1468 * to go away while it is locked.
1469 */
1470 return 0;
1471 }
1472
1473 static void unlock_fs(struct mapped_device *md)
1474 {
1475 if (!test_bit(DMF_FROZEN, &md->flags))
1476 return;
1477
1478 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1479 md->frozen_sb = NULL;
1480 clear_bit(DMF_FROZEN, &md->flags);
1481 }
1482
1483 /*
1484 * We need to be able to change a mapping table under a mounted
1485 * filesystem. For example we might want to move some data in
1486 * the background. Before the table can be swapped with
1487 * dm_bind_table, dm_suspend must be called to flush any in
1488 * flight bios and ensure that any further io gets deferred.
1489 */
1490 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1491 {
1492 struct dm_table *map = NULL;
1493 DECLARE_WAITQUEUE(wait, current);
1494 int r = 0;
1495 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1496 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1497
1498 mutex_lock(&md->suspend_lock);
1499
1500 if (dm_suspended(md)) {
1501 r = -EINVAL;
1502 goto out_unlock;
1503 }
1504
1505 map = dm_get_table(md);
1506
1507 /*
1508 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1509 * This flag is cleared before dm_suspend returns.
1510 */
1511 if (noflush)
1512 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1513
1514 /* This does not get reverted if there's an error later. */
1515 dm_table_presuspend_targets(map);
1516
1517 /* bdget() can stall if the pending I/Os are not flushed */
1518 if (!noflush) {
1519 md->suspended_bdev = bdget_disk(md->disk, 0);
1520 if (!md->suspended_bdev) {
1521 DMWARN("bdget failed in dm_suspend");
1522 r = -ENOMEM;
1523 goto out;
1524 }
1525
1526 /*
1527 * Flush I/O to the device. noflush supersedes do_lockfs,
1528 * because lock_fs() needs to flush I/Os.
1529 */
1530 if (do_lockfs) {
1531 r = lock_fs(md);
1532 if (r)
1533 goto out;
1534 }
1535 }
1536
1537 /*
1538 * First we set the BLOCK_IO flag so no more ios will be mapped.
1539 */
1540 down_write(&md->io_lock);
1541 set_bit(DMF_BLOCK_IO, &md->flags);
1542
1543 add_wait_queue(&md->wait, &wait);
1544 up_write(&md->io_lock);
1545
1546 /* unplug */
1547 if (map)
1548 dm_table_unplug_all(map);
1549
1550 /*
1551 * Wait for the already-mapped ios to complete.
1552 */
1553 r = dm_wait_for_completion(md);
1554
1555 down_write(&md->io_lock);
1556 remove_wait_queue(&md->wait, &wait);
1557
1558 if (noflush)
1559 __merge_pushback_list(md);
1560 up_write(&md->io_lock);
1561
1562 /* were we interrupted ? */
1563 if (r < 0) {
1564 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1565
1566 unlock_fs(md);
1567 goto out; /* pushback list is already flushed, so skip flush */
1568 }
1569
1570 dm_table_postsuspend_targets(map);
1571
1572 set_bit(DMF_SUSPENDED, &md->flags);
1573
1574 out:
1575 if (r && md->suspended_bdev) {
1576 bdput(md->suspended_bdev);
1577 md->suspended_bdev = NULL;
1578 }
1579
1580 dm_table_put(map);
1581
1582 out_unlock:
1583 mutex_unlock(&md->suspend_lock);
1584 return r;
1585 }
1586
1587 int dm_resume(struct mapped_device *md)
1588 {
1589 int r = -EINVAL;
1590 struct dm_table *map = NULL;
1591
1592 mutex_lock(&md->suspend_lock);
1593 if (!dm_suspended(md))
1594 goto out;
1595
1596 map = dm_get_table(md);
1597 if (!map || !dm_table_get_size(map))
1598 goto out;
1599
1600 r = dm_table_resume_targets(map);
1601 if (r)
1602 goto out;
1603
1604 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1605
1606 unlock_fs(md);
1607
1608 if (md->suspended_bdev) {
1609 bdput(md->suspended_bdev);
1610 md->suspended_bdev = NULL;
1611 }
1612
1613 clear_bit(DMF_SUSPENDED, &md->flags);
1614
1615 dm_table_unplug_all(map);
1616
1617 dm_kobject_uevent(md);
1618
1619 r = 0;
1620
1621 out:
1622 dm_table_put(map);
1623 mutex_unlock(&md->suspend_lock);
1624
1625 return r;
1626 }
1627
1628 /*-----------------------------------------------------------------
1629 * Event notification.
1630 *---------------------------------------------------------------*/
1631 void dm_kobject_uevent(struct mapped_device *md)
1632 {
1633 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1634 }
1635
1636 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1637 {
1638 return atomic_add_return(1, &md->uevent_seq);
1639 }
1640
1641 uint32_t dm_get_event_nr(struct mapped_device *md)
1642 {
1643 return atomic_read(&md->event_nr);
1644 }
1645
1646 int dm_wait_event(struct mapped_device *md, int event_nr)
1647 {
1648 return wait_event_interruptible(md->eventq,
1649 (event_nr != atomic_read(&md->event_nr)));
1650 }
1651
1652 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1653 {
1654 unsigned long flags;
1655
1656 spin_lock_irqsave(&md->uevent_lock, flags);
1657 list_add(elist, &md->uevent_list);
1658 spin_unlock_irqrestore(&md->uevent_lock, flags);
1659 }
1660
1661 /*
1662 * The gendisk is only valid as long as you have a reference
1663 * count on 'md'.
1664 */
1665 struct gendisk *dm_disk(struct mapped_device *md)
1666 {
1667 return md->disk;
1668 }
1669
1670 int dm_suspended(struct mapped_device *md)
1671 {
1672 return test_bit(DMF_SUSPENDED, &md->flags);
1673 }
1674
1675 int dm_noflush_suspending(struct dm_target *ti)
1676 {
1677 struct mapped_device *md = dm_table_get_md(ti->table);
1678 int r = __noflush_suspending(md);
1679
1680 dm_put(md);
1681
1682 return r;
1683 }
1684 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1685
1686 static struct block_device_operations dm_blk_dops = {
1687 .open = dm_blk_open,
1688 .release = dm_blk_close,
1689 .ioctl = dm_blk_ioctl,
1690 .getgeo = dm_blk_getgeo,
1691 .owner = THIS_MODULE
1692 };
1693
1694 EXPORT_SYMBOL(dm_get_mapinfo);
1695
1696 /*
1697 * module hooks
1698 */
1699 module_init(dm_init);
1700 module_exit(dm_exit);
1701
1702 module_param(major, uint, 0);
1703 MODULE_PARM_DESC(major, "The major number of the device mapper");
1704 MODULE_DESCRIPTION(DM_NAME " driver");
1705 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1706 MODULE_LICENSE("GPL");