]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mtd/nand/rtc_from4.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / drivers / mtd / nand / rtc_from4.c
1 /*
2 * drivers/mtd/nand/rtc_from4.c
3 *
4 * Copyright (C) 2004 Red Hat, Inc.
5 *
6 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
8 *
9 * $Id: rtc_from4.c,v 1.7 2004/11/04 12:53:10 gleixner Exp $
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 * Overview:
16 * This is a device driver for the AG-AND flash device found on the
17 * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
18 * which utilizes the Renesas HN29V1G91T-30 part.
19 * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
20 */
21
22 #include <linux/delay.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/rslib.h>
27 #include <linux/module.h>
28 #include <linux/mtd/compatmac.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/partitions.h>
32 #include <asm/io.h>
33
34 /*
35 * MTD structure for Renesas board
36 */
37 static struct mtd_info *rtc_from4_mtd = NULL;
38
39 #define RTC_FROM4_MAX_CHIPS 2
40
41 /* HS77x9 processor register defines */
42 #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
43 #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
44 #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
45 #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
46 #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
47 #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
48 #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
49
50 /*
51 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
52 */
53 /* Address where flash is mapped */
54 #define RTC_FROM4_FIO_BASE 0x14000000
55
56 /* CLE and ALE are tied to address lines 5 & 4, respectively */
57 #define RTC_FROM4_CLE (1 << 5)
58 #define RTC_FROM4_ALE (1 << 4)
59
60 /* address lines A24-A22 used for chip selection */
61 #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
62 #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
63 #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
64 /* mask address lines A24-A22 used for chip selection */
65 #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
66
67 /* FPGA status register for checking device ready (bit zero) */
68 #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
69 #define RTC_FROM4_DEVICE_READY 0x0001
70
71 /* FPGA Reed-Solomon ECC Control register */
72
73 #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
74 #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
75 #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
76 #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
77
78 /* FPGA Reed-Solomon ECC code base */
79 #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
80 #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
81
82 /* FPGA Reed-Solomon ECC check register */
83 #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
84 #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
85
86 /* Undefine for software ECC */
87 #define RTC_FROM4_HWECC 1
88
89 /*
90 * Module stuff
91 */
92 static void __iomem *rtc_from4_fio_base = P2SEGADDR(RTC_FROM4_FIO_BASE);
93
94 const static struct mtd_partition partition_info[] = {
95 {
96 .name = "Renesas flash partition 1",
97 .offset = 0,
98 .size = MTDPART_SIZ_FULL
99 },
100 };
101 #define NUM_PARTITIONS 1
102
103 /*
104 * hardware specific flash bbt decriptors
105 * Note: this is to allow debugging by disabling
106 * NAND_BBT_CREATE and/or NAND_BBT_WRITE
107 *
108 */
109 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
110 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
111
112 static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
113 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
114 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
115 .offs = 40,
116 .len = 4,
117 .veroffs = 44,
118 .maxblocks = 4,
119 .pattern = bbt_pattern
120 };
121
122 static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
123 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
124 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
125 .offs = 40,
126 .len = 4,
127 .veroffs = 44,
128 .maxblocks = 4,
129 .pattern = mirror_pattern
130 };
131
132
133
134 #ifdef RTC_FROM4_HWECC
135
136 /* the Reed Solomon control structure */
137 static struct rs_control *rs_decoder;
138
139 /*
140 * hardware specific Out Of Band information
141 */
142 static struct nand_oobinfo rtc_from4_nand_oobinfo = {
143 .useecc = MTD_NANDECC_AUTOPLACE,
144 .eccbytes = 32,
145 .eccpos = {
146 0, 1, 2, 3, 4, 5, 6, 7,
147 8, 9, 10, 11, 12, 13, 14, 15,
148 16, 17, 18, 19, 20, 21, 22, 23,
149 24, 25, 26, 27, 28, 29, 30, 31},
150 .oobfree = { {32, 32} }
151 };
152
153 /* Aargh. I missed the reversed bit order, when I
154 * was talking to Renesas about the FPGA.
155 *
156 * The table is used for bit reordering and inversion
157 * of the ecc byte which we get from the FPGA
158 */
159 static uint8_t revbits[256] = {
160 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
161 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
162 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
163 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
164 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
165 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
166 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
167 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
168 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
169 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
170 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
171 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
172 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
173 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
174 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
175 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
176 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
177 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
178 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
179 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
180 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
181 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
182 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
183 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
184 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
185 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
186 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
187 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
188 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
189 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
190 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
191 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
192 };
193
194 #endif
195
196
197
198 /*
199 * rtc_from4_hwcontrol - hardware specific access to control-lines
200 * @mtd: MTD device structure
201 * @cmd: hardware control command
202 *
203 * Address lines (A5 and A4) are used to control Command and Address Latch
204 * Enable on this board, so set the read/write address appropriately.
205 *
206 * Chip Enable is also controlled by the Chip Select (CS5) and
207 * Address lines (A24-A22), so no action is required here.
208 *
209 */
210 static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd)
211 {
212 struct nand_chip* this = (struct nand_chip *) (mtd->priv);
213
214 switch(cmd) {
215
216 case NAND_CTL_SETCLE:
217 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE);
218 break;
219 case NAND_CTL_CLRCLE:
220 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_CLE);
221 break;
222
223 case NAND_CTL_SETALE:
224 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_ALE);
225 break;
226 case NAND_CTL_CLRALE:
227 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_ALE);
228 break;
229
230 case NAND_CTL_SETNCE:
231 break;
232 case NAND_CTL_CLRNCE:
233 break;
234
235 }
236 }
237
238
239 /*
240 * rtc_from4_nand_select_chip - hardware specific chip select
241 * @mtd: MTD device structure
242 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
243 *
244 * The chip select is based on address lines A24-A22.
245 * This driver uses flash slots 3 and 4 (A23-A22).
246 *
247 */
248 static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
249 {
250 struct nand_chip *this = mtd->priv;
251
252 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
253 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
254
255 switch(chip) {
256
257 case 0: /* select slot 3 chip */
258 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
259 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
260 break;
261 case 1: /* select slot 4 chip */
262 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
263 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
264 break;
265
266 }
267 }
268
269
270
271 /*
272 * rtc_from4_nand_device_ready - hardware specific ready/busy check
273 * @mtd: MTD device structure
274 *
275 * This board provides the Ready/Busy state in the status register
276 * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
277 *
278 */
279 static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
280 {
281 unsigned short status;
282
283 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
284
285 return (status & RTC_FROM4_DEVICE_READY);
286
287 }
288
289 #ifdef RTC_FROM4_HWECC
290 /*
291 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
292 * @mtd: MTD device structure
293 * @mode: I/O mode; read or write
294 *
295 * enable hardware ECC for data read or write
296 *
297 */
298 static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
299 {
300 volatile unsigned short * rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
301 unsigned short status;
302
303 switch (mode) {
304 case NAND_ECC_READ :
305 status = RTC_FROM4_RS_ECC_CTL_CLR
306 | RTC_FROM4_RS_ECC_CTL_FD_E;
307
308 *rs_ecc_ctl = status;
309 break;
310
311 case NAND_ECC_READSYN :
312 status = 0x00;
313
314 *rs_ecc_ctl = status;
315 break;
316
317 case NAND_ECC_WRITE :
318 status = RTC_FROM4_RS_ECC_CTL_CLR
319 | RTC_FROM4_RS_ECC_CTL_GEN
320 | RTC_FROM4_RS_ECC_CTL_FD_E;
321
322 *rs_ecc_ctl = status;
323 break;
324
325 default:
326 BUG();
327 break;
328 }
329
330 }
331
332 /*
333 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
334 * @mtd: MTD device structure
335 * @dat: buffer containing the data to generate ECC codes
336 * @ecc_code ECC codes calculated
337 *
338 * The ECC code is calculated by the FPGA. All we have to do is read the values
339 * from the FPGA registers.
340 *
341 * Note: We read from the inverted registers, since data is inverted before
342 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
343 *
344 */
345 static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
346 {
347 volatile unsigned short * rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
348 unsigned short value;
349 int i;
350
351 for (i = 0; i < 8; i++) {
352 value = *rs_eccn;
353 ecc_code[i] = (unsigned char)value;
354 rs_eccn++;
355 }
356 ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
357 }
358
359 /*
360 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
361 * @mtd: MTD device structure
362 * @buf: buffer containing the data to generate ECC codes
363 * @ecc1 ECC codes read
364 * @ecc2 ECC codes calculated
365 *
366 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
367 * else we read the ecc results from the fpga and call the rs library to decode
368 * and hopefully correct the error
369 *
370 * For now I use the code, which we read from the FLASH to use the RS lib,
371 * as the syndrom conversion has a unresolved issue.
372 */
373 static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
374 {
375 int i, j, res;
376 unsigned short status;
377 uint16_t par[6], syn[6], tmp;
378 uint8_t ecc[8];
379 volatile unsigned short *rs_ecc;
380
381 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
382
383 if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
384 return 0;
385 }
386
387 /* Read the syndrom pattern from the FPGA and correct the bitorder */
388 rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
389 for (i = 0; i < 8; i++) {
390 ecc[i] = revbits[(*rs_ecc) & 0xFF];
391 rs_ecc++;
392 }
393
394 /* convert into 6 10bit syndrome fields */
395 par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) |
396 (((uint16_t)ecc[1] << 8) & 0x300)];
397 par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) |
398 (((uint16_t)ecc[2] << 6) & 0x3c0)];
399 par[3] = rs_decoder->index_of[(((uint16_t)ecc[2] >> 4) & 0x00f) |
400 (((uint16_t)ecc[3] << 4) & 0x3f0)];
401 par[2] = rs_decoder->index_of[(((uint16_t)ecc[3] >> 6) & 0x003) |
402 (((uint16_t)ecc[4] << 2) & 0x3fc)];
403 par[1] = rs_decoder->index_of[(((uint16_t)ecc[5] >> 0) & 0x0ff) |
404 (((uint16_t)ecc[6] << 8) & 0x300)];
405 par[0] = (((uint16_t)ecc[6] >> 2) & 0x03f) | (((uint16_t)ecc[7] << 6) & 0x3c0);
406
407 /* Convert to computable syndrome */
408 for (i = 0; i < 6; i++) {
409 syn[i] = par[0];
410 for (j = 1; j < 6; j++)
411 if (par[j] != rs_decoder->nn)
412 syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
413
414 /* Convert to index form */
415 syn[i] = rs_decoder->index_of[syn[i]];
416 }
417
418 /* Let the library code do its magic.*/
419 res = decode_rs8(rs_decoder, buf, par, 512, syn, 0, NULL, 0xff, NULL);
420 if (res > 0) {
421 DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: "
422 "ECC corrected %d errors on read\n", res);
423 }
424 return res;
425 }
426 #endif
427
428 /*
429 * Main initialization routine
430 */
431 int __init rtc_from4_init (void)
432 {
433 struct nand_chip *this;
434 unsigned short bcr1, bcr2, wcr2;
435
436 /* Allocate memory for MTD device structure and private data */
437 rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip),
438 GFP_KERNEL);
439 if (!rtc_from4_mtd) {
440 printk ("Unable to allocate Renesas NAND MTD device structure.\n");
441 return -ENOMEM;
442 }
443
444 /* Get pointer to private data */
445 this = (struct nand_chip *) (&rtc_from4_mtd[1]);
446
447 /* Initialize structures */
448 memset((char *) rtc_from4_mtd, 0, sizeof(struct mtd_info));
449 memset((char *) this, 0, sizeof(struct nand_chip));
450
451 /* Link the private data with the MTD structure */
452 rtc_from4_mtd->priv = this;
453
454 /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
455 bcr1 = *SH77X9_BCR1 & ~0x0002;
456 bcr1 |= 0x0002;
457 *SH77X9_BCR1 = bcr1;
458
459 /* set */
460 bcr2 = *SH77X9_BCR2 & ~0x0c00;
461 bcr2 |= 0x0800;
462 *SH77X9_BCR2 = bcr2;
463
464 /* set area 5 wait states */
465 wcr2 = *SH77X9_WCR2 & ~0x1c00;
466 wcr2 |= 0x1c00;
467 *SH77X9_WCR2 = wcr2;
468
469 /* Set address of NAND IO lines */
470 this->IO_ADDR_R = rtc_from4_fio_base;
471 this->IO_ADDR_W = rtc_from4_fio_base;
472 /* Set address of hardware control function */
473 this->hwcontrol = rtc_from4_hwcontrol;
474 /* Set address of chip select function */
475 this->select_chip = rtc_from4_nand_select_chip;
476 /* command delay time (in us) */
477 this->chip_delay = 100;
478 /* return the status of the Ready/Busy line */
479 this->dev_ready = rtc_from4_nand_device_ready;
480
481 #ifdef RTC_FROM4_HWECC
482 printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
483
484 this->eccmode = NAND_ECC_HW8_512;
485 this->options |= NAND_HWECC_SYNDROME;
486 /* set the nand_oobinfo to support FPGA H/W error detection */
487 this->autooob = &rtc_from4_nand_oobinfo;
488 this->enable_hwecc = rtc_from4_enable_hwecc;
489 this->calculate_ecc = rtc_from4_calculate_ecc;
490 this->correct_data = rtc_from4_correct_data;
491 #else
492 printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
493
494 this->eccmode = NAND_ECC_SOFT;
495 #endif
496
497 /* set the bad block tables to support debugging */
498 this->bbt_td = &rtc_from4_bbt_main_descr;
499 this->bbt_md = &rtc_from4_bbt_mirror_descr;
500
501 /* Scan to find existence of the device */
502 if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
503 kfree(rtc_from4_mtd);
504 return -ENXIO;
505 }
506
507 /* Register the partitions */
508 add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
509
510 #ifdef RTC_FROM4_HWECC
511 /* We could create the decoder on demand, if memory is a concern.
512 * This way we have it handy, if an error happens
513 *
514 * Symbolsize is 10 (bits)
515 * Primitve polynomial is x^10+x^3+1
516 * first consecutive root is 0
517 * primitve element to generate roots = 1
518 * generator polinomial degree = 6
519 */
520 rs_decoder = init_rs(10, 0x409, 0, 1, 6);
521 if (!rs_decoder) {
522 printk (KERN_ERR "Could not create a RS decoder\n");
523 nand_release(rtc_from4_mtd);
524 kfree(rtc_from4_mtd);
525 return -ENOMEM;
526 }
527 #endif
528 /* Return happy */
529 return 0;
530 }
531 module_init(rtc_from4_init);
532
533
534 /*
535 * Clean up routine
536 */
537 #ifdef MODULE
538 static void __exit rtc_from4_cleanup (void)
539 {
540 /* Release resource, unregister partitions */
541 nand_release(rtc_from4_mtd);
542
543 /* Free the MTD device structure */
544 kfree (rtc_from4_mtd);
545
546 #ifdef RTC_FROM4_HWECC
547 /* Free the reed solomon resources */
548 if (rs_decoder) {
549 free_rs(rs_decoder);
550 }
551 #endif
552 }
553 module_exit(rtc_from4_cleanup);
554 #endif
555
556 MODULE_LICENSE("GPL");
557 MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
558 MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
559