]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/fc.c
block: introduce blk_rq_is_passthrough
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / fc.c
1 /*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22
23 #include "nvme.h"
24 #include "fabrics.h"
25 #include <linux/nvme-fc-driver.h>
26 #include <linux/nvme-fc.h>
27
28
29 /* *************************** Data Structures/Defines ****************** */
30
31
32 /*
33 * We handle AEN commands ourselves and don't even let the
34 * block layer know about them.
35 */
36 #define NVME_FC_NR_AEN_COMMANDS 1
37 #define NVME_FC_AQ_BLKMQ_DEPTH \
38 (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
39 #define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1)
40
41 enum nvme_fc_queue_flags {
42 NVME_FC_Q_CONNECTED = (1 << 0),
43 };
44
45 #define NVMEFC_QUEUE_DELAY 3 /* ms units */
46
47 struct nvme_fc_queue {
48 struct nvme_fc_ctrl *ctrl;
49 struct device *dev;
50 struct blk_mq_hw_ctx *hctx;
51 void *lldd_handle;
52 int queue_size;
53 size_t cmnd_capsule_len;
54 u32 qnum;
55 u32 rqcnt;
56 u32 seqno;
57
58 u64 connection_id;
59 atomic_t csn;
60
61 unsigned long flags;
62 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
63
64 struct nvmefc_ls_req_op {
65 struct nvmefc_ls_req ls_req;
66
67 struct nvme_fc_ctrl *ctrl;
68 struct nvme_fc_queue *queue;
69 struct request *rq;
70
71 int ls_error;
72 struct completion ls_done;
73 struct list_head lsreq_list; /* ctrl->ls_req_list */
74 bool req_queued;
75 };
76
77 enum nvme_fcpop_state {
78 FCPOP_STATE_UNINIT = 0,
79 FCPOP_STATE_IDLE = 1,
80 FCPOP_STATE_ACTIVE = 2,
81 FCPOP_STATE_ABORTED = 3,
82 };
83
84 struct nvme_fc_fcp_op {
85 struct nvme_request nreq; /*
86 * nvme/host/core.c
87 * requires this to be
88 * the 1st element in the
89 * private structure
90 * associated with the
91 * request.
92 */
93 struct nvmefc_fcp_req fcp_req;
94
95 struct nvme_fc_ctrl *ctrl;
96 struct nvme_fc_queue *queue;
97 struct request *rq;
98
99 atomic_t state;
100 u32 rqno;
101 u32 nents;
102
103 struct nvme_fc_cmd_iu cmd_iu;
104 struct nvme_fc_ersp_iu rsp_iu;
105 };
106
107 struct nvme_fc_lport {
108 struct nvme_fc_local_port localport;
109
110 struct ida endp_cnt;
111 struct list_head port_list; /* nvme_fc_port_list */
112 struct list_head endp_list;
113 struct device *dev; /* physical device for dma */
114 struct nvme_fc_port_template *ops;
115 struct kref ref;
116 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
117
118 struct nvme_fc_rport {
119 struct nvme_fc_remote_port remoteport;
120
121 struct list_head endp_list; /* for lport->endp_list */
122 struct list_head ctrl_list;
123 spinlock_t lock;
124 struct kref ref;
125 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
126
127 enum nvme_fcctrl_state {
128 FCCTRL_INIT = 0,
129 FCCTRL_ACTIVE = 1,
130 };
131
132 struct nvme_fc_ctrl {
133 spinlock_t lock;
134 struct nvme_fc_queue *queues;
135 u32 queue_count;
136
137 struct device *dev;
138 struct nvme_fc_lport *lport;
139 struct nvme_fc_rport *rport;
140 u32 cnum;
141
142 u64 association_id;
143
144 u64 cap;
145
146 struct list_head ctrl_list; /* rport->ctrl_list */
147 struct list_head ls_req_list;
148
149 struct blk_mq_tag_set admin_tag_set;
150 struct blk_mq_tag_set tag_set;
151
152 struct work_struct delete_work;
153 struct kref ref;
154 int state;
155
156 struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS];
157
158 struct nvme_ctrl ctrl;
159 };
160
161 static inline struct nvme_fc_ctrl *
162 to_fc_ctrl(struct nvme_ctrl *ctrl)
163 {
164 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
165 }
166
167 static inline struct nvme_fc_lport *
168 localport_to_lport(struct nvme_fc_local_port *portptr)
169 {
170 return container_of(portptr, struct nvme_fc_lport, localport);
171 }
172
173 static inline struct nvme_fc_rport *
174 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
175 {
176 return container_of(portptr, struct nvme_fc_rport, remoteport);
177 }
178
179 static inline struct nvmefc_ls_req_op *
180 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
181 {
182 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
183 }
184
185 static inline struct nvme_fc_fcp_op *
186 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
187 {
188 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
189 }
190
191
192
193 /* *************************** Globals **************************** */
194
195
196 static DEFINE_SPINLOCK(nvme_fc_lock);
197
198 static LIST_HEAD(nvme_fc_lport_list);
199 static DEFINE_IDA(nvme_fc_local_port_cnt);
200 static DEFINE_IDA(nvme_fc_ctrl_cnt);
201
202 static struct workqueue_struct *nvme_fc_wq;
203
204
205
206 /* *********************** FC-NVME Port Management ************************ */
207
208 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
209 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
210 struct nvme_fc_queue *, unsigned int);
211
212
213 /**
214 * nvme_fc_register_localport - transport entry point called by an
215 * LLDD to register the existence of a NVME
216 * host FC port.
217 * @pinfo: pointer to information about the port to be registered
218 * @template: LLDD entrypoints and operational parameters for the port
219 * @dev: physical hardware device node port corresponds to. Will be
220 * used for DMA mappings
221 * @lport_p: pointer to a local port pointer. Upon success, the routine
222 * will allocate a nvme_fc_local_port structure and place its
223 * address in the local port pointer. Upon failure, local port
224 * pointer will be set to 0.
225 *
226 * Returns:
227 * a completion status. Must be 0 upon success; a negative errno
228 * (ex: -ENXIO) upon failure.
229 */
230 int
231 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
232 struct nvme_fc_port_template *template,
233 struct device *dev,
234 struct nvme_fc_local_port **portptr)
235 {
236 struct nvme_fc_lport *newrec;
237 unsigned long flags;
238 int ret, idx;
239
240 if (!template->localport_delete || !template->remoteport_delete ||
241 !template->ls_req || !template->fcp_io ||
242 !template->ls_abort || !template->fcp_abort ||
243 !template->max_hw_queues || !template->max_sgl_segments ||
244 !template->max_dif_sgl_segments || !template->dma_boundary) {
245 ret = -EINVAL;
246 goto out_reghost_failed;
247 }
248
249 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
250 GFP_KERNEL);
251 if (!newrec) {
252 ret = -ENOMEM;
253 goto out_reghost_failed;
254 }
255
256 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
257 if (idx < 0) {
258 ret = -ENOSPC;
259 goto out_fail_kfree;
260 }
261
262 if (!get_device(dev) && dev) {
263 ret = -ENODEV;
264 goto out_ida_put;
265 }
266
267 INIT_LIST_HEAD(&newrec->port_list);
268 INIT_LIST_HEAD(&newrec->endp_list);
269 kref_init(&newrec->ref);
270 newrec->ops = template;
271 newrec->dev = dev;
272 ida_init(&newrec->endp_cnt);
273 newrec->localport.private = &newrec[1];
274 newrec->localport.node_name = pinfo->node_name;
275 newrec->localport.port_name = pinfo->port_name;
276 newrec->localport.port_role = pinfo->port_role;
277 newrec->localport.port_id = pinfo->port_id;
278 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
279 newrec->localport.port_num = idx;
280
281 spin_lock_irqsave(&nvme_fc_lock, flags);
282 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
283 spin_unlock_irqrestore(&nvme_fc_lock, flags);
284
285 if (dev)
286 dma_set_seg_boundary(dev, template->dma_boundary);
287
288 *portptr = &newrec->localport;
289 return 0;
290
291 out_ida_put:
292 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
293 out_fail_kfree:
294 kfree(newrec);
295 out_reghost_failed:
296 *portptr = NULL;
297
298 return ret;
299 }
300 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
301
302 static void
303 nvme_fc_free_lport(struct kref *ref)
304 {
305 struct nvme_fc_lport *lport =
306 container_of(ref, struct nvme_fc_lport, ref);
307 unsigned long flags;
308
309 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
310 WARN_ON(!list_empty(&lport->endp_list));
311
312 /* remove from transport list */
313 spin_lock_irqsave(&nvme_fc_lock, flags);
314 list_del(&lport->port_list);
315 spin_unlock_irqrestore(&nvme_fc_lock, flags);
316
317 /* let the LLDD know we've finished tearing it down */
318 lport->ops->localport_delete(&lport->localport);
319
320 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
321 ida_destroy(&lport->endp_cnt);
322
323 put_device(lport->dev);
324
325 kfree(lport);
326 }
327
328 static void
329 nvme_fc_lport_put(struct nvme_fc_lport *lport)
330 {
331 kref_put(&lport->ref, nvme_fc_free_lport);
332 }
333
334 static int
335 nvme_fc_lport_get(struct nvme_fc_lport *lport)
336 {
337 return kref_get_unless_zero(&lport->ref);
338 }
339
340 /**
341 * nvme_fc_unregister_localport - transport entry point called by an
342 * LLDD to deregister/remove a previously
343 * registered a NVME host FC port.
344 * @localport: pointer to the (registered) local port that is to be
345 * deregistered.
346 *
347 * Returns:
348 * a completion status. Must be 0 upon success; a negative errno
349 * (ex: -ENXIO) upon failure.
350 */
351 int
352 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
353 {
354 struct nvme_fc_lport *lport = localport_to_lport(portptr);
355 unsigned long flags;
356
357 if (!portptr)
358 return -EINVAL;
359
360 spin_lock_irqsave(&nvme_fc_lock, flags);
361
362 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
363 spin_unlock_irqrestore(&nvme_fc_lock, flags);
364 return -EINVAL;
365 }
366 portptr->port_state = FC_OBJSTATE_DELETED;
367
368 spin_unlock_irqrestore(&nvme_fc_lock, flags);
369
370 nvme_fc_lport_put(lport);
371
372 return 0;
373 }
374 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
375
376 /**
377 * nvme_fc_register_remoteport - transport entry point called by an
378 * LLDD to register the existence of a NVME
379 * subsystem FC port on its fabric.
380 * @localport: pointer to the (registered) local port that the remote
381 * subsystem port is connected to.
382 * @pinfo: pointer to information about the port to be registered
383 * @rport_p: pointer to a remote port pointer. Upon success, the routine
384 * will allocate a nvme_fc_remote_port structure and place its
385 * address in the remote port pointer. Upon failure, remote port
386 * pointer will be set to 0.
387 *
388 * Returns:
389 * a completion status. Must be 0 upon success; a negative errno
390 * (ex: -ENXIO) upon failure.
391 */
392 int
393 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
394 struct nvme_fc_port_info *pinfo,
395 struct nvme_fc_remote_port **portptr)
396 {
397 struct nvme_fc_lport *lport = localport_to_lport(localport);
398 struct nvme_fc_rport *newrec;
399 unsigned long flags;
400 int ret, idx;
401
402 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
403 GFP_KERNEL);
404 if (!newrec) {
405 ret = -ENOMEM;
406 goto out_reghost_failed;
407 }
408
409 if (!nvme_fc_lport_get(lport)) {
410 ret = -ESHUTDOWN;
411 goto out_kfree_rport;
412 }
413
414 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
415 if (idx < 0) {
416 ret = -ENOSPC;
417 goto out_lport_put;
418 }
419
420 INIT_LIST_HEAD(&newrec->endp_list);
421 INIT_LIST_HEAD(&newrec->ctrl_list);
422 kref_init(&newrec->ref);
423 spin_lock_init(&newrec->lock);
424 newrec->remoteport.localport = &lport->localport;
425 newrec->remoteport.private = &newrec[1];
426 newrec->remoteport.port_role = pinfo->port_role;
427 newrec->remoteport.node_name = pinfo->node_name;
428 newrec->remoteport.port_name = pinfo->port_name;
429 newrec->remoteport.port_id = pinfo->port_id;
430 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
431 newrec->remoteport.port_num = idx;
432
433 spin_lock_irqsave(&nvme_fc_lock, flags);
434 list_add_tail(&newrec->endp_list, &lport->endp_list);
435 spin_unlock_irqrestore(&nvme_fc_lock, flags);
436
437 *portptr = &newrec->remoteport;
438 return 0;
439
440 out_lport_put:
441 nvme_fc_lport_put(lport);
442 out_kfree_rport:
443 kfree(newrec);
444 out_reghost_failed:
445 *portptr = NULL;
446 return ret;
447
448 }
449 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
450
451 static void
452 nvme_fc_free_rport(struct kref *ref)
453 {
454 struct nvme_fc_rport *rport =
455 container_of(ref, struct nvme_fc_rport, ref);
456 struct nvme_fc_lport *lport =
457 localport_to_lport(rport->remoteport.localport);
458 unsigned long flags;
459
460 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
461 WARN_ON(!list_empty(&rport->ctrl_list));
462
463 /* remove from lport list */
464 spin_lock_irqsave(&nvme_fc_lock, flags);
465 list_del(&rport->endp_list);
466 spin_unlock_irqrestore(&nvme_fc_lock, flags);
467
468 /* let the LLDD know we've finished tearing it down */
469 lport->ops->remoteport_delete(&rport->remoteport);
470
471 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
472
473 kfree(rport);
474
475 nvme_fc_lport_put(lport);
476 }
477
478 static void
479 nvme_fc_rport_put(struct nvme_fc_rport *rport)
480 {
481 kref_put(&rport->ref, nvme_fc_free_rport);
482 }
483
484 static int
485 nvme_fc_rport_get(struct nvme_fc_rport *rport)
486 {
487 return kref_get_unless_zero(&rport->ref);
488 }
489
490 /**
491 * nvme_fc_unregister_remoteport - transport entry point called by an
492 * LLDD to deregister/remove a previously
493 * registered a NVME subsystem FC port.
494 * @remoteport: pointer to the (registered) remote port that is to be
495 * deregistered.
496 *
497 * Returns:
498 * a completion status. Must be 0 upon success; a negative errno
499 * (ex: -ENXIO) upon failure.
500 */
501 int
502 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
503 {
504 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
505 struct nvme_fc_ctrl *ctrl;
506 unsigned long flags;
507
508 if (!portptr)
509 return -EINVAL;
510
511 spin_lock_irqsave(&rport->lock, flags);
512
513 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
514 spin_unlock_irqrestore(&rport->lock, flags);
515 return -EINVAL;
516 }
517 portptr->port_state = FC_OBJSTATE_DELETED;
518
519 /* tear down all associations to the remote port */
520 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
521 __nvme_fc_del_ctrl(ctrl);
522
523 spin_unlock_irqrestore(&rport->lock, flags);
524
525 nvme_fc_rport_put(rport);
526 return 0;
527 }
528 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
529
530
531 /* *********************** FC-NVME DMA Handling **************************** */
532
533 /*
534 * The fcloop device passes in a NULL device pointer. Real LLD's will
535 * pass in a valid device pointer. If NULL is passed to the dma mapping
536 * routines, depending on the platform, it may or may not succeed, and
537 * may crash.
538 *
539 * As such:
540 * Wrapper all the dma routines and check the dev pointer.
541 *
542 * If simple mappings (return just a dma address, we'll noop them,
543 * returning a dma address of 0.
544 *
545 * On more complex mappings (dma_map_sg), a pseudo routine fills
546 * in the scatter list, setting all dma addresses to 0.
547 */
548
549 static inline dma_addr_t
550 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
551 enum dma_data_direction dir)
552 {
553 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
554 }
555
556 static inline int
557 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
558 {
559 return dev ? dma_mapping_error(dev, dma_addr) : 0;
560 }
561
562 static inline void
563 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
564 enum dma_data_direction dir)
565 {
566 if (dev)
567 dma_unmap_single(dev, addr, size, dir);
568 }
569
570 static inline void
571 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
572 enum dma_data_direction dir)
573 {
574 if (dev)
575 dma_sync_single_for_cpu(dev, addr, size, dir);
576 }
577
578 static inline void
579 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
580 enum dma_data_direction dir)
581 {
582 if (dev)
583 dma_sync_single_for_device(dev, addr, size, dir);
584 }
585
586 /* pseudo dma_map_sg call */
587 static int
588 fc_map_sg(struct scatterlist *sg, int nents)
589 {
590 struct scatterlist *s;
591 int i;
592
593 WARN_ON(nents == 0 || sg[0].length == 0);
594
595 for_each_sg(sg, s, nents, i) {
596 s->dma_address = 0L;
597 #ifdef CONFIG_NEED_SG_DMA_LENGTH
598 s->dma_length = s->length;
599 #endif
600 }
601 return nents;
602 }
603
604 static inline int
605 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
606 enum dma_data_direction dir)
607 {
608 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
609 }
610
611 static inline void
612 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
613 enum dma_data_direction dir)
614 {
615 if (dev)
616 dma_unmap_sg(dev, sg, nents, dir);
617 }
618
619
620 /* *********************** FC-NVME LS Handling **************************** */
621
622 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
623 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
624
625
626 static void
627 __nvme_fc_finish_ls_req(struct nvme_fc_ctrl *ctrl,
628 struct nvmefc_ls_req_op *lsop)
629 {
630 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
631 unsigned long flags;
632
633 spin_lock_irqsave(&ctrl->lock, flags);
634
635 if (!lsop->req_queued) {
636 spin_unlock_irqrestore(&ctrl->lock, flags);
637 return;
638 }
639
640 list_del(&lsop->lsreq_list);
641
642 lsop->req_queued = false;
643
644 spin_unlock_irqrestore(&ctrl->lock, flags);
645
646 fc_dma_unmap_single(ctrl->dev, lsreq->rqstdma,
647 (lsreq->rqstlen + lsreq->rsplen),
648 DMA_BIDIRECTIONAL);
649
650 nvme_fc_ctrl_put(ctrl);
651 }
652
653 static int
654 __nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl,
655 struct nvmefc_ls_req_op *lsop,
656 void (*done)(struct nvmefc_ls_req *req, int status))
657 {
658 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
659 unsigned long flags;
660 int ret;
661
662 if (!nvme_fc_ctrl_get(ctrl))
663 return -ESHUTDOWN;
664
665 lsreq->done = done;
666 lsop->ctrl = ctrl;
667 lsop->req_queued = false;
668 INIT_LIST_HEAD(&lsop->lsreq_list);
669 init_completion(&lsop->ls_done);
670
671 lsreq->rqstdma = fc_dma_map_single(ctrl->dev, lsreq->rqstaddr,
672 lsreq->rqstlen + lsreq->rsplen,
673 DMA_BIDIRECTIONAL);
674 if (fc_dma_mapping_error(ctrl->dev, lsreq->rqstdma)) {
675 nvme_fc_ctrl_put(ctrl);
676 dev_err(ctrl->dev,
677 "els request command failed EFAULT.\n");
678 return -EFAULT;
679 }
680 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
681
682 spin_lock_irqsave(&ctrl->lock, flags);
683
684 list_add_tail(&lsop->lsreq_list, &ctrl->ls_req_list);
685
686 lsop->req_queued = true;
687
688 spin_unlock_irqrestore(&ctrl->lock, flags);
689
690 ret = ctrl->lport->ops->ls_req(&ctrl->lport->localport,
691 &ctrl->rport->remoteport, lsreq);
692 if (ret)
693 lsop->ls_error = ret;
694
695 return ret;
696 }
697
698 static void
699 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
700 {
701 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
702
703 lsop->ls_error = status;
704 complete(&lsop->ls_done);
705 }
706
707 static int
708 nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop)
709 {
710 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
711 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
712 int ret;
713
714 ret = __nvme_fc_send_ls_req(ctrl, lsop, nvme_fc_send_ls_req_done);
715
716 if (!ret)
717 /*
718 * No timeout/not interruptible as we need the struct
719 * to exist until the lldd calls us back. Thus mandate
720 * wait until driver calls back. lldd responsible for
721 * the timeout action
722 */
723 wait_for_completion(&lsop->ls_done);
724
725 __nvme_fc_finish_ls_req(ctrl, lsop);
726
727 if (ret) {
728 dev_err(ctrl->dev,
729 "ls request command failed (%d).\n", ret);
730 return ret;
731 }
732
733 /* ACC or RJT payload ? */
734 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
735 return -ENXIO;
736
737 return 0;
738 }
739
740 static void
741 nvme_fc_send_ls_req_async(struct nvme_fc_ctrl *ctrl,
742 struct nvmefc_ls_req_op *lsop,
743 void (*done)(struct nvmefc_ls_req *req, int status))
744 {
745 int ret;
746
747 ret = __nvme_fc_send_ls_req(ctrl, lsop, done);
748
749 /* don't wait for completion */
750
751 if (ret)
752 done(&lsop->ls_req, ret);
753 }
754
755 /* Validation Error indexes into the string table below */
756 enum {
757 VERR_NO_ERROR = 0,
758 VERR_LSACC = 1,
759 VERR_LSDESC_RQST = 2,
760 VERR_LSDESC_RQST_LEN = 3,
761 VERR_ASSOC_ID = 4,
762 VERR_ASSOC_ID_LEN = 5,
763 VERR_CONN_ID = 6,
764 VERR_CONN_ID_LEN = 7,
765 VERR_CR_ASSOC = 8,
766 VERR_CR_ASSOC_ACC_LEN = 9,
767 VERR_CR_CONN = 10,
768 VERR_CR_CONN_ACC_LEN = 11,
769 VERR_DISCONN = 12,
770 VERR_DISCONN_ACC_LEN = 13,
771 };
772
773 static char *validation_errors[] = {
774 "OK",
775 "Not LS_ACC",
776 "Not LSDESC_RQST",
777 "Bad LSDESC_RQST Length",
778 "Not Association ID",
779 "Bad Association ID Length",
780 "Not Connection ID",
781 "Bad Connection ID Length",
782 "Not CR_ASSOC Rqst",
783 "Bad CR_ASSOC ACC Length",
784 "Not CR_CONN Rqst",
785 "Bad CR_CONN ACC Length",
786 "Not Disconnect Rqst",
787 "Bad Disconnect ACC Length",
788 };
789
790 static int
791 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
792 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
793 {
794 struct nvmefc_ls_req_op *lsop;
795 struct nvmefc_ls_req *lsreq;
796 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
797 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
798 int ret, fcret = 0;
799
800 lsop = kzalloc((sizeof(*lsop) +
801 ctrl->lport->ops->lsrqst_priv_sz +
802 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
803 if (!lsop) {
804 ret = -ENOMEM;
805 goto out_no_memory;
806 }
807 lsreq = &lsop->ls_req;
808
809 lsreq->private = (void *)&lsop[1];
810 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
811 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
812 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
813
814 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
815 assoc_rqst->desc_list_len =
816 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
817
818 assoc_rqst->assoc_cmd.desc_tag =
819 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
820 assoc_rqst->assoc_cmd.desc_len =
821 fcnvme_lsdesc_len(
822 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
823
824 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
825 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
826 /* Linux supports only Dynamic controllers */
827 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
828 memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
829 min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
830 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
831 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
832 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
833 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
834
835 lsop->queue = queue;
836 lsreq->rqstaddr = assoc_rqst;
837 lsreq->rqstlen = sizeof(*assoc_rqst);
838 lsreq->rspaddr = assoc_acc;
839 lsreq->rsplen = sizeof(*assoc_acc);
840 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
841
842 ret = nvme_fc_send_ls_req(ctrl, lsop);
843 if (ret)
844 goto out_free_buffer;
845
846 /* process connect LS completion */
847
848 /* validate the ACC response */
849 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
850 fcret = VERR_LSACC;
851 if (assoc_acc->hdr.desc_list_len !=
852 fcnvme_lsdesc_len(
853 sizeof(struct fcnvme_ls_cr_assoc_acc)))
854 fcret = VERR_CR_ASSOC_ACC_LEN;
855 if (assoc_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
856 fcret = VERR_LSDESC_RQST;
857 else if (assoc_acc->hdr.rqst.desc_len !=
858 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
859 fcret = VERR_LSDESC_RQST_LEN;
860 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
861 fcret = VERR_CR_ASSOC;
862 else if (assoc_acc->associd.desc_tag !=
863 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
864 fcret = VERR_ASSOC_ID;
865 else if (assoc_acc->associd.desc_len !=
866 fcnvme_lsdesc_len(
867 sizeof(struct fcnvme_lsdesc_assoc_id)))
868 fcret = VERR_ASSOC_ID_LEN;
869 else if (assoc_acc->connectid.desc_tag !=
870 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
871 fcret = VERR_CONN_ID;
872 else if (assoc_acc->connectid.desc_len !=
873 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
874 fcret = VERR_CONN_ID_LEN;
875
876 if (fcret) {
877 ret = -EBADF;
878 dev_err(ctrl->dev,
879 "q %d connect failed: %s\n",
880 queue->qnum, validation_errors[fcret]);
881 } else {
882 ctrl->association_id =
883 be64_to_cpu(assoc_acc->associd.association_id);
884 queue->connection_id =
885 be64_to_cpu(assoc_acc->connectid.connection_id);
886 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
887 }
888
889 out_free_buffer:
890 kfree(lsop);
891 out_no_memory:
892 if (ret)
893 dev_err(ctrl->dev,
894 "queue %d connect admin queue failed (%d).\n",
895 queue->qnum, ret);
896 return ret;
897 }
898
899 static int
900 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
901 u16 qsize, u16 ersp_ratio)
902 {
903 struct nvmefc_ls_req_op *lsop;
904 struct nvmefc_ls_req *lsreq;
905 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
906 struct fcnvme_ls_cr_conn_acc *conn_acc;
907 int ret, fcret = 0;
908
909 lsop = kzalloc((sizeof(*lsop) +
910 ctrl->lport->ops->lsrqst_priv_sz +
911 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
912 if (!lsop) {
913 ret = -ENOMEM;
914 goto out_no_memory;
915 }
916 lsreq = &lsop->ls_req;
917
918 lsreq->private = (void *)&lsop[1];
919 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
920 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
921 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
922
923 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
924 conn_rqst->desc_list_len = cpu_to_be32(
925 sizeof(struct fcnvme_lsdesc_assoc_id) +
926 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
927
928 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
929 conn_rqst->associd.desc_len =
930 fcnvme_lsdesc_len(
931 sizeof(struct fcnvme_lsdesc_assoc_id));
932 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
933 conn_rqst->connect_cmd.desc_tag =
934 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
935 conn_rqst->connect_cmd.desc_len =
936 fcnvme_lsdesc_len(
937 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
938 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
939 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
940 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
941
942 lsop->queue = queue;
943 lsreq->rqstaddr = conn_rqst;
944 lsreq->rqstlen = sizeof(*conn_rqst);
945 lsreq->rspaddr = conn_acc;
946 lsreq->rsplen = sizeof(*conn_acc);
947 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
948
949 ret = nvme_fc_send_ls_req(ctrl, lsop);
950 if (ret)
951 goto out_free_buffer;
952
953 /* process connect LS completion */
954
955 /* validate the ACC response */
956 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
957 fcret = VERR_LSACC;
958 if (conn_acc->hdr.desc_list_len !=
959 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
960 fcret = VERR_CR_CONN_ACC_LEN;
961 if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
962 fcret = VERR_LSDESC_RQST;
963 else if (conn_acc->hdr.rqst.desc_len !=
964 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
965 fcret = VERR_LSDESC_RQST_LEN;
966 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
967 fcret = VERR_CR_CONN;
968 else if (conn_acc->connectid.desc_tag !=
969 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
970 fcret = VERR_CONN_ID;
971 else if (conn_acc->connectid.desc_len !=
972 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
973 fcret = VERR_CONN_ID_LEN;
974
975 if (fcret) {
976 ret = -EBADF;
977 dev_err(ctrl->dev,
978 "q %d connect failed: %s\n",
979 queue->qnum, validation_errors[fcret]);
980 } else {
981 queue->connection_id =
982 be64_to_cpu(conn_acc->connectid.connection_id);
983 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
984 }
985
986 out_free_buffer:
987 kfree(lsop);
988 out_no_memory:
989 if (ret)
990 dev_err(ctrl->dev,
991 "queue %d connect command failed (%d).\n",
992 queue->qnum, ret);
993 return ret;
994 }
995
996 static void
997 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
998 {
999 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1000 struct nvme_fc_ctrl *ctrl = lsop->ctrl;
1001
1002 __nvme_fc_finish_ls_req(ctrl, lsop);
1003
1004 if (status)
1005 dev_err(ctrl->dev,
1006 "disconnect assoc ls request command failed (%d).\n",
1007 status);
1008
1009 /* fc-nvme iniator doesn't care about success or failure of cmd */
1010
1011 kfree(lsop);
1012 }
1013
1014 /*
1015 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1016 * the FC-NVME Association. Terminating the association also
1017 * terminates the FC-NVME connections (per queue, both admin and io
1018 * queues) that are part of the association. E.g. things are torn
1019 * down, and the related FC-NVME Association ID and Connection IDs
1020 * become invalid.
1021 *
1022 * The behavior of the fc-nvme initiator is such that it's
1023 * understanding of the association and connections will implicitly
1024 * be torn down. The action is implicit as it may be due to a loss of
1025 * connectivity with the fc-nvme target, so you may never get a
1026 * response even if you tried. As such, the action of this routine
1027 * is to asynchronously send the LS, ignore any results of the LS, and
1028 * continue on with terminating the association. If the fc-nvme target
1029 * is present and receives the LS, it too can tear down.
1030 */
1031 static void
1032 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1033 {
1034 struct fcnvme_ls_disconnect_rqst *discon_rqst;
1035 struct fcnvme_ls_disconnect_acc *discon_acc;
1036 struct nvmefc_ls_req_op *lsop;
1037 struct nvmefc_ls_req *lsreq;
1038
1039 lsop = kzalloc((sizeof(*lsop) +
1040 ctrl->lport->ops->lsrqst_priv_sz +
1041 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1042 GFP_KERNEL);
1043 if (!lsop)
1044 /* couldn't sent it... too bad */
1045 return;
1046
1047 lsreq = &lsop->ls_req;
1048
1049 lsreq->private = (void *)&lsop[1];
1050 discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1051 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1052 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1053
1054 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1055 discon_rqst->desc_list_len = cpu_to_be32(
1056 sizeof(struct fcnvme_lsdesc_assoc_id) +
1057 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1058
1059 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1060 discon_rqst->associd.desc_len =
1061 fcnvme_lsdesc_len(
1062 sizeof(struct fcnvme_lsdesc_assoc_id));
1063
1064 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1065
1066 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1067 FCNVME_LSDESC_DISCONN_CMD);
1068 discon_rqst->discon_cmd.desc_len =
1069 fcnvme_lsdesc_len(
1070 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1071 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1072 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1073
1074 lsreq->rqstaddr = discon_rqst;
1075 lsreq->rqstlen = sizeof(*discon_rqst);
1076 lsreq->rspaddr = discon_acc;
1077 lsreq->rsplen = sizeof(*discon_acc);
1078 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1079
1080 nvme_fc_send_ls_req_async(ctrl, lsop, nvme_fc_disconnect_assoc_done);
1081
1082 /* only meaningful part to terminating the association */
1083 ctrl->association_id = 0;
1084 }
1085
1086
1087 /* *********************** NVME Ctrl Routines **************************** */
1088
1089
1090 static int
1091 nvme_fc_reinit_request(void *data, struct request *rq)
1092 {
1093 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1094 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1095
1096 memset(cmdiu, 0, sizeof(*cmdiu));
1097 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1098 cmdiu->fc_id = NVME_CMD_FC_ID;
1099 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1100 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1101
1102 return 0;
1103 }
1104
1105 static void
1106 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1107 struct nvme_fc_fcp_op *op)
1108 {
1109 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1110 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1111 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1112 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1113
1114 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1115 }
1116
1117 static void
1118 nvme_fc_exit_request(void *data, struct request *rq,
1119 unsigned int hctx_idx, unsigned int rq_idx)
1120 {
1121 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1122
1123 return __nvme_fc_exit_request(data, op);
1124 }
1125
1126 static void
1127 nvme_fc_exit_aen_ops(struct nvme_fc_ctrl *ctrl)
1128 {
1129 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1130 int i;
1131
1132 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1133 if (atomic_read(&aen_op->state) == FCPOP_STATE_UNINIT)
1134 continue;
1135 __nvme_fc_exit_request(ctrl, aen_op);
1136 nvme_fc_ctrl_put(ctrl);
1137 }
1138 }
1139
1140 void
1141 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1142 {
1143 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1144 struct request *rq = op->rq;
1145 struct nvmefc_fcp_req *freq = &op->fcp_req;
1146 struct nvme_fc_ctrl *ctrl = op->ctrl;
1147 struct nvme_fc_queue *queue = op->queue;
1148 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1149 u16 status;
1150
1151 /*
1152 * WARNING:
1153 * The current linux implementation of a nvme controller
1154 * allocates a single tag set for all io queues and sizes
1155 * the io queues to fully hold all possible tags. Thus, the
1156 * implementation does not reference or care about the sqhd
1157 * value as it never needs to use the sqhd/sqtail pointers
1158 * for submission pacing.
1159 *
1160 * This affects the FC-NVME implementation in two ways:
1161 * 1) As the value doesn't matter, we don't need to waste
1162 * cycles extracting it from ERSPs and stamping it in the
1163 * cases where the transport fabricates CQEs on successful
1164 * completions.
1165 * 2) The FC-NVME implementation requires that delivery of
1166 * ERSP completions are to go back to the nvme layer in order
1167 * relative to the rsn, such that the sqhd value will always
1168 * be "in order" for the nvme layer. As the nvme layer in
1169 * linux doesn't care about sqhd, there's no need to return
1170 * them in order.
1171 *
1172 * Additionally:
1173 * As the core nvme layer in linux currently does not look at
1174 * every field in the cqe - in cases where the FC transport must
1175 * fabricate a CQE, the following fields will not be set as they
1176 * are not referenced:
1177 * cqe.sqid, cqe.sqhd, cqe.command_id
1178 */
1179
1180 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1181 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1182
1183 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1184 status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1185 else
1186 status = freq->status;
1187
1188 /*
1189 * For the linux implementation, if we have an unsuccesful
1190 * status, they blk-mq layer can typically be called with the
1191 * non-zero status and the content of the cqe isn't important.
1192 */
1193 if (status)
1194 goto done;
1195
1196 /*
1197 * command completed successfully relative to the wire
1198 * protocol. However, validate anything received and
1199 * extract the status and result from the cqe (create it
1200 * where necessary).
1201 */
1202
1203 switch (freq->rcv_rsplen) {
1204
1205 case 0:
1206 case NVME_FC_SIZEOF_ZEROS_RSP:
1207 /*
1208 * No response payload or 12 bytes of payload (which
1209 * should all be zeros) are considered successful and
1210 * no payload in the CQE by the transport.
1211 */
1212 if (freq->transferred_length !=
1213 be32_to_cpu(op->cmd_iu.data_len)) {
1214 status = -EIO;
1215 goto done;
1216 }
1217 op->nreq.result.u64 = 0;
1218 break;
1219
1220 case sizeof(struct nvme_fc_ersp_iu):
1221 /*
1222 * The ERSP IU contains a full completion with CQE.
1223 * Validate ERSP IU and look at cqe.
1224 */
1225 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1226 (freq->rcv_rsplen / 4) ||
1227 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1228 freq->transferred_length ||
1229 op->rqno != le16_to_cpu(cqe->command_id))) {
1230 status = -EIO;
1231 goto done;
1232 }
1233 op->nreq.result = cqe->result;
1234 status = le16_to_cpu(cqe->status) >> 1;
1235 break;
1236
1237 default:
1238 status = -EIO;
1239 goto done;
1240 }
1241
1242 done:
1243 if (!queue->qnum && op->rqno >= AEN_CMDID_BASE) {
1244 nvme_complete_async_event(&queue->ctrl->ctrl, status,
1245 &op->nreq.result);
1246 nvme_fc_ctrl_put(ctrl);
1247 return;
1248 }
1249
1250 blk_mq_complete_request(rq, status);
1251 }
1252
1253 static int
1254 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1255 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1256 struct request *rq, u32 rqno)
1257 {
1258 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1259 int ret = 0;
1260
1261 memset(op, 0, sizeof(*op));
1262 op->fcp_req.cmdaddr = &op->cmd_iu;
1263 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1264 op->fcp_req.rspaddr = &op->rsp_iu;
1265 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1266 op->fcp_req.done = nvme_fc_fcpio_done;
1267 op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1268 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1269 op->ctrl = ctrl;
1270 op->queue = queue;
1271 op->rq = rq;
1272 op->rqno = rqno;
1273
1274 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1275 cmdiu->fc_id = NVME_CMD_FC_ID;
1276 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1277
1278 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1279 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1280 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1281 dev_err(ctrl->dev,
1282 "FCP Op failed - cmdiu dma mapping failed.\n");
1283 ret = EFAULT;
1284 goto out_on_error;
1285 }
1286
1287 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1288 &op->rsp_iu, sizeof(op->rsp_iu),
1289 DMA_FROM_DEVICE);
1290 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1291 dev_err(ctrl->dev,
1292 "FCP Op failed - rspiu dma mapping failed.\n");
1293 ret = EFAULT;
1294 }
1295
1296 atomic_set(&op->state, FCPOP_STATE_IDLE);
1297 out_on_error:
1298 return ret;
1299 }
1300
1301 static int
1302 nvme_fc_init_request(void *data, struct request *rq,
1303 unsigned int hctx_idx, unsigned int rq_idx,
1304 unsigned int numa_node)
1305 {
1306 struct nvme_fc_ctrl *ctrl = data;
1307 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1308 struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1309
1310 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1311 }
1312
1313 static int
1314 nvme_fc_init_admin_request(void *data, struct request *rq,
1315 unsigned int hctx_idx, unsigned int rq_idx,
1316 unsigned int numa_node)
1317 {
1318 struct nvme_fc_ctrl *ctrl = data;
1319 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1320 struct nvme_fc_queue *queue = &ctrl->queues[0];
1321
1322 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1323 }
1324
1325 static int
1326 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1327 {
1328 struct nvme_fc_fcp_op *aen_op;
1329 struct nvme_fc_cmd_iu *cmdiu;
1330 struct nvme_command *sqe;
1331 int i, ret;
1332
1333 aen_op = ctrl->aen_ops;
1334 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1335 cmdiu = &aen_op->cmd_iu;
1336 sqe = &cmdiu->sqe;
1337 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1338 aen_op, (struct request *)NULL,
1339 (AEN_CMDID_BASE + i));
1340 if (ret)
1341 return ret;
1342
1343 memset(sqe, 0, sizeof(*sqe));
1344 sqe->common.opcode = nvme_admin_async_event;
1345 sqe->common.command_id = AEN_CMDID_BASE + i;
1346 }
1347 return 0;
1348 }
1349
1350
1351 static inline void
1352 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1353 unsigned int qidx)
1354 {
1355 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1356
1357 hctx->driver_data = queue;
1358 queue->hctx = hctx;
1359 }
1360
1361 static int
1362 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1363 unsigned int hctx_idx)
1364 {
1365 struct nvme_fc_ctrl *ctrl = data;
1366
1367 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1368
1369 return 0;
1370 }
1371
1372 static int
1373 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1374 unsigned int hctx_idx)
1375 {
1376 struct nvme_fc_ctrl *ctrl = data;
1377
1378 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1379
1380 return 0;
1381 }
1382
1383 static void
1384 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1385 {
1386 struct nvme_fc_queue *queue;
1387
1388 queue = &ctrl->queues[idx];
1389 memset(queue, 0, sizeof(*queue));
1390 queue->ctrl = ctrl;
1391 queue->qnum = idx;
1392 atomic_set(&queue->csn, 1);
1393 queue->dev = ctrl->dev;
1394
1395 if (idx > 0)
1396 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1397 else
1398 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1399
1400 queue->queue_size = queue_size;
1401
1402 /*
1403 * Considered whether we should allocate buffers for all SQEs
1404 * and CQEs and dma map them - mapping their respective entries
1405 * into the request structures (kernel vm addr and dma address)
1406 * thus the driver could use the buffers/mappings directly.
1407 * It only makes sense if the LLDD would use them for its
1408 * messaging api. It's very unlikely most adapter api's would use
1409 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1410 * structures were used instead.
1411 */
1412 }
1413
1414 /*
1415 * This routine terminates a queue at the transport level.
1416 * The transport has already ensured that all outstanding ios on
1417 * the queue have been terminated.
1418 * The transport will send a Disconnect LS request to terminate
1419 * the queue's connection. Termination of the admin queue will also
1420 * terminate the association at the target.
1421 */
1422 static void
1423 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1424 {
1425 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1426 return;
1427
1428 /*
1429 * Current implementation never disconnects a single queue.
1430 * It always terminates a whole association. So there is never
1431 * a disconnect(queue) LS sent to the target.
1432 */
1433
1434 queue->connection_id = 0;
1435 clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1436 }
1437
1438 static void
1439 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1440 struct nvme_fc_queue *queue, unsigned int qidx)
1441 {
1442 if (ctrl->lport->ops->delete_queue)
1443 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1444 queue->lldd_handle);
1445 queue->lldd_handle = NULL;
1446 }
1447
1448 static void
1449 nvme_fc_destroy_admin_queue(struct nvme_fc_ctrl *ctrl)
1450 {
1451 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
1452 blk_cleanup_queue(ctrl->ctrl.admin_q);
1453 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1454 nvme_fc_free_queue(&ctrl->queues[0]);
1455 }
1456
1457 static void
1458 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1459 {
1460 int i;
1461
1462 for (i = 1; i < ctrl->queue_count; i++)
1463 nvme_fc_free_queue(&ctrl->queues[i]);
1464 }
1465
1466 static int
1467 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1468 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1469 {
1470 int ret = 0;
1471
1472 queue->lldd_handle = NULL;
1473 if (ctrl->lport->ops->create_queue)
1474 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1475 qidx, qsize, &queue->lldd_handle);
1476
1477 return ret;
1478 }
1479
1480 static void
1481 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1482 {
1483 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1484 int i;
1485
1486 for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1487 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1488 }
1489
1490 static int
1491 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1492 {
1493 struct nvme_fc_queue *queue = &ctrl->queues[1];
1494 int i, ret;
1495
1496 for (i = 1; i < ctrl->queue_count; i++, queue++) {
1497 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1498 if (ret)
1499 goto delete_queues;
1500 }
1501
1502 return 0;
1503
1504 delete_queues:
1505 for (; i >= 0; i--)
1506 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1507 return ret;
1508 }
1509
1510 static int
1511 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1512 {
1513 int i, ret = 0;
1514
1515 for (i = 1; i < ctrl->queue_count; i++) {
1516 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1517 (qsize / 5));
1518 if (ret)
1519 break;
1520 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1521 if (ret)
1522 break;
1523 }
1524
1525 return ret;
1526 }
1527
1528 static void
1529 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1530 {
1531 int i;
1532
1533 for (i = 1; i < ctrl->queue_count; i++)
1534 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1535 }
1536
1537 static void
1538 nvme_fc_ctrl_free(struct kref *ref)
1539 {
1540 struct nvme_fc_ctrl *ctrl =
1541 container_of(ref, struct nvme_fc_ctrl, ref);
1542 unsigned long flags;
1543
1544 if (ctrl->state != FCCTRL_INIT) {
1545 /* remove from rport list */
1546 spin_lock_irqsave(&ctrl->rport->lock, flags);
1547 list_del(&ctrl->ctrl_list);
1548 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1549 }
1550
1551 put_device(ctrl->dev);
1552 nvme_fc_rport_put(ctrl->rport);
1553
1554 kfree(ctrl->queues);
1555 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1556 nvmf_free_options(ctrl->ctrl.opts);
1557 kfree(ctrl);
1558 }
1559
1560 static void
1561 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1562 {
1563 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1564 }
1565
1566 static int
1567 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1568 {
1569 return kref_get_unless_zero(&ctrl->ref);
1570 }
1571
1572 /*
1573 * All accesses from nvme core layer done - can now free the
1574 * controller. Called after last nvme_put_ctrl() call
1575 */
1576 static void
1577 nvme_fc_free_nvme_ctrl(struct nvme_ctrl *nctrl)
1578 {
1579 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1580
1581 WARN_ON(nctrl != &ctrl->ctrl);
1582
1583 /*
1584 * Tear down the association, which will generate link
1585 * traffic to terminate connections
1586 */
1587
1588 if (ctrl->state != FCCTRL_INIT) {
1589 /* send a Disconnect(association) LS to fc-nvme target */
1590 nvme_fc_xmt_disconnect_assoc(ctrl);
1591
1592 if (ctrl->ctrl.tagset) {
1593 blk_cleanup_queue(ctrl->ctrl.connect_q);
1594 blk_mq_free_tag_set(&ctrl->tag_set);
1595 nvme_fc_delete_hw_io_queues(ctrl);
1596 nvme_fc_free_io_queues(ctrl);
1597 }
1598
1599 nvme_fc_exit_aen_ops(ctrl);
1600
1601 nvme_fc_destroy_admin_queue(ctrl);
1602 }
1603
1604 nvme_fc_ctrl_put(ctrl);
1605 }
1606
1607
1608 static int
1609 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1610 {
1611 int state;
1612
1613 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1614 if (state != FCPOP_STATE_ACTIVE) {
1615 atomic_set(&op->state, state);
1616 return -ECANCELED; /* fail */
1617 }
1618
1619 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1620 &ctrl->rport->remoteport,
1621 op->queue->lldd_handle,
1622 &op->fcp_req);
1623
1624 return 0;
1625 }
1626
1627 enum blk_eh_timer_return
1628 nvme_fc_timeout(struct request *rq, bool reserved)
1629 {
1630 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1631 struct nvme_fc_ctrl *ctrl = op->ctrl;
1632 int ret;
1633
1634 if (reserved)
1635 return BLK_EH_RESET_TIMER;
1636
1637 ret = __nvme_fc_abort_op(ctrl, op);
1638 if (ret)
1639 /* io wasn't active to abort consider it done */
1640 return BLK_EH_HANDLED;
1641
1642 /*
1643 * TODO: force a controller reset
1644 * when that happens, queues will be torn down and outstanding
1645 * ios will be terminated, and the above abort, on a single io
1646 * will no longer be needed.
1647 */
1648
1649 return BLK_EH_HANDLED;
1650 }
1651
1652 static int
1653 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1654 struct nvme_fc_fcp_op *op)
1655 {
1656 struct nvmefc_fcp_req *freq = &op->fcp_req;
1657 enum dma_data_direction dir;
1658 int ret;
1659
1660 freq->sg_cnt = 0;
1661
1662 if (!blk_rq_payload_bytes(rq))
1663 return 0;
1664
1665 freq->sg_table.sgl = freq->first_sgl;
1666 ret = sg_alloc_table_chained(&freq->sg_table, rq->nr_phys_segments,
1667 freq->sg_table.sgl);
1668 if (ret)
1669 return -ENOMEM;
1670
1671 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1672 WARN_ON(op->nents > rq->nr_phys_segments);
1673 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1674 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1675 op->nents, dir);
1676 if (unlikely(freq->sg_cnt <= 0)) {
1677 sg_free_table_chained(&freq->sg_table, true);
1678 freq->sg_cnt = 0;
1679 return -EFAULT;
1680 }
1681
1682 /*
1683 * TODO: blk_integrity_rq(rq) for DIF
1684 */
1685 return 0;
1686 }
1687
1688 static void
1689 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1690 struct nvme_fc_fcp_op *op)
1691 {
1692 struct nvmefc_fcp_req *freq = &op->fcp_req;
1693
1694 if (!freq->sg_cnt)
1695 return;
1696
1697 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1698 ((rq_data_dir(rq) == WRITE) ?
1699 DMA_TO_DEVICE : DMA_FROM_DEVICE));
1700
1701 nvme_cleanup_cmd(rq);
1702
1703 sg_free_table_chained(&freq->sg_table, true);
1704
1705 freq->sg_cnt = 0;
1706 }
1707
1708 /*
1709 * In FC, the queue is a logical thing. At transport connect, the target
1710 * creates its "queue" and returns a handle that is to be given to the
1711 * target whenever it posts something to the corresponding SQ. When an
1712 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1713 * command contained within the SQE, an io, and assigns a FC exchange
1714 * to it. The SQE and the associated SQ handle are sent in the initial
1715 * CMD IU sents on the exchange. All transfers relative to the io occur
1716 * as part of the exchange. The CQE is the last thing for the io,
1717 * which is transferred (explicitly or implicitly) with the RSP IU
1718 * sent on the exchange. After the CQE is received, the FC exchange is
1719 * terminaed and the Exchange may be used on a different io.
1720 *
1721 * The transport to LLDD api has the transport making a request for a
1722 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1723 * resource and transfers the command. The LLDD will then process all
1724 * steps to complete the io. Upon completion, the transport done routine
1725 * is called.
1726 *
1727 * So - while the operation is outstanding to the LLDD, there is a link
1728 * level FC exchange resource that is also outstanding. This must be
1729 * considered in all cleanup operations.
1730 */
1731 static int
1732 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1733 struct nvme_fc_fcp_op *op, u32 data_len,
1734 enum nvmefc_fcp_datadir io_dir)
1735 {
1736 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1737 struct nvme_command *sqe = &cmdiu->sqe;
1738 u32 csn;
1739 int ret;
1740
1741 if (!nvme_fc_ctrl_get(ctrl))
1742 return BLK_MQ_RQ_QUEUE_ERROR;
1743
1744 /* format the FC-NVME CMD IU and fcp_req */
1745 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1746 csn = atomic_inc_return(&queue->csn);
1747 cmdiu->csn = cpu_to_be32(csn);
1748 cmdiu->data_len = cpu_to_be32(data_len);
1749 switch (io_dir) {
1750 case NVMEFC_FCP_WRITE:
1751 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1752 break;
1753 case NVMEFC_FCP_READ:
1754 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1755 break;
1756 case NVMEFC_FCP_NODATA:
1757 cmdiu->flags = 0;
1758 break;
1759 }
1760 op->fcp_req.payload_length = data_len;
1761 op->fcp_req.io_dir = io_dir;
1762 op->fcp_req.transferred_length = 0;
1763 op->fcp_req.rcv_rsplen = 0;
1764 op->fcp_req.status = 0;
1765 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1766
1767 /*
1768 * validate per fabric rules, set fields mandated by fabric spec
1769 * as well as those by FC-NVME spec.
1770 */
1771 WARN_ON_ONCE(sqe->common.metadata);
1772 WARN_ON_ONCE(sqe->common.dptr.prp1);
1773 WARN_ON_ONCE(sqe->common.dptr.prp2);
1774 sqe->common.flags |= NVME_CMD_SGL_METABUF;
1775
1776 /*
1777 * format SQE DPTR field per FC-NVME rules
1778 * type=data block descr; subtype=offset;
1779 * offset is currently 0.
1780 */
1781 sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1782 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1783 sqe->rw.dptr.sgl.addr = 0;
1784
1785 /* odd that we set the command_id - should come from nvme-fabrics */
1786 WARN_ON_ONCE(sqe->common.command_id != cpu_to_le16(op->rqno));
1787
1788 if (op->rq) { /* skipped on aens */
1789 ret = nvme_fc_map_data(ctrl, op->rq, op);
1790 if (ret < 0) {
1791 dev_err(queue->ctrl->ctrl.device,
1792 "Failed to map data (%d)\n", ret);
1793 nvme_cleanup_cmd(op->rq);
1794 nvme_fc_ctrl_put(ctrl);
1795 return (ret == -ENOMEM || ret == -EAGAIN) ?
1796 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1797 }
1798 }
1799
1800 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1801 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1802
1803 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1804
1805 if (op->rq)
1806 blk_mq_start_request(op->rq);
1807
1808 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1809 &ctrl->rport->remoteport,
1810 queue->lldd_handle, &op->fcp_req);
1811
1812 if (ret) {
1813 dev_err(ctrl->dev,
1814 "Send nvme command failed - lldd returned %d.\n", ret);
1815
1816 if (op->rq) { /* normal request */
1817 nvme_fc_unmap_data(ctrl, op->rq, op);
1818 nvme_cleanup_cmd(op->rq);
1819 }
1820 /* else - aen. no cleanup needed */
1821
1822 nvme_fc_ctrl_put(ctrl);
1823
1824 if (ret != -EBUSY)
1825 return BLK_MQ_RQ_QUEUE_ERROR;
1826
1827 if (op->rq) {
1828 blk_mq_stop_hw_queues(op->rq->q);
1829 blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1830 }
1831 return BLK_MQ_RQ_QUEUE_BUSY;
1832 }
1833
1834 return BLK_MQ_RQ_QUEUE_OK;
1835 }
1836
1837 static int
1838 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1839 const struct blk_mq_queue_data *bd)
1840 {
1841 struct nvme_ns *ns = hctx->queue->queuedata;
1842 struct nvme_fc_queue *queue = hctx->driver_data;
1843 struct nvme_fc_ctrl *ctrl = queue->ctrl;
1844 struct request *rq = bd->rq;
1845 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1846 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1847 struct nvme_command *sqe = &cmdiu->sqe;
1848 enum nvmefc_fcp_datadir io_dir;
1849 u32 data_len;
1850 int ret;
1851
1852 ret = nvme_setup_cmd(ns, rq, sqe);
1853 if (ret)
1854 return ret;
1855
1856 data_len = blk_rq_payload_bytes(rq);
1857 if (data_len)
1858 io_dir = ((rq_data_dir(rq) == WRITE) ?
1859 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
1860 else
1861 io_dir = NVMEFC_FCP_NODATA;
1862
1863 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
1864 }
1865
1866 static struct blk_mq_tags *
1867 nvme_fc_tagset(struct nvme_fc_queue *queue)
1868 {
1869 if (queue->qnum == 0)
1870 return queue->ctrl->admin_tag_set.tags[queue->qnum];
1871
1872 return queue->ctrl->tag_set.tags[queue->qnum - 1];
1873 }
1874
1875 static int
1876 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1877
1878 {
1879 struct nvme_fc_queue *queue = hctx->driver_data;
1880 struct nvme_fc_ctrl *ctrl = queue->ctrl;
1881 struct request *req;
1882 struct nvme_fc_fcp_op *op;
1883
1884 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
1885 if (!req) {
1886 dev_err(queue->ctrl->ctrl.device,
1887 "tag 0x%x on QNum %#x not found\n",
1888 tag, queue->qnum);
1889 return 0;
1890 }
1891
1892 op = blk_mq_rq_to_pdu(req);
1893
1894 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
1895 (ctrl->lport->ops->poll_queue))
1896 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
1897 queue->lldd_handle);
1898
1899 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
1900 }
1901
1902 static void
1903 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1904 {
1905 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
1906 struct nvme_fc_fcp_op *aen_op;
1907 int ret;
1908
1909 if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
1910 return;
1911
1912 aen_op = &ctrl->aen_ops[aer_idx];
1913
1914 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
1915 NVMEFC_FCP_NODATA);
1916 if (ret)
1917 dev_err(ctrl->ctrl.device,
1918 "failed async event work [%d]\n", aer_idx);
1919 }
1920
1921 static void
1922 nvme_fc_complete_rq(struct request *rq)
1923 {
1924 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1925 struct nvme_fc_ctrl *ctrl = op->ctrl;
1926 int error = 0, state;
1927
1928 state = atomic_xchg(&op->state, FCPOP_STATE_IDLE);
1929
1930 nvme_cleanup_cmd(rq);
1931
1932 nvme_fc_unmap_data(ctrl, rq, op);
1933
1934 if (unlikely(rq->errors)) {
1935 if (nvme_req_needs_retry(rq, rq->errors)) {
1936 nvme_requeue_req(rq);
1937 return;
1938 }
1939
1940 if (blk_rq_is_passthrough(rq))
1941 error = rq->errors;
1942 else
1943 error = nvme_error_status(rq->errors);
1944 }
1945
1946 nvme_fc_ctrl_put(ctrl);
1947
1948 blk_mq_end_request(rq, error);
1949 }
1950
1951 static struct blk_mq_ops nvme_fc_mq_ops = {
1952 .queue_rq = nvme_fc_queue_rq,
1953 .complete = nvme_fc_complete_rq,
1954 .init_request = nvme_fc_init_request,
1955 .exit_request = nvme_fc_exit_request,
1956 .reinit_request = nvme_fc_reinit_request,
1957 .init_hctx = nvme_fc_init_hctx,
1958 .poll = nvme_fc_poll,
1959 .timeout = nvme_fc_timeout,
1960 };
1961
1962 static struct blk_mq_ops nvme_fc_admin_mq_ops = {
1963 .queue_rq = nvme_fc_queue_rq,
1964 .complete = nvme_fc_complete_rq,
1965 .init_request = nvme_fc_init_admin_request,
1966 .exit_request = nvme_fc_exit_request,
1967 .reinit_request = nvme_fc_reinit_request,
1968 .init_hctx = nvme_fc_init_admin_hctx,
1969 .timeout = nvme_fc_timeout,
1970 };
1971
1972 static int
1973 nvme_fc_configure_admin_queue(struct nvme_fc_ctrl *ctrl)
1974 {
1975 u32 segs;
1976 int error;
1977
1978 nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
1979
1980 error = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
1981 NVME_FC_AQ_BLKMQ_DEPTH,
1982 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
1983 if (error)
1984 return error;
1985
1986 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1987 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
1988 ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
1989 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
1990 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1991 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
1992 (SG_CHUNK_SIZE *
1993 sizeof(struct scatterlist)) +
1994 ctrl->lport->ops->fcprqst_priv_sz;
1995 ctrl->admin_tag_set.driver_data = ctrl;
1996 ctrl->admin_tag_set.nr_hw_queues = 1;
1997 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1998
1999 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2000 if (error)
2001 goto out_free_queue;
2002
2003 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2004 if (IS_ERR(ctrl->ctrl.admin_q)) {
2005 error = PTR_ERR(ctrl->ctrl.admin_q);
2006 goto out_free_tagset;
2007 }
2008
2009 error = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2010 NVME_FC_AQ_BLKMQ_DEPTH);
2011 if (error)
2012 goto out_cleanup_queue;
2013
2014 error = nvmf_connect_admin_queue(&ctrl->ctrl);
2015 if (error)
2016 goto out_delete_hw_queue;
2017
2018 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2019 if (error) {
2020 dev_err(ctrl->ctrl.device,
2021 "prop_get NVME_REG_CAP failed\n");
2022 goto out_delete_hw_queue;
2023 }
2024
2025 ctrl->ctrl.sqsize =
2026 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2027
2028 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2029 if (error)
2030 goto out_delete_hw_queue;
2031
2032 segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2033 ctrl->lport->ops->max_sgl_segments);
2034 ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2035
2036 error = nvme_init_identify(&ctrl->ctrl);
2037 if (error)
2038 goto out_delete_hw_queue;
2039
2040 nvme_start_keep_alive(&ctrl->ctrl);
2041
2042 return 0;
2043
2044 out_delete_hw_queue:
2045 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2046 out_cleanup_queue:
2047 blk_cleanup_queue(ctrl->ctrl.admin_q);
2048 out_free_tagset:
2049 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2050 out_free_queue:
2051 nvme_fc_free_queue(&ctrl->queues[0]);
2052 return error;
2053 }
2054
2055 /*
2056 * This routine is used by the transport when it needs to find active
2057 * io on a queue that is to be terminated. The transport uses
2058 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2059 * this routine to kill them on a 1 by 1 basis.
2060 *
2061 * As FC allocates FC exchange for each io, the transport must contact
2062 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2063 * After terminating the exchange the LLDD will call the transport's
2064 * normal io done path for the request, but it will have an aborted
2065 * status. The done path will return the io request back to the block
2066 * layer with an error status.
2067 */
2068 static void
2069 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2070 {
2071 struct nvme_ctrl *nctrl = data;
2072 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2073 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2074 int status;
2075
2076 if (!blk_mq_request_started(req))
2077 return;
2078
2079 /* this performs an ABTS-LS on the FC exchange for the io */
2080 status = __nvme_fc_abort_op(ctrl, op);
2081 /*
2082 * if __nvme_fc_abort_op failed: io wasn't active to abort
2083 * consider it done. Assume completion path already completing
2084 * in parallel
2085 */
2086 if (status)
2087 /* io wasn't active to abort consider it done */
2088 /* assume completion path already completing in parallel */
2089 return;
2090 }
2091
2092
2093 /*
2094 * This routine stops operation of the controller. Admin and IO queues
2095 * are stopped, outstanding ios on them terminated, and the nvme ctrl
2096 * is shutdown.
2097 */
2098 static void
2099 nvme_fc_shutdown_ctrl(struct nvme_fc_ctrl *ctrl)
2100 {
2101 /*
2102 * If io queues are present, stop them and terminate all outstanding
2103 * ios on them. As FC allocates FC exchange for each io, the
2104 * transport must contact the LLDD to terminate the exchange,
2105 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2106 * to tell us what io's are busy and invoke a transport routine
2107 * to kill them with the LLDD. After terminating the exchange
2108 * the LLDD will call the transport's normal io done path, but it
2109 * will have an aborted status. The done path will return the
2110 * io requests back to the block layer as part of normal completions
2111 * (but with error status).
2112 */
2113 if (ctrl->queue_count > 1) {
2114 nvme_stop_queues(&ctrl->ctrl);
2115 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2116 nvme_fc_terminate_exchange, &ctrl->ctrl);
2117 }
2118
2119 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
2120 nvme_shutdown_ctrl(&ctrl->ctrl);
2121
2122 /*
2123 * now clean up the admin queue. Same thing as above.
2124 * use blk_mq_tagset_busy_itr() and the transport routine to
2125 * terminate the exchanges.
2126 */
2127 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2128 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2129 nvme_fc_terminate_exchange, &ctrl->ctrl);
2130 }
2131
2132 /*
2133 * Called to teardown an association.
2134 * May be called with association fully in place or partially in place.
2135 */
2136 static void
2137 __nvme_fc_remove_ctrl(struct nvme_fc_ctrl *ctrl)
2138 {
2139 nvme_stop_keep_alive(&ctrl->ctrl);
2140
2141 /* stop and terminate ios on admin and io queues */
2142 nvme_fc_shutdown_ctrl(ctrl);
2143
2144 /*
2145 * tear down the controller
2146 * This will result in the last reference on the nvme ctrl to
2147 * expire, calling the transport nvme_fc_free_nvme_ctrl() callback.
2148 * From there, the transport will tear down it's logical queues and
2149 * association.
2150 */
2151 nvme_uninit_ctrl(&ctrl->ctrl);
2152
2153 nvme_put_ctrl(&ctrl->ctrl);
2154 }
2155
2156 static void
2157 nvme_fc_del_ctrl_work(struct work_struct *work)
2158 {
2159 struct nvme_fc_ctrl *ctrl =
2160 container_of(work, struct nvme_fc_ctrl, delete_work);
2161
2162 __nvme_fc_remove_ctrl(ctrl);
2163 }
2164
2165 static int
2166 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2167 {
2168 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2169 return -EBUSY;
2170
2171 if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2172 return -EBUSY;
2173
2174 return 0;
2175 }
2176
2177 /*
2178 * Request from nvme core layer to delete the controller
2179 */
2180 static int
2181 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2182 {
2183 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2184 struct nvme_fc_rport *rport = ctrl->rport;
2185 unsigned long flags;
2186 int ret;
2187
2188 spin_lock_irqsave(&rport->lock, flags);
2189 ret = __nvme_fc_del_ctrl(ctrl);
2190 spin_unlock_irqrestore(&rport->lock, flags);
2191 if (ret)
2192 return ret;
2193
2194 flush_work(&ctrl->delete_work);
2195
2196 return 0;
2197 }
2198
2199 static int
2200 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2201 {
2202 return -EIO;
2203 }
2204
2205 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2206 .name = "fc",
2207 .module = THIS_MODULE,
2208 .is_fabrics = true,
2209 .reg_read32 = nvmf_reg_read32,
2210 .reg_read64 = nvmf_reg_read64,
2211 .reg_write32 = nvmf_reg_write32,
2212 .reset_ctrl = nvme_fc_reset_nvme_ctrl,
2213 .free_ctrl = nvme_fc_free_nvme_ctrl,
2214 .submit_async_event = nvme_fc_submit_async_event,
2215 .delete_ctrl = nvme_fc_del_nvme_ctrl,
2216 .get_subsysnqn = nvmf_get_subsysnqn,
2217 .get_address = nvmf_get_address,
2218 };
2219
2220 static int
2221 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2222 {
2223 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2224 int ret;
2225
2226 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2227 if (ret) {
2228 dev_info(ctrl->ctrl.device,
2229 "set_queue_count failed: %d\n", ret);
2230 return ret;
2231 }
2232
2233 ctrl->queue_count = opts->nr_io_queues + 1;
2234 if (!opts->nr_io_queues)
2235 return 0;
2236
2237 dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n",
2238 opts->nr_io_queues);
2239
2240 nvme_fc_init_io_queues(ctrl);
2241
2242 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2243 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2244 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2245 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2246 ctrl->tag_set.numa_node = NUMA_NO_NODE;
2247 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2248 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2249 (SG_CHUNK_SIZE *
2250 sizeof(struct scatterlist)) +
2251 ctrl->lport->ops->fcprqst_priv_sz;
2252 ctrl->tag_set.driver_data = ctrl;
2253 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2254 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2255
2256 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2257 if (ret)
2258 return ret;
2259
2260 ctrl->ctrl.tagset = &ctrl->tag_set;
2261
2262 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2263 if (IS_ERR(ctrl->ctrl.connect_q)) {
2264 ret = PTR_ERR(ctrl->ctrl.connect_q);
2265 goto out_free_tag_set;
2266 }
2267
2268 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2269 if (ret)
2270 goto out_cleanup_blk_queue;
2271
2272 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2273 if (ret)
2274 goto out_delete_hw_queues;
2275
2276 return 0;
2277
2278 out_delete_hw_queues:
2279 nvme_fc_delete_hw_io_queues(ctrl);
2280 out_cleanup_blk_queue:
2281 nvme_stop_keep_alive(&ctrl->ctrl);
2282 blk_cleanup_queue(ctrl->ctrl.connect_q);
2283 out_free_tag_set:
2284 blk_mq_free_tag_set(&ctrl->tag_set);
2285 nvme_fc_free_io_queues(ctrl);
2286
2287 /* force put free routine to ignore io queues */
2288 ctrl->ctrl.tagset = NULL;
2289
2290 return ret;
2291 }
2292
2293
2294 static struct nvme_ctrl *
2295 __nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2296 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2297 {
2298 struct nvme_fc_ctrl *ctrl;
2299 unsigned long flags;
2300 int ret, idx;
2301 bool changed;
2302
2303 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2304 if (!ctrl) {
2305 ret = -ENOMEM;
2306 goto out_fail;
2307 }
2308
2309 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2310 if (idx < 0) {
2311 ret = -ENOSPC;
2312 goto out_free_ctrl;
2313 }
2314
2315 ctrl->ctrl.opts = opts;
2316 INIT_LIST_HEAD(&ctrl->ctrl_list);
2317 INIT_LIST_HEAD(&ctrl->ls_req_list);
2318 ctrl->lport = lport;
2319 ctrl->rport = rport;
2320 ctrl->dev = lport->dev;
2321 ctrl->state = FCCTRL_INIT;
2322 ctrl->cnum = idx;
2323
2324 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2325 if (ret)
2326 goto out_free_ida;
2327
2328 get_device(ctrl->dev);
2329 kref_init(&ctrl->ref);
2330
2331 INIT_WORK(&ctrl->delete_work, nvme_fc_del_ctrl_work);
2332 spin_lock_init(&ctrl->lock);
2333
2334 /* io queue count */
2335 ctrl->queue_count = min_t(unsigned int,
2336 opts->nr_io_queues,
2337 lport->ops->max_hw_queues);
2338 opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2339 ctrl->queue_count++; /* +1 for admin queue */
2340
2341 ctrl->ctrl.sqsize = opts->queue_size - 1;
2342 ctrl->ctrl.kato = opts->kato;
2343
2344 ret = -ENOMEM;
2345 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2346 GFP_KERNEL);
2347 if (!ctrl->queues)
2348 goto out_uninit_ctrl;
2349
2350 ret = nvme_fc_configure_admin_queue(ctrl);
2351 if (ret)
2352 goto out_uninit_ctrl;
2353
2354 /* sanity checks */
2355
2356 /* FC-NVME supports 64-byte SQE only */
2357 if (ctrl->ctrl.ioccsz != 4) {
2358 dev_err(ctrl->ctrl.device, "ioccsz %d is not supported!\n",
2359 ctrl->ctrl.ioccsz);
2360 goto out_remove_admin_queue;
2361 }
2362 /* FC-NVME supports 16-byte CQE only */
2363 if (ctrl->ctrl.iorcsz != 1) {
2364 dev_err(ctrl->ctrl.device, "iorcsz %d is not supported!\n",
2365 ctrl->ctrl.iorcsz);
2366 goto out_remove_admin_queue;
2367 }
2368 /* FC-NVME does not have other data in the capsule */
2369 if (ctrl->ctrl.icdoff) {
2370 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2371 ctrl->ctrl.icdoff);
2372 goto out_remove_admin_queue;
2373 }
2374
2375 /* FC-NVME supports normal SGL Data Block Descriptors */
2376
2377 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2378 /* warn if maxcmd is lower than queue_size */
2379 dev_warn(ctrl->ctrl.device,
2380 "queue_size %zu > ctrl maxcmd %u, reducing "
2381 "to queue_size\n",
2382 opts->queue_size, ctrl->ctrl.maxcmd);
2383 opts->queue_size = ctrl->ctrl.maxcmd;
2384 }
2385
2386 ret = nvme_fc_init_aen_ops(ctrl);
2387 if (ret)
2388 goto out_exit_aen_ops;
2389
2390 if (ctrl->queue_count > 1) {
2391 ret = nvme_fc_create_io_queues(ctrl);
2392 if (ret)
2393 goto out_exit_aen_ops;
2394 }
2395
2396 spin_lock_irqsave(&ctrl->lock, flags);
2397 ctrl->state = FCCTRL_ACTIVE;
2398 spin_unlock_irqrestore(&ctrl->lock, flags);
2399
2400 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2401 WARN_ON_ONCE(!changed);
2402
2403 dev_info(ctrl->ctrl.device,
2404 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2405 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2406
2407 kref_get(&ctrl->ctrl.kref);
2408
2409 spin_lock_irqsave(&rport->lock, flags);
2410 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2411 spin_unlock_irqrestore(&rport->lock, flags);
2412
2413 if (opts->nr_io_queues) {
2414 nvme_queue_scan(&ctrl->ctrl);
2415 nvme_queue_async_events(&ctrl->ctrl);
2416 }
2417
2418 return &ctrl->ctrl;
2419
2420 out_exit_aen_ops:
2421 nvme_fc_exit_aen_ops(ctrl);
2422 out_remove_admin_queue:
2423 /* send a Disconnect(association) LS to fc-nvme target */
2424 nvme_fc_xmt_disconnect_assoc(ctrl);
2425 nvme_stop_keep_alive(&ctrl->ctrl);
2426 nvme_fc_destroy_admin_queue(ctrl);
2427 out_uninit_ctrl:
2428 nvme_uninit_ctrl(&ctrl->ctrl);
2429 nvme_put_ctrl(&ctrl->ctrl);
2430 if (ret > 0)
2431 ret = -EIO;
2432 /* exit via here will follow ctlr ref point callbacks to free */
2433 return ERR_PTR(ret);
2434
2435 out_free_ida:
2436 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2437 out_free_ctrl:
2438 kfree(ctrl);
2439 out_fail:
2440 nvme_fc_rport_put(rport);
2441 /* exit via here doesn't follow ctlr ref points */
2442 return ERR_PTR(ret);
2443 }
2444
2445 enum {
2446 FCT_TRADDR_ERR = 0,
2447 FCT_TRADDR_WWNN = 1 << 0,
2448 FCT_TRADDR_WWPN = 1 << 1,
2449 };
2450
2451 struct nvmet_fc_traddr {
2452 u64 nn;
2453 u64 pn;
2454 };
2455
2456 static const match_table_t traddr_opt_tokens = {
2457 { FCT_TRADDR_WWNN, "nn-%s" },
2458 { FCT_TRADDR_WWPN, "pn-%s" },
2459 { FCT_TRADDR_ERR, NULL }
2460 };
2461
2462 static int
2463 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2464 {
2465 substring_t args[MAX_OPT_ARGS];
2466 char *options, *o, *p;
2467 int token, ret = 0;
2468 u64 token64;
2469
2470 options = o = kstrdup(buf, GFP_KERNEL);
2471 if (!options)
2472 return -ENOMEM;
2473
2474 while ((p = strsep(&o, ":\n")) != NULL) {
2475 if (!*p)
2476 continue;
2477
2478 token = match_token(p, traddr_opt_tokens, args);
2479 switch (token) {
2480 case FCT_TRADDR_WWNN:
2481 if (match_u64(args, &token64)) {
2482 ret = -EINVAL;
2483 goto out;
2484 }
2485 traddr->nn = token64;
2486 break;
2487 case FCT_TRADDR_WWPN:
2488 if (match_u64(args, &token64)) {
2489 ret = -EINVAL;
2490 goto out;
2491 }
2492 traddr->pn = token64;
2493 break;
2494 default:
2495 pr_warn("unknown traddr token or missing value '%s'\n",
2496 p);
2497 ret = -EINVAL;
2498 goto out;
2499 }
2500 }
2501
2502 out:
2503 kfree(options);
2504 return ret;
2505 }
2506
2507 static struct nvme_ctrl *
2508 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2509 {
2510 struct nvme_fc_lport *lport;
2511 struct nvme_fc_rport *rport;
2512 struct nvmet_fc_traddr laddr = { 0L, 0L };
2513 struct nvmet_fc_traddr raddr = { 0L, 0L };
2514 unsigned long flags;
2515 int ret;
2516
2517 ret = nvme_fc_parse_address(&raddr, opts->traddr);
2518 if (ret || !raddr.nn || !raddr.pn)
2519 return ERR_PTR(-EINVAL);
2520
2521 ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2522 if (ret || !laddr.nn || !laddr.pn)
2523 return ERR_PTR(-EINVAL);
2524
2525 /* find the host and remote ports to connect together */
2526 spin_lock_irqsave(&nvme_fc_lock, flags);
2527 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2528 if (lport->localport.node_name != laddr.nn ||
2529 lport->localport.port_name != laddr.pn)
2530 continue;
2531
2532 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2533 if (rport->remoteport.node_name != raddr.nn ||
2534 rport->remoteport.port_name != raddr.pn)
2535 continue;
2536
2537 /* if fail to get reference fall through. Will error */
2538 if (!nvme_fc_rport_get(rport))
2539 break;
2540
2541 spin_unlock_irqrestore(&nvme_fc_lock, flags);
2542
2543 return __nvme_fc_create_ctrl(dev, opts, lport, rport);
2544 }
2545 }
2546 spin_unlock_irqrestore(&nvme_fc_lock, flags);
2547
2548 return ERR_PTR(-ENOENT);
2549 }
2550
2551
2552 static struct nvmf_transport_ops nvme_fc_transport = {
2553 .name = "fc",
2554 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2555 .allowed_opts = NVMF_OPT_RECONNECT_DELAY,
2556 .create_ctrl = nvme_fc_create_ctrl,
2557 };
2558
2559 static int __init nvme_fc_init_module(void)
2560 {
2561 nvme_fc_wq = create_workqueue("nvme_fc_wq");
2562 if (!nvme_fc_wq)
2563 return -ENOMEM;
2564
2565 nvmf_register_transport(&nvme_fc_transport);
2566 return 0;
2567 }
2568
2569 static void __exit nvme_fc_exit_module(void)
2570 {
2571 /* sanity check - all lports should be removed */
2572 if (!list_empty(&nvme_fc_lport_list))
2573 pr_warn("%s: localport list not empty\n", __func__);
2574
2575 nvmf_unregister_transport(&nvme_fc_transport);
2576
2577 destroy_workqueue(nvme_fc_wq);
2578
2579 ida_destroy(&nvme_fc_local_port_cnt);
2580 ida_destroy(&nvme_fc_ctrl_cnt);
2581 }
2582
2583 module_init(nvme_fc_init_module);
2584 module_exit(nvme_fc_exit_module);
2585
2586 MODULE_LICENSE("GPL v2");