]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid10.c
block: switch bios to blk_status_t
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33
34 /*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 *
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
73 */
74
75 /*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 /*
114 * 'strct resync_pages' stores actual pages used for doing the resync
115 * IO, and it is per-bio, so make .bi_private points to it.
116 */
117 static inline struct resync_pages *get_resync_pages(struct bio *bio)
118 {
119 return bio->bi_private;
120 }
121
122 /*
123 * for resync bio, r10bio pointer can be retrieved from the per-bio
124 * 'struct resync_pages'.
125 */
126 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
127 {
128 return get_resync_pages(bio)->raid_bio;
129 }
130
131 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 struct r10conf *conf = data;
134 int size = offsetof(struct r10bio, devs[conf->copies]);
135
136 /* allocate a r10bio with room for raid_disks entries in the
137 * bios array */
138 return kzalloc(size, gfp_flags);
139 }
140
141 static void r10bio_pool_free(void *r10_bio, void *data)
142 {
143 kfree(r10_bio);
144 }
145
146 /* amount of memory to reserve for resync requests */
147 #define RESYNC_WINDOW (1024*1024)
148 /* maximum number of concurrent requests, memory permitting */
149 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
150
151 /*
152 * When performing a resync, we need to read and compare, so
153 * we need as many pages are there are copies.
154 * When performing a recovery, we need 2 bios, one for read,
155 * one for write (we recover only one drive per r10buf)
156 *
157 */
158 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
159 {
160 struct r10conf *conf = data;
161 struct r10bio *r10_bio;
162 struct bio *bio;
163 int j;
164 int nalloc, nalloc_rp;
165 struct resync_pages *rps;
166
167 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
168 if (!r10_bio)
169 return NULL;
170
171 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
172 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
173 nalloc = conf->copies; /* resync */
174 else
175 nalloc = 2; /* recovery */
176
177 /* allocate once for all bios */
178 if (!conf->have_replacement)
179 nalloc_rp = nalloc;
180 else
181 nalloc_rp = nalloc * 2;
182 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
183 if (!rps)
184 goto out_free_r10bio;
185
186 /*
187 * Allocate bios.
188 */
189 for (j = nalloc ; j-- ; ) {
190 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
191 if (!bio)
192 goto out_free_bio;
193 r10_bio->devs[j].bio = bio;
194 if (!conf->have_replacement)
195 continue;
196 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
197 if (!bio)
198 goto out_free_bio;
199 r10_bio->devs[j].repl_bio = bio;
200 }
201 /*
202 * Allocate RESYNC_PAGES data pages and attach them
203 * where needed.
204 */
205 for (j = 0; j < nalloc; j++) {
206 struct bio *rbio = r10_bio->devs[j].repl_bio;
207 struct resync_pages *rp, *rp_repl;
208
209 rp = &rps[j];
210 if (rbio)
211 rp_repl = &rps[nalloc + j];
212
213 bio = r10_bio->devs[j].bio;
214
215 if (!j || test_bit(MD_RECOVERY_SYNC,
216 &conf->mddev->recovery)) {
217 if (resync_alloc_pages(rp, gfp_flags))
218 goto out_free_pages;
219 } else {
220 memcpy(rp, &rps[0], sizeof(*rp));
221 resync_get_all_pages(rp);
222 }
223
224 rp->idx = 0;
225 rp->raid_bio = r10_bio;
226 bio->bi_private = rp;
227 if (rbio) {
228 memcpy(rp_repl, rp, sizeof(*rp));
229 rbio->bi_private = rp_repl;
230 }
231 }
232
233 return r10_bio;
234
235 out_free_pages:
236 while (--j >= 0)
237 resync_free_pages(&rps[j * 2]);
238
239 j = 0;
240 out_free_bio:
241 for ( ; j < nalloc; j++) {
242 if (r10_bio->devs[j].bio)
243 bio_put(r10_bio->devs[j].bio);
244 if (r10_bio->devs[j].repl_bio)
245 bio_put(r10_bio->devs[j].repl_bio);
246 }
247 kfree(rps);
248 out_free_r10bio:
249 r10bio_pool_free(r10_bio, conf);
250 return NULL;
251 }
252
253 static void r10buf_pool_free(void *__r10_bio, void *data)
254 {
255 struct r10conf *conf = data;
256 struct r10bio *r10bio = __r10_bio;
257 int j;
258 struct resync_pages *rp = NULL;
259
260 for (j = conf->copies; j--; ) {
261 struct bio *bio = r10bio->devs[j].bio;
262
263 rp = get_resync_pages(bio);
264 resync_free_pages(rp);
265 bio_put(bio);
266
267 bio = r10bio->devs[j].repl_bio;
268 if (bio)
269 bio_put(bio);
270 }
271
272 /* resync pages array stored in the 1st bio's .bi_private */
273 kfree(rp);
274
275 r10bio_pool_free(r10bio, conf);
276 }
277
278 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
279 {
280 int i;
281
282 for (i = 0; i < conf->copies; i++) {
283 struct bio **bio = & r10_bio->devs[i].bio;
284 if (!BIO_SPECIAL(*bio))
285 bio_put(*bio);
286 *bio = NULL;
287 bio = &r10_bio->devs[i].repl_bio;
288 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
289 bio_put(*bio);
290 *bio = NULL;
291 }
292 }
293
294 static void free_r10bio(struct r10bio *r10_bio)
295 {
296 struct r10conf *conf = r10_bio->mddev->private;
297
298 put_all_bios(conf, r10_bio);
299 mempool_free(r10_bio, conf->r10bio_pool);
300 }
301
302 static void put_buf(struct r10bio *r10_bio)
303 {
304 struct r10conf *conf = r10_bio->mddev->private;
305
306 mempool_free(r10_bio, conf->r10buf_pool);
307
308 lower_barrier(conf);
309 }
310
311 static void reschedule_retry(struct r10bio *r10_bio)
312 {
313 unsigned long flags;
314 struct mddev *mddev = r10_bio->mddev;
315 struct r10conf *conf = mddev->private;
316
317 spin_lock_irqsave(&conf->device_lock, flags);
318 list_add(&r10_bio->retry_list, &conf->retry_list);
319 conf->nr_queued ++;
320 spin_unlock_irqrestore(&conf->device_lock, flags);
321
322 /* wake up frozen array... */
323 wake_up(&conf->wait_barrier);
324
325 md_wakeup_thread(mddev->thread);
326 }
327
328 /*
329 * raid_end_bio_io() is called when we have finished servicing a mirrored
330 * operation and are ready to return a success/failure code to the buffer
331 * cache layer.
332 */
333 static void raid_end_bio_io(struct r10bio *r10_bio)
334 {
335 struct bio *bio = r10_bio->master_bio;
336 struct r10conf *conf = r10_bio->mddev->private;
337
338 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
339 bio->bi_status = BLK_STS_IOERR;
340
341 bio_endio(bio);
342 /*
343 * Wake up any possible resync thread that waits for the device
344 * to go idle.
345 */
346 allow_barrier(conf);
347
348 free_r10bio(r10_bio);
349 }
350
351 /*
352 * Update disk head position estimator based on IRQ completion info.
353 */
354 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
355 {
356 struct r10conf *conf = r10_bio->mddev->private;
357
358 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
359 r10_bio->devs[slot].addr + (r10_bio->sectors);
360 }
361
362 /*
363 * Find the disk number which triggered given bio
364 */
365 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
366 struct bio *bio, int *slotp, int *replp)
367 {
368 int slot;
369 int repl = 0;
370
371 for (slot = 0; slot < conf->copies; slot++) {
372 if (r10_bio->devs[slot].bio == bio)
373 break;
374 if (r10_bio->devs[slot].repl_bio == bio) {
375 repl = 1;
376 break;
377 }
378 }
379
380 BUG_ON(slot == conf->copies);
381 update_head_pos(slot, r10_bio);
382
383 if (slotp)
384 *slotp = slot;
385 if (replp)
386 *replp = repl;
387 return r10_bio->devs[slot].devnum;
388 }
389
390 static void raid10_end_read_request(struct bio *bio)
391 {
392 int uptodate = !bio->bi_status;
393 struct r10bio *r10_bio = bio->bi_private;
394 int slot, dev;
395 struct md_rdev *rdev;
396 struct r10conf *conf = r10_bio->mddev->private;
397
398 slot = r10_bio->read_slot;
399 dev = r10_bio->devs[slot].devnum;
400 rdev = r10_bio->devs[slot].rdev;
401 /*
402 * this branch is our 'one mirror IO has finished' event handler:
403 */
404 update_head_pos(slot, r10_bio);
405
406 if (uptodate) {
407 /*
408 * Set R10BIO_Uptodate in our master bio, so that
409 * we will return a good error code to the higher
410 * levels even if IO on some other mirrored buffer fails.
411 *
412 * The 'master' represents the composite IO operation to
413 * user-side. So if something waits for IO, then it will
414 * wait for the 'master' bio.
415 */
416 set_bit(R10BIO_Uptodate, &r10_bio->state);
417 } else {
418 /* If all other devices that store this block have
419 * failed, we want to return the error upwards rather
420 * than fail the last device. Here we redefine
421 * "uptodate" to mean "Don't want to retry"
422 */
423 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
424 rdev->raid_disk))
425 uptodate = 1;
426 }
427 if (uptodate) {
428 raid_end_bio_io(r10_bio);
429 rdev_dec_pending(rdev, conf->mddev);
430 } else {
431 /*
432 * oops, read error - keep the refcount on the rdev
433 */
434 char b[BDEVNAME_SIZE];
435 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
436 mdname(conf->mddev),
437 bdevname(rdev->bdev, b),
438 (unsigned long long)r10_bio->sector);
439 set_bit(R10BIO_ReadError, &r10_bio->state);
440 reschedule_retry(r10_bio);
441 }
442 }
443
444 static void close_write(struct r10bio *r10_bio)
445 {
446 /* clear the bitmap if all writes complete successfully */
447 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
448 r10_bio->sectors,
449 !test_bit(R10BIO_Degraded, &r10_bio->state),
450 0);
451 md_write_end(r10_bio->mddev);
452 }
453
454 static void one_write_done(struct r10bio *r10_bio)
455 {
456 if (atomic_dec_and_test(&r10_bio->remaining)) {
457 if (test_bit(R10BIO_WriteError, &r10_bio->state))
458 reschedule_retry(r10_bio);
459 else {
460 close_write(r10_bio);
461 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
462 reschedule_retry(r10_bio);
463 else
464 raid_end_bio_io(r10_bio);
465 }
466 }
467 }
468
469 static void raid10_end_write_request(struct bio *bio)
470 {
471 struct r10bio *r10_bio = bio->bi_private;
472 int dev;
473 int dec_rdev = 1;
474 struct r10conf *conf = r10_bio->mddev->private;
475 int slot, repl;
476 struct md_rdev *rdev = NULL;
477 struct bio *to_put = NULL;
478 bool discard_error;
479
480 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
481
482 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
483
484 if (repl)
485 rdev = conf->mirrors[dev].replacement;
486 if (!rdev) {
487 smp_rmb();
488 repl = 0;
489 rdev = conf->mirrors[dev].rdev;
490 }
491 /*
492 * this branch is our 'one mirror IO has finished' event handler:
493 */
494 if (bio->bi_status && !discard_error) {
495 if (repl)
496 /* Never record new bad blocks to replacement,
497 * just fail it.
498 */
499 md_error(rdev->mddev, rdev);
500 else {
501 set_bit(WriteErrorSeen, &rdev->flags);
502 if (!test_and_set_bit(WantReplacement, &rdev->flags))
503 set_bit(MD_RECOVERY_NEEDED,
504 &rdev->mddev->recovery);
505
506 dec_rdev = 0;
507 if (test_bit(FailFast, &rdev->flags) &&
508 (bio->bi_opf & MD_FAILFAST)) {
509 md_error(rdev->mddev, rdev);
510 if (!test_bit(Faulty, &rdev->flags))
511 /* This is the only remaining device,
512 * We need to retry the write without
513 * FailFast
514 */
515 set_bit(R10BIO_WriteError, &r10_bio->state);
516 else {
517 r10_bio->devs[slot].bio = NULL;
518 to_put = bio;
519 dec_rdev = 1;
520 }
521 } else
522 set_bit(R10BIO_WriteError, &r10_bio->state);
523 }
524 } else {
525 /*
526 * Set R10BIO_Uptodate in our master bio, so that
527 * we will return a good error code for to the higher
528 * levels even if IO on some other mirrored buffer fails.
529 *
530 * The 'master' represents the composite IO operation to
531 * user-side. So if something waits for IO, then it will
532 * wait for the 'master' bio.
533 */
534 sector_t first_bad;
535 int bad_sectors;
536
537 /*
538 * Do not set R10BIO_Uptodate if the current device is
539 * rebuilding or Faulty. This is because we cannot use
540 * such device for properly reading the data back (we could
541 * potentially use it, if the current write would have felt
542 * before rdev->recovery_offset, but for simplicity we don't
543 * check this here.
544 */
545 if (test_bit(In_sync, &rdev->flags) &&
546 !test_bit(Faulty, &rdev->flags))
547 set_bit(R10BIO_Uptodate, &r10_bio->state);
548
549 /* Maybe we can clear some bad blocks. */
550 if (is_badblock(rdev,
551 r10_bio->devs[slot].addr,
552 r10_bio->sectors,
553 &first_bad, &bad_sectors) && !discard_error) {
554 bio_put(bio);
555 if (repl)
556 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
557 else
558 r10_bio->devs[slot].bio = IO_MADE_GOOD;
559 dec_rdev = 0;
560 set_bit(R10BIO_MadeGood, &r10_bio->state);
561 }
562 }
563
564 /*
565 *
566 * Let's see if all mirrored write operations have finished
567 * already.
568 */
569 one_write_done(r10_bio);
570 if (dec_rdev)
571 rdev_dec_pending(rdev, conf->mddev);
572 if (to_put)
573 bio_put(to_put);
574 }
575
576 /*
577 * RAID10 layout manager
578 * As well as the chunksize and raid_disks count, there are two
579 * parameters: near_copies and far_copies.
580 * near_copies * far_copies must be <= raid_disks.
581 * Normally one of these will be 1.
582 * If both are 1, we get raid0.
583 * If near_copies == raid_disks, we get raid1.
584 *
585 * Chunks are laid out in raid0 style with near_copies copies of the
586 * first chunk, followed by near_copies copies of the next chunk and
587 * so on.
588 * If far_copies > 1, then after 1/far_copies of the array has been assigned
589 * as described above, we start again with a device offset of near_copies.
590 * So we effectively have another copy of the whole array further down all
591 * the drives, but with blocks on different drives.
592 * With this layout, and block is never stored twice on the one device.
593 *
594 * raid10_find_phys finds the sector offset of a given virtual sector
595 * on each device that it is on.
596 *
597 * raid10_find_virt does the reverse mapping, from a device and a
598 * sector offset to a virtual address
599 */
600
601 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
602 {
603 int n,f;
604 sector_t sector;
605 sector_t chunk;
606 sector_t stripe;
607 int dev;
608 int slot = 0;
609 int last_far_set_start, last_far_set_size;
610
611 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
612 last_far_set_start *= geo->far_set_size;
613
614 last_far_set_size = geo->far_set_size;
615 last_far_set_size += (geo->raid_disks % geo->far_set_size);
616
617 /* now calculate first sector/dev */
618 chunk = r10bio->sector >> geo->chunk_shift;
619 sector = r10bio->sector & geo->chunk_mask;
620
621 chunk *= geo->near_copies;
622 stripe = chunk;
623 dev = sector_div(stripe, geo->raid_disks);
624 if (geo->far_offset)
625 stripe *= geo->far_copies;
626
627 sector += stripe << geo->chunk_shift;
628
629 /* and calculate all the others */
630 for (n = 0; n < geo->near_copies; n++) {
631 int d = dev;
632 int set;
633 sector_t s = sector;
634 r10bio->devs[slot].devnum = d;
635 r10bio->devs[slot].addr = s;
636 slot++;
637
638 for (f = 1; f < geo->far_copies; f++) {
639 set = d / geo->far_set_size;
640 d += geo->near_copies;
641
642 if ((geo->raid_disks % geo->far_set_size) &&
643 (d > last_far_set_start)) {
644 d -= last_far_set_start;
645 d %= last_far_set_size;
646 d += last_far_set_start;
647 } else {
648 d %= geo->far_set_size;
649 d += geo->far_set_size * set;
650 }
651 s += geo->stride;
652 r10bio->devs[slot].devnum = d;
653 r10bio->devs[slot].addr = s;
654 slot++;
655 }
656 dev++;
657 if (dev >= geo->raid_disks) {
658 dev = 0;
659 sector += (geo->chunk_mask + 1);
660 }
661 }
662 }
663
664 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
665 {
666 struct geom *geo = &conf->geo;
667
668 if (conf->reshape_progress != MaxSector &&
669 ((r10bio->sector >= conf->reshape_progress) !=
670 conf->mddev->reshape_backwards)) {
671 set_bit(R10BIO_Previous, &r10bio->state);
672 geo = &conf->prev;
673 } else
674 clear_bit(R10BIO_Previous, &r10bio->state);
675
676 __raid10_find_phys(geo, r10bio);
677 }
678
679 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
680 {
681 sector_t offset, chunk, vchunk;
682 /* Never use conf->prev as this is only called during resync
683 * or recovery, so reshape isn't happening
684 */
685 struct geom *geo = &conf->geo;
686 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
687 int far_set_size = geo->far_set_size;
688 int last_far_set_start;
689
690 if (geo->raid_disks % geo->far_set_size) {
691 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
692 last_far_set_start *= geo->far_set_size;
693
694 if (dev >= last_far_set_start) {
695 far_set_size = geo->far_set_size;
696 far_set_size += (geo->raid_disks % geo->far_set_size);
697 far_set_start = last_far_set_start;
698 }
699 }
700
701 offset = sector & geo->chunk_mask;
702 if (geo->far_offset) {
703 int fc;
704 chunk = sector >> geo->chunk_shift;
705 fc = sector_div(chunk, geo->far_copies);
706 dev -= fc * geo->near_copies;
707 if (dev < far_set_start)
708 dev += far_set_size;
709 } else {
710 while (sector >= geo->stride) {
711 sector -= geo->stride;
712 if (dev < (geo->near_copies + far_set_start))
713 dev += far_set_size - geo->near_copies;
714 else
715 dev -= geo->near_copies;
716 }
717 chunk = sector >> geo->chunk_shift;
718 }
719 vchunk = chunk * geo->raid_disks + dev;
720 sector_div(vchunk, geo->near_copies);
721 return (vchunk << geo->chunk_shift) + offset;
722 }
723
724 /*
725 * This routine returns the disk from which the requested read should
726 * be done. There is a per-array 'next expected sequential IO' sector
727 * number - if this matches on the next IO then we use the last disk.
728 * There is also a per-disk 'last know head position' sector that is
729 * maintained from IRQ contexts, both the normal and the resync IO
730 * completion handlers update this position correctly. If there is no
731 * perfect sequential match then we pick the disk whose head is closest.
732 *
733 * If there are 2 mirrors in the same 2 devices, performance degrades
734 * because position is mirror, not device based.
735 *
736 * The rdev for the device selected will have nr_pending incremented.
737 */
738
739 /*
740 * FIXME: possibly should rethink readbalancing and do it differently
741 * depending on near_copies / far_copies geometry.
742 */
743 static struct md_rdev *read_balance(struct r10conf *conf,
744 struct r10bio *r10_bio,
745 int *max_sectors)
746 {
747 const sector_t this_sector = r10_bio->sector;
748 int disk, slot;
749 int sectors = r10_bio->sectors;
750 int best_good_sectors;
751 sector_t new_distance, best_dist;
752 struct md_rdev *best_rdev, *rdev = NULL;
753 int do_balance;
754 int best_slot;
755 struct geom *geo = &conf->geo;
756
757 raid10_find_phys(conf, r10_bio);
758 rcu_read_lock();
759 sectors = r10_bio->sectors;
760 best_slot = -1;
761 best_rdev = NULL;
762 best_dist = MaxSector;
763 best_good_sectors = 0;
764 do_balance = 1;
765 clear_bit(R10BIO_FailFast, &r10_bio->state);
766 /*
767 * Check if we can balance. We can balance on the whole
768 * device if no resync is going on (recovery is ok), or below
769 * the resync window. We take the first readable disk when
770 * above the resync window.
771 */
772 if (conf->mddev->recovery_cp < MaxSector
773 && (this_sector + sectors >= conf->next_resync))
774 do_balance = 0;
775
776 for (slot = 0; slot < conf->copies ; slot++) {
777 sector_t first_bad;
778 int bad_sectors;
779 sector_t dev_sector;
780
781 if (r10_bio->devs[slot].bio == IO_BLOCKED)
782 continue;
783 disk = r10_bio->devs[slot].devnum;
784 rdev = rcu_dereference(conf->mirrors[disk].replacement);
785 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
786 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
787 rdev = rcu_dereference(conf->mirrors[disk].rdev);
788 if (rdev == NULL ||
789 test_bit(Faulty, &rdev->flags))
790 continue;
791 if (!test_bit(In_sync, &rdev->flags) &&
792 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
793 continue;
794
795 dev_sector = r10_bio->devs[slot].addr;
796 if (is_badblock(rdev, dev_sector, sectors,
797 &first_bad, &bad_sectors)) {
798 if (best_dist < MaxSector)
799 /* Already have a better slot */
800 continue;
801 if (first_bad <= dev_sector) {
802 /* Cannot read here. If this is the
803 * 'primary' device, then we must not read
804 * beyond 'bad_sectors' from another device.
805 */
806 bad_sectors -= (dev_sector - first_bad);
807 if (!do_balance && sectors > bad_sectors)
808 sectors = bad_sectors;
809 if (best_good_sectors > sectors)
810 best_good_sectors = sectors;
811 } else {
812 sector_t good_sectors =
813 first_bad - dev_sector;
814 if (good_sectors > best_good_sectors) {
815 best_good_sectors = good_sectors;
816 best_slot = slot;
817 best_rdev = rdev;
818 }
819 if (!do_balance)
820 /* Must read from here */
821 break;
822 }
823 continue;
824 } else
825 best_good_sectors = sectors;
826
827 if (!do_balance)
828 break;
829
830 if (best_slot >= 0)
831 /* At least 2 disks to choose from so failfast is OK */
832 set_bit(R10BIO_FailFast, &r10_bio->state);
833 /* This optimisation is debatable, and completely destroys
834 * sequential read speed for 'far copies' arrays. So only
835 * keep it for 'near' arrays, and review those later.
836 */
837 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
838 new_distance = 0;
839
840 /* for far > 1 always use the lowest address */
841 else if (geo->far_copies > 1)
842 new_distance = r10_bio->devs[slot].addr;
843 else
844 new_distance = abs(r10_bio->devs[slot].addr -
845 conf->mirrors[disk].head_position);
846 if (new_distance < best_dist) {
847 best_dist = new_distance;
848 best_slot = slot;
849 best_rdev = rdev;
850 }
851 }
852 if (slot >= conf->copies) {
853 slot = best_slot;
854 rdev = best_rdev;
855 }
856
857 if (slot >= 0) {
858 atomic_inc(&rdev->nr_pending);
859 r10_bio->read_slot = slot;
860 } else
861 rdev = NULL;
862 rcu_read_unlock();
863 *max_sectors = best_good_sectors;
864
865 return rdev;
866 }
867
868 static int raid10_congested(struct mddev *mddev, int bits)
869 {
870 struct r10conf *conf = mddev->private;
871 int i, ret = 0;
872
873 if ((bits & (1 << WB_async_congested)) &&
874 conf->pending_count >= max_queued_requests)
875 return 1;
876
877 rcu_read_lock();
878 for (i = 0;
879 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
880 && ret == 0;
881 i++) {
882 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
883 if (rdev && !test_bit(Faulty, &rdev->flags)) {
884 struct request_queue *q = bdev_get_queue(rdev->bdev);
885
886 ret |= bdi_congested(q->backing_dev_info, bits);
887 }
888 }
889 rcu_read_unlock();
890 return ret;
891 }
892
893 static void flush_pending_writes(struct r10conf *conf)
894 {
895 /* Any writes that have been queued but are awaiting
896 * bitmap updates get flushed here.
897 */
898 spin_lock_irq(&conf->device_lock);
899
900 if (conf->pending_bio_list.head) {
901 struct bio *bio;
902 bio = bio_list_get(&conf->pending_bio_list);
903 conf->pending_count = 0;
904 spin_unlock_irq(&conf->device_lock);
905 /* flush any pending bitmap writes to disk
906 * before proceeding w/ I/O */
907 bitmap_unplug(conf->mddev->bitmap);
908 wake_up(&conf->wait_barrier);
909
910 while (bio) { /* submit pending writes */
911 struct bio *next = bio->bi_next;
912 struct md_rdev *rdev = (void*)bio->bi_bdev;
913 bio->bi_next = NULL;
914 bio->bi_bdev = rdev->bdev;
915 if (test_bit(Faulty, &rdev->flags)) {
916 bio->bi_status = BLK_STS_IOERR;
917 bio_endio(bio);
918 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
919 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
920 /* Just ignore it */
921 bio_endio(bio);
922 else
923 generic_make_request(bio);
924 bio = next;
925 }
926 } else
927 spin_unlock_irq(&conf->device_lock);
928 }
929
930 /* Barriers....
931 * Sometimes we need to suspend IO while we do something else,
932 * either some resync/recovery, or reconfigure the array.
933 * To do this we raise a 'barrier'.
934 * The 'barrier' is a counter that can be raised multiple times
935 * to count how many activities are happening which preclude
936 * normal IO.
937 * We can only raise the barrier if there is no pending IO.
938 * i.e. if nr_pending == 0.
939 * We choose only to raise the barrier if no-one is waiting for the
940 * barrier to go down. This means that as soon as an IO request
941 * is ready, no other operations which require a barrier will start
942 * until the IO request has had a chance.
943 *
944 * So: regular IO calls 'wait_barrier'. When that returns there
945 * is no backgroup IO happening, It must arrange to call
946 * allow_barrier when it has finished its IO.
947 * backgroup IO calls must call raise_barrier. Once that returns
948 * there is no normal IO happeing. It must arrange to call
949 * lower_barrier when the particular background IO completes.
950 */
951
952 static void raise_barrier(struct r10conf *conf, int force)
953 {
954 BUG_ON(force && !conf->barrier);
955 spin_lock_irq(&conf->resync_lock);
956
957 /* Wait until no block IO is waiting (unless 'force') */
958 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
959 conf->resync_lock);
960
961 /* block any new IO from starting */
962 conf->barrier++;
963
964 /* Now wait for all pending IO to complete */
965 wait_event_lock_irq(conf->wait_barrier,
966 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
967 conf->resync_lock);
968
969 spin_unlock_irq(&conf->resync_lock);
970 }
971
972 static void lower_barrier(struct r10conf *conf)
973 {
974 unsigned long flags;
975 spin_lock_irqsave(&conf->resync_lock, flags);
976 conf->barrier--;
977 spin_unlock_irqrestore(&conf->resync_lock, flags);
978 wake_up(&conf->wait_barrier);
979 }
980
981 static void wait_barrier(struct r10conf *conf)
982 {
983 spin_lock_irq(&conf->resync_lock);
984 if (conf->barrier) {
985 conf->nr_waiting++;
986 /* Wait for the barrier to drop.
987 * However if there are already pending
988 * requests (preventing the barrier from
989 * rising completely), and the
990 * pre-process bio queue isn't empty,
991 * then don't wait, as we need to empty
992 * that queue to get the nr_pending
993 * count down.
994 */
995 raid10_log(conf->mddev, "wait barrier");
996 wait_event_lock_irq(conf->wait_barrier,
997 !conf->barrier ||
998 (atomic_read(&conf->nr_pending) &&
999 current->bio_list &&
1000 (!bio_list_empty(&current->bio_list[0]) ||
1001 !bio_list_empty(&current->bio_list[1]))),
1002 conf->resync_lock);
1003 conf->nr_waiting--;
1004 if (!conf->nr_waiting)
1005 wake_up(&conf->wait_barrier);
1006 }
1007 atomic_inc(&conf->nr_pending);
1008 spin_unlock_irq(&conf->resync_lock);
1009 }
1010
1011 static void allow_barrier(struct r10conf *conf)
1012 {
1013 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1014 (conf->array_freeze_pending))
1015 wake_up(&conf->wait_barrier);
1016 }
1017
1018 static void freeze_array(struct r10conf *conf, int extra)
1019 {
1020 /* stop syncio and normal IO and wait for everything to
1021 * go quiet.
1022 * We increment barrier and nr_waiting, and then
1023 * wait until nr_pending match nr_queued+extra
1024 * This is called in the context of one normal IO request
1025 * that has failed. Thus any sync request that might be pending
1026 * will be blocked by nr_pending, and we need to wait for
1027 * pending IO requests to complete or be queued for re-try.
1028 * Thus the number queued (nr_queued) plus this request (extra)
1029 * must match the number of pending IOs (nr_pending) before
1030 * we continue.
1031 */
1032 spin_lock_irq(&conf->resync_lock);
1033 conf->array_freeze_pending++;
1034 conf->barrier++;
1035 conf->nr_waiting++;
1036 wait_event_lock_irq_cmd(conf->wait_barrier,
1037 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1038 conf->resync_lock,
1039 flush_pending_writes(conf));
1040
1041 conf->array_freeze_pending--;
1042 spin_unlock_irq(&conf->resync_lock);
1043 }
1044
1045 static void unfreeze_array(struct r10conf *conf)
1046 {
1047 /* reverse the effect of the freeze */
1048 spin_lock_irq(&conf->resync_lock);
1049 conf->barrier--;
1050 conf->nr_waiting--;
1051 wake_up(&conf->wait_barrier);
1052 spin_unlock_irq(&conf->resync_lock);
1053 }
1054
1055 static sector_t choose_data_offset(struct r10bio *r10_bio,
1056 struct md_rdev *rdev)
1057 {
1058 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1059 test_bit(R10BIO_Previous, &r10_bio->state))
1060 return rdev->data_offset;
1061 else
1062 return rdev->new_data_offset;
1063 }
1064
1065 struct raid10_plug_cb {
1066 struct blk_plug_cb cb;
1067 struct bio_list pending;
1068 int pending_cnt;
1069 };
1070
1071 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1072 {
1073 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1074 cb);
1075 struct mddev *mddev = plug->cb.data;
1076 struct r10conf *conf = mddev->private;
1077 struct bio *bio;
1078
1079 if (from_schedule || current->bio_list) {
1080 spin_lock_irq(&conf->device_lock);
1081 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1082 conf->pending_count += plug->pending_cnt;
1083 spin_unlock_irq(&conf->device_lock);
1084 wake_up(&conf->wait_barrier);
1085 md_wakeup_thread(mddev->thread);
1086 kfree(plug);
1087 return;
1088 }
1089
1090 /* we aren't scheduling, so we can do the write-out directly. */
1091 bio = bio_list_get(&plug->pending);
1092 bitmap_unplug(mddev->bitmap);
1093 wake_up(&conf->wait_barrier);
1094
1095 while (bio) { /* submit pending writes */
1096 struct bio *next = bio->bi_next;
1097 struct md_rdev *rdev = (void*)bio->bi_bdev;
1098 bio->bi_next = NULL;
1099 bio->bi_bdev = rdev->bdev;
1100 if (test_bit(Faulty, &rdev->flags)) {
1101 bio->bi_status = BLK_STS_IOERR;
1102 bio_endio(bio);
1103 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1104 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1105 /* Just ignore it */
1106 bio_endio(bio);
1107 else
1108 generic_make_request(bio);
1109 bio = next;
1110 }
1111 kfree(plug);
1112 }
1113
1114 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1115 struct r10bio *r10_bio)
1116 {
1117 struct r10conf *conf = mddev->private;
1118 struct bio *read_bio;
1119 const int op = bio_op(bio);
1120 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1121 int max_sectors;
1122 sector_t sectors;
1123 struct md_rdev *rdev;
1124 char b[BDEVNAME_SIZE];
1125 int slot = r10_bio->read_slot;
1126 struct md_rdev *err_rdev = NULL;
1127 gfp_t gfp = GFP_NOIO;
1128
1129 if (r10_bio->devs[slot].rdev) {
1130 /*
1131 * This is an error retry, but we cannot
1132 * safely dereference the rdev in the r10_bio,
1133 * we must use the one in conf.
1134 * If it has already been disconnected (unlikely)
1135 * we lose the device name in error messages.
1136 */
1137 int disk;
1138 /*
1139 * As we are blocking raid10, it is a little safer to
1140 * use __GFP_HIGH.
1141 */
1142 gfp = GFP_NOIO | __GFP_HIGH;
1143
1144 rcu_read_lock();
1145 disk = r10_bio->devs[slot].devnum;
1146 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1147 if (err_rdev)
1148 bdevname(err_rdev->bdev, b);
1149 else {
1150 strcpy(b, "???");
1151 /* This never gets dereferenced */
1152 err_rdev = r10_bio->devs[slot].rdev;
1153 }
1154 rcu_read_unlock();
1155 }
1156 /*
1157 * Register the new request and wait if the reconstruction
1158 * thread has put up a bar for new requests.
1159 * Continue immediately if no resync is active currently.
1160 */
1161 wait_barrier(conf);
1162
1163 sectors = r10_bio->sectors;
1164 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1165 bio->bi_iter.bi_sector < conf->reshape_progress &&
1166 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1167 /*
1168 * IO spans the reshape position. Need to wait for reshape to
1169 * pass
1170 */
1171 raid10_log(conf->mddev, "wait reshape");
1172 allow_barrier(conf);
1173 wait_event(conf->wait_barrier,
1174 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1175 conf->reshape_progress >= bio->bi_iter.bi_sector +
1176 sectors);
1177 wait_barrier(conf);
1178 }
1179
1180 rdev = read_balance(conf, r10_bio, &max_sectors);
1181 if (!rdev) {
1182 if (err_rdev) {
1183 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1184 mdname(mddev), b,
1185 (unsigned long long)r10_bio->sector);
1186 }
1187 raid_end_bio_io(r10_bio);
1188 return;
1189 }
1190 if (err_rdev)
1191 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1192 mdname(mddev),
1193 bdevname(rdev->bdev, b),
1194 (unsigned long long)r10_bio->sector);
1195 if (max_sectors < bio_sectors(bio)) {
1196 struct bio *split = bio_split(bio, max_sectors,
1197 gfp, conf->bio_split);
1198 bio_chain(split, bio);
1199 generic_make_request(bio);
1200 bio = split;
1201 r10_bio->master_bio = bio;
1202 r10_bio->sectors = max_sectors;
1203 }
1204 slot = r10_bio->read_slot;
1205
1206 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1207
1208 r10_bio->devs[slot].bio = read_bio;
1209 r10_bio->devs[slot].rdev = rdev;
1210
1211 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1212 choose_data_offset(r10_bio, rdev);
1213 read_bio->bi_bdev = rdev->bdev;
1214 read_bio->bi_end_io = raid10_end_read_request;
1215 bio_set_op_attrs(read_bio, op, do_sync);
1216 if (test_bit(FailFast, &rdev->flags) &&
1217 test_bit(R10BIO_FailFast, &r10_bio->state))
1218 read_bio->bi_opf |= MD_FAILFAST;
1219 read_bio->bi_private = r10_bio;
1220
1221 if (mddev->gendisk)
1222 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1223 read_bio, disk_devt(mddev->gendisk),
1224 r10_bio->sector);
1225 generic_make_request(read_bio);
1226 return;
1227 }
1228
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230 struct bio *bio, bool replacement,
1231 int n_copy)
1232 {
1233 const int op = bio_op(bio);
1234 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1236 unsigned long flags;
1237 struct blk_plug_cb *cb;
1238 struct raid10_plug_cb *plug = NULL;
1239 struct r10conf *conf = mddev->private;
1240 struct md_rdev *rdev;
1241 int devnum = r10_bio->devs[n_copy].devnum;
1242 struct bio *mbio;
1243
1244 if (replacement) {
1245 rdev = conf->mirrors[devnum].replacement;
1246 if (rdev == NULL) {
1247 /* Replacement just got moved to main 'rdev' */
1248 smp_mb();
1249 rdev = conf->mirrors[devnum].rdev;
1250 }
1251 } else
1252 rdev = conf->mirrors[devnum].rdev;
1253
1254 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1255 if (replacement)
1256 r10_bio->devs[n_copy].repl_bio = mbio;
1257 else
1258 r10_bio->devs[n_copy].bio = mbio;
1259
1260 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1261 choose_data_offset(r10_bio, rdev));
1262 mbio->bi_bdev = rdev->bdev;
1263 mbio->bi_end_io = raid10_end_write_request;
1264 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1265 if (!replacement && test_bit(FailFast,
1266 &conf->mirrors[devnum].rdev->flags)
1267 && enough(conf, devnum))
1268 mbio->bi_opf |= MD_FAILFAST;
1269 mbio->bi_private = r10_bio;
1270
1271 if (conf->mddev->gendisk)
1272 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1273 mbio, disk_devt(conf->mddev->gendisk),
1274 r10_bio->sector);
1275 /* flush_pending_writes() needs access to the rdev so...*/
1276 mbio->bi_bdev = (void *)rdev;
1277
1278 atomic_inc(&r10_bio->remaining);
1279
1280 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1281 if (cb)
1282 plug = container_of(cb, struct raid10_plug_cb, cb);
1283 else
1284 plug = NULL;
1285 if (plug) {
1286 bio_list_add(&plug->pending, mbio);
1287 plug->pending_cnt++;
1288 } else {
1289 spin_lock_irqsave(&conf->device_lock, flags);
1290 bio_list_add(&conf->pending_bio_list, mbio);
1291 conf->pending_count++;
1292 spin_unlock_irqrestore(&conf->device_lock, flags);
1293 md_wakeup_thread(mddev->thread);
1294 }
1295 }
1296
1297 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1298 struct r10bio *r10_bio)
1299 {
1300 struct r10conf *conf = mddev->private;
1301 int i;
1302 struct md_rdev *blocked_rdev;
1303 sector_t sectors;
1304 int max_sectors;
1305
1306 md_write_start(mddev, bio);
1307
1308 /*
1309 * Register the new request and wait if the reconstruction
1310 * thread has put up a bar for new requests.
1311 * Continue immediately if no resync is active currently.
1312 */
1313 wait_barrier(conf);
1314
1315 sectors = r10_bio->sectors;
1316 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1317 bio->bi_iter.bi_sector < conf->reshape_progress &&
1318 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1319 /*
1320 * IO spans the reshape position. Need to wait for reshape to
1321 * pass
1322 */
1323 raid10_log(conf->mddev, "wait reshape");
1324 allow_barrier(conf);
1325 wait_event(conf->wait_barrier,
1326 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1327 conf->reshape_progress >= bio->bi_iter.bi_sector +
1328 sectors);
1329 wait_barrier(conf);
1330 }
1331
1332 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1333 (mddev->reshape_backwards
1334 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1335 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1336 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1337 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1338 /* Need to update reshape_position in metadata */
1339 mddev->reshape_position = conf->reshape_progress;
1340 set_mask_bits(&mddev->sb_flags, 0,
1341 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1342 md_wakeup_thread(mddev->thread);
1343 raid10_log(conf->mddev, "wait reshape metadata");
1344 wait_event(mddev->sb_wait,
1345 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1346
1347 conf->reshape_safe = mddev->reshape_position;
1348 }
1349
1350 if (conf->pending_count >= max_queued_requests) {
1351 md_wakeup_thread(mddev->thread);
1352 raid10_log(mddev, "wait queued");
1353 wait_event(conf->wait_barrier,
1354 conf->pending_count < max_queued_requests);
1355 }
1356 /* first select target devices under rcu_lock and
1357 * inc refcount on their rdev. Record them by setting
1358 * bios[x] to bio
1359 * If there are known/acknowledged bad blocks on any device
1360 * on which we have seen a write error, we want to avoid
1361 * writing to those blocks. This potentially requires several
1362 * writes to write around the bad blocks. Each set of writes
1363 * gets its own r10_bio with a set of bios attached.
1364 */
1365
1366 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1367 raid10_find_phys(conf, r10_bio);
1368 retry_write:
1369 blocked_rdev = NULL;
1370 rcu_read_lock();
1371 max_sectors = r10_bio->sectors;
1372
1373 for (i = 0; i < conf->copies; i++) {
1374 int d = r10_bio->devs[i].devnum;
1375 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1376 struct md_rdev *rrdev = rcu_dereference(
1377 conf->mirrors[d].replacement);
1378 if (rdev == rrdev)
1379 rrdev = NULL;
1380 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1381 atomic_inc(&rdev->nr_pending);
1382 blocked_rdev = rdev;
1383 break;
1384 }
1385 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1386 atomic_inc(&rrdev->nr_pending);
1387 blocked_rdev = rrdev;
1388 break;
1389 }
1390 if (rdev && (test_bit(Faulty, &rdev->flags)))
1391 rdev = NULL;
1392 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1393 rrdev = NULL;
1394
1395 r10_bio->devs[i].bio = NULL;
1396 r10_bio->devs[i].repl_bio = NULL;
1397
1398 if (!rdev && !rrdev) {
1399 set_bit(R10BIO_Degraded, &r10_bio->state);
1400 continue;
1401 }
1402 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1403 sector_t first_bad;
1404 sector_t dev_sector = r10_bio->devs[i].addr;
1405 int bad_sectors;
1406 int is_bad;
1407
1408 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1409 &first_bad, &bad_sectors);
1410 if (is_bad < 0) {
1411 /* Mustn't write here until the bad block
1412 * is acknowledged
1413 */
1414 atomic_inc(&rdev->nr_pending);
1415 set_bit(BlockedBadBlocks, &rdev->flags);
1416 blocked_rdev = rdev;
1417 break;
1418 }
1419 if (is_bad && first_bad <= dev_sector) {
1420 /* Cannot write here at all */
1421 bad_sectors -= (dev_sector - first_bad);
1422 if (bad_sectors < max_sectors)
1423 /* Mustn't write more than bad_sectors
1424 * to other devices yet
1425 */
1426 max_sectors = bad_sectors;
1427 /* We don't set R10BIO_Degraded as that
1428 * only applies if the disk is missing,
1429 * so it might be re-added, and we want to
1430 * know to recover this chunk.
1431 * In this case the device is here, and the
1432 * fact that this chunk is not in-sync is
1433 * recorded in the bad block log.
1434 */
1435 continue;
1436 }
1437 if (is_bad) {
1438 int good_sectors = first_bad - dev_sector;
1439 if (good_sectors < max_sectors)
1440 max_sectors = good_sectors;
1441 }
1442 }
1443 if (rdev) {
1444 r10_bio->devs[i].bio = bio;
1445 atomic_inc(&rdev->nr_pending);
1446 }
1447 if (rrdev) {
1448 r10_bio->devs[i].repl_bio = bio;
1449 atomic_inc(&rrdev->nr_pending);
1450 }
1451 }
1452 rcu_read_unlock();
1453
1454 if (unlikely(blocked_rdev)) {
1455 /* Have to wait for this device to get unblocked, then retry */
1456 int j;
1457 int d;
1458
1459 for (j = 0; j < i; j++) {
1460 if (r10_bio->devs[j].bio) {
1461 d = r10_bio->devs[j].devnum;
1462 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1463 }
1464 if (r10_bio->devs[j].repl_bio) {
1465 struct md_rdev *rdev;
1466 d = r10_bio->devs[j].devnum;
1467 rdev = conf->mirrors[d].replacement;
1468 if (!rdev) {
1469 /* Race with remove_disk */
1470 smp_mb();
1471 rdev = conf->mirrors[d].rdev;
1472 }
1473 rdev_dec_pending(rdev, mddev);
1474 }
1475 }
1476 allow_barrier(conf);
1477 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1478 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1479 wait_barrier(conf);
1480 goto retry_write;
1481 }
1482
1483 if (max_sectors < r10_bio->sectors)
1484 r10_bio->sectors = max_sectors;
1485
1486 if (r10_bio->sectors < bio_sectors(bio)) {
1487 struct bio *split = bio_split(bio, r10_bio->sectors,
1488 GFP_NOIO, conf->bio_split);
1489 bio_chain(split, bio);
1490 generic_make_request(bio);
1491 bio = split;
1492 r10_bio->master_bio = bio;
1493 }
1494
1495 atomic_set(&r10_bio->remaining, 1);
1496 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1497
1498 for (i = 0; i < conf->copies; i++) {
1499 if (r10_bio->devs[i].bio)
1500 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1501 if (r10_bio->devs[i].repl_bio)
1502 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1503 }
1504 one_write_done(r10_bio);
1505 }
1506
1507 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1508 {
1509 struct r10conf *conf = mddev->private;
1510 struct r10bio *r10_bio;
1511
1512 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1513
1514 r10_bio->master_bio = bio;
1515 r10_bio->sectors = sectors;
1516
1517 r10_bio->mddev = mddev;
1518 r10_bio->sector = bio->bi_iter.bi_sector;
1519 r10_bio->state = 0;
1520 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1521
1522 if (bio_data_dir(bio) == READ)
1523 raid10_read_request(mddev, bio, r10_bio);
1524 else
1525 raid10_write_request(mddev, bio, r10_bio);
1526 }
1527
1528 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1529 {
1530 struct r10conf *conf = mddev->private;
1531 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1532 int chunk_sects = chunk_mask + 1;
1533 int sectors = bio_sectors(bio);
1534
1535 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1536 md_flush_request(mddev, bio);
1537 return;
1538 }
1539
1540 /*
1541 * If this request crosses a chunk boundary, we need to split
1542 * it.
1543 */
1544 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1545 sectors > chunk_sects
1546 && (conf->geo.near_copies < conf->geo.raid_disks
1547 || conf->prev.near_copies <
1548 conf->prev.raid_disks)))
1549 sectors = chunk_sects -
1550 (bio->bi_iter.bi_sector &
1551 (chunk_sects - 1));
1552 __make_request(mddev, bio, sectors);
1553
1554 /* In case raid10d snuck in to freeze_array */
1555 wake_up(&conf->wait_barrier);
1556 }
1557
1558 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1559 {
1560 struct r10conf *conf = mddev->private;
1561 int i;
1562
1563 if (conf->geo.near_copies < conf->geo.raid_disks)
1564 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1565 if (conf->geo.near_copies > 1)
1566 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1567 if (conf->geo.far_copies > 1) {
1568 if (conf->geo.far_offset)
1569 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1570 else
1571 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1572 if (conf->geo.far_set_size != conf->geo.raid_disks)
1573 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1574 }
1575 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1576 conf->geo.raid_disks - mddev->degraded);
1577 rcu_read_lock();
1578 for (i = 0; i < conf->geo.raid_disks; i++) {
1579 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1580 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1581 }
1582 rcu_read_unlock();
1583 seq_printf(seq, "]");
1584 }
1585
1586 /* check if there are enough drives for
1587 * every block to appear on atleast one.
1588 * Don't consider the device numbered 'ignore'
1589 * as we might be about to remove it.
1590 */
1591 static int _enough(struct r10conf *conf, int previous, int ignore)
1592 {
1593 int first = 0;
1594 int has_enough = 0;
1595 int disks, ncopies;
1596 if (previous) {
1597 disks = conf->prev.raid_disks;
1598 ncopies = conf->prev.near_copies;
1599 } else {
1600 disks = conf->geo.raid_disks;
1601 ncopies = conf->geo.near_copies;
1602 }
1603
1604 rcu_read_lock();
1605 do {
1606 int n = conf->copies;
1607 int cnt = 0;
1608 int this = first;
1609 while (n--) {
1610 struct md_rdev *rdev;
1611 if (this != ignore &&
1612 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1613 test_bit(In_sync, &rdev->flags))
1614 cnt++;
1615 this = (this+1) % disks;
1616 }
1617 if (cnt == 0)
1618 goto out;
1619 first = (first + ncopies) % disks;
1620 } while (first != 0);
1621 has_enough = 1;
1622 out:
1623 rcu_read_unlock();
1624 return has_enough;
1625 }
1626
1627 static int enough(struct r10conf *conf, int ignore)
1628 {
1629 /* when calling 'enough', both 'prev' and 'geo' must
1630 * be stable.
1631 * This is ensured if ->reconfig_mutex or ->device_lock
1632 * is held.
1633 */
1634 return _enough(conf, 0, ignore) &&
1635 _enough(conf, 1, ignore);
1636 }
1637
1638 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1639 {
1640 char b[BDEVNAME_SIZE];
1641 struct r10conf *conf = mddev->private;
1642 unsigned long flags;
1643
1644 /*
1645 * If it is not operational, then we have already marked it as dead
1646 * else if it is the last working disks, ignore the error, let the
1647 * next level up know.
1648 * else mark the drive as failed
1649 */
1650 spin_lock_irqsave(&conf->device_lock, flags);
1651 if (test_bit(In_sync, &rdev->flags)
1652 && !enough(conf, rdev->raid_disk)) {
1653 /*
1654 * Don't fail the drive, just return an IO error.
1655 */
1656 spin_unlock_irqrestore(&conf->device_lock, flags);
1657 return;
1658 }
1659 if (test_and_clear_bit(In_sync, &rdev->flags))
1660 mddev->degraded++;
1661 /*
1662 * If recovery is running, make sure it aborts.
1663 */
1664 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1665 set_bit(Blocked, &rdev->flags);
1666 set_bit(Faulty, &rdev->flags);
1667 set_mask_bits(&mddev->sb_flags, 0,
1668 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1669 spin_unlock_irqrestore(&conf->device_lock, flags);
1670 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1671 "md/raid10:%s: Operation continuing on %d devices.\n",
1672 mdname(mddev), bdevname(rdev->bdev, b),
1673 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1674 }
1675
1676 static void print_conf(struct r10conf *conf)
1677 {
1678 int i;
1679 struct md_rdev *rdev;
1680
1681 pr_debug("RAID10 conf printout:\n");
1682 if (!conf) {
1683 pr_debug("(!conf)\n");
1684 return;
1685 }
1686 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1687 conf->geo.raid_disks);
1688
1689 /* This is only called with ->reconfix_mutex held, so
1690 * rcu protection of rdev is not needed */
1691 for (i = 0; i < conf->geo.raid_disks; i++) {
1692 char b[BDEVNAME_SIZE];
1693 rdev = conf->mirrors[i].rdev;
1694 if (rdev)
1695 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1696 i, !test_bit(In_sync, &rdev->flags),
1697 !test_bit(Faulty, &rdev->flags),
1698 bdevname(rdev->bdev,b));
1699 }
1700 }
1701
1702 static void close_sync(struct r10conf *conf)
1703 {
1704 wait_barrier(conf);
1705 allow_barrier(conf);
1706
1707 mempool_destroy(conf->r10buf_pool);
1708 conf->r10buf_pool = NULL;
1709 }
1710
1711 static int raid10_spare_active(struct mddev *mddev)
1712 {
1713 int i;
1714 struct r10conf *conf = mddev->private;
1715 struct raid10_info *tmp;
1716 int count = 0;
1717 unsigned long flags;
1718
1719 /*
1720 * Find all non-in_sync disks within the RAID10 configuration
1721 * and mark them in_sync
1722 */
1723 for (i = 0; i < conf->geo.raid_disks; i++) {
1724 tmp = conf->mirrors + i;
1725 if (tmp->replacement
1726 && tmp->replacement->recovery_offset == MaxSector
1727 && !test_bit(Faulty, &tmp->replacement->flags)
1728 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1729 /* Replacement has just become active */
1730 if (!tmp->rdev
1731 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1732 count++;
1733 if (tmp->rdev) {
1734 /* Replaced device not technically faulty,
1735 * but we need to be sure it gets removed
1736 * and never re-added.
1737 */
1738 set_bit(Faulty, &tmp->rdev->flags);
1739 sysfs_notify_dirent_safe(
1740 tmp->rdev->sysfs_state);
1741 }
1742 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1743 } else if (tmp->rdev
1744 && tmp->rdev->recovery_offset == MaxSector
1745 && !test_bit(Faulty, &tmp->rdev->flags)
1746 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1747 count++;
1748 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1749 }
1750 }
1751 spin_lock_irqsave(&conf->device_lock, flags);
1752 mddev->degraded -= count;
1753 spin_unlock_irqrestore(&conf->device_lock, flags);
1754
1755 print_conf(conf);
1756 return count;
1757 }
1758
1759 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1760 {
1761 struct r10conf *conf = mddev->private;
1762 int err = -EEXIST;
1763 int mirror;
1764 int first = 0;
1765 int last = conf->geo.raid_disks - 1;
1766
1767 if (mddev->recovery_cp < MaxSector)
1768 /* only hot-add to in-sync arrays, as recovery is
1769 * very different from resync
1770 */
1771 return -EBUSY;
1772 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1773 return -EINVAL;
1774
1775 if (md_integrity_add_rdev(rdev, mddev))
1776 return -ENXIO;
1777
1778 if (rdev->raid_disk >= 0)
1779 first = last = rdev->raid_disk;
1780
1781 if (rdev->saved_raid_disk >= first &&
1782 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1783 mirror = rdev->saved_raid_disk;
1784 else
1785 mirror = first;
1786 for ( ; mirror <= last ; mirror++) {
1787 struct raid10_info *p = &conf->mirrors[mirror];
1788 if (p->recovery_disabled == mddev->recovery_disabled)
1789 continue;
1790 if (p->rdev) {
1791 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1792 p->replacement != NULL)
1793 continue;
1794 clear_bit(In_sync, &rdev->flags);
1795 set_bit(Replacement, &rdev->flags);
1796 rdev->raid_disk = mirror;
1797 err = 0;
1798 if (mddev->gendisk)
1799 disk_stack_limits(mddev->gendisk, rdev->bdev,
1800 rdev->data_offset << 9);
1801 conf->fullsync = 1;
1802 rcu_assign_pointer(p->replacement, rdev);
1803 break;
1804 }
1805
1806 if (mddev->gendisk)
1807 disk_stack_limits(mddev->gendisk, rdev->bdev,
1808 rdev->data_offset << 9);
1809
1810 p->head_position = 0;
1811 p->recovery_disabled = mddev->recovery_disabled - 1;
1812 rdev->raid_disk = mirror;
1813 err = 0;
1814 if (rdev->saved_raid_disk != mirror)
1815 conf->fullsync = 1;
1816 rcu_assign_pointer(p->rdev, rdev);
1817 break;
1818 }
1819 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1820 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1821
1822 print_conf(conf);
1823 return err;
1824 }
1825
1826 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1827 {
1828 struct r10conf *conf = mddev->private;
1829 int err = 0;
1830 int number = rdev->raid_disk;
1831 struct md_rdev **rdevp;
1832 struct raid10_info *p = conf->mirrors + number;
1833
1834 print_conf(conf);
1835 if (rdev == p->rdev)
1836 rdevp = &p->rdev;
1837 else if (rdev == p->replacement)
1838 rdevp = &p->replacement;
1839 else
1840 return 0;
1841
1842 if (test_bit(In_sync, &rdev->flags) ||
1843 atomic_read(&rdev->nr_pending)) {
1844 err = -EBUSY;
1845 goto abort;
1846 }
1847 /* Only remove non-faulty devices if recovery
1848 * is not possible.
1849 */
1850 if (!test_bit(Faulty, &rdev->flags) &&
1851 mddev->recovery_disabled != p->recovery_disabled &&
1852 (!p->replacement || p->replacement == rdev) &&
1853 number < conf->geo.raid_disks &&
1854 enough(conf, -1)) {
1855 err = -EBUSY;
1856 goto abort;
1857 }
1858 *rdevp = NULL;
1859 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1860 synchronize_rcu();
1861 if (atomic_read(&rdev->nr_pending)) {
1862 /* lost the race, try later */
1863 err = -EBUSY;
1864 *rdevp = rdev;
1865 goto abort;
1866 }
1867 }
1868 if (p->replacement) {
1869 /* We must have just cleared 'rdev' */
1870 p->rdev = p->replacement;
1871 clear_bit(Replacement, &p->replacement->flags);
1872 smp_mb(); /* Make sure other CPUs may see both as identical
1873 * but will never see neither -- if they are careful.
1874 */
1875 p->replacement = NULL;
1876 }
1877
1878 clear_bit(WantReplacement, &rdev->flags);
1879 err = md_integrity_register(mddev);
1880
1881 abort:
1882
1883 print_conf(conf);
1884 return err;
1885 }
1886
1887 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1888 {
1889 struct r10conf *conf = r10_bio->mddev->private;
1890
1891 if (!bio->bi_status)
1892 set_bit(R10BIO_Uptodate, &r10_bio->state);
1893 else
1894 /* The write handler will notice the lack of
1895 * R10BIO_Uptodate and record any errors etc
1896 */
1897 atomic_add(r10_bio->sectors,
1898 &conf->mirrors[d].rdev->corrected_errors);
1899
1900 /* for reconstruct, we always reschedule after a read.
1901 * for resync, only after all reads
1902 */
1903 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1904 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1905 atomic_dec_and_test(&r10_bio->remaining)) {
1906 /* we have read all the blocks,
1907 * do the comparison in process context in raid10d
1908 */
1909 reschedule_retry(r10_bio);
1910 }
1911 }
1912
1913 static void end_sync_read(struct bio *bio)
1914 {
1915 struct r10bio *r10_bio = get_resync_r10bio(bio);
1916 struct r10conf *conf = r10_bio->mddev->private;
1917 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1918
1919 __end_sync_read(r10_bio, bio, d);
1920 }
1921
1922 static void end_reshape_read(struct bio *bio)
1923 {
1924 /* reshape read bio isn't allocated from r10buf_pool */
1925 struct r10bio *r10_bio = bio->bi_private;
1926
1927 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1928 }
1929
1930 static void end_sync_request(struct r10bio *r10_bio)
1931 {
1932 struct mddev *mddev = r10_bio->mddev;
1933
1934 while (atomic_dec_and_test(&r10_bio->remaining)) {
1935 if (r10_bio->master_bio == NULL) {
1936 /* the primary of several recovery bios */
1937 sector_t s = r10_bio->sectors;
1938 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1939 test_bit(R10BIO_WriteError, &r10_bio->state))
1940 reschedule_retry(r10_bio);
1941 else
1942 put_buf(r10_bio);
1943 md_done_sync(mddev, s, 1);
1944 break;
1945 } else {
1946 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1947 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1948 test_bit(R10BIO_WriteError, &r10_bio->state))
1949 reschedule_retry(r10_bio);
1950 else
1951 put_buf(r10_bio);
1952 r10_bio = r10_bio2;
1953 }
1954 }
1955 }
1956
1957 static void end_sync_write(struct bio *bio)
1958 {
1959 struct r10bio *r10_bio = get_resync_r10bio(bio);
1960 struct mddev *mddev = r10_bio->mddev;
1961 struct r10conf *conf = mddev->private;
1962 int d;
1963 sector_t first_bad;
1964 int bad_sectors;
1965 int slot;
1966 int repl;
1967 struct md_rdev *rdev = NULL;
1968
1969 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1970 if (repl)
1971 rdev = conf->mirrors[d].replacement;
1972 else
1973 rdev = conf->mirrors[d].rdev;
1974
1975 if (bio->bi_status) {
1976 if (repl)
1977 md_error(mddev, rdev);
1978 else {
1979 set_bit(WriteErrorSeen, &rdev->flags);
1980 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1981 set_bit(MD_RECOVERY_NEEDED,
1982 &rdev->mddev->recovery);
1983 set_bit(R10BIO_WriteError, &r10_bio->state);
1984 }
1985 } else if (is_badblock(rdev,
1986 r10_bio->devs[slot].addr,
1987 r10_bio->sectors,
1988 &first_bad, &bad_sectors))
1989 set_bit(R10BIO_MadeGood, &r10_bio->state);
1990
1991 rdev_dec_pending(rdev, mddev);
1992
1993 end_sync_request(r10_bio);
1994 }
1995
1996 /*
1997 * Note: sync and recover and handled very differently for raid10
1998 * This code is for resync.
1999 * For resync, we read through virtual addresses and read all blocks.
2000 * If there is any error, we schedule a write. The lowest numbered
2001 * drive is authoritative.
2002 * However requests come for physical address, so we need to map.
2003 * For every physical address there are raid_disks/copies virtual addresses,
2004 * which is always are least one, but is not necessarly an integer.
2005 * This means that a physical address can span multiple chunks, so we may
2006 * have to submit multiple io requests for a single sync request.
2007 */
2008 /*
2009 * We check if all blocks are in-sync and only write to blocks that
2010 * aren't in sync
2011 */
2012 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2013 {
2014 struct r10conf *conf = mddev->private;
2015 int i, first;
2016 struct bio *tbio, *fbio;
2017 int vcnt;
2018 struct page **tpages, **fpages;
2019
2020 atomic_set(&r10_bio->remaining, 1);
2021
2022 /* find the first device with a block */
2023 for (i=0; i<conf->copies; i++)
2024 if (!r10_bio->devs[i].bio->bi_status)
2025 break;
2026
2027 if (i == conf->copies)
2028 goto done;
2029
2030 first = i;
2031 fbio = r10_bio->devs[i].bio;
2032 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2033 fbio->bi_iter.bi_idx = 0;
2034 fpages = get_resync_pages(fbio)->pages;
2035
2036 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2037 /* now find blocks with errors */
2038 for (i=0 ; i < conf->copies ; i++) {
2039 int j, d;
2040 struct md_rdev *rdev;
2041 struct resync_pages *rp;
2042
2043 tbio = r10_bio->devs[i].bio;
2044
2045 if (tbio->bi_end_io != end_sync_read)
2046 continue;
2047 if (i == first)
2048 continue;
2049
2050 tpages = get_resync_pages(tbio)->pages;
2051 d = r10_bio->devs[i].devnum;
2052 rdev = conf->mirrors[d].rdev;
2053 if (!r10_bio->devs[i].bio->bi_status) {
2054 /* We know that the bi_io_vec layout is the same for
2055 * both 'first' and 'i', so we just compare them.
2056 * All vec entries are PAGE_SIZE;
2057 */
2058 int sectors = r10_bio->sectors;
2059 for (j = 0; j < vcnt; j++) {
2060 int len = PAGE_SIZE;
2061 if (sectors < (len / 512))
2062 len = sectors * 512;
2063 if (memcmp(page_address(fpages[j]),
2064 page_address(tpages[j]),
2065 len))
2066 break;
2067 sectors -= len/512;
2068 }
2069 if (j == vcnt)
2070 continue;
2071 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2072 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2073 /* Don't fix anything. */
2074 continue;
2075 } else if (test_bit(FailFast, &rdev->flags)) {
2076 /* Just give up on this device */
2077 md_error(rdev->mddev, rdev);
2078 continue;
2079 }
2080 /* Ok, we need to write this bio, either to correct an
2081 * inconsistency or to correct an unreadable block.
2082 * First we need to fixup bv_offset, bv_len and
2083 * bi_vecs, as the read request might have corrupted these
2084 */
2085 rp = get_resync_pages(tbio);
2086 bio_reset(tbio);
2087
2088 tbio->bi_vcnt = vcnt;
2089 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2090 rp->raid_bio = r10_bio;
2091 tbio->bi_private = rp;
2092 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2093 tbio->bi_end_io = end_sync_write;
2094 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2095
2096 bio_copy_data(tbio, fbio);
2097
2098 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2099 atomic_inc(&r10_bio->remaining);
2100 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2101
2102 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2103 tbio->bi_opf |= MD_FAILFAST;
2104 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2105 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2106 generic_make_request(tbio);
2107 }
2108
2109 /* Now write out to any replacement devices
2110 * that are active
2111 */
2112 for (i = 0; i < conf->copies; i++) {
2113 int d;
2114
2115 tbio = r10_bio->devs[i].repl_bio;
2116 if (!tbio || !tbio->bi_end_io)
2117 continue;
2118 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2119 && r10_bio->devs[i].bio != fbio)
2120 bio_copy_data(tbio, fbio);
2121 d = r10_bio->devs[i].devnum;
2122 atomic_inc(&r10_bio->remaining);
2123 md_sync_acct(conf->mirrors[d].replacement->bdev,
2124 bio_sectors(tbio));
2125 generic_make_request(tbio);
2126 }
2127
2128 done:
2129 if (atomic_dec_and_test(&r10_bio->remaining)) {
2130 md_done_sync(mddev, r10_bio->sectors, 1);
2131 put_buf(r10_bio);
2132 }
2133 }
2134
2135 /*
2136 * Now for the recovery code.
2137 * Recovery happens across physical sectors.
2138 * We recover all non-is_sync drives by finding the virtual address of
2139 * each, and then choose a working drive that also has that virt address.
2140 * There is a separate r10_bio for each non-in_sync drive.
2141 * Only the first two slots are in use. The first for reading,
2142 * The second for writing.
2143 *
2144 */
2145 static void fix_recovery_read_error(struct r10bio *r10_bio)
2146 {
2147 /* We got a read error during recovery.
2148 * We repeat the read in smaller page-sized sections.
2149 * If a read succeeds, write it to the new device or record
2150 * a bad block if we cannot.
2151 * If a read fails, record a bad block on both old and
2152 * new devices.
2153 */
2154 struct mddev *mddev = r10_bio->mddev;
2155 struct r10conf *conf = mddev->private;
2156 struct bio *bio = r10_bio->devs[0].bio;
2157 sector_t sect = 0;
2158 int sectors = r10_bio->sectors;
2159 int idx = 0;
2160 int dr = r10_bio->devs[0].devnum;
2161 int dw = r10_bio->devs[1].devnum;
2162 struct page **pages = get_resync_pages(bio)->pages;
2163
2164 while (sectors) {
2165 int s = sectors;
2166 struct md_rdev *rdev;
2167 sector_t addr;
2168 int ok;
2169
2170 if (s > (PAGE_SIZE>>9))
2171 s = PAGE_SIZE >> 9;
2172
2173 rdev = conf->mirrors[dr].rdev;
2174 addr = r10_bio->devs[0].addr + sect,
2175 ok = sync_page_io(rdev,
2176 addr,
2177 s << 9,
2178 pages[idx],
2179 REQ_OP_READ, 0, false);
2180 if (ok) {
2181 rdev = conf->mirrors[dw].rdev;
2182 addr = r10_bio->devs[1].addr + sect;
2183 ok = sync_page_io(rdev,
2184 addr,
2185 s << 9,
2186 pages[idx],
2187 REQ_OP_WRITE, 0, false);
2188 if (!ok) {
2189 set_bit(WriteErrorSeen, &rdev->flags);
2190 if (!test_and_set_bit(WantReplacement,
2191 &rdev->flags))
2192 set_bit(MD_RECOVERY_NEEDED,
2193 &rdev->mddev->recovery);
2194 }
2195 }
2196 if (!ok) {
2197 /* We don't worry if we cannot set a bad block -
2198 * it really is bad so there is no loss in not
2199 * recording it yet
2200 */
2201 rdev_set_badblocks(rdev, addr, s, 0);
2202
2203 if (rdev != conf->mirrors[dw].rdev) {
2204 /* need bad block on destination too */
2205 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2206 addr = r10_bio->devs[1].addr + sect;
2207 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2208 if (!ok) {
2209 /* just abort the recovery */
2210 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2211 mdname(mddev));
2212
2213 conf->mirrors[dw].recovery_disabled
2214 = mddev->recovery_disabled;
2215 set_bit(MD_RECOVERY_INTR,
2216 &mddev->recovery);
2217 break;
2218 }
2219 }
2220 }
2221
2222 sectors -= s;
2223 sect += s;
2224 idx++;
2225 }
2226 }
2227
2228 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2229 {
2230 struct r10conf *conf = mddev->private;
2231 int d;
2232 struct bio *wbio, *wbio2;
2233
2234 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2235 fix_recovery_read_error(r10_bio);
2236 end_sync_request(r10_bio);
2237 return;
2238 }
2239
2240 /*
2241 * share the pages with the first bio
2242 * and submit the write request
2243 */
2244 d = r10_bio->devs[1].devnum;
2245 wbio = r10_bio->devs[1].bio;
2246 wbio2 = r10_bio->devs[1].repl_bio;
2247 /* Need to test wbio2->bi_end_io before we call
2248 * generic_make_request as if the former is NULL,
2249 * the latter is free to free wbio2.
2250 */
2251 if (wbio2 && !wbio2->bi_end_io)
2252 wbio2 = NULL;
2253 if (wbio->bi_end_io) {
2254 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2255 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2256 generic_make_request(wbio);
2257 }
2258 if (wbio2) {
2259 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2260 md_sync_acct(conf->mirrors[d].replacement->bdev,
2261 bio_sectors(wbio2));
2262 generic_make_request(wbio2);
2263 }
2264 }
2265
2266 /*
2267 * Used by fix_read_error() to decay the per rdev read_errors.
2268 * We halve the read error count for every hour that has elapsed
2269 * since the last recorded read error.
2270 *
2271 */
2272 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2273 {
2274 long cur_time_mon;
2275 unsigned long hours_since_last;
2276 unsigned int read_errors = atomic_read(&rdev->read_errors);
2277
2278 cur_time_mon = ktime_get_seconds();
2279
2280 if (rdev->last_read_error == 0) {
2281 /* first time we've seen a read error */
2282 rdev->last_read_error = cur_time_mon;
2283 return;
2284 }
2285
2286 hours_since_last = (long)(cur_time_mon -
2287 rdev->last_read_error) / 3600;
2288
2289 rdev->last_read_error = cur_time_mon;
2290
2291 /*
2292 * if hours_since_last is > the number of bits in read_errors
2293 * just set read errors to 0. We do this to avoid
2294 * overflowing the shift of read_errors by hours_since_last.
2295 */
2296 if (hours_since_last >= 8 * sizeof(read_errors))
2297 atomic_set(&rdev->read_errors, 0);
2298 else
2299 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2300 }
2301
2302 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2303 int sectors, struct page *page, int rw)
2304 {
2305 sector_t first_bad;
2306 int bad_sectors;
2307
2308 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2309 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2310 return -1;
2311 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2312 /* success */
2313 return 1;
2314 if (rw == WRITE) {
2315 set_bit(WriteErrorSeen, &rdev->flags);
2316 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2317 set_bit(MD_RECOVERY_NEEDED,
2318 &rdev->mddev->recovery);
2319 }
2320 /* need to record an error - either for the block or the device */
2321 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2322 md_error(rdev->mddev, rdev);
2323 return 0;
2324 }
2325
2326 /*
2327 * This is a kernel thread which:
2328 *
2329 * 1. Retries failed read operations on working mirrors.
2330 * 2. Updates the raid superblock when problems encounter.
2331 * 3. Performs writes following reads for array synchronising.
2332 */
2333
2334 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2335 {
2336 int sect = 0; /* Offset from r10_bio->sector */
2337 int sectors = r10_bio->sectors;
2338 struct md_rdev*rdev;
2339 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2340 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2341
2342 /* still own a reference to this rdev, so it cannot
2343 * have been cleared recently.
2344 */
2345 rdev = conf->mirrors[d].rdev;
2346
2347 if (test_bit(Faulty, &rdev->flags))
2348 /* drive has already been failed, just ignore any
2349 more fix_read_error() attempts */
2350 return;
2351
2352 check_decay_read_errors(mddev, rdev);
2353 atomic_inc(&rdev->read_errors);
2354 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2355 char b[BDEVNAME_SIZE];
2356 bdevname(rdev->bdev, b);
2357
2358 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2359 mdname(mddev), b,
2360 atomic_read(&rdev->read_errors), max_read_errors);
2361 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2362 mdname(mddev), b);
2363 md_error(mddev, rdev);
2364 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2365 return;
2366 }
2367
2368 while(sectors) {
2369 int s = sectors;
2370 int sl = r10_bio->read_slot;
2371 int success = 0;
2372 int start;
2373
2374 if (s > (PAGE_SIZE>>9))
2375 s = PAGE_SIZE >> 9;
2376
2377 rcu_read_lock();
2378 do {
2379 sector_t first_bad;
2380 int bad_sectors;
2381
2382 d = r10_bio->devs[sl].devnum;
2383 rdev = rcu_dereference(conf->mirrors[d].rdev);
2384 if (rdev &&
2385 test_bit(In_sync, &rdev->flags) &&
2386 !test_bit(Faulty, &rdev->flags) &&
2387 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2388 &first_bad, &bad_sectors) == 0) {
2389 atomic_inc(&rdev->nr_pending);
2390 rcu_read_unlock();
2391 success = sync_page_io(rdev,
2392 r10_bio->devs[sl].addr +
2393 sect,
2394 s<<9,
2395 conf->tmppage,
2396 REQ_OP_READ, 0, false);
2397 rdev_dec_pending(rdev, mddev);
2398 rcu_read_lock();
2399 if (success)
2400 break;
2401 }
2402 sl++;
2403 if (sl == conf->copies)
2404 sl = 0;
2405 } while (!success && sl != r10_bio->read_slot);
2406 rcu_read_unlock();
2407
2408 if (!success) {
2409 /* Cannot read from anywhere, just mark the block
2410 * as bad on the first device to discourage future
2411 * reads.
2412 */
2413 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2414 rdev = conf->mirrors[dn].rdev;
2415
2416 if (!rdev_set_badblocks(
2417 rdev,
2418 r10_bio->devs[r10_bio->read_slot].addr
2419 + sect,
2420 s, 0)) {
2421 md_error(mddev, rdev);
2422 r10_bio->devs[r10_bio->read_slot].bio
2423 = IO_BLOCKED;
2424 }
2425 break;
2426 }
2427
2428 start = sl;
2429 /* write it back and re-read */
2430 rcu_read_lock();
2431 while (sl != r10_bio->read_slot) {
2432 char b[BDEVNAME_SIZE];
2433
2434 if (sl==0)
2435 sl = conf->copies;
2436 sl--;
2437 d = r10_bio->devs[sl].devnum;
2438 rdev = rcu_dereference(conf->mirrors[d].rdev);
2439 if (!rdev ||
2440 test_bit(Faulty, &rdev->flags) ||
2441 !test_bit(In_sync, &rdev->flags))
2442 continue;
2443
2444 atomic_inc(&rdev->nr_pending);
2445 rcu_read_unlock();
2446 if (r10_sync_page_io(rdev,
2447 r10_bio->devs[sl].addr +
2448 sect,
2449 s, conf->tmppage, WRITE)
2450 == 0) {
2451 /* Well, this device is dead */
2452 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2453 mdname(mddev), s,
2454 (unsigned long long)(
2455 sect +
2456 choose_data_offset(r10_bio,
2457 rdev)),
2458 bdevname(rdev->bdev, b));
2459 pr_notice("md/raid10:%s: %s: failing drive\n",
2460 mdname(mddev),
2461 bdevname(rdev->bdev, b));
2462 }
2463 rdev_dec_pending(rdev, mddev);
2464 rcu_read_lock();
2465 }
2466 sl = start;
2467 while (sl != r10_bio->read_slot) {
2468 char b[BDEVNAME_SIZE];
2469
2470 if (sl==0)
2471 sl = conf->copies;
2472 sl--;
2473 d = r10_bio->devs[sl].devnum;
2474 rdev = rcu_dereference(conf->mirrors[d].rdev);
2475 if (!rdev ||
2476 test_bit(Faulty, &rdev->flags) ||
2477 !test_bit(In_sync, &rdev->flags))
2478 continue;
2479
2480 atomic_inc(&rdev->nr_pending);
2481 rcu_read_unlock();
2482 switch (r10_sync_page_io(rdev,
2483 r10_bio->devs[sl].addr +
2484 sect,
2485 s, conf->tmppage,
2486 READ)) {
2487 case 0:
2488 /* Well, this device is dead */
2489 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2490 mdname(mddev), s,
2491 (unsigned long long)(
2492 sect +
2493 choose_data_offset(r10_bio, rdev)),
2494 bdevname(rdev->bdev, b));
2495 pr_notice("md/raid10:%s: %s: failing drive\n",
2496 mdname(mddev),
2497 bdevname(rdev->bdev, b));
2498 break;
2499 case 1:
2500 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2501 mdname(mddev), s,
2502 (unsigned long long)(
2503 sect +
2504 choose_data_offset(r10_bio, rdev)),
2505 bdevname(rdev->bdev, b));
2506 atomic_add(s, &rdev->corrected_errors);
2507 }
2508
2509 rdev_dec_pending(rdev, mddev);
2510 rcu_read_lock();
2511 }
2512 rcu_read_unlock();
2513
2514 sectors -= s;
2515 sect += s;
2516 }
2517 }
2518
2519 static int narrow_write_error(struct r10bio *r10_bio, int i)
2520 {
2521 struct bio *bio = r10_bio->master_bio;
2522 struct mddev *mddev = r10_bio->mddev;
2523 struct r10conf *conf = mddev->private;
2524 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2525 /* bio has the data to be written to slot 'i' where
2526 * we just recently had a write error.
2527 * We repeatedly clone the bio and trim down to one block,
2528 * then try the write. Where the write fails we record
2529 * a bad block.
2530 * It is conceivable that the bio doesn't exactly align with
2531 * blocks. We must handle this.
2532 *
2533 * We currently own a reference to the rdev.
2534 */
2535
2536 int block_sectors;
2537 sector_t sector;
2538 int sectors;
2539 int sect_to_write = r10_bio->sectors;
2540 int ok = 1;
2541
2542 if (rdev->badblocks.shift < 0)
2543 return 0;
2544
2545 block_sectors = roundup(1 << rdev->badblocks.shift,
2546 bdev_logical_block_size(rdev->bdev) >> 9);
2547 sector = r10_bio->sector;
2548 sectors = ((r10_bio->sector + block_sectors)
2549 & ~(sector_t)(block_sectors - 1))
2550 - sector;
2551
2552 while (sect_to_write) {
2553 struct bio *wbio;
2554 sector_t wsector;
2555 if (sectors > sect_to_write)
2556 sectors = sect_to_write;
2557 /* Write at 'sector' for 'sectors' */
2558 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2559 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2560 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2561 wbio->bi_iter.bi_sector = wsector +
2562 choose_data_offset(r10_bio, rdev);
2563 wbio->bi_bdev = rdev->bdev;
2564 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2565
2566 if (submit_bio_wait(wbio) < 0)
2567 /* Failure! */
2568 ok = rdev_set_badblocks(rdev, wsector,
2569 sectors, 0)
2570 && ok;
2571
2572 bio_put(wbio);
2573 sect_to_write -= sectors;
2574 sector += sectors;
2575 sectors = block_sectors;
2576 }
2577 return ok;
2578 }
2579
2580 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2581 {
2582 int slot = r10_bio->read_slot;
2583 struct bio *bio;
2584 struct r10conf *conf = mddev->private;
2585 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2586 dev_t bio_dev;
2587 sector_t bio_last_sector;
2588
2589 /* we got a read error. Maybe the drive is bad. Maybe just
2590 * the block and we can fix it.
2591 * We freeze all other IO, and try reading the block from
2592 * other devices. When we find one, we re-write
2593 * and check it that fixes the read error.
2594 * This is all done synchronously while the array is
2595 * frozen.
2596 */
2597 bio = r10_bio->devs[slot].bio;
2598 bio_dev = bio->bi_bdev->bd_dev;
2599 bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2600 bio_put(bio);
2601 r10_bio->devs[slot].bio = NULL;
2602
2603 if (mddev->ro)
2604 r10_bio->devs[slot].bio = IO_BLOCKED;
2605 else if (!test_bit(FailFast, &rdev->flags)) {
2606 freeze_array(conf, 1);
2607 fix_read_error(conf, mddev, r10_bio);
2608 unfreeze_array(conf);
2609 } else
2610 md_error(mddev, rdev);
2611
2612 rdev_dec_pending(rdev, mddev);
2613 allow_barrier(conf);
2614 r10_bio->state = 0;
2615 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2616 }
2617
2618 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2619 {
2620 /* Some sort of write request has finished and it
2621 * succeeded in writing where we thought there was a
2622 * bad block. So forget the bad block.
2623 * Or possibly if failed and we need to record
2624 * a bad block.
2625 */
2626 int m;
2627 struct md_rdev *rdev;
2628
2629 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2630 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2631 for (m = 0; m < conf->copies; m++) {
2632 int dev = r10_bio->devs[m].devnum;
2633 rdev = conf->mirrors[dev].rdev;
2634 if (r10_bio->devs[m].bio == NULL)
2635 continue;
2636 if (!r10_bio->devs[m].bio->bi_status) {
2637 rdev_clear_badblocks(
2638 rdev,
2639 r10_bio->devs[m].addr,
2640 r10_bio->sectors, 0);
2641 } else {
2642 if (!rdev_set_badblocks(
2643 rdev,
2644 r10_bio->devs[m].addr,
2645 r10_bio->sectors, 0))
2646 md_error(conf->mddev, rdev);
2647 }
2648 rdev = conf->mirrors[dev].replacement;
2649 if (r10_bio->devs[m].repl_bio == NULL)
2650 continue;
2651
2652 if (!r10_bio->devs[m].repl_bio->bi_status) {
2653 rdev_clear_badblocks(
2654 rdev,
2655 r10_bio->devs[m].addr,
2656 r10_bio->sectors, 0);
2657 } else {
2658 if (!rdev_set_badblocks(
2659 rdev,
2660 r10_bio->devs[m].addr,
2661 r10_bio->sectors, 0))
2662 md_error(conf->mddev, rdev);
2663 }
2664 }
2665 put_buf(r10_bio);
2666 } else {
2667 bool fail = false;
2668 for (m = 0; m < conf->copies; m++) {
2669 int dev = r10_bio->devs[m].devnum;
2670 struct bio *bio = r10_bio->devs[m].bio;
2671 rdev = conf->mirrors[dev].rdev;
2672 if (bio == IO_MADE_GOOD) {
2673 rdev_clear_badblocks(
2674 rdev,
2675 r10_bio->devs[m].addr,
2676 r10_bio->sectors, 0);
2677 rdev_dec_pending(rdev, conf->mddev);
2678 } else if (bio != NULL && bio->bi_status) {
2679 fail = true;
2680 if (!narrow_write_error(r10_bio, m)) {
2681 md_error(conf->mddev, rdev);
2682 set_bit(R10BIO_Degraded,
2683 &r10_bio->state);
2684 }
2685 rdev_dec_pending(rdev, conf->mddev);
2686 }
2687 bio = r10_bio->devs[m].repl_bio;
2688 rdev = conf->mirrors[dev].replacement;
2689 if (rdev && bio == IO_MADE_GOOD) {
2690 rdev_clear_badblocks(
2691 rdev,
2692 r10_bio->devs[m].addr,
2693 r10_bio->sectors, 0);
2694 rdev_dec_pending(rdev, conf->mddev);
2695 }
2696 }
2697 if (fail) {
2698 spin_lock_irq(&conf->device_lock);
2699 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2700 conf->nr_queued++;
2701 spin_unlock_irq(&conf->device_lock);
2702 /*
2703 * In case freeze_array() is waiting for condition
2704 * nr_pending == nr_queued + extra to be true.
2705 */
2706 wake_up(&conf->wait_barrier);
2707 md_wakeup_thread(conf->mddev->thread);
2708 } else {
2709 if (test_bit(R10BIO_WriteError,
2710 &r10_bio->state))
2711 close_write(r10_bio);
2712 raid_end_bio_io(r10_bio);
2713 }
2714 }
2715 }
2716
2717 static void raid10d(struct md_thread *thread)
2718 {
2719 struct mddev *mddev = thread->mddev;
2720 struct r10bio *r10_bio;
2721 unsigned long flags;
2722 struct r10conf *conf = mddev->private;
2723 struct list_head *head = &conf->retry_list;
2724 struct blk_plug plug;
2725
2726 md_check_recovery(mddev);
2727
2728 if (!list_empty_careful(&conf->bio_end_io_list) &&
2729 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2730 LIST_HEAD(tmp);
2731 spin_lock_irqsave(&conf->device_lock, flags);
2732 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2733 while (!list_empty(&conf->bio_end_io_list)) {
2734 list_move(conf->bio_end_io_list.prev, &tmp);
2735 conf->nr_queued--;
2736 }
2737 }
2738 spin_unlock_irqrestore(&conf->device_lock, flags);
2739 while (!list_empty(&tmp)) {
2740 r10_bio = list_first_entry(&tmp, struct r10bio,
2741 retry_list);
2742 list_del(&r10_bio->retry_list);
2743 if (mddev->degraded)
2744 set_bit(R10BIO_Degraded, &r10_bio->state);
2745
2746 if (test_bit(R10BIO_WriteError,
2747 &r10_bio->state))
2748 close_write(r10_bio);
2749 raid_end_bio_io(r10_bio);
2750 }
2751 }
2752
2753 blk_start_plug(&plug);
2754 for (;;) {
2755
2756 flush_pending_writes(conf);
2757
2758 spin_lock_irqsave(&conf->device_lock, flags);
2759 if (list_empty(head)) {
2760 spin_unlock_irqrestore(&conf->device_lock, flags);
2761 break;
2762 }
2763 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2764 list_del(head->prev);
2765 conf->nr_queued--;
2766 spin_unlock_irqrestore(&conf->device_lock, flags);
2767
2768 mddev = r10_bio->mddev;
2769 conf = mddev->private;
2770 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2771 test_bit(R10BIO_WriteError, &r10_bio->state))
2772 handle_write_completed(conf, r10_bio);
2773 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2774 reshape_request_write(mddev, r10_bio);
2775 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2776 sync_request_write(mddev, r10_bio);
2777 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2778 recovery_request_write(mddev, r10_bio);
2779 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2780 handle_read_error(mddev, r10_bio);
2781 else
2782 WARN_ON_ONCE(1);
2783
2784 cond_resched();
2785 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2786 md_check_recovery(mddev);
2787 }
2788 blk_finish_plug(&plug);
2789 }
2790
2791 static int init_resync(struct r10conf *conf)
2792 {
2793 int buffs;
2794 int i;
2795
2796 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2797 BUG_ON(conf->r10buf_pool);
2798 conf->have_replacement = 0;
2799 for (i = 0; i < conf->geo.raid_disks; i++)
2800 if (conf->mirrors[i].replacement)
2801 conf->have_replacement = 1;
2802 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2803 if (!conf->r10buf_pool)
2804 return -ENOMEM;
2805 conf->next_resync = 0;
2806 return 0;
2807 }
2808
2809 /*
2810 * perform a "sync" on one "block"
2811 *
2812 * We need to make sure that no normal I/O request - particularly write
2813 * requests - conflict with active sync requests.
2814 *
2815 * This is achieved by tracking pending requests and a 'barrier' concept
2816 * that can be installed to exclude normal IO requests.
2817 *
2818 * Resync and recovery are handled very differently.
2819 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2820 *
2821 * For resync, we iterate over virtual addresses, read all copies,
2822 * and update if there are differences. If only one copy is live,
2823 * skip it.
2824 * For recovery, we iterate over physical addresses, read a good
2825 * value for each non-in_sync drive, and over-write.
2826 *
2827 * So, for recovery we may have several outstanding complex requests for a
2828 * given address, one for each out-of-sync device. We model this by allocating
2829 * a number of r10_bio structures, one for each out-of-sync device.
2830 * As we setup these structures, we collect all bio's together into a list
2831 * which we then process collectively to add pages, and then process again
2832 * to pass to generic_make_request.
2833 *
2834 * The r10_bio structures are linked using a borrowed master_bio pointer.
2835 * This link is counted in ->remaining. When the r10_bio that points to NULL
2836 * has its remaining count decremented to 0, the whole complex operation
2837 * is complete.
2838 *
2839 */
2840
2841 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2842 int *skipped)
2843 {
2844 struct r10conf *conf = mddev->private;
2845 struct r10bio *r10_bio;
2846 struct bio *biolist = NULL, *bio;
2847 sector_t max_sector, nr_sectors;
2848 int i;
2849 int max_sync;
2850 sector_t sync_blocks;
2851 sector_t sectors_skipped = 0;
2852 int chunks_skipped = 0;
2853 sector_t chunk_mask = conf->geo.chunk_mask;
2854
2855 if (!conf->r10buf_pool)
2856 if (init_resync(conf))
2857 return 0;
2858
2859 /*
2860 * Allow skipping a full rebuild for incremental assembly
2861 * of a clean array, like RAID1 does.
2862 */
2863 if (mddev->bitmap == NULL &&
2864 mddev->recovery_cp == MaxSector &&
2865 mddev->reshape_position == MaxSector &&
2866 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2867 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2868 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2869 conf->fullsync == 0) {
2870 *skipped = 1;
2871 return mddev->dev_sectors - sector_nr;
2872 }
2873
2874 skipped:
2875 max_sector = mddev->dev_sectors;
2876 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2877 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2878 max_sector = mddev->resync_max_sectors;
2879 if (sector_nr >= max_sector) {
2880 /* If we aborted, we need to abort the
2881 * sync on the 'current' bitmap chucks (there can
2882 * be several when recovering multiple devices).
2883 * as we may have started syncing it but not finished.
2884 * We can find the current address in
2885 * mddev->curr_resync, but for recovery,
2886 * we need to convert that to several
2887 * virtual addresses.
2888 */
2889 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2890 end_reshape(conf);
2891 close_sync(conf);
2892 return 0;
2893 }
2894
2895 if (mddev->curr_resync < max_sector) { /* aborted */
2896 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2897 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2898 &sync_blocks, 1);
2899 else for (i = 0; i < conf->geo.raid_disks; i++) {
2900 sector_t sect =
2901 raid10_find_virt(conf, mddev->curr_resync, i);
2902 bitmap_end_sync(mddev->bitmap, sect,
2903 &sync_blocks, 1);
2904 }
2905 } else {
2906 /* completed sync */
2907 if ((!mddev->bitmap || conf->fullsync)
2908 && conf->have_replacement
2909 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2910 /* Completed a full sync so the replacements
2911 * are now fully recovered.
2912 */
2913 rcu_read_lock();
2914 for (i = 0; i < conf->geo.raid_disks; i++) {
2915 struct md_rdev *rdev =
2916 rcu_dereference(conf->mirrors[i].replacement);
2917 if (rdev)
2918 rdev->recovery_offset = MaxSector;
2919 }
2920 rcu_read_unlock();
2921 }
2922 conf->fullsync = 0;
2923 }
2924 bitmap_close_sync(mddev->bitmap);
2925 close_sync(conf);
2926 *skipped = 1;
2927 return sectors_skipped;
2928 }
2929
2930 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2931 return reshape_request(mddev, sector_nr, skipped);
2932
2933 if (chunks_skipped >= conf->geo.raid_disks) {
2934 /* if there has been nothing to do on any drive,
2935 * then there is nothing to do at all..
2936 */
2937 *skipped = 1;
2938 return (max_sector - sector_nr) + sectors_skipped;
2939 }
2940
2941 if (max_sector > mddev->resync_max)
2942 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2943
2944 /* make sure whole request will fit in a chunk - if chunks
2945 * are meaningful
2946 */
2947 if (conf->geo.near_copies < conf->geo.raid_disks &&
2948 max_sector > (sector_nr | chunk_mask))
2949 max_sector = (sector_nr | chunk_mask) + 1;
2950
2951 /*
2952 * If there is non-resync activity waiting for a turn, then let it
2953 * though before starting on this new sync request.
2954 */
2955 if (conf->nr_waiting)
2956 schedule_timeout_uninterruptible(1);
2957
2958 /* Again, very different code for resync and recovery.
2959 * Both must result in an r10bio with a list of bios that
2960 * have bi_end_io, bi_sector, bi_bdev set,
2961 * and bi_private set to the r10bio.
2962 * For recovery, we may actually create several r10bios
2963 * with 2 bios in each, that correspond to the bios in the main one.
2964 * In this case, the subordinate r10bios link back through a
2965 * borrowed master_bio pointer, and the counter in the master
2966 * includes a ref from each subordinate.
2967 */
2968 /* First, we decide what to do and set ->bi_end_io
2969 * To end_sync_read if we want to read, and
2970 * end_sync_write if we will want to write.
2971 */
2972
2973 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2974 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975 /* recovery... the complicated one */
2976 int j;
2977 r10_bio = NULL;
2978
2979 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2980 int still_degraded;
2981 struct r10bio *rb2;
2982 sector_t sect;
2983 int must_sync;
2984 int any_working;
2985 struct raid10_info *mirror = &conf->mirrors[i];
2986 struct md_rdev *mrdev, *mreplace;
2987
2988 rcu_read_lock();
2989 mrdev = rcu_dereference(mirror->rdev);
2990 mreplace = rcu_dereference(mirror->replacement);
2991
2992 if ((mrdev == NULL ||
2993 test_bit(Faulty, &mrdev->flags) ||
2994 test_bit(In_sync, &mrdev->flags)) &&
2995 (mreplace == NULL ||
2996 test_bit(Faulty, &mreplace->flags))) {
2997 rcu_read_unlock();
2998 continue;
2999 }
3000
3001 still_degraded = 0;
3002 /* want to reconstruct this device */
3003 rb2 = r10_bio;
3004 sect = raid10_find_virt(conf, sector_nr, i);
3005 if (sect >= mddev->resync_max_sectors) {
3006 /* last stripe is not complete - don't
3007 * try to recover this sector.
3008 */
3009 rcu_read_unlock();
3010 continue;
3011 }
3012 if (mreplace && test_bit(Faulty, &mreplace->flags))
3013 mreplace = NULL;
3014 /* Unless we are doing a full sync, or a replacement
3015 * we only need to recover the block if it is set in
3016 * the bitmap
3017 */
3018 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3019 &sync_blocks, 1);
3020 if (sync_blocks < max_sync)
3021 max_sync = sync_blocks;
3022 if (!must_sync &&
3023 mreplace == NULL &&
3024 !conf->fullsync) {
3025 /* yep, skip the sync_blocks here, but don't assume
3026 * that there will never be anything to do here
3027 */
3028 chunks_skipped = -1;
3029 rcu_read_unlock();
3030 continue;
3031 }
3032 atomic_inc(&mrdev->nr_pending);
3033 if (mreplace)
3034 atomic_inc(&mreplace->nr_pending);
3035 rcu_read_unlock();
3036
3037 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3038 r10_bio->state = 0;
3039 raise_barrier(conf, rb2 != NULL);
3040 atomic_set(&r10_bio->remaining, 0);
3041
3042 r10_bio->master_bio = (struct bio*)rb2;
3043 if (rb2)
3044 atomic_inc(&rb2->remaining);
3045 r10_bio->mddev = mddev;
3046 set_bit(R10BIO_IsRecover, &r10_bio->state);
3047 r10_bio->sector = sect;
3048
3049 raid10_find_phys(conf, r10_bio);
3050
3051 /* Need to check if the array will still be
3052 * degraded
3053 */
3054 rcu_read_lock();
3055 for (j = 0; j < conf->geo.raid_disks; j++) {
3056 struct md_rdev *rdev = rcu_dereference(
3057 conf->mirrors[j].rdev);
3058 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3059 still_degraded = 1;
3060 break;
3061 }
3062 }
3063
3064 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3065 &sync_blocks, still_degraded);
3066
3067 any_working = 0;
3068 for (j=0; j<conf->copies;j++) {
3069 int k;
3070 int d = r10_bio->devs[j].devnum;
3071 sector_t from_addr, to_addr;
3072 struct md_rdev *rdev =
3073 rcu_dereference(conf->mirrors[d].rdev);
3074 sector_t sector, first_bad;
3075 int bad_sectors;
3076 if (!rdev ||
3077 !test_bit(In_sync, &rdev->flags))
3078 continue;
3079 /* This is where we read from */
3080 any_working = 1;
3081 sector = r10_bio->devs[j].addr;
3082
3083 if (is_badblock(rdev, sector, max_sync,
3084 &first_bad, &bad_sectors)) {
3085 if (first_bad > sector)
3086 max_sync = first_bad - sector;
3087 else {
3088 bad_sectors -= (sector
3089 - first_bad);
3090 if (max_sync > bad_sectors)
3091 max_sync = bad_sectors;
3092 continue;
3093 }
3094 }
3095 bio = r10_bio->devs[0].bio;
3096 bio->bi_next = biolist;
3097 biolist = bio;
3098 bio->bi_end_io = end_sync_read;
3099 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3100 if (test_bit(FailFast, &rdev->flags))
3101 bio->bi_opf |= MD_FAILFAST;
3102 from_addr = r10_bio->devs[j].addr;
3103 bio->bi_iter.bi_sector = from_addr +
3104 rdev->data_offset;
3105 bio->bi_bdev = rdev->bdev;
3106 atomic_inc(&rdev->nr_pending);
3107 /* and we write to 'i' (if not in_sync) */
3108
3109 for (k=0; k<conf->copies; k++)
3110 if (r10_bio->devs[k].devnum == i)
3111 break;
3112 BUG_ON(k == conf->copies);
3113 to_addr = r10_bio->devs[k].addr;
3114 r10_bio->devs[0].devnum = d;
3115 r10_bio->devs[0].addr = from_addr;
3116 r10_bio->devs[1].devnum = i;
3117 r10_bio->devs[1].addr = to_addr;
3118
3119 if (!test_bit(In_sync, &mrdev->flags)) {
3120 bio = r10_bio->devs[1].bio;
3121 bio->bi_next = biolist;
3122 biolist = bio;
3123 bio->bi_end_io = end_sync_write;
3124 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3125 bio->bi_iter.bi_sector = to_addr
3126 + mrdev->data_offset;
3127 bio->bi_bdev = mrdev->bdev;
3128 atomic_inc(&r10_bio->remaining);
3129 } else
3130 r10_bio->devs[1].bio->bi_end_io = NULL;
3131
3132 /* and maybe write to replacement */
3133 bio = r10_bio->devs[1].repl_bio;
3134 if (bio)
3135 bio->bi_end_io = NULL;
3136 /* Note: if mreplace != NULL, then bio
3137 * cannot be NULL as r10buf_pool_alloc will
3138 * have allocated it.
3139 * So the second test here is pointless.
3140 * But it keeps semantic-checkers happy, and
3141 * this comment keeps human reviewers
3142 * happy.
3143 */
3144 if (mreplace == NULL || bio == NULL ||
3145 test_bit(Faulty, &mreplace->flags))
3146 break;
3147 bio->bi_next = biolist;
3148 biolist = bio;
3149 bio->bi_end_io = end_sync_write;
3150 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3151 bio->bi_iter.bi_sector = to_addr +
3152 mreplace->data_offset;
3153 bio->bi_bdev = mreplace->bdev;
3154 atomic_inc(&r10_bio->remaining);
3155 break;
3156 }
3157 rcu_read_unlock();
3158 if (j == conf->copies) {
3159 /* Cannot recover, so abort the recovery or
3160 * record a bad block */
3161 if (any_working) {
3162 /* problem is that there are bad blocks
3163 * on other device(s)
3164 */
3165 int k;
3166 for (k = 0; k < conf->copies; k++)
3167 if (r10_bio->devs[k].devnum == i)
3168 break;
3169 if (!test_bit(In_sync,
3170 &mrdev->flags)
3171 && !rdev_set_badblocks(
3172 mrdev,
3173 r10_bio->devs[k].addr,
3174 max_sync, 0))
3175 any_working = 0;
3176 if (mreplace &&
3177 !rdev_set_badblocks(
3178 mreplace,
3179 r10_bio->devs[k].addr,
3180 max_sync, 0))
3181 any_working = 0;
3182 }
3183 if (!any_working) {
3184 if (!test_and_set_bit(MD_RECOVERY_INTR,
3185 &mddev->recovery))
3186 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3187 mdname(mddev));
3188 mirror->recovery_disabled
3189 = mddev->recovery_disabled;
3190 }
3191 put_buf(r10_bio);
3192 if (rb2)
3193 atomic_dec(&rb2->remaining);
3194 r10_bio = rb2;
3195 rdev_dec_pending(mrdev, mddev);
3196 if (mreplace)
3197 rdev_dec_pending(mreplace, mddev);
3198 break;
3199 }
3200 rdev_dec_pending(mrdev, mddev);
3201 if (mreplace)
3202 rdev_dec_pending(mreplace, mddev);
3203 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3204 /* Only want this if there is elsewhere to
3205 * read from. 'j' is currently the first
3206 * readable copy.
3207 */
3208 int targets = 1;
3209 for (; j < conf->copies; j++) {
3210 int d = r10_bio->devs[j].devnum;
3211 if (conf->mirrors[d].rdev &&
3212 test_bit(In_sync,
3213 &conf->mirrors[d].rdev->flags))
3214 targets++;
3215 }
3216 if (targets == 1)
3217 r10_bio->devs[0].bio->bi_opf
3218 &= ~MD_FAILFAST;
3219 }
3220 }
3221 if (biolist == NULL) {
3222 while (r10_bio) {
3223 struct r10bio *rb2 = r10_bio;
3224 r10_bio = (struct r10bio*) rb2->master_bio;
3225 rb2->master_bio = NULL;
3226 put_buf(rb2);
3227 }
3228 goto giveup;
3229 }
3230 } else {
3231 /* resync. Schedule a read for every block at this virt offset */
3232 int count = 0;
3233
3234 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3235
3236 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3237 &sync_blocks, mddev->degraded) &&
3238 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3239 &mddev->recovery)) {
3240 /* We can skip this block */
3241 *skipped = 1;
3242 return sync_blocks + sectors_skipped;
3243 }
3244 if (sync_blocks < max_sync)
3245 max_sync = sync_blocks;
3246 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3247 r10_bio->state = 0;
3248
3249 r10_bio->mddev = mddev;
3250 atomic_set(&r10_bio->remaining, 0);
3251 raise_barrier(conf, 0);
3252 conf->next_resync = sector_nr;
3253
3254 r10_bio->master_bio = NULL;
3255 r10_bio->sector = sector_nr;
3256 set_bit(R10BIO_IsSync, &r10_bio->state);
3257 raid10_find_phys(conf, r10_bio);
3258 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3259
3260 for (i = 0; i < conf->copies; i++) {
3261 int d = r10_bio->devs[i].devnum;
3262 sector_t first_bad, sector;
3263 int bad_sectors;
3264 struct md_rdev *rdev;
3265
3266 if (r10_bio->devs[i].repl_bio)
3267 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3268
3269 bio = r10_bio->devs[i].bio;
3270 bio->bi_status = BLK_STS_IOERR;
3271 rcu_read_lock();
3272 rdev = rcu_dereference(conf->mirrors[d].rdev);
3273 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3274 rcu_read_unlock();
3275 continue;
3276 }
3277 sector = r10_bio->devs[i].addr;
3278 if (is_badblock(rdev, sector, max_sync,
3279 &first_bad, &bad_sectors)) {
3280 if (first_bad > sector)
3281 max_sync = first_bad - sector;
3282 else {
3283 bad_sectors -= (sector - first_bad);
3284 if (max_sync > bad_sectors)
3285 max_sync = bad_sectors;
3286 rcu_read_unlock();
3287 continue;
3288 }
3289 }
3290 atomic_inc(&rdev->nr_pending);
3291 atomic_inc(&r10_bio->remaining);
3292 bio->bi_next = biolist;
3293 biolist = bio;
3294 bio->bi_end_io = end_sync_read;
3295 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3296 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3297 bio->bi_opf |= MD_FAILFAST;
3298 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3299 bio->bi_bdev = rdev->bdev;
3300 count++;
3301
3302 rdev = rcu_dereference(conf->mirrors[d].replacement);
3303 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3304 rcu_read_unlock();
3305 continue;
3306 }
3307 atomic_inc(&rdev->nr_pending);
3308 rcu_read_unlock();
3309
3310 /* Need to set up for writing to the replacement */
3311 bio = r10_bio->devs[i].repl_bio;
3312 bio->bi_status = BLK_STS_IOERR;
3313
3314 sector = r10_bio->devs[i].addr;
3315 bio->bi_next = biolist;
3316 biolist = bio;
3317 bio->bi_end_io = end_sync_write;
3318 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3319 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3320 bio->bi_opf |= MD_FAILFAST;
3321 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3322 bio->bi_bdev = rdev->bdev;
3323 count++;
3324 }
3325
3326 if (count < 2) {
3327 for (i=0; i<conf->copies; i++) {
3328 int d = r10_bio->devs[i].devnum;
3329 if (r10_bio->devs[i].bio->bi_end_io)
3330 rdev_dec_pending(conf->mirrors[d].rdev,
3331 mddev);
3332 if (r10_bio->devs[i].repl_bio &&
3333 r10_bio->devs[i].repl_bio->bi_end_io)
3334 rdev_dec_pending(
3335 conf->mirrors[d].replacement,
3336 mddev);
3337 }
3338 put_buf(r10_bio);
3339 biolist = NULL;
3340 goto giveup;
3341 }
3342 }
3343
3344 nr_sectors = 0;
3345 if (sector_nr + max_sync < max_sector)
3346 max_sector = sector_nr + max_sync;
3347 do {
3348 struct page *page;
3349 int len = PAGE_SIZE;
3350 if (sector_nr + (len>>9) > max_sector)
3351 len = (max_sector - sector_nr) << 9;
3352 if (len == 0)
3353 break;
3354 for (bio= biolist ; bio ; bio=bio->bi_next) {
3355 struct resync_pages *rp = get_resync_pages(bio);
3356 page = resync_fetch_page(rp, rp->idx++);
3357 /*
3358 * won't fail because the vec table is big enough
3359 * to hold all these pages
3360 */
3361 bio_add_page(bio, page, len, 0);
3362 }
3363 nr_sectors += len>>9;
3364 sector_nr += len>>9;
3365 } while (get_resync_pages(biolist)->idx < RESYNC_PAGES);
3366 r10_bio->sectors = nr_sectors;
3367
3368 while (biolist) {
3369 bio = biolist;
3370 biolist = biolist->bi_next;
3371
3372 bio->bi_next = NULL;
3373 r10_bio = get_resync_r10bio(bio);
3374 r10_bio->sectors = nr_sectors;
3375
3376 if (bio->bi_end_io == end_sync_read) {
3377 md_sync_acct(bio->bi_bdev, nr_sectors);
3378 bio->bi_status = 0;
3379 generic_make_request(bio);
3380 }
3381 }
3382
3383 if (sectors_skipped)
3384 /* pretend they weren't skipped, it makes
3385 * no important difference in this case
3386 */
3387 md_done_sync(mddev, sectors_skipped, 1);
3388
3389 return sectors_skipped + nr_sectors;
3390 giveup:
3391 /* There is nowhere to write, so all non-sync
3392 * drives must be failed or in resync, all drives
3393 * have a bad block, so try the next chunk...
3394 */
3395 if (sector_nr + max_sync < max_sector)
3396 max_sector = sector_nr + max_sync;
3397
3398 sectors_skipped += (max_sector - sector_nr);
3399 chunks_skipped ++;
3400 sector_nr = max_sector;
3401 goto skipped;
3402 }
3403
3404 static sector_t
3405 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3406 {
3407 sector_t size;
3408 struct r10conf *conf = mddev->private;
3409
3410 if (!raid_disks)
3411 raid_disks = min(conf->geo.raid_disks,
3412 conf->prev.raid_disks);
3413 if (!sectors)
3414 sectors = conf->dev_sectors;
3415
3416 size = sectors >> conf->geo.chunk_shift;
3417 sector_div(size, conf->geo.far_copies);
3418 size = size * raid_disks;
3419 sector_div(size, conf->geo.near_copies);
3420
3421 return size << conf->geo.chunk_shift;
3422 }
3423
3424 static void calc_sectors(struct r10conf *conf, sector_t size)
3425 {
3426 /* Calculate the number of sectors-per-device that will
3427 * actually be used, and set conf->dev_sectors and
3428 * conf->stride
3429 */
3430
3431 size = size >> conf->geo.chunk_shift;
3432 sector_div(size, conf->geo.far_copies);
3433 size = size * conf->geo.raid_disks;
3434 sector_div(size, conf->geo.near_copies);
3435 /* 'size' is now the number of chunks in the array */
3436 /* calculate "used chunks per device" */
3437 size = size * conf->copies;
3438
3439 /* We need to round up when dividing by raid_disks to
3440 * get the stride size.
3441 */
3442 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3443
3444 conf->dev_sectors = size << conf->geo.chunk_shift;
3445
3446 if (conf->geo.far_offset)
3447 conf->geo.stride = 1 << conf->geo.chunk_shift;
3448 else {
3449 sector_div(size, conf->geo.far_copies);
3450 conf->geo.stride = size << conf->geo.chunk_shift;
3451 }
3452 }
3453
3454 enum geo_type {geo_new, geo_old, geo_start};
3455 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3456 {
3457 int nc, fc, fo;
3458 int layout, chunk, disks;
3459 switch (new) {
3460 case geo_old:
3461 layout = mddev->layout;
3462 chunk = mddev->chunk_sectors;
3463 disks = mddev->raid_disks - mddev->delta_disks;
3464 break;
3465 case geo_new:
3466 layout = mddev->new_layout;
3467 chunk = mddev->new_chunk_sectors;
3468 disks = mddev->raid_disks;
3469 break;
3470 default: /* avoid 'may be unused' warnings */
3471 case geo_start: /* new when starting reshape - raid_disks not
3472 * updated yet. */
3473 layout = mddev->new_layout;
3474 chunk = mddev->new_chunk_sectors;
3475 disks = mddev->raid_disks + mddev->delta_disks;
3476 break;
3477 }
3478 if (layout >> 19)
3479 return -1;
3480 if (chunk < (PAGE_SIZE >> 9) ||
3481 !is_power_of_2(chunk))
3482 return -2;
3483 nc = layout & 255;
3484 fc = (layout >> 8) & 255;
3485 fo = layout & (1<<16);
3486 geo->raid_disks = disks;
3487 geo->near_copies = nc;
3488 geo->far_copies = fc;
3489 geo->far_offset = fo;
3490 switch (layout >> 17) {
3491 case 0: /* original layout. simple but not always optimal */
3492 geo->far_set_size = disks;
3493 break;
3494 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3495 * actually using this, but leave code here just in case.*/
3496 geo->far_set_size = disks/fc;
3497 WARN(geo->far_set_size < fc,
3498 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3499 break;
3500 case 2: /* "improved" layout fixed to match documentation */
3501 geo->far_set_size = fc * nc;
3502 break;
3503 default: /* Not a valid layout */
3504 return -1;
3505 }
3506 geo->chunk_mask = chunk - 1;
3507 geo->chunk_shift = ffz(~chunk);
3508 return nc*fc;
3509 }
3510
3511 static struct r10conf *setup_conf(struct mddev *mddev)
3512 {
3513 struct r10conf *conf = NULL;
3514 int err = -EINVAL;
3515 struct geom geo;
3516 int copies;
3517
3518 copies = setup_geo(&geo, mddev, geo_new);
3519
3520 if (copies == -2) {
3521 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3522 mdname(mddev), PAGE_SIZE);
3523 goto out;
3524 }
3525
3526 if (copies < 2 || copies > mddev->raid_disks) {
3527 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3528 mdname(mddev), mddev->new_layout);
3529 goto out;
3530 }
3531
3532 err = -ENOMEM;
3533 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3534 if (!conf)
3535 goto out;
3536
3537 /* FIXME calc properly */
3538 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3539 max(0,-mddev->delta_disks)),
3540 GFP_KERNEL);
3541 if (!conf->mirrors)
3542 goto out;
3543
3544 conf->tmppage = alloc_page(GFP_KERNEL);
3545 if (!conf->tmppage)
3546 goto out;
3547
3548 conf->geo = geo;
3549 conf->copies = copies;
3550 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3551 r10bio_pool_free, conf);
3552 if (!conf->r10bio_pool)
3553 goto out;
3554
3555 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
3556 if (!conf->bio_split)
3557 goto out;
3558
3559 calc_sectors(conf, mddev->dev_sectors);
3560 if (mddev->reshape_position == MaxSector) {
3561 conf->prev = conf->geo;
3562 conf->reshape_progress = MaxSector;
3563 } else {
3564 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3565 err = -EINVAL;
3566 goto out;
3567 }
3568 conf->reshape_progress = mddev->reshape_position;
3569 if (conf->prev.far_offset)
3570 conf->prev.stride = 1 << conf->prev.chunk_shift;
3571 else
3572 /* far_copies must be 1 */
3573 conf->prev.stride = conf->dev_sectors;
3574 }
3575 conf->reshape_safe = conf->reshape_progress;
3576 spin_lock_init(&conf->device_lock);
3577 INIT_LIST_HEAD(&conf->retry_list);
3578 INIT_LIST_HEAD(&conf->bio_end_io_list);
3579
3580 spin_lock_init(&conf->resync_lock);
3581 init_waitqueue_head(&conf->wait_barrier);
3582 atomic_set(&conf->nr_pending, 0);
3583
3584 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3585 if (!conf->thread)
3586 goto out;
3587
3588 conf->mddev = mddev;
3589 return conf;
3590
3591 out:
3592 if (conf) {
3593 mempool_destroy(conf->r10bio_pool);
3594 kfree(conf->mirrors);
3595 safe_put_page(conf->tmppage);
3596 if (conf->bio_split)
3597 bioset_free(conf->bio_split);
3598 kfree(conf);
3599 }
3600 return ERR_PTR(err);
3601 }
3602
3603 static int raid10_run(struct mddev *mddev)
3604 {
3605 struct r10conf *conf;
3606 int i, disk_idx, chunk_size;
3607 struct raid10_info *disk;
3608 struct md_rdev *rdev;
3609 sector_t size;
3610 sector_t min_offset_diff = 0;
3611 int first = 1;
3612 bool discard_supported = false;
3613
3614 if (mddev->private == NULL) {
3615 conf = setup_conf(mddev);
3616 if (IS_ERR(conf))
3617 return PTR_ERR(conf);
3618 mddev->private = conf;
3619 }
3620 conf = mddev->private;
3621 if (!conf)
3622 goto out;
3623
3624 mddev->thread = conf->thread;
3625 conf->thread = NULL;
3626
3627 chunk_size = mddev->chunk_sectors << 9;
3628 if (mddev->queue) {
3629 blk_queue_max_discard_sectors(mddev->queue,
3630 mddev->chunk_sectors);
3631 blk_queue_max_write_same_sectors(mddev->queue, 0);
3632 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3633 blk_queue_io_min(mddev->queue, chunk_size);
3634 if (conf->geo.raid_disks % conf->geo.near_copies)
3635 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3636 else
3637 blk_queue_io_opt(mddev->queue, chunk_size *
3638 (conf->geo.raid_disks / conf->geo.near_copies));
3639 }
3640
3641 rdev_for_each(rdev, mddev) {
3642 long long diff;
3643
3644 disk_idx = rdev->raid_disk;
3645 if (disk_idx < 0)
3646 continue;
3647 if (disk_idx >= conf->geo.raid_disks &&
3648 disk_idx >= conf->prev.raid_disks)
3649 continue;
3650 disk = conf->mirrors + disk_idx;
3651
3652 if (test_bit(Replacement, &rdev->flags)) {
3653 if (disk->replacement)
3654 goto out_free_conf;
3655 disk->replacement = rdev;
3656 } else {
3657 if (disk->rdev)
3658 goto out_free_conf;
3659 disk->rdev = rdev;
3660 }
3661 diff = (rdev->new_data_offset - rdev->data_offset);
3662 if (!mddev->reshape_backwards)
3663 diff = -diff;
3664 if (diff < 0)
3665 diff = 0;
3666 if (first || diff < min_offset_diff)
3667 min_offset_diff = diff;
3668
3669 if (mddev->gendisk)
3670 disk_stack_limits(mddev->gendisk, rdev->bdev,
3671 rdev->data_offset << 9);
3672
3673 disk->head_position = 0;
3674
3675 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3676 discard_supported = true;
3677 first = 0;
3678 }
3679
3680 if (mddev->queue) {
3681 if (discard_supported)
3682 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3683 mddev->queue);
3684 else
3685 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3686 mddev->queue);
3687 }
3688 /* need to check that every block has at least one working mirror */
3689 if (!enough(conf, -1)) {
3690 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3691 mdname(mddev));
3692 goto out_free_conf;
3693 }
3694
3695 if (conf->reshape_progress != MaxSector) {
3696 /* must ensure that shape change is supported */
3697 if (conf->geo.far_copies != 1 &&
3698 conf->geo.far_offset == 0)
3699 goto out_free_conf;
3700 if (conf->prev.far_copies != 1 &&
3701 conf->prev.far_offset == 0)
3702 goto out_free_conf;
3703 }
3704
3705 mddev->degraded = 0;
3706 for (i = 0;
3707 i < conf->geo.raid_disks
3708 || i < conf->prev.raid_disks;
3709 i++) {
3710
3711 disk = conf->mirrors + i;
3712
3713 if (!disk->rdev && disk->replacement) {
3714 /* The replacement is all we have - use it */
3715 disk->rdev = disk->replacement;
3716 disk->replacement = NULL;
3717 clear_bit(Replacement, &disk->rdev->flags);
3718 }
3719
3720 if (!disk->rdev ||
3721 !test_bit(In_sync, &disk->rdev->flags)) {
3722 disk->head_position = 0;
3723 mddev->degraded++;
3724 if (disk->rdev &&
3725 disk->rdev->saved_raid_disk < 0)
3726 conf->fullsync = 1;
3727 }
3728 disk->recovery_disabled = mddev->recovery_disabled - 1;
3729 }
3730
3731 if (mddev->recovery_cp != MaxSector)
3732 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3733 mdname(mddev));
3734 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3735 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3736 conf->geo.raid_disks);
3737 /*
3738 * Ok, everything is just fine now
3739 */
3740 mddev->dev_sectors = conf->dev_sectors;
3741 size = raid10_size(mddev, 0, 0);
3742 md_set_array_sectors(mddev, size);
3743 mddev->resync_max_sectors = size;
3744 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3745
3746 if (mddev->queue) {
3747 int stripe = conf->geo.raid_disks *
3748 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3749
3750 /* Calculate max read-ahead size.
3751 * We need to readahead at least twice a whole stripe....
3752 * maybe...
3753 */
3754 stripe /= conf->geo.near_copies;
3755 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3756 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3757 }
3758
3759 if (md_integrity_register(mddev))
3760 goto out_free_conf;
3761
3762 if (conf->reshape_progress != MaxSector) {
3763 unsigned long before_length, after_length;
3764
3765 before_length = ((1 << conf->prev.chunk_shift) *
3766 conf->prev.far_copies);
3767 after_length = ((1 << conf->geo.chunk_shift) *
3768 conf->geo.far_copies);
3769
3770 if (max(before_length, after_length) > min_offset_diff) {
3771 /* This cannot work */
3772 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3773 goto out_free_conf;
3774 }
3775 conf->offset_diff = min_offset_diff;
3776
3777 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3778 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3779 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3780 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3781 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3782 "reshape");
3783 }
3784
3785 return 0;
3786
3787 out_free_conf:
3788 md_unregister_thread(&mddev->thread);
3789 mempool_destroy(conf->r10bio_pool);
3790 safe_put_page(conf->tmppage);
3791 kfree(conf->mirrors);
3792 kfree(conf);
3793 mddev->private = NULL;
3794 out:
3795 return -EIO;
3796 }
3797
3798 static void raid10_free(struct mddev *mddev, void *priv)
3799 {
3800 struct r10conf *conf = priv;
3801
3802 mempool_destroy(conf->r10bio_pool);
3803 safe_put_page(conf->tmppage);
3804 kfree(conf->mirrors);
3805 kfree(conf->mirrors_old);
3806 kfree(conf->mirrors_new);
3807 if (conf->bio_split)
3808 bioset_free(conf->bio_split);
3809 kfree(conf);
3810 }
3811
3812 static void raid10_quiesce(struct mddev *mddev, int state)
3813 {
3814 struct r10conf *conf = mddev->private;
3815
3816 switch(state) {
3817 case 1:
3818 raise_barrier(conf, 0);
3819 break;
3820 case 0:
3821 lower_barrier(conf);
3822 break;
3823 }
3824 }
3825
3826 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3827 {
3828 /* Resize of 'far' arrays is not supported.
3829 * For 'near' and 'offset' arrays we can set the
3830 * number of sectors used to be an appropriate multiple
3831 * of the chunk size.
3832 * For 'offset', this is far_copies*chunksize.
3833 * For 'near' the multiplier is the LCM of
3834 * near_copies and raid_disks.
3835 * So if far_copies > 1 && !far_offset, fail.
3836 * Else find LCM(raid_disks, near_copy)*far_copies and
3837 * multiply by chunk_size. Then round to this number.
3838 * This is mostly done by raid10_size()
3839 */
3840 struct r10conf *conf = mddev->private;
3841 sector_t oldsize, size;
3842
3843 if (mddev->reshape_position != MaxSector)
3844 return -EBUSY;
3845
3846 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3847 return -EINVAL;
3848
3849 oldsize = raid10_size(mddev, 0, 0);
3850 size = raid10_size(mddev, sectors, 0);
3851 if (mddev->external_size &&
3852 mddev->array_sectors > size)
3853 return -EINVAL;
3854 if (mddev->bitmap) {
3855 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3856 if (ret)
3857 return ret;
3858 }
3859 md_set_array_sectors(mddev, size);
3860 if (sectors > mddev->dev_sectors &&
3861 mddev->recovery_cp > oldsize) {
3862 mddev->recovery_cp = oldsize;
3863 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3864 }
3865 calc_sectors(conf, sectors);
3866 mddev->dev_sectors = conf->dev_sectors;
3867 mddev->resync_max_sectors = size;
3868 return 0;
3869 }
3870
3871 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3872 {
3873 struct md_rdev *rdev;
3874 struct r10conf *conf;
3875
3876 if (mddev->degraded > 0) {
3877 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3878 mdname(mddev));
3879 return ERR_PTR(-EINVAL);
3880 }
3881 sector_div(size, devs);
3882
3883 /* Set new parameters */
3884 mddev->new_level = 10;
3885 /* new layout: far_copies = 1, near_copies = 2 */
3886 mddev->new_layout = (1<<8) + 2;
3887 mddev->new_chunk_sectors = mddev->chunk_sectors;
3888 mddev->delta_disks = mddev->raid_disks;
3889 mddev->raid_disks *= 2;
3890 /* make sure it will be not marked as dirty */
3891 mddev->recovery_cp = MaxSector;
3892 mddev->dev_sectors = size;
3893
3894 conf = setup_conf(mddev);
3895 if (!IS_ERR(conf)) {
3896 rdev_for_each(rdev, mddev)
3897 if (rdev->raid_disk >= 0) {
3898 rdev->new_raid_disk = rdev->raid_disk * 2;
3899 rdev->sectors = size;
3900 }
3901 conf->barrier = 1;
3902 }
3903
3904 return conf;
3905 }
3906
3907 static void *raid10_takeover(struct mddev *mddev)
3908 {
3909 struct r0conf *raid0_conf;
3910
3911 /* raid10 can take over:
3912 * raid0 - providing it has only two drives
3913 */
3914 if (mddev->level == 0) {
3915 /* for raid0 takeover only one zone is supported */
3916 raid0_conf = mddev->private;
3917 if (raid0_conf->nr_strip_zones > 1) {
3918 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3919 mdname(mddev));
3920 return ERR_PTR(-EINVAL);
3921 }
3922 return raid10_takeover_raid0(mddev,
3923 raid0_conf->strip_zone->zone_end,
3924 raid0_conf->strip_zone->nb_dev);
3925 }
3926 return ERR_PTR(-EINVAL);
3927 }
3928
3929 static int raid10_check_reshape(struct mddev *mddev)
3930 {
3931 /* Called when there is a request to change
3932 * - layout (to ->new_layout)
3933 * - chunk size (to ->new_chunk_sectors)
3934 * - raid_disks (by delta_disks)
3935 * or when trying to restart a reshape that was ongoing.
3936 *
3937 * We need to validate the request and possibly allocate
3938 * space if that might be an issue later.
3939 *
3940 * Currently we reject any reshape of a 'far' mode array,
3941 * allow chunk size to change if new is generally acceptable,
3942 * allow raid_disks to increase, and allow
3943 * a switch between 'near' mode and 'offset' mode.
3944 */
3945 struct r10conf *conf = mddev->private;
3946 struct geom geo;
3947
3948 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3949 return -EINVAL;
3950
3951 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3952 /* mustn't change number of copies */
3953 return -EINVAL;
3954 if (geo.far_copies > 1 && !geo.far_offset)
3955 /* Cannot switch to 'far' mode */
3956 return -EINVAL;
3957
3958 if (mddev->array_sectors & geo.chunk_mask)
3959 /* not factor of array size */
3960 return -EINVAL;
3961
3962 if (!enough(conf, -1))
3963 return -EINVAL;
3964
3965 kfree(conf->mirrors_new);
3966 conf->mirrors_new = NULL;
3967 if (mddev->delta_disks > 0) {
3968 /* allocate new 'mirrors' list */
3969 conf->mirrors_new = kzalloc(
3970 sizeof(struct raid10_info)
3971 *(mddev->raid_disks +
3972 mddev->delta_disks),
3973 GFP_KERNEL);
3974 if (!conf->mirrors_new)
3975 return -ENOMEM;
3976 }
3977 return 0;
3978 }
3979
3980 /*
3981 * Need to check if array has failed when deciding whether to:
3982 * - start an array
3983 * - remove non-faulty devices
3984 * - add a spare
3985 * - allow a reshape
3986 * This determination is simple when no reshape is happening.
3987 * However if there is a reshape, we need to carefully check
3988 * both the before and after sections.
3989 * This is because some failed devices may only affect one
3990 * of the two sections, and some non-in_sync devices may
3991 * be insync in the section most affected by failed devices.
3992 */
3993 static int calc_degraded(struct r10conf *conf)
3994 {
3995 int degraded, degraded2;
3996 int i;
3997
3998 rcu_read_lock();
3999 degraded = 0;
4000 /* 'prev' section first */
4001 for (i = 0; i < conf->prev.raid_disks; i++) {
4002 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4003 if (!rdev || test_bit(Faulty, &rdev->flags))
4004 degraded++;
4005 else if (!test_bit(In_sync, &rdev->flags))
4006 /* When we can reduce the number of devices in
4007 * an array, this might not contribute to
4008 * 'degraded'. It does now.
4009 */
4010 degraded++;
4011 }
4012 rcu_read_unlock();
4013 if (conf->geo.raid_disks == conf->prev.raid_disks)
4014 return degraded;
4015 rcu_read_lock();
4016 degraded2 = 0;
4017 for (i = 0; i < conf->geo.raid_disks; i++) {
4018 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4019 if (!rdev || test_bit(Faulty, &rdev->flags))
4020 degraded2++;
4021 else if (!test_bit(In_sync, &rdev->flags)) {
4022 /* If reshape is increasing the number of devices,
4023 * this section has already been recovered, so
4024 * it doesn't contribute to degraded.
4025 * else it does.
4026 */
4027 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4028 degraded2++;
4029 }
4030 }
4031 rcu_read_unlock();
4032 if (degraded2 > degraded)
4033 return degraded2;
4034 return degraded;
4035 }
4036
4037 static int raid10_start_reshape(struct mddev *mddev)
4038 {
4039 /* A 'reshape' has been requested. This commits
4040 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4041 * This also checks if there are enough spares and adds them
4042 * to the array.
4043 * We currently require enough spares to make the final
4044 * array non-degraded. We also require that the difference
4045 * between old and new data_offset - on each device - is
4046 * enough that we never risk over-writing.
4047 */
4048
4049 unsigned long before_length, after_length;
4050 sector_t min_offset_diff = 0;
4051 int first = 1;
4052 struct geom new;
4053 struct r10conf *conf = mddev->private;
4054 struct md_rdev *rdev;
4055 int spares = 0;
4056 int ret;
4057
4058 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4059 return -EBUSY;
4060
4061 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4062 return -EINVAL;
4063
4064 before_length = ((1 << conf->prev.chunk_shift) *
4065 conf->prev.far_copies);
4066 after_length = ((1 << conf->geo.chunk_shift) *
4067 conf->geo.far_copies);
4068
4069 rdev_for_each(rdev, mddev) {
4070 if (!test_bit(In_sync, &rdev->flags)
4071 && !test_bit(Faulty, &rdev->flags))
4072 spares++;
4073 if (rdev->raid_disk >= 0) {
4074 long long diff = (rdev->new_data_offset
4075 - rdev->data_offset);
4076 if (!mddev->reshape_backwards)
4077 diff = -diff;
4078 if (diff < 0)
4079 diff = 0;
4080 if (first || diff < min_offset_diff)
4081 min_offset_diff = diff;
4082 first = 0;
4083 }
4084 }
4085
4086 if (max(before_length, after_length) > min_offset_diff)
4087 return -EINVAL;
4088
4089 if (spares < mddev->delta_disks)
4090 return -EINVAL;
4091
4092 conf->offset_diff = min_offset_diff;
4093 spin_lock_irq(&conf->device_lock);
4094 if (conf->mirrors_new) {
4095 memcpy(conf->mirrors_new, conf->mirrors,
4096 sizeof(struct raid10_info)*conf->prev.raid_disks);
4097 smp_mb();
4098 kfree(conf->mirrors_old);
4099 conf->mirrors_old = conf->mirrors;
4100 conf->mirrors = conf->mirrors_new;
4101 conf->mirrors_new = NULL;
4102 }
4103 setup_geo(&conf->geo, mddev, geo_start);
4104 smp_mb();
4105 if (mddev->reshape_backwards) {
4106 sector_t size = raid10_size(mddev, 0, 0);
4107 if (size < mddev->array_sectors) {
4108 spin_unlock_irq(&conf->device_lock);
4109 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4110 mdname(mddev));
4111 return -EINVAL;
4112 }
4113 mddev->resync_max_sectors = size;
4114 conf->reshape_progress = size;
4115 } else
4116 conf->reshape_progress = 0;
4117 conf->reshape_safe = conf->reshape_progress;
4118 spin_unlock_irq(&conf->device_lock);
4119
4120 if (mddev->delta_disks && mddev->bitmap) {
4121 ret = bitmap_resize(mddev->bitmap,
4122 raid10_size(mddev, 0,
4123 conf->geo.raid_disks),
4124 0, 0);
4125 if (ret)
4126 goto abort;
4127 }
4128 if (mddev->delta_disks > 0) {
4129 rdev_for_each(rdev, mddev)
4130 if (rdev->raid_disk < 0 &&
4131 !test_bit(Faulty, &rdev->flags)) {
4132 if (raid10_add_disk(mddev, rdev) == 0) {
4133 if (rdev->raid_disk >=
4134 conf->prev.raid_disks)
4135 set_bit(In_sync, &rdev->flags);
4136 else
4137 rdev->recovery_offset = 0;
4138
4139 if (sysfs_link_rdev(mddev, rdev))
4140 /* Failure here is OK */;
4141 }
4142 } else if (rdev->raid_disk >= conf->prev.raid_disks
4143 && !test_bit(Faulty, &rdev->flags)) {
4144 /* This is a spare that was manually added */
4145 set_bit(In_sync, &rdev->flags);
4146 }
4147 }
4148 /* When a reshape changes the number of devices,
4149 * ->degraded is measured against the larger of the
4150 * pre and post numbers.
4151 */
4152 spin_lock_irq(&conf->device_lock);
4153 mddev->degraded = calc_degraded(conf);
4154 spin_unlock_irq(&conf->device_lock);
4155 mddev->raid_disks = conf->geo.raid_disks;
4156 mddev->reshape_position = conf->reshape_progress;
4157 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4158
4159 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4160 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4161 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4162 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4163 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4164
4165 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4166 "reshape");
4167 if (!mddev->sync_thread) {
4168 ret = -EAGAIN;
4169 goto abort;
4170 }
4171 conf->reshape_checkpoint = jiffies;
4172 md_wakeup_thread(mddev->sync_thread);
4173 md_new_event(mddev);
4174 return 0;
4175
4176 abort:
4177 mddev->recovery = 0;
4178 spin_lock_irq(&conf->device_lock);
4179 conf->geo = conf->prev;
4180 mddev->raid_disks = conf->geo.raid_disks;
4181 rdev_for_each(rdev, mddev)
4182 rdev->new_data_offset = rdev->data_offset;
4183 smp_wmb();
4184 conf->reshape_progress = MaxSector;
4185 conf->reshape_safe = MaxSector;
4186 mddev->reshape_position = MaxSector;
4187 spin_unlock_irq(&conf->device_lock);
4188 return ret;
4189 }
4190
4191 /* Calculate the last device-address that could contain
4192 * any block from the chunk that includes the array-address 's'
4193 * and report the next address.
4194 * i.e. the address returned will be chunk-aligned and after
4195 * any data that is in the chunk containing 's'.
4196 */
4197 static sector_t last_dev_address(sector_t s, struct geom *geo)
4198 {
4199 s = (s | geo->chunk_mask) + 1;
4200 s >>= geo->chunk_shift;
4201 s *= geo->near_copies;
4202 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4203 s *= geo->far_copies;
4204 s <<= geo->chunk_shift;
4205 return s;
4206 }
4207
4208 /* Calculate the first device-address that could contain
4209 * any block from the chunk that includes the array-address 's'.
4210 * This too will be the start of a chunk
4211 */
4212 static sector_t first_dev_address(sector_t s, struct geom *geo)
4213 {
4214 s >>= geo->chunk_shift;
4215 s *= geo->near_copies;
4216 sector_div(s, geo->raid_disks);
4217 s *= geo->far_copies;
4218 s <<= geo->chunk_shift;
4219 return s;
4220 }
4221
4222 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4223 int *skipped)
4224 {
4225 /* We simply copy at most one chunk (smallest of old and new)
4226 * at a time, possibly less if that exceeds RESYNC_PAGES,
4227 * or we hit a bad block or something.
4228 * This might mean we pause for normal IO in the middle of
4229 * a chunk, but that is not a problem as mddev->reshape_position
4230 * can record any location.
4231 *
4232 * If we will want to write to a location that isn't
4233 * yet recorded as 'safe' (i.e. in metadata on disk) then
4234 * we need to flush all reshape requests and update the metadata.
4235 *
4236 * When reshaping forwards (e.g. to more devices), we interpret
4237 * 'safe' as the earliest block which might not have been copied
4238 * down yet. We divide this by previous stripe size and multiply
4239 * by previous stripe length to get lowest device offset that we
4240 * cannot write to yet.
4241 * We interpret 'sector_nr' as an address that we want to write to.
4242 * From this we use last_device_address() to find where we might
4243 * write to, and first_device_address on the 'safe' position.
4244 * If this 'next' write position is after the 'safe' position,
4245 * we must update the metadata to increase the 'safe' position.
4246 *
4247 * When reshaping backwards, we round in the opposite direction
4248 * and perform the reverse test: next write position must not be
4249 * less than current safe position.
4250 *
4251 * In all this the minimum difference in data offsets
4252 * (conf->offset_diff - always positive) allows a bit of slack,
4253 * so next can be after 'safe', but not by more than offset_diff
4254 *
4255 * We need to prepare all the bios here before we start any IO
4256 * to ensure the size we choose is acceptable to all devices.
4257 * The means one for each copy for write-out and an extra one for
4258 * read-in.
4259 * We store the read-in bio in ->master_bio and the others in
4260 * ->devs[x].bio and ->devs[x].repl_bio.
4261 */
4262 struct r10conf *conf = mddev->private;
4263 struct r10bio *r10_bio;
4264 sector_t next, safe, last;
4265 int max_sectors;
4266 int nr_sectors;
4267 int s;
4268 struct md_rdev *rdev;
4269 int need_flush = 0;
4270 struct bio *blist;
4271 struct bio *bio, *read_bio;
4272 int sectors_done = 0;
4273 struct page **pages;
4274
4275 if (sector_nr == 0) {
4276 /* If restarting in the middle, skip the initial sectors */
4277 if (mddev->reshape_backwards &&
4278 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4279 sector_nr = (raid10_size(mddev, 0, 0)
4280 - conf->reshape_progress);
4281 } else if (!mddev->reshape_backwards &&
4282 conf->reshape_progress > 0)
4283 sector_nr = conf->reshape_progress;
4284 if (sector_nr) {
4285 mddev->curr_resync_completed = sector_nr;
4286 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4287 *skipped = 1;
4288 return sector_nr;
4289 }
4290 }
4291
4292 /* We don't use sector_nr to track where we are up to
4293 * as that doesn't work well for ->reshape_backwards.
4294 * So just use ->reshape_progress.
4295 */
4296 if (mddev->reshape_backwards) {
4297 /* 'next' is the earliest device address that we might
4298 * write to for this chunk in the new layout
4299 */
4300 next = first_dev_address(conf->reshape_progress - 1,
4301 &conf->geo);
4302
4303 /* 'safe' is the last device address that we might read from
4304 * in the old layout after a restart
4305 */
4306 safe = last_dev_address(conf->reshape_safe - 1,
4307 &conf->prev);
4308
4309 if (next + conf->offset_diff < safe)
4310 need_flush = 1;
4311
4312 last = conf->reshape_progress - 1;
4313 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4314 & conf->prev.chunk_mask);
4315 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4316 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4317 } else {
4318 /* 'next' is after the last device address that we
4319 * might write to for this chunk in the new layout
4320 */
4321 next = last_dev_address(conf->reshape_progress, &conf->geo);
4322
4323 /* 'safe' is the earliest device address that we might
4324 * read from in the old layout after a restart
4325 */
4326 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4327
4328 /* Need to update metadata if 'next' might be beyond 'safe'
4329 * as that would possibly corrupt data
4330 */
4331 if (next > safe + conf->offset_diff)
4332 need_flush = 1;
4333
4334 sector_nr = conf->reshape_progress;
4335 last = sector_nr | (conf->geo.chunk_mask
4336 & conf->prev.chunk_mask);
4337
4338 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4339 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4340 }
4341
4342 if (need_flush ||
4343 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4344 /* Need to update reshape_position in metadata */
4345 wait_barrier(conf);
4346 mddev->reshape_position = conf->reshape_progress;
4347 if (mddev->reshape_backwards)
4348 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4349 - conf->reshape_progress;
4350 else
4351 mddev->curr_resync_completed = conf->reshape_progress;
4352 conf->reshape_checkpoint = jiffies;
4353 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4354 md_wakeup_thread(mddev->thread);
4355 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4356 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4357 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4358 allow_barrier(conf);
4359 return sectors_done;
4360 }
4361 conf->reshape_safe = mddev->reshape_position;
4362 allow_barrier(conf);
4363 }
4364
4365 read_more:
4366 /* Now schedule reads for blocks from sector_nr to last */
4367 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4368 r10_bio->state = 0;
4369 raise_barrier(conf, sectors_done != 0);
4370 atomic_set(&r10_bio->remaining, 0);
4371 r10_bio->mddev = mddev;
4372 r10_bio->sector = sector_nr;
4373 set_bit(R10BIO_IsReshape, &r10_bio->state);
4374 r10_bio->sectors = last - sector_nr + 1;
4375 rdev = read_balance(conf, r10_bio, &max_sectors);
4376 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4377
4378 if (!rdev) {
4379 /* Cannot read from here, so need to record bad blocks
4380 * on all the target devices.
4381 */
4382 // FIXME
4383 mempool_free(r10_bio, conf->r10buf_pool);
4384 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4385 return sectors_done;
4386 }
4387
4388 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4389
4390 read_bio->bi_bdev = rdev->bdev;
4391 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4392 + rdev->data_offset);
4393 read_bio->bi_private = r10_bio;
4394 read_bio->bi_end_io = end_reshape_read;
4395 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4396 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4397 read_bio->bi_status = 0;
4398 read_bio->bi_vcnt = 0;
4399 read_bio->bi_iter.bi_size = 0;
4400 r10_bio->master_bio = read_bio;
4401 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4402
4403 /* Now find the locations in the new layout */
4404 __raid10_find_phys(&conf->geo, r10_bio);
4405
4406 blist = read_bio;
4407 read_bio->bi_next = NULL;
4408
4409 rcu_read_lock();
4410 for (s = 0; s < conf->copies*2; s++) {
4411 struct bio *b;
4412 int d = r10_bio->devs[s/2].devnum;
4413 struct md_rdev *rdev2;
4414 if (s&1) {
4415 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4416 b = r10_bio->devs[s/2].repl_bio;
4417 } else {
4418 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4419 b = r10_bio->devs[s/2].bio;
4420 }
4421 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4422 continue;
4423
4424 b->bi_bdev = rdev2->bdev;
4425 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4426 rdev2->new_data_offset;
4427 b->bi_end_io = end_reshape_write;
4428 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4429 b->bi_next = blist;
4430 blist = b;
4431 }
4432
4433 /* Now add as many pages as possible to all of these bios. */
4434
4435 nr_sectors = 0;
4436 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4437 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4438 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4439 int len = (max_sectors - s) << 9;
4440 if (len > PAGE_SIZE)
4441 len = PAGE_SIZE;
4442 for (bio = blist; bio ; bio = bio->bi_next) {
4443 /*
4444 * won't fail because the vec table is big enough
4445 * to hold all these pages
4446 */
4447 bio_add_page(bio, page, len, 0);
4448 }
4449 sector_nr += len >> 9;
4450 nr_sectors += len >> 9;
4451 }
4452 rcu_read_unlock();
4453 r10_bio->sectors = nr_sectors;
4454
4455 /* Now submit the read */
4456 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4457 atomic_inc(&r10_bio->remaining);
4458 read_bio->bi_next = NULL;
4459 generic_make_request(read_bio);
4460 sector_nr += nr_sectors;
4461 sectors_done += nr_sectors;
4462 if (sector_nr <= last)
4463 goto read_more;
4464
4465 /* Now that we have done the whole section we can
4466 * update reshape_progress
4467 */
4468 if (mddev->reshape_backwards)
4469 conf->reshape_progress -= sectors_done;
4470 else
4471 conf->reshape_progress += sectors_done;
4472
4473 return sectors_done;
4474 }
4475
4476 static void end_reshape_request(struct r10bio *r10_bio);
4477 static int handle_reshape_read_error(struct mddev *mddev,
4478 struct r10bio *r10_bio);
4479 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4480 {
4481 /* Reshape read completed. Hopefully we have a block
4482 * to write out.
4483 * If we got a read error then we do sync 1-page reads from
4484 * elsewhere until we find the data - or give up.
4485 */
4486 struct r10conf *conf = mddev->private;
4487 int s;
4488
4489 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4490 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4491 /* Reshape has been aborted */
4492 md_done_sync(mddev, r10_bio->sectors, 0);
4493 return;
4494 }
4495
4496 /* We definitely have the data in the pages, schedule the
4497 * writes.
4498 */
4499 atomic_set(&r10_bio->remaining, 1);
4500 for (s = 0; s < conf->copies*2; s++) {
4501 struct bio *b;
4502 int d = r10_bio->devs[s/2].devnum;
4503 struct md_rdev *rdev;
4504 rcu_read_lock();
4505 if (s&1) {
4506 rdev = rcu_dereference(conf->mirrors[d].replacement);
4507 b = r10_bio->devs[s/2].repl_bio;
4508 } else {
4509 rdev = rcu_dereference(conf->mirrors[d].rdev);
4510 b = r10_bio->devs[s/2].bio;
4511 }
4512 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4513 rcu_read_unlock();
4514 continue;
4515 }
4516 atomic_inc(&rdev->nr_pending);
4517 rcu_read_unlock();
4518 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4519 atomic_inc(&r10_bio->remaining);
4520 b->bi_next = NULL;
4521 generic_make_request(b);
4522 }
4523 end_reshape_request(r10_bio);
4524 }
4525
4526 static void end_reshape(struct r10conf *conf)
4527 {
4528 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4529 return;
4530
4531 spin_lock_irq(&conf->device_lock);
4532 conf->prev = conf->geo;
4533 md_finish_reshape(conf->mddev);
4534 smp_wmb();
4535 conf->reshape_progress = MaxSector;
4536 conf->reshape_safe = MaxSector;
4537 spin_unlock_irq(&conf->device_lock);
4538
4539 /* read-ahead size must cover two whole stripes, which is
4540 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4541 */
4542 if (conf->mddev->queue) {
4543 int stripe = conf->geo.raid_disks *
4544 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4545 stripe /= conf->geo.near_copies;
4546 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4547 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4548 }
4549 conf->fullsync = 0;
4550 }
4551
4552 static int handle_reshape_read_error(struct mddev *mddev,
4553 struct r10bio *r10_bio)
4554 {
4555 /* Use sync reads to get the blocks from somewhere else */
4556 int sectors = r10_bio->sectors;
4557 struct r10conf *conf = mddev->private;
4558 struct {
4559 struct r10bio r10_bio;
4560 struct r10dev devs[conf->copies];
4561 } on_stack;
4562 struct r10bio *r10b = &on_stack.r10_bio;
4563 int slot = 0;
4564 int idx = 0;
4565 struct page **pages;
4566
4567 /* reshape IOs share pages from .devs[0].bio */
4568 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4569
4570 r10b->sector = r10_bio->sector;
4571 __raid10_find_phys(&conf->prev, r10b);
4572
4573 while (sectors) {
4574 int s = sectors;
4575 int success = 0;
4576 int first_slot = slot;
4577
4578 if (s > (PAGE_SIZE >> 9))
4579 s = PAGE_SIZE >> 9;
4580
4581 rcu_read_lock();
4582 while (!success) {
4583 int d = r10b->devs[slot].devnum;
4584 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4585 sector_t addr;
4586 if (rdev == NULL ||
4587 test_bit(Faulty, &rdev->flags) ||
4588 !test_bit(In_sync, &rdev->flags))
4589 goto failed;
4590
4591 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4592 atomic_inc(&rdev->nr_pending);
4593 rcu_read_unlock();
4594 success = sync_page_io(rdev,
4595 addr,
4596 s << 9,
4597 pages[idx],
4598 REQ_OP_READ, 0, false);
4599 rdev_dec_pending(rdev, mddev);
4600 rcu_read_lock();
4601 if (success)
4602 break;
4603 failed:
4604 slot++;
4605 if (slot >= conf->copies)
4606 slot = 0;
4607 if (slot == first_slot)
4608 break;
4609 }
4610 rcu_read_unlock();
4611 if (!success) {
4612 /* couldn't read this block, must give up */
4613 set_bit(MD_RECOVERY_INTR,
4614 &mddev->recovery);
4615 return -EIO;
4616 }
4617 sectors -= s;
4618 idx++;
4619 }
4620 return 0;
4621 }
4622
4623 static void end_reshape_write(struct bio *bio)
4624 {
4625 struct r10bio *r10_bio = get_resync_r10bio(bio);
4626 struct mddev *mddev = r10_bio->mddev;
4627 struct r10conf *conf = mddev->private;
4628 int d;
4629 int slot;
4630 int repl;
4631 struct md_rdev *rdev = NULL;
4632
4633 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4634 if (repl)
4635 rdev = conf->mirrors[d].replacement;
4636 if (!rdev) {
4637 smp_mb();
4638 rdev = conf->mirrors[d].rdev;
4639 }
4640
4641 if (bio->bi_status) {
4642 /* FIXME should record badblock */
4643 md_error(mddev, rdev);
4644 }
4645
4646 rdev_dec_pending(rdev, mddev);
4647 end_reshape_request(r10_bio);
4648 }
4649
4650 static void end_reshape_request(struct r10bio *r10_bio)
4651 {
4652 if (!atomic_dec_and_test(&r10_bio->remaining))
4653 return;
4654 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4655 bio_put(r10_bio->master_bio);
4656 put_buf(r10_bio);
4657 }
4658
4659 static void raid10_finish_reshape(struct mddev *mddev)
4660 {
4661 struct r10conf *conf = mddev->private;
4662
4663 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4664 return;
4665
4666 if (mddev->delta_disks > 0) {
4667 sector_t size = raid10_size(mddev, 0, 0);
4668 md_set_array_sectors(mddev, size);
4669 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4670 mddev->recovery_cp = mddev->resync_max_sectors;
4671 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4672 }
4673 mddev->resync_max_sectors = size;
4674 if (mddev->queue) {
4675 set_capacity(mddev->gendisk, mddev->array_sectors);
4676 revalidate_disk(mddev->gendisk);
4677 }
4678 } else {
4679 int d;
4680 rcu_read_lock();
4681 for (d = conf->geo.raid_disks ;
4682 d < conf->geo.raid_disks - mddev->delta_disks;
4683 d++) {
4684 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4685 if (rdev)
4686 clear_bit(In_sync, &rdev->flags);
4687 rdev = rcu_dereference(conf->mirrors[d].replacement);
4688 if (rdev)
4689 clear_bit(In_sync, &rdev->flags);
4690 }
4691 rcu_read_unlock();
4692 }
4693 mddev->layout = mddev->new_layout;
4694 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4695 mddev->reshape_position = MaxSector;
4696 mddev->delta_disks = 0;
4697 mddev->reshape_backwards = 0;
4698 }
4699
4700 static struct md_personality raid10_personality =
4701 {
4702 .name = "raid10",
4703 .level = 10,
4704 .owner = THIS_MODULE,
4705 .make_request = raid10_make_request,
4706 .run = raid10_run,
4707 .free = raid10_free,
4708 .status = raid10_status,
4709 .error_handler = raid10_error,
4710 .hot_add_disk = raid10_add_disk,
4711 .hot_remove_disk= raid10_remove_disk,
4712 .spare_active = raid10_spare_active,
4713 .sync_request = raid10_sync_request,
4714 .quiesce = raid10_quiesce,
4715 .size = raid10_size,
4716 .resize = raid10_resize,
4717 .takeover = raid10_takeover,
4718 .check_reshape = raid10_check_reshape,
4719 .start_reshape = raid10_start_reshape,
4720 .finish_reshape = raid10_finish_reshape,
4721 .congested = raid10_congested,
4722 };
4723
4724 static int __init raid_init(void)
4725 {
4726 return register_md_personality(&raid10_personality);
4727 }
4728
4729 static void raid_exit(void)
4730 {
4731 unregister_md_personality(&raid10_personality);
4732 }
4733
4734 module_init(raid_init);
4735 module_exit(raid_exit);
4736 MODULE_LICENSE("GPL");
4737 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4738 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4739 MODULE_ALIAS("md-raid10");
4740 MODULE_ALIAS("md-level-10");
4741
4742 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);