]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/ezchip/nps_enet.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / ezchip / nps_enet.c
1 /*
2 * Copyright(c) 2015 EZchip Technologies.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 */
16
17 #include <linux/module.h>
18 #include <linux/etherdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_net.h>
23 #include <linux/of_platform.h>
24 #include "nps_enet.h"
25
26 #define DRV_NAME "nps_mgt_enet"
27
28 static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
29 {
30 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
31 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
32
33 return (!tx_ctrl_ct && priv->tx_skb);
34 }
35
36 static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
37 {
38 struct nps_enet_priv *priv = netdev_priv(ndev);
39 u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
40
41 /* Empty Rx FIFO buffer by reading all words */
42 for (i = 0; i < len; i++)
43 nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
44 }
45
46 static void nps_enet_read_rx_fifo(struct net_device *ndev,
47 unsigned char *dst, u32 length)
48 {
49 struct nps_enet_priv *priv = netdev_priv(ndev);
50 s32 i, last = length & (sizeof(u32) - 1);
51 u32 *reg = (u32 *)dst, len = length / sizeof(u32);
52 bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
53
54 /* In case dst is not aligned we need an intermediate buffer */
55 if (dst_is_aligned) {
56 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
57 reg += len;
58 } else { /* !dst_is_aligned */
59 for (i = 0; i < len; i++, reg++) {
60 u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
61
62 put_unaligned_be32(buf, reg);
63 }
64 }
65 /* copy last bytes (if any) */
66 if (last) {
67 u32 buf;
68
69 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
70 memcpy((u8 *)reg, &buf, last);
71 }
72 }
73
74 static u32 nps_enet_rx_handler(struct net_device *ndev)
75 {
76 u32 frame_len, err = 0;
77 u32 work_done = 0;
78 struct nps_enet_priv *priv = netdev_priv(ndev);
79 struct sk_buff *skb;
80 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
81 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
82 u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
83 u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
84
85 frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
86
87 /* Check if we got RX */
88 if (!rx_ctrl_cr)
89 return work_done;
90
91 /* If we got here there is a work for us */
92 work_done++;
93
94 /* Check Rx error */
95 if (rx_ctrl_er) {
96 ndev->stats.rx_errors++;
97 err = 1;
98 }
99
100 /* Check Rx CRC error */
101 if (rx_ctrl_crc) {
102 ndev->stats.rx_crc_errors++;
103 ndev->stats.rx_dropped++;
104 err = 1;
105 }
106
107 /* Check Frame length Min 64b */
108 if (unlikely(frame_len < ETH_ZLEN)) {
109 ndev->stats.rx_length_errors++;
110 ndev->stats.rx_dropped++;
111 err = 1;
112 }
113
114 if (err)
115 goto rx_irq_clean;
116
117 /* Skb allocation */
118 skb = netdev_alloc_skb_ip_align(ndev, frame_len);
119 if (unlikely(!skb)) {
120 ndev->stats.rx_errors++;
121 ndev->stats.rx_dropped++;
122 goto rx_irq_clean;
123 }
124
125 /* Copy frame from Rx fifo into the skb */
126 nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
127
128 skb_put(skb, frame_len);
129 skb->protocol = eth_type_trans(skb, ndev);
130 skb->ip_summed = CHECKSUM_UNNECESSARY;
131
132 ndev->stats.rx_packets++;
133 ndev->stats.rx_bytes += frame_len;
134 netif_receive_skb(skb);
135
136 goto rx_irq_frame_done;
137
138 rx_irq_clean:
139 /* Clean Rx fifo */
140 nps_enet_clean_rx_fifo(ndev, frame_len);
141
142 rx_irq_frame_done:
143 /* Ack Rx ctrl register */
144 nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
145
146 return work_done;
147 }
148
149 static void nps_enet_tx_handler(struct net_device *ndev)
150 {
151 struct nps_enet_priv *priv = netdev_priv(ndev);
152 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
153 u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
154 u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
155
156 /* Check if we got TX */
157 if (!nps_enet_is_tx_pending(priv))
158 return;
159
160 /* Ack Tx ctrl register */
161 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
162
163 /* Check Tx transmit error */
164 if (unlikely(tx_ctrl_et)) {
165 ndev->stats.tx_errors++;
166 } else {
167 ndev->stats.tx_packets++;
168 ndev->stats.tx_bytes += tx_ctrl_nt;
169 }
170
171 dev_kfree_skb(priv->tx_skb);
172 priv->tx_skb = NULL;
173
174 if (netif_queue_stopped(ndev))
175 netif_wake_queue(ndev);
176 }
177
178 /**
179 * nps_enet_poll - NAPI poll handler.
180 * @napi: Pointer to napi_struct structure.
181 * @budget: How many frames to process on one call.
182 *
183 * returns: Number of processed frames
184 */
185 static int nps_enet_poll(struct napi_struct *napi, int budget)
186 {
187 struct net_device *ndev = napi->dev;
188 struct nps_enet_priv *priv = netdev_priv(ndev);
189 u32 work_done;
190
191 nps_enet_tx_handler(ndev);
192 work_done = nps_enet_rx_handler(ndev);
193 if ((work_done < budget) && napi_complete_done(napi, work_done)) {
194 u32 buf_int_enable_value = 0;
195
196 /* set tx_done and rx_rdy bits */
197 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
198 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
199
200 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
201 buf_int_enable_value);
202
203 /* in case we will get a tx interrupt while interrupts
204 * are masked, we will lose it since the tx is edge interrupt.
205 * specifically, while executing the code section above,
206 * between nps_enet_tx_handler and the interrupts enable, all
207 * tx requests will be stuck until we will get an rx interrupt.
208 * the two code lines below will solve this situation by
209 * re-adding ourselves to the poll list.
210 */
211 if (nps_enet_is_tx_pending(priv)) {
212 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
213 napi_reschedule(napi);
214 }
215 }
216
217 return work_done;
218 }
219
220 /**
221 * nps_enet_irq_handler - Global interrupt handler for ENET.
222 * @irq: irq number.
223 * @dev_instance: device instance.
224 *
225 * returns: IRQ_HANDLED for all cases.
226 *
227 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
228 * CTRL registers we may tell what is a reason for interrupt to fire up.
229 * We got one for RX and the other for TX (completion).
230 */
231 static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
232 {
233 struct net_device *ndev = dev_instance;
234 struct nps_enet_priv *priv = netdev_priv(ndev);
235 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
236 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
237
238 if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
239 if (likely(napi_schedule_prep(&priv->napi))) {
240 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
241 __napi_schedule(&priv->napi);
242 }
243
244 return IRQ_HANDLED;
245 }
246
247 static void nps_enet_set_hw_mac_address(struct net_device *ndev)
248 {
249 struct nps_enet_priv *priv = netdev_priv(ndev);
250 u32 ge_mac_cfg_1_value = 0;
251 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
252
253 /* set MAC address in HW */
254 ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
255 ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
256 ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
257 ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
258 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
259 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
260 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
261 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
262
263 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
264 ge_mac_cfg_1_value);
265
266 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
267 *ge_mac_cfg_2_value);
268 }
269
270 /**
271 * nps_enet_hw_reset - Reset the network device.
272 * @ndev: Pointer to the network device.
273 *
274 * This function reset the PCS and TX fifo.
275 * The programming model is to set the relevant reset bits
276 * wait for some time for this to propagate and then unset
277 * the reset bits. This way we ensure that reset procedure
278 * is done successfully by device.
279 */
280 static void nps_enet_hw_reset(struct net_device *ndev)
281 {
282 struct nps_enet_priv *priv = netdev_priv(ndev);
283 u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
284
285 /* Pcs reset sequence*/
286 ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
287 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
288 usleep_range(10, 20);
289 ge_rst_value = 0;
290 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
291
292 /* Tx fifo reset sequence */
293 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
294 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
295 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
296 phase_fifo_ctl_value);
297 usleep_range(10, 20);
298 phase_fifo_ctl_value = 0;
299 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
300 phase_fifo_ctl_value);
301 }
302
303 static void nps_enet_hw_enable_control(struct net_device *ndev)
304 {
305 struct nps_enet_priv *priv = netdev_priv(ndev);
306 u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
307 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
308 u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
309 s32 max_frame_length;
310
311 /* Enable Rx and Tx statistics */
312 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
313 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
314
315 /* Discard packets with different MAC address */
316 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
317 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
318
319 /* Discard multicast packets */
320 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
321 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
322
323 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
324 *ge_mac_cfg_2_value);
325
326 /* Discard Packets bigger than max frame length */
327 max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
328 if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
329 *ge_mac_cfg_3_value =
330 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
331 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
332 }
333
334 /* Enable interrupts */
335 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
336 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
337 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
338 buf_int_enable_value);
339
340 /* Write device MAC address to HW */
341 nps_enet_set_hw_mac_address(ndev);
342
343 /* Rx and Tx HW features */
344 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
345 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
346 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
347
348 /* IFG configuration */
349 ge_mac_cfg_0_value |=
350 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
351 ge_mac_cfg_0_value |=
352 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
353
354 /* preamble configuration */
355 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
356 ge_mac_cfg_0_value |=
357 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
358
359 /* enable flow control frames */
360 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
361 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
362 ge_mac_cfg_0_value |=
363 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
364 *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
365 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
366
367 /* Enable Rx and Tx */
368 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
369 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
370
371 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
372 *ge_mac_cfg_3_value);
373 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
374 ge_mac_cfg_0_value);
375 }
376
377 static void nps_enet_hw_disable_control(struct net_device *ndev)
378 {
379 struct nps_enet_priv *priv = netdev_priv(ndev);
380
381 /* Disable interrupts */
382 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
383
384 /* Disable Rx and Tx */
385 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
386 }
387
388 static void nps_enet_send_frame(struct net_device *ndev,
389 struct sk_buff *skb)
390 {
391 struct nps_enet_priv *priv = netdev_priv(ndev);
392 u32 tx_ctrl_value = 0;
393 short length = skb->len;
394 u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
395 u32 *src = (void *)skb->data;
396 bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
397
398 /* In case src is not aligned we need an intermediate buffer */
399 if (src_is_aligned)
400 iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
401 else /* !src_is_aligned */
402 for (i = 0; i < len; i++, src++)
403 nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
404 get_unaligned_be32(src));
405
406 /* Write the length of the Frame */
407 tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
408
409 tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
410 /* Send Frame */
411 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
412 }
413
414 /**
415 * nps_enet_set_mac_address - Set the MAC address for this device.
416 * @ndev: Pointer to net_device structure.
417 * @p: 6 byte Address to be written as MAC address.
418 *
419 * This function copies the HW address from the sockaddr structure to the
420 * net_device structure and updates the address in HW.
421 *
422 * returns: -EBUSY if the net device is busy or 0 if the address is set
423 * successfully.
424 */
425 static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
426 {
427 struct sockaddr *addr = p;
428 s32 res;
429
430 if (netif_running(ndev))
431 return -EBUSY;
432
433 res = eth_mac_addr(ndev, p);
434 if (!res) {
435 ether_addr_copy(ndev->dev_addr, addr->sa_data);
436 nps_enet_set_hw_mac_address(ndev);
437 }
438
439 return res;
440 }
441
442 /**
443 * nps_enet_set_rx_mode - Change the receive filtering mode.
444 * @ndev: Pointer to the network device.
445 *
446 * This function enables/disables promiscuous mode
447 */
448 static void nps_enet_set_rx_mode(struct net_device *ndev)
449 {
450 struct nps_enet_priv *priv = netdev_priv(ndev);
451 u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
452
453 if (ndev->flags & IFF_PROMISC) {
454 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
455 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
456 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
457 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
458
459 } else {
460 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
461 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
462 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
463 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
464 }
465
466 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
467 }
468
469 /**
470 * nps_enet_open - Open the network device.
471 * @ndev: Pointer to the network device.
472 *
473 * returns: 0, on success or non-zero error value on failure.
474 *
475 * This function sets the MAC address, requests and enables an IRQ
476 * for the ENET device and starts the Tx queue.
477 */
478 static s32 nps_enet_open(struct net_device *ndev)
479 {
480 struct nps_enet_priv *priv = netdev_priv(ndev);
481 s32 err;
482
483 /* Reset private variables */
484 priv->tx_skb = NULL;
485 priv->ge_mac_cfg_2_value = 0;
486 priv->ge_mac_cfg_3_value = 0;
487
488 /* ge_mac_cfg_3 default values */
489 priv->ge_mac_cfg_3_value |=
490 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
491
492 priv->ge_mac_cfg_3_value |=
493 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
494
495 /* Disable HW device */
496 nps_enet_hw_disable_control(ndev);
497
498 /* irq Rx allocation */
499 err = request_irq(priv->irq, nps_enet_irq_handler,
500 0, "enet-rx-tx", ndev);
501 if (err)
502 return err;
503
504 napi_enable(&priv->napi);
505
506 /* Enable HW device */
507 nps_enet_hw_reset(ndev);
508 nps_enet_hw_enable_control(ndev);
509
510 netif_start_queue(ndev);
511
512 return 0;
513 }
514
515 /**
516 * nps_enet_stop - Close the network device.
517 * @ndev: Pointer to the network device.
518 *
519 * This function stops the Tx queue, disables interrupts for the ENET device.
520 */
521 static s32 nps_enet_stop(struct net_device *ndev)
522 {
523 struct nps_enet_priv *priv = netdev_priv(ndev);
524
525 napi_disable(&priv->napi);
526 netif_stop_queue(ndev);
527 nps_enet_hw_disable_control(ndev);
528 free_irq(priv->irq, ndev);
529
530 return 0;
531 }
532
533 /**
534 * nps_enet_start_xmit - Starts the data transmission.
535 * @skb: sk_buff pointer that contains data to be Transmitted.
536 * @ndev: Pointer to net_device structure.
537 *
538 * returns: NETDEV_TX_OK, on success
539 * NETDEV_TX_BUSY, if any of the descriptors are not free.
540 *
541 * This function is invoked from upper layers to initiate transmission.
542 */
543 static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
544 struct net_device *ndev)
545 {
546 struct nps_enet_priv *priv = netdev_priv(ndev);
547
548 /* This driver handles one frame at a time */
549 netif_stop_queue(ndev);
550
551 priv->tx_skb = skb;
552
553 /* make sure tx_skb is actually written to the memory
554 * before the HW is informed and the IRQ is fired.
555 */
556 wmb();
557
558 nps_enet_send_frame(ndev, skb);
559
560 return NETDEV_TX_OK;
561 }
562
563 #ifdef CONFIG_NET_POLL_CONTROLLER
564 static void nps_enet_poll_controller(struct net_device *ndev)
565 {
566 disable_irq(ndev->irq);
567 nps_enet_irq_handler(ndev->irq, ndev);
568 enable_irq(ndev->irq);
569 }
570 #endif
571
572 static const struct net_device_ops nps_netdev_ops = {
573 .ndo_open = nps_enet_open,
574 .ndo_stop = nps_enet_stop,
575 .ndo_start_xmit = nps_enet_start_xmit,
576 .ndo_set_mac_address = nps_enet_set_mac_address,
577 .ndo_set_rx_mode = nps_enet_set_rx_mode,
578 #ifdef CONFIG_NET_POLL_CONTROLLER
579 .ndo_poll_controller = nps_enet_poll_controller,
580 #endif
581 };
582
583 static s32 nps_enet_probe(struct platform_device *pdev)
584 {
585 struct device *dev = &pdev->dev;
586 struct net_device *ndev;
587 struct nps_enet_priv *priv;
588 s32 err = 0;
589 const char *mac_addr;
590 struct resource *res_regs;
591
592 if (!dev->of_node)
593 return -ENODEV;
594
595 ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
596 if (!ndev)
597 return -ENOMEM;
598
599 platform_set_drvdata(pdev, ndev);
600 SET_NETDEV_DEV(ndev, dev);
601 priv = netdev_priv(ndev);
602
603 /* The EZ NET specific entries in the device structure. */
604 ndev->netdev_ops = &nps_netdev_ops;
605 ndev->watchdog_timeo = (400 * HZ / 1000);
606 /* FIXME :: no multicast support yet */
607 ndev->flags &= ~IFF_MULTICAST;
608
609 res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
610 priv->regs_base = devm_ioremap_resource(dev, res_regs);
611 if (IS_ERR(priv->regs_base)) {
612 err = PTR_ERR(priv->regs_base);
613 goto out_netdev;
614 }
615 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
616
617 /* set kernel MAC address to dev */
618 mac_addr = of_get_mac_address(dev->of_node);
619 if (mac_addr)
620 ether_addr_copy(ndev->dev_addr, mac_addr);
621 else
622 eth_hw_addr_random(ndev);
623
624 /* Get IRQ number */
625 priv->irq = platform_get_irq(pdev, 0);
626 if (!priv->irq) {
627 dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
628 err = -ENODEV;
629 goto out_netdev;
630 }
631
632 netif_napi_add(ndev, &priv->napi, nps_enet_poll,
633 NPS_ENET_NAPI_POLL_WEIGHT);
634
635 /* Register the driver. Should be the last thing in probe */
636 err = register_netdev(ndev);
637 if (err) {
638 dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
639 ndev->name, (s32)err);
640 goto out_netif_api;
641 }
642
643 dev_info(dev, "(rx/tx=%d)\n", priv->irq);
644 return 0;
645
646 out_netif_api:
647 netif_napi_del(&priv->napi);
648 out_netdev:
649 if (err)
650 free_netdev(ndev);
651
652 return err;
653 }
654
655 static s32 nps_enet_remove(struct platform_device *pdev)
656 {
657 struct net_device *ndev = platform_get_drvdata(pdev);
658 struct nps_enet_priv *priv = netdev_priv(ndev);
659
660 unregister_netdev(ndev);
661 free_netdev(ndev);
662 netif_napi_del(&priv->napi);
663
664 return 0;
665 }
666
667 static const struct of_device_id nps_enet_dt_ids[] = {
668 { .compatible = "ezchip,nps-mgt-enet" },
669 { /* Sentinel */ }
670 };
671 MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
672
673 static struct platform_driver nps_enet_driver = {
674 .probe = nps_enet_probe,
675 .remove = nps_enet_remove,
676 .driver = {
677 .name = DRV_NAME,
678 .of_match_table = nps_enet_dt_ids,
679 },
680 };
681
682 module_platform_driver(nps_enet_driver);
683
684 MODULE_AUTHOR("EZchip Semiconductor");
685 MODULE_LICENSE("GPL v2");