]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/hpsa.c
block: introduce blk_rq_is_passthrough
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 *
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17 *
18 */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /* board_id = Subsystem Device ID & Vendor ID
155 * product = Marketing Name for the board
156 * access = Address of the struct of function pointers
157 */
158 static struct board_type products[] = {
159 {0x3241103C, "Smart Array P212", &SA5_access},
160 {0x3243103C, "Smart Array P410", &SA5_access},
161 {0x3245103C, "Smart Array P410i", &SA5_access},
162 {0x3247103C, "Smart Array P411", &SA5_access},
163 {0x3249103C, "Smart Array P812", &SA5_access},
164 {0x324A103C, "Smart Array P712m", &SA5_access},
165 {0x324B103C, "Smart Array P711m", &SA5_access},
166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167 {0x3350103C, "Smart Array P222", &SA5_access},
168 {0x3351103C, "Smart Array P420", &SA5_access},
169 {0x3352103C, "Smart Array P421", &SA5_access},
170 {0x3353103C, "Smart Array P822", &SA5_access},
171 {0x3354103C, "Smart Array P420i", &SA5_access},
172 {0x3355103C, "Smart Array P220i", &SA5_access},
173 {0x3356103C, "Smart Array P721m", &SA5_access},
174 {0x1921103C, "Smart Array P830i", &SA5_access},
175 {0x1922103C, "Smart Array P430", &SA5_access},
176 {0x1923103C, "Smart Array P431", &SA5_access},
177 {0x1924103C, "Smart Array P830", &SA5_access},
178 {0x1926103C, "Smart Array P731m", &SA5_access},
179 {0x1928103C, "Smart Array P230i", &SA5_access},
180 {0x1929103C, "Smart Array P530", &SA5_access},
181 {0x21BD103C, "Smart Array P244br", &SA5_access},
182 {0x21BE103C, "Smart Array P741m", &SA5_access},
183 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 {0x21C0103C, "Smart Array P440ar", &SA5_access},
185 {0x21C1103C, "Smart Array P840ar", &SA5_access},
186 {0x21C2103C, "Smart Array P440", &SA5_access},
187 {0x21C3103C, "Smart Array P441", &SA5_access},
188 {0x21C4103C, "Smart Array", &SA5_access},
189 {0x21C5103C, "Smart Array P841", &SA5_access},
190 {0x21C6103C, "Smart HBA H244br", &SA5_access},
191 {0x21C7103C, "Smart HBA H240", &SA5_access},
192 {0x21C8103C, "Smart HBA H241", &SA5_access},
193 {0x21C9103C, "Smart Array", &SA5_access},
194 {0x21CA103C, "Smart Array P246br", &SA5_access},
195 {0x21CB103C, "Smart Array P840", &SA5_access},
196 {0x21CC103C, "Smart Array", &SA5_access},
197 {0x21CD103C, "Smart Array", &SA5_access},
198 {0x21CE103C, "Smart HBA", &SA5_access},
199 {0x05809005, "SmartHBA-SA", &SA5_access},
200 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245 int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253 unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264 struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266 struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269 int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int wait_for_device_to_become_ready(struct ctlr_info *h,
280 unsigned char lunaddr[],
281 int reply_queue);
282 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
283 int wait_for_ready);
284 static inline void finish_cmd(struct CommandList *c);
285 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
286 #define BOARD_NOT_READY 0
287 #define BOARD_READY 1
288 static void hpsa_drain_accel_commands(struct ctlr_info *h);
289 static void hpsa_flush_cache(struct ctlr_info *h);
290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
291 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
292 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
293 static void hpsa_command_resubmit_worker(struct work_struct *work);
294 static u32 lockup_detected(struct ctlr_info *h);
295 static int detect_controller_lockup(struct ctlr_info *h);
296 static void hpsa_disable_rld_caching(struct ctlr_info *h);
297 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
298 struct ReportExtendedLUNdata *buf, int bufsize);
299 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
300 unsigned char scsi3addr[], u8 page);
301 static int hpsa_luns_changed(struct ctlr_info *h);
302 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
303 struct hpsa_scsi_dev_t *dev,
304 unsigned char *scsi3addr);
305
306 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
307 {
308 unsigned long *priv = shost_priv(sdev->host);
309 return (struct ctlr_info *) *priv;
310 }
311
312 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
313 {
314 unsigned long *priv = shost_priv(sh);
315 return (struct ctlr_info *) *priv;
316 }
317
318 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
319 {
320 return c->scsi_cmd == SCSI_CMD_IDLE;
321 }
322
323 static inline bool hpsa_is_pending_event(struct CommandList *c)
324 {
325 return c->abort_pending || c->reset_pending;
326 }
327
328 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
329 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
330 u8 *sense_key, u8 *asc, u8 *ascq)
331 {
332 struct scsi_sense_hdr sshdr;
333 bool rc;
334
335 *sense_key = -1;
336 *asc = -1;
337 *ascq = -1;
338
339 if (sense_data_len < 1)
340 return;
341
342 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
343 if (rc) {
344 *sense_key = sshdr.sense_key;
345 *asc = sshdr.asc;
346 *ascq = sshdr.ascq;
347 }
348 }
349
350 static int check_for_unit_attention(struct ctlr_info *h,
351 struct CommandList *c)
352 {
353 u8 sense_key, asc, ascq;
354 int sense_len;
355
356 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
357 sense_len = sizeof(c->err_info->SenseInfo);
358 else
359 sense_len = c->err_info->SenseLen;
360
361 decode_sense_data(c->err_info->SenseInfo, sense_len,
362 &sense_key, &asc, &ascq);
363 if (sense_key != UNIT_ATTENTION || asc == 0xff)
364 return 0;
365
366 switch (asc) {
367 case STATE_CHANGED:
368 dev_warn(&h->pdev->dev,
369 "%s: a state change detected, command retried\n",
370 h->devname);
371 break;
372 case LUN_FAILED:
373 dev_warn(&h->pdev->dev,
374 "%s: LUN failure detected\n", h->devname);
375 break;
376 case REPORT_LUNS_CHANGED:
377 dev_warn(&h->pdev->dev,
378 "%s: report LUN data changed\n", h->devname);
379 /*
380 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
381 * target (array) devices.
382 */
383 break;
384 case POWER_OR_RESET:
385 dev_warn(&h->pdev->dev,
386 "%s: a power on or device reset detected\n",
387 h->devname);
388 break;
389 case UNIT_ATTENTION_CLEARED:
390 dev_warn(&h->pdev->dev,
391 "%s: unit attention cleared by another initiator\n",
392 h->devname);
393 break;
394 default:
395 dev_warn(&h->pdev->dev,
396 "%s: unknown unit attention detected\n",
397 h->devname);
398 break;
399 }
400 return 1;
401 }
402
403 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
404 {
405 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
406 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
407 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
408 return 0;
409 dev_warn(&h->pdev->dev, HPSA "device busy");
410 return 1;
411 }
412
413 static u32 lockup_detected(struct ctlr_info *h);
414 static ssize_t host_show_lockup_detected(struct device *dev,
415 struct device_attribute *attr, char *buf)
416 {
417 int ld;
418 struct ctlr_info *h;
419 struct Scsi_Host *shost = class_to_shost(dev);
420
421 h = shost_to_hba(shost);
422 ld = lockup_detected(h);
423
424 return sprintf(buf, "ld=%d\n", ld);
425 }
426
427 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
428 struct device_attribute *attr,
429 const char *buf, size_t count)
430 {
431 int status, len;
432 struct ctlr_info *h;
433 struct Scsi_Host *shost = class_to_shost(dev);
434 char tmpbuf[10];
435
436 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
437 return -EACCES;
438 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
439 strncpy(tmpbuf, buf, len);
440 tmpbuf[len] = '\0';
441 if (sscanf(tmpbuf, "%d", &status) != 1)
442 return -EINVAL;
443 h = shost_to_hba(shost);
444 h->acciopath_status = !!status;
445 dev_warn(&h->pdev->dev,
446 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
447 h->acciopath_status ? "enabled" : "disabled");
448 return count;
449 }
450
451 static ssize_t host_store_raid_offload_debug(struct device *dev,
452 struct device_attribute *attr,
453 const char *buf, size_t count)
454 {
455 int debug_level, len;
456 struct ctlr_info *h;
457 struct Scsi_Host *shost = class_to_shost(dev);
458 char tmpbuf[10];
459
460 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 return -EACCES;
462 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 strncpy(tmpbuf, buf, len);
464 tmpbuf[len] = '\0';
465 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
466 return -EINVAL;
467 if (debug_level < 0)
468 debug_level = 0;
469 h = shost_to_hba(shost);
470 h->raid_offload_debug = debug_level;
471 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
472 h->raid_offload_debug);
473 return count;
474 }
475
476 static ssize_t host_store_rescan(struct device *dev,
477 struct device_attribute *attr,
478 const char *buf, size_t count)
479 {
480 struct ctlr_info *h;
481 struct Scsi_Host *shost = class_to_shost(dev);
482 h = shost_to_hba(shost);
483 hpsa_scan_start(h->scsi_host);
484 return count;
485 }
486
487 static ssize_t host_show_firmware_revision(struct device *dev,
488 struct device_attribute *attr, char *buf)
489 {
490 struct ctlr_info *h;
491 struct Scsi_Host *shost = class_to_shost(dev);
492 unsigned char *fwrev;
493
494 h = shost_to_hba(shost);
495 if (!h->hba_inquiry_data)
496 return 0;
497 fwrev = &h->hba_inquiry_data[32];
498 return snprintf(buf, 20, "%c%c%c%c\n",
499 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
500 }
501
502 static ssize_t host_show_commands_outstanding(struct device *dev,
503 struct device_attribute *attr, char *buf)
504 {
505 struct Scsi_Host *shost = class_to_shost(dev);
506 struct ctlr_info *h = shost_to_hba(shost);
507
508 return snprintf(buf, 20, "%d\n",
509 atomic_read(&h->commands_outstanding));
510 }
511
512 static ssize_t host_show_transport_mode(struct device *dev,
513 struct device_attribute *attr, char *buf)
514 {
515 struct ctlr_info *h;
516 struct Scsi_Host *shost = class_to_shost(dev);
517
518 h = shost_to_hba(shost);
519 return snprintf(buf, 20, "%s\n",
520 h->transMethod & CFGTBL_Trans_Performant ?
521 "performant" : "simple");
522 }
523
524 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
525 struct device_attribute *attr, char *buf)
526 {
527 struct ctlr_info *h;
528 struct Scsi_Host *shost = class_to_shost(dev);
529
530 h = shost_to_hba(shost);
531 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
532 (h->acciopath_status == 1) ? "enabled" : "disabled");
533 }
534
535 /* List of controllers which cannot be hard reset on kexec with reset_devices */
536 static u32 unresettable_controller[] = {
537 0x324a103C, /* Smart Array P712m */
538 0x324b103C, /* Smart Array P711m */
539 0x3223103C, /* Smart Array P800 */
540 0x3234103C, /* Smart Array P400 */
541 0x3235103C, /* Smart Array P400i */
542 0x3211103C, /* Smart Array E200i */
543 0x3212103C, /* Smart Array E200 */
544 0x3213103C, /* Smart Array E200i */
545 0x3214103C, /* Smart Array E200i */
546 0x3215103C, /* Smart Array E200i */
547 0x3237103C, /* Smart Array E500 */
548 0x323D103C, /* Smart Array P700m */
549 0x40800E11, /* Smart Array 5i */
550 0x409C0E11, /* Smart Array 6400 */
551 0x409D0E11, /* Smart Array 6400 EM */
552 0x40700E11, /* Smart Array 5300 */
553 0x40820E11, /* Smart Array 532 */
554 0x40830E11, /* Smart Array 5312 */
555 0x409A0E11, /* Smart Array 641 */
556 0x409B0E11, /* Smart Array 642 */
557 0x40910E11, /* Smart Array 6i */
558 };
559
560 /* List of controllers which cannot even be soft reset */
561 static u32 soft_unresettable_controller[] = {
562 0x40800E11, /* Smart Array 5i */
563 0x40700E11, /* Smart Array 5300 */
564 0x40820E11, /* Smart Array 532 */
565 0x40830E11, /* Smart Array 5312 */
566 0x409A0E11, /* Smart Array 641 */
567 0x409B0E11, /* Smart Array 642 */
568 0x40910E11, /* Smart Array 6i */
569 /* Exclude 640x boards. These are two pci devices in one slot
570 * which share a battery backed cache module. One controls the
571 * cache, the other accesses the cache through the one that controls
572 * it. If we reset the one controlling the cache, the other will
573 * likely not be happy. Just forbid resetting this conjoined mess.
574 * The 640x isn't really supported by hpsa anyway.
575 */
576 0x409C0E11, /* Smart Array 6400 */
577 0x409D0E11, /* Smart Array 6400 EM */
578 };
579
580 static u32 needs_abort_tags_swizzled[] = {
581 0x323D103C, /* Smart Array P700m */
582 0x324a103C, /* Smart Array P712m */
583 0x324b103C, /* SmartArray P711m */
584 };
585
586 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
587 {
588 int i;
589
590 for (i = 0; i < nelems; i++)
591 if (a[i] == board_id)
592 return 1;
593 return 0;
594 }
595
596 static int ctlr_is_hard_resettable(u32 board_id)
597 {
598 return !board_id_in_array(unresettable_controller,
599 ARRAY_SIZE(unresettable_controller), board_id);
600 }
601
602 static int ctlr_is_soft_resettable(u32 board_id)
603 {
604 return !board_id_in_array(soft_unresettable_controller,
605 ARRAY_SIZE(soft_unresettable_controller), board_id);
606 }
607
608 static int ctlr_is_resettable(u32 board_id)
609 {
610 return ctlr_is_hard_resettable(board_id) ||
611 ctlr_is_soft_resettable(board_id);
612 }
613
614 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
615 {
616 return board_id_in_array(needs_abort_tags_swizzled,
617 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
618 }
619
620 static ssize_t host_show_resettable(struct device *dev,
621 struct device_attribute *attr, char *buf)
622 {
623 struct ctlr_info *h;
624 struct Scsi_Host *shost = class_to_shost(dev);
625
626 h = shost_to_hba(shost);
627 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628 }
629
630 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
631 {
632 return (scsi3addr[3] & 0xC0) == 0x40;
633 }
634
635 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
636 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
637 };
638 #define HPSA_RAID_0 0
639 #define HPSA_RAID_4 1
640 #define HPSA_RAID_1 2 /* also used for RAID 10 */
641 #define HPSA_RAID_5 3 /* also used for RAID 50 */
642 #define HPSA_RAID_51 4
643 #define HPSA_RAID_6 5 /* also used for RAID 60 */
644 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
645 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
646 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
647
648 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
649 {
650 return !device->physical_device;
651 }
652
653 static ssize_t raid_level_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
655 {
656 ssize_t l = 0;
657 unsigned char rlevel;
658 struct ctlr_info *h;
659 struct scsi_device *sdev;
660 struct hpsa_scsi_dev_t *hdev;
661 unsigned long flags;
662
663 sdev = to_scsi_device(dev);
664 h = sdev_to_hba(sdev);
665 spin_lock_irqsave(&h->lock, flags);
666 hdev = sdev->hostdata;
667 if (!hdev) {
668 spin_unlock_irqrestore(&h->lock, flags);
669 return -ENODEV;
670 }
671
672 /* Is this even a logical drive? */
673 if (!is_logical_device(hdev)) {
674 spin_unlock_irqrestore(&h->lock, flags);
675 l = snprintf(buf, PAGE_SIZE, "N/A\n");
676 return l;
677 }
678
679 rlevel = hdev->raid_level;
680 spin_unlock_irqrestore(&h->lock, flags);
681 if (rlevel > RAID_UNKNOWN)
682 rlevel = RAID_UNKNOWN;
683 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
684 return l;
685 }
686
687 static ssize_t lunid_show(struct device *dev,
688 struct device_attribute *attr, char *buf)
689 {
690 struct ctlr_info *h;
691 struct scsi_device *sdev;
692 struct hpsa_scsi_dev_t *hdev;
693 unsigned long flags;
694 unsigned char lunid[8];
695
696 sdev = to_scsi_device(dev);
697 h = sdev_to_hba(sdev);
698 spin_lock_irqsave(&h->lock, flags);
699 hdev = sdev->hostdata;
700 if (!hdev) {
701 spin_unlock_irqrestore(&h->lock, flags);
702 return -ENODEV;
703 }
704 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
705 spin_unlock_irqrestore(&h->lock, flags);
706 return snprintf(buf, 20, "0x%8phN\n", lunid);
707 }
708
709 static ssize_t unique_id_show(struct device *dev,
710 struct device_attribute *attr, char *buf)
711 {
712 struct ctlr_info *h;
713 struct scsi_device *sdev;
714 struct hpsa_scsi_dev_t *hdev;
715 unsigned long flags;
716 unsigned char sn[16];
717
718 sdev = to_scsi_device(dev);
719 h = sdev_to_hba(sdev);
720 spin_lock_irqsave(&h->lock, flags);
721 hdev = sdev->hostdata;
722 if (!hdev) {
723 spin_unlock_irqrestore(&h->lock, flags);
724 return -ENODEV;
725 }
726 memcpy(sn, hdev->device_id, sizeof(sn));
727 spin_unlock_irqrestore(&h->lock, flags);
728 return snprintf(buf, 16 * 2 + 2,
729 "%02X%02X%02X%02X%02X%02X%02X%02X"
730 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
731 sn[0], sn[1], sn[2], sn[3],
732 sn[4], sn[5], sn[6], sn[7],
733 sn[8], sn[9], sn[10], sn[11],
734 sn[12], sn[13], sn[14], sn[15]);
735 }
736
737 static ssize_t sas_address_show(struct device *dev,
738 struct device_attribute *attr, char *buf)
739 {
740 struct ctlr_info *h;
741 struct scsi_device *sdev;
742 struct hpsa_scsi_dev_t *hdev;
743 unsigned long flags;
744 u64 sas_address;
745
746 sdev = to_scsi_device(dev);
747 h = sdev_to_hba(sdev);
748 spin_lock_irqsave(&h->lock, flags);
749 hdev = sdev->hostdata;
750 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
751 spin_unlock_irqrestore(&h->lock, flags);
752 return -ENODEV;
753 }
754 sas_address = hdev->sas_address;
755 spin_unlock_irqrestore(&h->lock, flags);
756
757 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
758 }
759
760 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
761 struct device_attribute *attr, char *buf)
762 {
763 struct ctlr_info *h;
764 struct scsi_device *sdev;
765 struct hpsa_scsi_dev_t *hdev;
766 unsigned long flags;
767 int offload_enabled;
768
769 sdev = to_scsi_device(dev);
770 h = sdev_to_hba(sdev);
771 spin_lock_irqsave(&h->lock, flags);
772 hdev = sdev->hostdata;
773 if (!hdev) {
774 spin_unlock_irqrestore(&h->lock, flags);
775 return -ENODEV;
776 }
777 offload_enabled = hdev->offload_enabled;
778 spin_unlock_irqrestore(&h->lock, flags);
779 return snprintf(buf, 20, "%d\n", offload_enabled);
780 }
781
782 #define MAX_PATHS 8
783 static ssize_t path_info_show(struct device *dev,
784 struct device_attribute *attr, char *buf)
785 {
786 struct ctlr_info *h;
787 struct scsi_device *sdev;
788 struct hpsa_scsi_dev_t *hdev;
789 unsigned long flags;
790 int i;
791 int output_len = 0;
792 u8 box;
793 u8 bay;
794 u8 path_map_index = 0;
795 char *active;
796 unsigned char phys_connector[2];
797
798 sdev = to_scsi_device(dev);
799 h = sdev_to_hba(sdev);
800 spin_lock_irqsave(&h->devlock, flags);
801 hdev = sdev->hostdata;
802 if (!hdev) {
803 spin_unlock_irqrestore(&h->devlock, flags);
804 return -ENODEV;
805 }
806
807 bay = hdev->bay;
808 for (i = 0; i < MAX_PATHS; i++) {
809 path_map_index = 1<<i;
810 if (i == hdev->active_path_index)
811 active = "Active";
812 else if (hdev->path_map & path_map_index)
813 active = "Inactive";
814 else
815 continue;
816
817 output_len += scnprintf(buf + output_len,
818 PAGE_SIZE - output_len,
819 "[%d:%d:%d:%d] %20.20s ",
820 h->scsi_host->host_no,
821 hdev->bus, hdev->target, hdev->lun,
822 scsi_device_type(hdev->devtype));
823
824 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
825 output_len += scnprintf(buf + output_len,
826 PAGE_SIZE - output_len,
827 "%s\n", active);
828 continue;
829 }
830
831 box = hdev->box[i];
832 memcpy(&phys_connector, &hdev->phys_connector[i],
833 sizeof(phys_connector));
834 if (phys_connector[0] < '0')
835 phys_connector[0] = '0';
836 if (phys_connector[1] < '0')
837 phys_connector[1] = '0';
838 output_len += scnprintf(buf + output_len,
839 PAGE_SIZE - output_len,
840 "PORT: %.2s ",
841 phys_connector);
842 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
843 hdev->expose_device) {
844 if (box == 0 || box == 0xFF) {
845 output_len += scnprintf(buf + output_len,
846 PAGE_SIZE - output_len,
847 "BAY: %hhu %s\n",
848 bay, active);
849 } else {
850 output_len += scnprintf(buf + output_len,
851 PAGE_SIZE - output_len,
852 "BOX: %hhu BAY: %hhu %s\n",
853 box, bay, active);
854 }
855 } else if (box != 0 && box != 0xFF) {
856 output_len += scnprintf(buf + output_len,
857 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
858 box, active);
859 } else
860 output_len += scnprintf(buf + output_len,
861 PAGE_SIZE - output_len, "%s\n", active);
862 }
863
864 spin_unlock_irqrestore(&h->devlock, flags);
865 return output_len;
866 }
867
868 static ssize_t host_show_ctlr_num(struct device *dev,
869 struct device_attribute *attr, char *buf)
870 {
871 struct ctlr_info *h;
872 struct Scsi_Host *shost = class_to_shost(dev);
873
874 h = shost_to_hba(shost);
875 return snprintf(buf, 20, "%d\n", h->ctlr);
876 }
877
878 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
879 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
880 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
881 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
882 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
883 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
884 host_show_hp_ssd_smart_path_enabled, NULL);
885 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
886 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
887 host_show_hp_ssd_smart_path_status,
888 host_store_hp_ssd_smart_path_status);
889 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
890 host_store_raid_offload_debug);
891 static DEVICE_ATTR(firmware_revision, S_IRUGO,
892 host_show_firmware_revision, NULL);
893 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
894 host_show_commands_outstanding, NULL);
895 static DEVICE_ATTR(transport_mode, S_IRUGO,
896 host_show_transport_mode, NULL);
897 static DEVICE_ATTR(resettable, S_IRUGO,
898 host_show_resettable, NULL);
899 static DEVICE_ATTR(lockup_detected, S_IRUGO,
900 host_show_lockup_detected, NULL);
901 static DEVICE_ATTR(ctlr_num, S_IRUGO,
902 host_show_ctlr_num, NULL);
903
904 static struct device_attribute *hpsa_sdev_attrs[] = {
905 &dev_attr_raid_level,
906 &dev_attr_lunid,
907 &dev_attr_unique_id,
908 &dev_attr_hp_ssd_smart_path_enabled,
909 &dev_attr_path_info,
910 &dev_attr_sas_address,
911 NULL,
912 };
913
914 static struct device_attribute *hpsa_shost_attrs[] = {
915 &dev_attr_rescan,
916 &dev_attr_firmware_revision,
917 &dev_attr_commands_outstanding,
918 &dev_attr_transport_mode,
919 &dev_attr_resettable,
920 &dev_attr_hp_ssd_smart_path_status,
921 &dev_attr_raid_offload_debug,
922 &dev_attr_lockup_detected,
923 &dev_attr_ctlr_num,
924 NULL,
925 };
926
927 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
928 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
929
930 static struct scsi_host_template hpsa_driver_template = {
931 .module = THIS_MODULE,
932 .name = HPSA,
933 .proc_name = HPSA,
934 .queuecommand = hpsa_scsi_queue_command,
935 .scan_start = hpsa_scan_start,
936 .scan_finished = hpsa_scan_finished,
937 .change_queue_depth = hpsa_change_queue_depth,
938 .this_id = -1,
939 .use_clustering = ENABLE_CLUSTERING,
940 .eh_abort_handler = hpsa_eh_abort_handler,
941 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
942 .ioctl = hpsa_ioctl,
943 .slave_alloc = hpsa_slave_alloc,
944 .slave_configure = hpsa_slave_configure,
945 .slave_destroy = hpsa_slave_destroy,
946 #ifdef CONFIG_COMPAT
947 .compat_ioctl = hpsa_compat_ioctl,
948 #endif
949 .sdev_attrs = hpsa_sdev_attrs,
950 .shost_attrs = hpsa_shost_attrs,
951 .max_sectors = 8192,
952 .no_write_same = 1,
953 };
954
955 static inline u32 next_command(struct ctlr_info *h, u8 q)
956 {
957 u32 a;
958 struct reply_queue_buffer *rq = &h->reply_queue[q];
959
960 if (h->transMethod & CFGTBL_Trans_io_accel1)
961 return h->access.command_completed(h, q);
962
963 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
964 return h->access.command_completed(h, q);
965
966 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
967 a = rq->head[rq->current_entry];
968 rq->current_entry++;
969 atomic_dec(&h->commands_outstanding);
970 } else {
971 a = FIFO_EMPTY;
972 }
973 /* Check for wraparound */
974 if (rq->current_entry == h->max_commands) {
975 rq->current_entry = 0;
976 rq->wraparound ^= 1;
977 }
978 return a;
979 }
980
981 /*
982 * There are some special bits in the bus address of the
983 * command that we have to set for the controller to know
984 * how to process the command:
985 *
986 * Normal performant mode:
987 * bit 0: 1 means performant mode, 0 means simple mode.
988 * bits 1-3 = block fetch table entry
989 * bits 4-6 = command type (== 0)
990 *
991 * ioaccel1 mode:
992 * bit 0 = "performant mode" bit.
993 * bits 1-3 = block fetch table entry
994 * bits 4-6 = command type (== 110)
995 * (command type is needed because ioaccel1 mode
996 * commands are submitted through the same register as normal
997 * mode commands, so this is how the controller knows whether
998 * the command is normal mode or ioaccel1 mode.)
999 *
1000 * ioaccel2 mode:
1001 * bit 0 = "performant mode" bit.
1002 * bits 1-4 = block fetch table entry (note extra bit)
1003 * bits 4-6 = not needed, because ioaccel2 mode has
1004 * a separate special register for submitting commands.
1005 */
1006
1007 /*
1008 * set_performant_mode: Modify the tag for cciss performant
1009 * set bit 0 for pull model, bits 3-1 for block fetch
1010 * register number
1011 */
1012 #define DEFAULT_REPLY_QUEUE (-1)
1013 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1014 int reply_queue)
1015 {
1016 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1017 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1018 if (unlikely(!h->msix_vectors))
1019 return;
1020 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021 c->Header.ReplyQueue =
1022 raw_smp_processor_id() % h->nreply_queues;
1023 else
1024 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1025 }
1026 }
1027
1028 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1029 struct CommandList *c,
1030 int reply_queue)
1031 {
1032 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1033
1034 /*
1035 * Tell the controller to post the reply to the queue for this
1036 * processor. This seems to give the best I/O throughput.
1037 */
1038 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1039 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1040 else
1041 cp->ReplyQueue = reply_queue % h->nreply_queues;
1042 /*
1043 * Set the bits in the address sent down to include:
1044 * - performant mode bit (bit 0)
1045 * - pull count (bits 1-3)
1046 * - command type (bits 4-6)
1047 */
1048 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1049 IOACCEL1_BUSADDR_CMDTYPE;
1050 }
1051
1052 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1053 struct CommandList *c,
1054 int reply_queue)
1055 {
1056 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1057 &h->ioaccel2_cmd_pool[c->cmdindex];
1058
1059 /* Tell the controller to post the reply to the queue for this
1060 * processor. This seems to give the best I/O throughput.
1061 */
1062 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1063 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1064 else
1065 cp->reply_queue = reply_queue % h->nreply_queues;
1066 /* Set the bits in the address sent down to include:
1067 * - performant mode bit not used in ioaccel mode 2
1068 * - pull count (bits 0-3)
1069 * - command type isn't needed for ioaccel2
1070 */
1071 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1072 }
1073
1074 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1075 struct CommandList *c,
1076 int reply_queue)
1077 {
1078 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080 /*
1081 * Tell the controller to post the reply to the queue for this
1082 * processor. This seems to give the best I/O throughput.
1083 */
1084 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1085 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1086 else
1087 cp->reply_queue = reply_queue % h->nreply_queues;
1088 /*
1089 * Set the bits in the address sent down to include:
1090 * - performant mode bit not used in ioaccel mode 2
1091 * - pull count (bits 0-3)
1092 * - command type isn't needed for ioaccel2
1093 */
1094 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1095 }
1096
1097 static int is_firmware_flash_cmd(u8 *cdb)
1098 {
1099 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1100 }
1101
1102 /*
1103 * During firmware flash, the heartbeat register may not update as frequently
1104 * as it should. So we dial down lockup detection during firmware flash. and
1105 * dial it back up when firmware flash completes.
1106 */
1107 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1108 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1109 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1110 struct CommandList *c)
1111 {
1112 if (!is_firmware_flash_cmd(c->Request.CDB))
1113 return;
1114 atomic_inc(&h->firmware_flash_in_progress);
1115 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1116 }
1117
1118 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1119 struct CommandList *c)
1120 {
1121 if (is_firmware_flash_cmd(c->Request.CDB) &&
1122 atomic_dec_and_test(&h->firmware_flash_in_progress))
1123 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1124 }
1125
1126 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1127 struct CommandList *c, int reply_queue)
1128 {
1129 dial_down_lockup_detection_during_fw_flash(h, c);
1130 atomic_inc(&h->commands_outstanding);
1131 switch (c->cmd_type) {
1132 case CMD_IOACCEL1:
1133 set_ioaccel1_performant_mode(h, c, reply_queue);
1134 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1135 break;
1136 case CMD_IOACCEL2:
1137 set_ioaccel2_performant_mode(h, c, reply_queue);
1138 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1139 break;
1140 case IOACCEL2_TMF:
1141 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1142 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143 break;
1144 default:
1145 set_performant_mode(h, c, reply_queue);
1146 h->access.submit_command(h, c);
1147 }
1148 }
1149
1150 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1151 {
1152 if (unlikely(hpsa_is_pending_event(c)))
1153 return finish_cmd(c);
1154
1155 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1156 }
1157
1158 static inline int is_hba_lunid(unsigned char scsi3addr[])
1159 {
1160 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1161 }
1162
1163 static inline int is_scsi_rev_5(struct ctlr_info *h)
1164 {
1165 if (!h->hba_inquiry_data)
1166 return 0;
1167 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1168 return 1;
1169 return 0;
1170 }
1171
1172 static int hpsa_find_target_lun(struct ctlr_info *h,
1173 unsigned char scsi3addr[], int bus, int *target, int *lun)
1174 {
1175 /* finds an unused bus, target, lun for a new physical device
1176 * assumes h->devlock is held
1177 */
1178 int i, found = 0;
1179 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1180
1181 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1182
1183 for (i = 0; i < h->ndevices; i++) {
1184 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1185 __set_bit(h->dev[i]->target, lun_taken);
1186 }
1187
1188 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1189 if (i < HPSA_MAX_DEVICES) {
1190 /* *bus = 1; */
1191 *target = i;
1192 *lun = 0;
1193 found = 1;
1194 }
1195 return !found;
1196 }
1197
1198 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1199 struct hpsa_scsi_dev_t *dev, char *description)
1200 {
1201 #define LABEL_SIZE 25
1202 char label[LABEL_SIZE];
1203
1204 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1205 return;
1206
1207 switch (dev->devtype) {
1208 case TYPE_RAID:
1209 snprintf(label, LABEL_SIZE, "controller");
1210 break;
1211 case TYPE_ENCLOSURE:
1212 snprintf(label, LABEL_SIZE, "enclosure");
1213 break;
1214 case TYPE_DISK:
1215 case TYPE_ZBC:
1216 if (dev->external)
1217 snprintf(label, LABEL_SIZE, "external");
1218 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1219 snprintf(label, LABEL_SIZE, "%s",
1220 raid_label[PHYSICAL_DRIVE]);
1221 else
1222 snprintf(label, LABEL_SIZE, "RAID-%s",
1223 dev->raid_level > RAID_UNKNOWN ? "?" :
1224 raid_label[dev->raid_level]);
1225 break;
1226 case TYPE_ROM:
1227 snprintf(label, LABEL_SIZE, "rom");
1228 break;
1229 case TYPE_TAPE:
1230 snprintf(label, LABEL_SIZE, "tape");
1231 break;
1232 case TYPE_MEDIUM_CHANGER:
1233 snprintf(label, LABEL_SIZE, "changer");
1234 break;
1235 default:
1236 snprintf(label, LABEL_SIZE, "UNKNOWN");
1237 break;
1238 }
1239
1240 dev_printk(level, &h->pdev->dev,
1241 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1242 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1243 description,
1244 scsi_device_type(dev->devtype),
1245 dev->vendor,
1246 dev->model,
1247 label,
1248 dev->offload_config ? '+' : '-',
1249 dev->offload_enabled ? '+' : '-',
1250 dev->expose_device);
1251 }
1252
1253 /* Add an entry into h->dev[] array. */
1254 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1255 struct hpsa_scsi_dev_t *device,
1256 struct hpsa_scsi_dev_t *added[], int *nadded)
1257 {
1258 /* assumes h->devlock is held */
1259 int n = h->ndevices;
1260 int i;
1261 unsigned char addr1[8], addr2[8];
1262 struct hpsa_scsi_dev_t *sd;
1263
1264 if (n >= HPSA_MAX_DEVICES) {
1265 dev_err(&h->pdev->dev, "too many devices, some will be "
1266 "inaccessible.\n");
1267 return -1;
1268 }
1269
1270 /* physical devices do not have lun or target assigned until now. */
1271 if (device->lun != -1)
1272 /* Logical device, lun is already assigned. */
1273 goto lun_assigned;
1274
1275 /* If this device a non-zero lun of a multi-lun device
1276 * byte 4 of the 8-byte LUN addr will contain the logical
1277 * unit no, zero otherwise.
1278 */
1279 if (device->scsi3addr[4] == 0) {
1280 /* This is not a non-zero lun of a multi-lun device */
1281 if (hpsa_find_target_lun(h, device->scsi3addr,
1282 device->bus, &device->target, &device->lun) != 0)
1283 return -1;
1284 goto lun_assigned;
1285 }
1286
1287 /* This is a non-zero lun of a multi-lun device.
1288 * Search through our list and find the device which
1289 * has the same 8 byte LUN address, excepting byte 4 and 5.
1290 * Assign the same bus and target for this new LUN.
1291 * Use the logical unit number from the firmware.
1292 */
1293 memcpy(addr1, device->scsi3addr, 8);
1294 addr1[4] = 0;
1295 addr1[5] = 0;
1296 for (i = 0; i < n; i++) {
1297 sd = h->dev[i];
1298 memcpy(addr2, sd->scsi3addr, 8);
1299 addr2[4] = 0;
1300 addr2[5] = 0;
1301 /* differ only in byte 4 and 5? */
1302 if (memcmp(addr1, addr2, 8) == 0) {
1303 device->bus = sd->bus;
1304 device->target = sd->target;
1305 device->lun = device->scsi3addr[4];
1306 break;
1307 }
1308 }
1309 if (device->lun == -1) {
1310 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1311 " suspect firmware bug or unsupported hardware "
1312 "configuration.\n");
1313 return -1;
1314 }
1315
1316 lun_assigned:
1317
1318 h->dev[n] = device;
1319 h->ndevices++;
1320 added[*nadded] = device;
1321 (*nadded)++;
1322 hpsa_show_dev_msg(KERN_INFO, h, device,
1323 device->expose_device ? "added" : "masked");
1324 device->offload_to_be_enabled = device->offload_enabled;
1325 device->offload_enabled = 0;
1326 return 0;
1327 }
1328
1329 /* Update an entry in h->dev[] array. */
1330 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1331 int entry, struct hpsa_scsi_dev_t *new_entry)
1332 {
1333 int offload_enabled;
1334 /* assumes h->devlock is held */
1335 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1336
1337 /* Raid level changed. */
1338 h->dev[entry]->raid_level = new_entry->raid_level;
1339
1340 /* Raid offload parameters changed. Careful about the ordering. */
1341 if (new_entry->offload_config && new_entry->offload_enabled) {
1342 /*
1343 * if drive is newly offload_enabled, we want to copy the
1344 * raid map data first. If previously offload_enabled and
1345 * offload_config were set, raid map data had better be
1346 * the same as it was before. if raid map data is changed
1347 * then it had better be the case that
1348 * h->dev[entry]->offload_enabled is currently 0.
1349 */
1350 h->dev[entry]->raid_map = new_entry->raid_map;
1351 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1352 }
1353 if (new_entry->hba_ioaccel_enabled) {
1354 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1355 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1356 }
1357 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1358 h->dev[entry]->offload_config = new_entry->offload_config;
1359 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1360 h->dev[entry]->queue_depth = new_entry->queue_depth;
1361
1362 /*
1363 * We can turn off ioaccel offload now, but need to delay turning
1364 * it on until we can update h->dev[entry]->phys_disk[], but we
1365 * can't do that until all the devices are updated.
1366 */
1367 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1368 if (!new_entry->offload_enabled)
1369 h->dev[entry]->offload_enabled = 0;
1370
1371 offload_enabled = h->dev[entry]->offload_enabled;
1372 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1373 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1374 h->dev[entry]->offload_enabled = offload_enabled;
1375 }
1376
1377 /* Replace an entry from h->dev[] array. */
1378 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1379 int entry, struct hpsa_scsi_dev_t *new_entry,
1380 struct hpsa_scsi_dev_t *added[], int *nadded,
1381 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1382 {
1383 /* assumes h->devlock is held */
1384 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1385 removed[*nremoved] = h->dev[entry];
1386 (*nremoved)++;
1387
1388 /*
1389 * New physical devices won't have target/lun assigned yet
1390 * so we need to preserve the values in the slot we are replacing.
1391 */
1392 if (new_entry->target == -1) {
1393 new_entry->target = h->dev[entry]->target;
1394 new_entry->lun = h->dev[entry]->lun;
1395 }
1396
1397 h->dev[entry] = new_entry;
1398 added[*nadded] = new_entry;
1399 (*nadded)++;
1400 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1401 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1402 new_entry->offload_enabled = 0;
1403 }
1404
1405 /* Remove an entry from h->dev[] array. */
1406 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1407 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1408 {
1409 /* assumes h->devlock is held */
1410 int i;
1411 struct hpsa_scsi_dev_t *sd;
1412
1413 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1414
1415 sd = h->dev[entry];
1416 removed[*nremoved] = h->dev[entry];
1417 (*nremoved)++;
1418
1419 for (i = entry; i < h->ndevices-1; i++)
1420 h->dev[i] = h->dev[i+1];
1421 h->ndevices--;
1422 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1423 }
1424
1425 #define SCSI3ADDR_EQ(a, b) ( \
1426 (a)[7] == (b)[7] && \
1427 (a)[6] == (b)[6] && \
1428 (a)[5] == (b)[5] && \
1429 (a)[4] == (b)[4] && \
1430 (a)[3] == (b)[3] && \
1431 (a)[2] == (b)[2] && \
1432 (a)[1] == (b)[1] && \
1433 (a)[0] == (b)[0])
1434
1435 static void fixup_botched_add(struct ctlr_info *h,
1436 struct hpsa_scsi_dev_t *added)
1437 {
1438 /* called when scsi_add_device fails in order to re-adjust
1439 * h->dev[] to match the mid layer's view.
1440 */
1441 unsigned long flags;
1442 int i, j;
1443
1444 spin_lock_irqsave(&h->lock, flags);
1445 for (i = 0; i < h->ndevices; i++) {
1446 if (h->dev[i] == added) {
1447 for (j = i; j < h->ndevices-1; j++)
1448 h->dev[j] = h->dev[j+1];
1449 h->ndevices--;
1450 break;
1451 }
1452 }
1453 spin_unlock_irqrestore(&h->lock, flags);
1454 kfree(added);
1455 }
1456
1457 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1458 struct hpsa_scsi_dev_t *dev2)
1459 {
1460 /* we compare everything except lun and target as these
1461 * are not yet assigned. Compare parts likely
1462 * to differ first
1463 */
1464 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1465 sizeof(dev1->scsi3addr)) != 0)
1466 return 0;
1467 if (memcmp(dev1->device_id, dev2->device_id,
1468 sizeof(dev1->device_id)) != 0)
1469 return 0;
1470 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1471 return 0;
1472 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1473 return 0;
1474 if (dev1->devtype != dev2->devtype)
1475 return 0;
1476 if (dev1->bus != dev2->bus)
1477 return 0;
1478 return 1;
1479 }
1480
1481 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1482 struct hpsa_scsi_dev_t *dev2)
1483 {
1484 /* Device attributes that can change, but don't mean
1485 * that the device is a different device, nor that the OS
1486 * needs to be told anything about the change.
1487 */
1488 if (dev1->raid_level != dev2->raid_level)
1489 return 1;
1490 if (dev1->offload_config != dev2->offload_config)
1491 return 1;
1492 if (dev1->offload_enabled != dev2->offload_enabled)
1493 return 1;
1494 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1495 if (dev1->queue_depth != dev2->queue_depth)
1496 return 1;
1497 return 0;
1498 }
1499
1500 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1501 * and return needle location in *index. If scsi3addr matches, but not
1502 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1503 * location in *index.
1504 * In the case of a minor device attribute change, such as RAID level, just
1505 * return DEVICE_UPDATED, along with the updated device's location in index.
1506 * If needle not found, return DEVICE_NOT_FOUND.
1507 */
1508 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1509 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1510 int *index)
1511 {
1512 int i;
1513 #define DEVICE_NOT_FOUND 0
1514 #define DEVICE_CHANGED 1
1515 #define DEVICE_SAME 2
1516 #define DEVICE_UPDATED 3
1517 if (needle == NULL)
1518 return DEVICE_NOT_FOUND;
1519
1520 for (i = 0; i < haystack_size; i++) {
1521 if (haystack[i] == NULL) /* previously removed. */
1522 continue;
1523 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1524 *index = i;
1525 if (device_is_the_same(needle, haystack[i])) {
1526 if (device_updated(needle, haystack[i]))
1527 return DEVICE_UPDATED;
1528 return DEVICE_SAME;
1529 } else {
1530 /* Keep offline devices offline */
1531 if (needle->volume_offline)
1532 return DEVICE_NOT_FOUND;
1533 return DEVICE_CHANGED;
1534 }
1535 }
1536 }
1537 *index = -1;
1538 return DEVICE_NOT_FOUND;
1539 }
1540
1541 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1542 unsigned char scsi3addr[])
1543 {
1544 struct offline_device_entry *device;
1545 unsigned long flags;
1546
1547 /* Check to see if device is already on the list */
1548 spin_lock_irqsave(&h->offline_device_lock, flags);
1549 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1550 if (memcmp(device->scsi3addr, scsi3addr,
1551 sizeof(device->scsi3addr)) == 0) {
1552 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1553 return;
1554 }
1555 }
1556 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557
1558 /* Device is not on the list, add it. */
1559 device = kmalloc(sizeof(*device), GFP_KERNEL);
1560 if (!device)
1561 return;
1562
1563 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1564 spin_lock_irqsave(&h->offline_device_lock, flags);
1565 list_add_tail(&device->offline_list, &h->offline_device_list);
1566 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1567 }
1568
1569 /* Print a message explaining various offline volume states */
1570 static void hpsa_show_volume_status(struct ctlr_info *h,
1571 struct hpsa_scsi_dev_t *sd)
1572 {
1573 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1574 dev_info(&h->pdev->dev,
1575 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1576 h->scsi_host->host_no,
1577 sd->bus, sd->target, sd->lun);
1578 switch (sd->volume_offline) {
1579 case HPSA_LV_OK:
1580 break;
1581 case HPSA_LV_UNDERGOING_ERASE:
1582 dev_info(&h->pdev->dev,
1583 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1584 h->scsi_host->host_no,
1585 sd->bus, sd->target, sd->lun);
1586 break;
1587 case HPSA_LV_NOT_AVAILABLE:
1588 dev_info(&h->pdev->dev,
1589 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1590 h->scsi_host->host_no,
1591 sd->bus, sd->target, sd->lun);
1592 break;
1593 case HPSA_LV_UNDERGOING_RPI:
1594 dev_info(&h->pdev->dev,
1595 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1596 h->scsi_host->host_no,
1597 sd->bus, sd->target, sd->lun);
1598 break;
1599 case HPSA_LV_PENDING_RPI:
1600 dev_info(&h->pdev->dev,
1601 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1602 h->scsi_host->host_no,
1603 sd->bus, sd->target, sd->lun);
1604 break;
1605 case HPSA_LV_ENCRYPTED_NO_KEY:
1606 dev_info(&h->pdev->dev,
1607 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1608 h->scsi_host->host_no,
1609 sd->bus, sd->target, sd->lun);
1610 break;
1611 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1612 dev_info(&h->pdev->dev,
1613 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1614 h->scsi_host->host_no,
1615 sd->bus, sd->target, sd->lun);
1616 break;
1617 case HPSA_LV_UNDERGOING_ENCRYPTION:
1618 dev_info(&h->pdev->dev,
1619 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1620 h->scsi_host->host_no,
1621 sd->bus, sd->target, sd->lun);
1622 break;
1623 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1624 dev_info(&h->pdev->dev,
1625 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1626 h->scsi_host->host_no,
1627 sd->bus, sd->target, sd->lun);
1628 break;
1629 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1630 dev_info(&h->pdev->dev,
1631 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1632 h->scsi_host->host_no,
1633 sd->bus, sd->target, sd->lun);
1634 break;
1635 case HPSA_LV_PENDING_ENCRYPTION:
1636 dev_info(&h->pdev->dev,
1637 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1638 h->scsi_host->host_no,
1639 sd->bus, sd->target, sd->lun);
1640 break;
1641 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1642 dev_info(&h->pdev->dev,
1643 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1644 h->scsi_host->host_no,
1645 sd->bus, sd->target, sd->lun);
1646 break;
1647 }
1648 }
1649
1650 /*
1651 * Figure the list of physical drive pointers for a logical drive with
1652 * raid offload configured.
1653 */
1654 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1655 struct hpsa_scsi_dev_t *dev[], int ndevices,
1656 struct hpsa_scsi_dev_t *logical_drive)
1657 {
1658 struct raid_map_data *map = &logical_drive->raid_map;
1659 struct raid_map_disk_data *dd = &map->data[0];
1660 int i, j;
1661 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1662 le16_to_cpu(map->metadata_disks_per_row);
1663 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1664 le16_to_cpu(map->layout_map_count) *
1665 total_disks_per_row;
1666 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1667 total_disks_per_row;
1668 int qdepth;
1669
1670 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1671 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1672
1673 logical_drive->nphysical_disks = nraid_map_entries;
1674
1675 qdepth = 0;
1676 for (i = 0; i < nraid_map_entries; i++) {
1677 logical_drive->phys_disk[i] = NULL;
1678 if (!logical_drive->offload_config)
1679 continue;
1680 for (j = 0; j < ndevices; j++) {
1681 if (dev[j] == NULL)
1682 continue;
1683 if (dev[j]->devtype != TYPE_DISK &&
1684 dev[j]->devtype != TYPE_ZBC)
1685 continue;
1686 if (is_logical_device(dev[j]))
1687 continue;
1688 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1689 continue;
1690
1691 logical_drive->phys_disk[i] = dev[j];
1692 if (i < nphys_disk)
1693 qdepth = min(h->nr_cmds, qdepth +
1694 logical_drive->phys_disk[i]->queue_depth);
1695 break;
1696 }
1697
1698 /*
1699 * This can happen if a physical drive is removed and
1700 * the logical drive is degraded. In that case, the RAID
1701 * map data will refer to a physical disk which isn't actually
1702 * present. And in that case offload_enabled should already
1703 * be 0, but we'll turn it off here just in case
1704 */
1705 if (!logical_drive->phys_disk[i]) {
1706 logical_drive->offload_enabled = 0;
1707 logical_drive->offload_to_be_enabled = 0;
1708 logical_drive->queue_depth = 8;
1709 }
1710 }
1711 if (nraid_map_entries)
1712 /*
1713 * This is correct for reads, too high for full stripe writes,
1714 * way too high for partial stripe writes
1715 */
1716 logical_drive->queue_depth = qdepth;
1717 else
1718 logical_drive->queue_depth = h->nr_cmds;
1719 }
1720
1721 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1722 struct hpsa_scsi_dev_t *dev[], int ndevices)
1723 {
1724 int i;
1725
1726 for (i = 0; i < ndevices; i++) {
1727 if (dev[i] == NULL)
1728 continue;
1729 if (dev[i]->devtype != TYPE_DISK &&
1730 dev[i]->devtype != TYPE_ZBC)
1731 continue;
1732 if (!is_logical_device(dev[i]))
1733 continue;
1734
1735 /*
1736 * If offload is currently enabled, the RAID map and
1737 * phys_disk[] assignment *better* not be changing
1738 * and since it isn't changing, we do not need to
1739 * update it.
1740 */
1741 if (dev[i]->offload_enabled)
1742 continue;
1743
1744 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1745 }
1746 }
1747
1748 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1749 {
1750 int rc = 0;
1751
1752 if (!h->scsi_host)
1753 return 1;
1754
1755 if (is_logical_device(device)) /* RAID */
1756 rc = scsi_add_device(h->scsi_host, device->bus,
1757 device->target, device->lun);
1758 else /* HBA */
1759 rc = hpsa_add_sas_device(h->sas_host, device);
1760
1761 return rc;
1762 }
1763
1764 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1765 struct hpsa_scsi_dev_t *dev)
1766 {
1767 int i;
1768 int count = 0;
1769
1770 for (i = 0; i < h->nr_cmds; i++) {
1771 struct CommandList *c = h->cmd_pool + i;
1772 int refcount = atomic_inc_return(&c->refcount);
1773
1774 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1775 dev->scsi3addr)) {
1776 unsigned long flags;
1777
1778 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1779 if (!hpsa_is_cmd_idle(c))
1780 ++count;
1781 spin_unlock_irqrestore(&h->lock, flags);
1782 }
1783
1784 cmd_free(h, c);
1785 }
1786
1787 return count;
1788 }
1789
1790 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1791 struct hpsa_scsi_dev_t *device)
1792 {
1793 int cmds = 0;
1794 int waits = 0;
1795
1796 while (1) {
1797 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1798 if (cmds == 0)
1799 break;
1800 if (++waits > 20)
1801 break;
1802 dev_warn(&h->pdev->dev,
1803 "%s: removing device with %d outstanding commands!\n",
1804 __func__, cmds);
1805 msleep(1000);
1806 }
1807 }
1808
1809 static void hpsa_remove_device(struct ctlr_info *h,
1810 struct hpsa_scsi_dev_t *device)
1811 {
1812 struct scsi_device *sdev = NULL;
1813
1814 if (!h->scsi_host)
1815 return;
1816
1817 if (is_logical_device(device)) { /* RAID */
1818 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1819 device->target, device->lun);
1820 if (sdev) {
1821 scsi_remove_device(sdev);
1822 scsi_device_put(sdev);
1823 } else {
1824 /*
1825 * We don't expect to get here. Future commands
1826 * to this device will get a selection timeout as
1827 * if the device were gone.
1828 */
1829 hpsa_show_dev_msg(KERN_WARNING, h, device,
1830 "didn't find device for removal.");
1831 }
1832 } else { /* HBA */
1833
1834 device->removed = 1;
1835 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1836
1837 hpsa_remove_sas_device(device);
1838 }
1839 }
1840
1841 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1842 struct hpsa_scsi_dev_t *sd[], int nsds)
1843 {
1844 /* sd contains scsi3 addresses and devtypes, and inquiry
1845 * data. This function takes what's in sd to be the current
1846 * reality and updates h->dev[] to reflect that reality.
1847 */
1848 int i, entry, device_change, changes = 0;
1849 struct hpsa_scsi_dev_t *csd;
1850 unsigned long flags;
1851 struct hpsa_scsi_dev_t **added, **removed;
1852 int nadded, nremoved;
1853
1854 /*
1855 * A reset can cause a device status to change
1856 * re-schedule the scan to see what happened.
1857 */
1858 if (h->reset_in_progress) {
1859 h->drv_req_rescan = 1;
1860 return;
1861 }
1862
1863 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1864 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1865
1866 if (!added || !removed) {
1867 dev_warn(&h->pdev->dev, "out of memory in "
1868 "adjust_hpsa_scsi_table\n");
1869 goto free_and_out;
1870 }
1871
1872 spin_lock_irqsave(&h->devlock, flags);
1873
1874 /* find any devices in h->dev[] that are not in
1875 * sd[] and remove them from h->dev[], and for any
1876 * devices which have changed, remove the old device
1877 * info and add the new device info.
1878 * If minor device attributes change, just update
1879 * the existing device structure.
1880 */
1881 i = 0;
1882 nremoved = 0;
1883 nadded = 0;
1884 while (i < h->ndevices) {
1885 csd = h->dev[i];
1886 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1887 if (device_change == DEVICE_NOT_FOUND) {
1888 changes++;
1889 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1890 continue; /* remove ^^^, hence i not incremented */
1891 } else if (device_change == DEVICE_CHANGED) {
1892 changes++;
1893 hpsa_scsi_replace_entry(h, i, sd[entry],
1894 added, &nadded, removed, &nremoved);
1895 /* Set it to NULL to prevent it from being freed
1896 * at the bottom of hpsa_update_scsi_devices()
1897 */
1898 sd[entry] = NULL;
1899 } else if (device_change == DEVICE_UPDATED) {
1900 hpsa_scsi_update_entry(h, i, sd[entry]);
1901 }
1902 i++;
1903 }
1904
1905 /* Now, make sure every device listed in sd[] is also
1906 * listed in h->dev[], adding them if they aren't found
1907 */
1908
1909 for (i = 0; i < nsds; i++) {
1910 if (!sd[i]) /* if already added above. */
1911 continue;
1912
1913 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1914 * as the SCSI mid-layer does not handle such devices well.
1915 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1916 * at 160Hz, and prevents the system from coming up.
1917 */
1918 if (sd[i]->volume_offline) {
1919 hpsa_show_volume_status(h, sd[i]);
1920 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1921 continue;
1922 }
1923
1924 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1925 h->ndevices, &entry);
1926 if (device_change == DEVICE_NOT_FOUND) {
1927 changes++;
1928 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1929 break;
1930 sd[i] = NULL; /* prevent from being freed later. */
1931 } else if (device_change == DEVICE_CHANGED) {
1932 /* should never happen... */
1933 changes++;
1934 dev_warn(&h->pdev->dev,
1935 "device unexpectedly changed.\n");
1936 /* but if it does happen, we just ignore that device */
1937 }
1938 }
1939 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1940
1941 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1942 * any logical drives that need it enabled.
1943 */
1944 for (i = 0; i < h->ndevices; i++) {
1945 if (h->dev[i] == NULL)
1946 continue;
1947 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1948 }
1949
1950 spin_unlock_irqrestore(&h->devlock, flags);
1951
1952 /* Monitor devices which are in one of several NOT READY states to be
1953 * brought online later. This must be done without holding h->devlock,
1954 * so don't touch h->dev[]
1955 */
1956 for (i = 0; i < nsds; i++) {
1957 if (!sd[i]) /* if already added above. */
1958 continue;
1959 if (sd[i]->volume_offline)
1960 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1961 }
1962
1963 /* Don't notify scsi mid layer of any changes the first time through
1964 * (or if there are no changes) scsi_scan_host will do it later the
1965 * first time through.
1966 */
1967 if (!changes)
1968 goto free_and_out;
1969
1970 /* Notify scsi mid layer of any removed devices */
1971 for (i = 0; i < nremoved; i++) {
1972 if (removed[i] == NULL)
1973 continue;
1974 if (removed[i]->expose_device)
1975 hpsa_remove_device(h, removed[i]);
1976 kfree(removed[i]);
1977 removed[i] = NULL;
1978 }
1979
1980 /* Notify scsi mid layer of any added devices */
1981 for (i = 0; i < nadded; i++) {
1982 int rc = 0;
1983
1984 if (added[i] == NULL)
1985 continue;
1986 if (!(added[i]->expose_device))
1987 continue;
1988 rc = hpsa_add_device(h, added[i]);
1989 if (!rc)
1990 continue;
1991 dev_warn(&h->pdev->dev,
1992 "addition failed %d, device not added.", rc);
1993 /* now we have to remove it from h->dev,
1994 * since it didn't get added to scsi mid layer
1995 */
1996 fixup_botched_add(h, added[i]);
1997 h->drv_req_rescan = 1;
1998 }
1999
2000 free_and_out:
2001 kfree(added);
2002 kfree(removed);
2003 }
2004
2005 /*
2006 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2007 * Assume's h->devlock is held.
2008 */
2009 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2010 int bus, int target, int lun)
2011 {
2012 int i;
2013 struct hpsa_scsi_dev_t *sd;
2014
2015 for (i = 0; i < h->ndevices; i++) {
2016 sd = h->dev[i];
2017 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2018 return sd;
2019 }
2020 return NULL;
2021 }
2022
2023 static int hpsa_slave_alloc(struct scsi_device *sdev)
2024 {
2025 struct hpsa_scsi_dev_t *sd = NULL;
2026 unsigned long flags;
2027 struct ctlr_info *h;
2028
2029 h = sdev_to_hba(sdev);
2030 spin_lock_irqsave(&h->devlock, flags);
2031 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2032 struct scsi_target *starget;
2033 struct sas_rphy *rphy;
2034
2035 starget = scsi_target(sdev);
2036 rphy = target_to_rphy(starget);
2037 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2038 if (sd) {
2039 sd->target = sdev_id(sdev);
2040 sd->lun = sdev->lun;
2041 }
2042 }
2043 if (!sd)
2044 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2045 sdev_id(sdev), sdev->lun);
2046
2047 if (sd && sd->expose_device) {
2048 atomic_set(&sd->ioaccel_cmds_out, 0);
2049 sdev->hostdata = sd;
2050 } else
2051 sdev->hostdata = NULL;
2052 spin_unlock_irqrestore(&h->devlock, flags);
2053 return 0;
2054 }
2055
2056 /* configure scsi device based on internal per-device structure */
2057 static int hpsa_slave_configure(struct scsi_device *sdev)
2058 {
2059 struct hpsa_scsi_dev_t *sd;
2060 int queue_depth;
2061
2062 sd = sdev->hostdata;
2063 sdev->no_uld_attach = !sd || !sd->expose_device;
2064
2065 if (sd)
2066 queue_depth = sd->queue_depth != 0 ?
2067 sd->queue_depth : sdev->host->can_queue;
2068 else
2069 queue_depth = sdev->host->can_queue;
2070
2071 scsi_change_queue_depth(sdev, queue_depth);
2072
2073 return 0;
2074 }
2075
2076 static void hpsa_slave_destroy(struct scsi_device *sdev)
2077 {
2078 /* nothing to do. */
2079 }
2080
2081 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2082 {
2083 int i;
2084
2085 if (!h->ioaccel2_cmd_sg_list)
2086 return;
2087 for (i = 0; i < h->nr_cmds; i++) {
2088 kfree(h->ioaccel2_cmd_sg_list[i]);
2089 h->ioaccel2_cmd_sg_list[i] = NULL;
2090 }
2091 kfree(h->ioaccel2_cmd_sg_list);
2092 h->ioaccel2_cmd_sg_list = NULL;
2093 }
2094
2095 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2096 {
2097 int i;
2098
2099 if (h->chainsize <= 0)
2100 return 0;
2101
2102 h->ioaccel2_cmd_sg_list =
2103 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2104 GFP_KERNEL);
2105 if (!h->ioaccel2_cmd_sg_list)
2106 return -ENOMEM;
2107 for (i = 0; i < h->nr_cmds; i++) {
2108 h->ioaccel2_cmd_sg_list[i] =
2109 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2110 h->maxsgentries, GFP_KERNEL);
2111 if (!h->ioaccel2_cmd_sg_list[i])
2112 goto clean;
2113 }
2114 return 0;
2115
2116 clean:
2117 hpsa_free_ioaccel2_sg_chain_blocks(h);
2118 return -ENOMEM;
2119 }
2120
2121 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2122 {
2123 int i;
2124
2125 if (!h->cmd_sg_list)
2126 return;
2127 for (i = 0; i < h->nr_cmds; i++) {
2128 kfree(h->cmd_sg_list[i]);
2129 h->cmd_sg_list[i] = NULL;
2130 }
2131 kfree(h->cmd_sg_list);
2132 h->cmd_sg_list = NULL;
2133 }
2134
2135 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2136 {
2137 int i;
2138
2139 if (h->chainsize <= 0)
2140 return 0;
2141
2142 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2143 GFP_KERNEL);
2144 if (!h->cmd_sg_list)
2145 return -ENOMEM;
2146
2147 for (i = 0; i < h->nr_cmds; i++) {
2148 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2149 h->chainsize, GFP_KERNEL);
2150 if (!h->cmd_sg_list[i])
2151 goto clean;
2152
2153 }
2154 return 0;
2155
2156 clean:
2157 hpsa_free_sg_chain_blocks(h);
2158 return -ENOMEM;
2159 }
2160
2161 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2162 struct io_accel2_cmd *cp, struct CommandList *c)
2163 {
2164 struct ioaccel2_sg_element *chain_block;
2165 u64 temp64;
2166 u32 chain_size;
2167
2168 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2169 chain_size = le32_to_cpu(cp->sg[0].length);
2170 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2171 PCI_DMA_TODEVICE);
2172 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2173 /* prevent subsequent unmapping */
2174 cp->sg->address = 0;
2175 return -1;
2176 }
2177 cp->sg->address = cpu_to_le64(temp64);
2178 return 0;
2179 }
2180
2181 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2182 struct io_accel2_cmd *cp)
2183 {
2184 struct ioaccel2_sg_element *chain_sg;
2185 u64 temp64;
2186 u32 chain_size;
2187
2188 chain_sg = cp->sg;
2189 temp64 = le64_to_cpu(chain_sg->address);
2190 chain_size = le32_to_cpu(cp->sg[0].length);
2191 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2192 }
2193
2194 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2195 struct CommandList *c)
2196 {
2197 struct SGDescriptor *chain_sg, *chain_block;
2198 u64 temp64;
2199 u32 chain_len;
2200
2201 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2202 chain_block = h->cmd_sg_list[c->cmdindex];
2203 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2204 chain_len = sizeof(*chain_sg) *
2205 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2206 chain_sg->Len = cpu_to_le32(chain_len);
2207 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2208 PCI_DMA_TODEVICE);
2209 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2210 /* prevent subsequent unmapping */
2211 chain_sg->Addr = cpu_to_le64(0);
2212 return -1;
2213 }
2214 chain_sg->Addr = cpu_to_le64(temp64);
2215 return 0;
2216 }
2217
2218 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2219 struct CommandList *c)
2220 {
2221 struct SGDescriptor *chain_sg;
2222
2223 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2224 return;
2225
2226 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2227 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2228 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2229 }
2230
2231
2232 /* Decode the various types of errors on ioaccel2 path.
2233 * Return 1 for any error that should generate a RAID path retry.
2234 * Return 0 for errors that don't require a RAID path retry.
2235 */
2236 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2237 struct CommandList *c,
2238 struct scsi_cmnd *cmd,
2239 struct io_accel2_cmd *c2,
2240 struct hpsa_scsi_dev_t *dev)
2241 {
2242 int data_len;
2243 int retry = 0;
2244 u32 ioaccel2_resid = 0;
2245
2246 switch (c2->error_data.serv_response) {
2247 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2248 switch (c2->error_data.status) {
2249 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2250 break;
2251 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2252 cmd->result |= SAM_STAT_CHECK_CONDITION;
2253 if (c2->error_data.data_present !=
2254 IOACCEL2_SENSE_DATA_PRESENT) {
2255 memset(cmd->sense_buffer, 0,
2256 SCSI_SENSE_BUFFERSIZE);
2257 break;
2258 }
2259 /* copy the sense data */
2260 data_len = c2->error_data.sense_data_len;
2261 if (data_len > SCSI_SENSE_BUFFERSIZE)
2262 data_len = SCSI_SENSE_BUFFERSIZE;
2263 if (data_len > sizeof(c2->error_data.sense_data_buff))
2264 data_len =
2265 sizeof(c2->error_data.sense_data_buff);
2266 memcpy(cmd->sense_buffer,
2267 c2->error_data.sense_data_buff, data_len);
2268 retry = 1;
2269 break;
2270 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2271 retry = 1;
2272 break;
2273 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2274 retry = 1;
2275 break;
2276 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2277 retry = 1;
2278 break;
2279 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2280 retry = 1;
2281 break;
2282 default:
2283 retry = 1;
2284 break;
2285 }
2286 break;
2287 case IOACCEL2_SERV_RESPONSE_FAILURE:
2288 switch (c2->error_data.status) {
2289 case IOACCEL2_STATUS_SR_IO_ERROR:
2290 case IOACCEL2_STATUS_SR_IO_ABORTED:
2291 case IOACCEL2_STATUS_SR_OVERRUN:
2292 retry = 1;
2293 break;
2294 case IOACCEL2_STATUS_SR_UNDERRUN:
2295 cmd->result = (DID_OK << 16); /* host byte */
2296 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2297 ioaccel2_resid = get_unaligned_le32(
2298 &c2->error_data.resid_cnt[0]);
2299 scsi_set_resid(cmd, ioaccel2_resid);
2300 break;
2301 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2302 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2303 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2304 /*
2305 * Did an HBA disk disappear? We will eventually
2306 * get a state change event from the controller but
2307 * in the meantime, we need to tell the OS that the
2308 * HBA disk is no longer there and stop I/O
2309 * from going down. This allows the potential re-insert
2310 * of the disk to get the same device node.
2311 */
2312 if (dev->physical_device && dev->expose_device) {
2313 cmd->result = DID_NO_CONNECT << 16;
2314 dev->removed = 1;
2315 h->drv_req_rescan = 1;
2316 dev_warn(&h->pdev->dev,
2317 "%s: device is gone!\n", __func__);
2318 } else
2319 /*
2320 * Retry by sending down the RAID path.
2321 * We will get an event from ctlr to
2322 * trigger rescan regardless.
2323 */
2324 retry = 1;
2325 break;
2326 default:
2327 retry = 1;
2328 }
2329 break;
2330 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2331 break;
2332 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2333 break;
2334 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2335 retry = 1;
2336 break;
2337 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2338 break;
2339 default:
2340 retry = 1;
2341 break;
2342 }
2343
2344 return retry; /* retry on raid path? */
2345 }
2346
2347 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2348 struct CommandList *c)
2349 {
2350 bool do_wake = false;
2351
2352 /*
2353 * Prevent the following race in the abort handler:
2354 *
2355 * 1. LLD is requested to abort a SCSI command
2356 * 2. The SCSI command completes
2357 * 3. The struct CommandList associated with step 2 is made available
2358 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2359 * 5. Abort handler follows scsi_cmnd->host_scribble and
2360 * finds struct CommandList and tries to aborts it
2361 * Now we have aborted the wrong command.
2362 *
2363 * Reset c->scsi_cmd here so that the abort or reset handler will know
2364 * this command has completed. Then, check to see if the handler is
2365 * waiting for this command, and, if so, wake it.
2366 */
2367 c->scsi_cmd = SCSI_CMD_IDLE;
2368 mb(); /* Declare command idle before checking for pending events. */
2369 if (c->abort_pending) {
2370 do_wake = true;
2371 c->abort_pending = false;
2372 }
2373 if (c->reset_pending) {
2374 unsigned long flags;
2375 struct hpsa_scsi_dev_t *dev;
2376
2377 /*
2378 * There appears to be a reset pending; lock the lock and
2379 * reconfirm. If so, then decrement the count of outstanding
2380 * commands and wake the reset command if this is the last one.
2381 */
2382 spin_lock_irqsave(&h->lock, flags);
2383 dev = c->reset_pending; /* Re-fetch under the lock. */
2384 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2385 do_wake = true;
2386 c->reset_pending = NULL;
2387 spin_unlock_irqrestore(&h->lock, flags);
2388 }
2389
2390 if (do_wake)
2391 wake_up_all(&h->event_sync_wait_queue);
2392 }
2393
2394 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2395 struct CommandList *c)
2396 {
2397 hpsa_cmd_resolve_events(h, c);
2398 cmd_tagged_free(h, c);
2399 }
2400
2401 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2402 struct CommandList *c, struct scsi_cmnd *cmd)
2403 {
2404 hpsa_cmd_resolve_and_free(h, c);
2405 if (cmd && cmd->scsi_done)
2406 cmd->scsi_done(cmd);
2407 }
2408
2409 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2410 {
2411 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2412 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2413 }
2414
2415 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2416 {
2417 cmd->result = DID_ABORT << 16;
2418 }
2419
2420 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2421 struct scsi_cmnd *cmd)
2422 {
2423 hpsa_set_scsi_cmd_aborted(cmd);
2424 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2425 c->Request.CDB, c->err_info->ScsiStatus);
2426 hpsa_cmd_resolve_and_free(h, c);
2427 }
2428
2429 static void process_ioaccel2_completion(struct ctlr_info *h,
2430 struct CommandList *c, struct scsi_cmnd *cmd,
2431 struct hpsa_scsi_dev_t *dev)
2432 {
2433 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2434
2435 /* check for good status */
2436 if (likely(c2->error_data.serv_response == 0 &&
2437 c2->error_data.status == 0))
2438 return hpsa_cmd_free_and_done(h, c, cmd);
2439
2440 /*
2441 * Any RAID offload error results in retry which will use
2442 * the normal I/O path so the controller can handle whatever's
2443 * wrong.
2444 */
2445 if (is_logical_device(dev) &&
2446 c2->error_data.serv_response ==
2447 IOACCEL2_SERV_RESPONSE_FAILURE) {
2448 if (c2->error_data.status ==
2449 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2450 dev->offload_enabled = 0;
2451 dev->offload_to_be_enabled = 0;
2452 }
2453
2454 return hpsa_retry_cmd(h, c);
2455 }
2456
2457 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2458 return hpsa_retry_cmd(h, c);
2459
2460 return hpsa_cmd_free_and_done(h, c, cmd);
2461 }
2462
2463 /* Returns 0 on success, < 0 otherwise. */
2464 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2465 struct CommandList *cp)
2466 {
2467 u8 tmf_status = cp->err_info->ScsiStatus;
2468
2469 switch (tmf_status) {
2470 case CISS_TMF_COMPLETE:
2471 /*
2472 * CISS_TMF_COMPLETE never happens, instead,
2473 * ei->CommandStatus == 0 for this case.
2474 */
2475 case CISS_TMF_SUCCESS:
2476 return 0;
2477 case CISS_TMF_INVALID_FRAME:
2478 case CISS_TMF_NOT_SUPPORTED:
2479 case CISS_TMF_FAILED:
2480 case CISS_TMF_WRONG_LUN:
2481 case CISS_TMF_OVERLAPPED_TAG:
2482 break;
2483 default:
2484 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2485 tmf_status);
2486 break;
2487 }
2488 return -tmf_status;
2489 }
2490
2491 static void complete_scsi_command(struct CommandList *cp)
2492 {
2493 struct scsi_cmnd *cmd;
2494 struct ctlr_info *h;
2495 struct ErrorInfo *ei;
2496 struct hpsa_scsi_dev_t *dev;
2497 struct io_accel2_cmd *c2;
2498
2499 u8 sense_key;
2500 u8 asc; /* additional sense code */
2501 u8 ascq; /* additional sense code qualifier */
2502 unsigned long sense_data_size;
2503
2504 ei = cp->err_info;
2505 cmd = cp->scsi_cmd;
2506 h = cp->h;
2507
2508 if (!cmd->device) {
2509 cmd->result = DID_NO_CONNECT << 16;
2510 return hpsa_cmd_free_and_done(h, cp, cmd);
2511 }
2512
2513 dev = cmd->device->hostdata;
2514 if (!dev) {
2515 cmd->result = DID_NO_CONNECT << 16;
2516 return hpsa_cmd_free_and_done(h, cp, cmd);
2517 }
2518 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2519
2520 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2521 if ((cp->cmd_type == CMD_SCSI) &&
2522 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2523 hpsa_unmap_sg_chain_block(h, cp);
2524
2525 if ((cp->cmd_type == CMD_IOACCEL2) &&
2526 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2527 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2528
2529 cmd->result = (DID_OK << 16); /* host byte */
2530 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2531
2532 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2533 if (dev->physical_device && dev->expose_device &&
2534 dev->removed) {
2535 cmd->result = DID_NO_CONNECT << 16;
2536 return hpsa_cmd_free_and_done(h, cp, cmd);
2537 }
2538 if (likely(cp->phys_disk != NULL))
2539 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2540 }
2541
2542 /*
2543 * We check for lockup status here as it may be set for
2544 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2545 * fail_all_oustanding_cmds()
2546 */
2547 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2548 /* DID_NO_CONNECT will prevent a retry */
2549 cmd->result = DID_NO_CONNECT << 16;
2550 return hpsa_cmd_free_and_done(h, cp, cmd);
2551 }
2552
2553 if ((unlikely(hpsa_is_pending_event(cp)))) {
2554 if (cp->reset_pending)
2555 return hpsa_cmd_free_and_done(h, cp, cmd);
2556 if (cp->abort_pending)
2557 return hpsa_cmd_abort_and_free(h, cp, cmd);
2558 }
2559
2560 if (cp->cmd_type == CMD_IOACCEL2)
2561 return process_ioaccel2_completion(h, cp, cmd, dev);
2562
2563 scsi_set_resid(cmd, ei->ResidualCnt);
2564 if (ei->CommandStatus == 0)
2565 return hpsa_cmd_free_and_done(h, cp, cmd);
2566
2567 /* For I/O accelerator commands, copy over some fields to the normal
2568 * CISS header used below for error handling.
2569 */
2570 if (cp->cmd_type == CMD_IOACCEL1) {
2571 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2572 cp->Header.SGList = scsi_sg_count(cmd);
2573 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2574 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2575 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2576 cp->Header.tag = c->tag;
2577 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2578 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2579
2580 /* Any RAID offload error results in retry which will use
2581 * the normal I/O path so the controller can handle whatever's
2582 * wrong.
2583 */
2584 if (is_logical_device(dev)) {
2585 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2586 dev->offload_enabled = 0;
2587 return hpsa_retry_cmd(h, cp);
2588 }
2589 }
2590
2591 /* an error has occurred */
2592 switch (ei->CommandStatus) {
2593
2594 case CMD_TARGET_STATUS:
2595 cmd->result |= ei->ScsiStatus;
2596 /* copy the sense data */
2597 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2598 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2599 else
2600 sense_data_size = sizeof(ei->SenseInfo);
2601 if (ei->SenseLen < sense_data_size)
2602 sense_data_size = ei->SenseLen;
2603 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2604 if (ei->ScsiStatus)
2605 decode_sense_data(ei->SenseInfo, sense_data_size,
2606 &sense_key, &asc, &ascq);
2607 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2608 if (sense_key == ABORTED_COMMAND) {
2609 cmd->result |= DID_SOFT_ERROR << 16;
2610 break;
2611 }
2612 break;
2613 }
2614 /* Problem was not a check condition
2615 * Pass it up to the upper layers...
2616 */
2617 if (ei->ScsiStatus) {
2618 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2619 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2620 "Returning result: 0x%x\n",
2621 cp, ei->ScsiStatus,
2622 sense_key, asc, ascq,
2623 cmd->result);
2624 } else { /* scsi status is zero??? How??? */
2625 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2626 "Returning no connection.\n", cp),
2627
2628 /* Ordinarily, this case should never happen,
2629 * but there is a bug in some released firmware
2630 * revisions that allows it to happen if, for
2631 * example, a 4100 backplane loses power and
2632 * the tape drive is in it. We assume that
2633 * it's a fatal error of some kind because we
2634 * can't show that it wasn't. We will make it
2635 * look like selection timeout since that is
2636 * the most common reason for this to occur,
2637 * and it's severe enough.
2638 */
2639
2640 cmd->result = DID_NO_CONNECT << 16;
2641 }
2642 break;
2643
2644 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2645 break;
2646 case CMD_DATA_OVERRUN:
2647 dev_warn(&h->pdev->dev,
2648 "CDB %16phN data overrun\n", cp->Request.CDB);
2649 break;
2650 case CMD_INVALID: {
2651 /* print_bytes(cp, sizeof(*cp), 1, 0);
2652 print_cmd(cp); */
2653 /* We get CMD_INVALID if you address a non-existent device
2654 * instead of a selection timeout (no response). You will
2655 * see this if you yank out a drive, then try to access it.
2656 * This is kind of a shame because it means that any other
2657 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2658 * missing target. */
2659 cmd->result = DID_NO_CONNECT << 16;
2660 }
2661 break;
2662 case CMD_PROTOCOL_ERR:
2663 cmd->result = DID_ERROR << 16;
2664 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2665 cp->Request.CDB);
2666 break;
2667 case CMD_HARDWARE_ERR:
2668 cmd->result = DID_ERROR << 16;
2669 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2670 cp->Request.CDB);
2671 break;
2672 case CMD_CONNECTION_LOST:
2673 cmd->result = DID_ERROR << 16;
2674 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2675 cp->Request.CDB);
2676 break;
2677 case CMD_ABORTED:
2678 /* Return now to avoid calling scsi_done(). */
2679 return hpsa_cmd_abort_and_free(h, cp, cmd);
2680 case CMD_ABORT_FAILED:
2681 cmd->result = DID_ERROR << 16;
2682 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2683 cp->Request.CDB);
2684 break;
2685 case CMD_UNSOLICITED_ABORT:
2686 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2687 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2688 cp->Request.CDB);
2689 break;
2690 case CMD_TIMEOUT:
2691 cmd->result = DID_TIME_OUT << 16;
2692 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2693 cp->Request.CDB);
2694 break;
2695 case CMD_UNABORTABLE:
2696 cmd->result = DID_ERROR << 16;
2697 dev_warn(&h->pdev->dev, "Command unabortable\n");
2698 break;
2699 case CMD_TMF_STATUS:
2700 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2701 cmd->result = DID_ERROR << 16;
2702 break;
2703 case CMD_IOACCEL_DISABLED:
2704 /* This only handles the direct pass-through case since RAID
2705 * offload is handled above. Just attempt a retry.
2706 */
2707 cmd->result = DID_SOFT_ERROR << 16;
2708 dev_warn(&h->pdev->dev,
2709 "cp %p had HP SSD Smart Path error\n", cp);
2710 break;
2711 default:
2712 cmd->result = DID_ERROR << 16;
2713 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2714 cp, ei->CommandStatus);
2715 }
2716
2717 return hpsa_cmd_free_and_done(h, cp, cmd);
2718 }
2719
2720 static void hpsa_pci_unmap(struct pci_dev *pdev,
2721 struct CommandList *c, int sg_used, int data_direction)
2722 {
2723 int i;
2724
2725 for (i = 0; i < sg_used; i++)
2726 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2727 le32_to_cpu(c->SG[i].Len),
2728 data_direction);
2729 }
2730
2731 static int hpsa_map_one(struct pci_dev *pdev,
2732 struct CommandList *cp,
2733 unsigned char *buf,
2734 size_t buflen,
2735 int data_direction)
2736 {
2737 u64 addr64;
2738
2739 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2740 cp->Header.SGList = 0;
2741 cp->Header.SGTotal = cpu_to_le16(0);
2742 return 0;
2743 }
2744
2745 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2746 if (dma_mapping_error(&pdev->dev, addr64)) {
2747 /* Prevent subsequent unmap of something never mapped */
2748 cp->Header.SGList = 0;
2749 cp->Header.SGTotal = cpu_to_le16(0);
2750 return -1;
2751 }
2752 cp->SG[0].Addr = cpu_to_le64(addr64);
2753 cp->SG[0].Len = cpu_to_le32(buflen);
2754 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2755 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2756 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2757 return 0;
2758 }
2759
2760 #define NO_TIMEOUT ((unsigned long) -1)
2761 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2762 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2763 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2764 {
2765 DECLARE_COMPLETION_ONSTACK(wait);
2766
2767 c->waiting = &wait;
2768 __enqueue_cmd_and_start_io(h, c, reply_queue);
2769 if (timeout_msecs == NO_TIMEOUT) {
2770 /* TODO: get rid of this no-timeout thing */
2771 wait_for_completion_io(&wait);
2772 return IO_OK;
2773 }
2774 if (!wait_for_completion_io_timeout(&wait,
2775 msecs_to_jiffies(timeout_msecs))) {
2776 dev_warn(&h->pdev->dev, "Command timed out.\n");
2777 return -ETIMEDOUT;
2778 }
2779 return IO_OK;
2780 }
2781
2782 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2783 int reply_queue, unsigned long timeout_msecs)
2784 {
2785 if (unlikely(lockup_detected(h))) {
2786 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2787 return IO_OK;
2788 }
2789 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2790 }
2791
2792 static u32 lockup_detected(struct ctlr_info *h)
2793 {
2794 int cpu;
2795 u32 rc, *lockup_detected;
2796
2797 cpu = get_cpu();
2798 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2799 rc = *lockup_detected;
2800 put_cpu();
2801 return rc;
2802 }
2803
2804 #define MAX_DRIVER_CMD_RETRIES 25
2805 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2806 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2807 {
2808 int backoff_time = 10, retry_count = 0;
2809 int rc;
2810
2811 do {
2812 memset(c->err_info, 0, sizeof(*c->err_info));
2813 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2814 timeout_msecs);
2815 if (rc)
2816 break;
2817 retry_count++;
2818 if (retry_count > 3) {
2819 msleep(backoff_time);
2820 if (backoff_time < 1000)
2821 backoff_time *= 2;
2822 }
2823 } while ((check_for_unit_attention(h, c) ||
2824 check_for_busy(h, c)) &&
2825 retry_count <= MAX_DRIVER_CMD_RETRIES);
2826 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2827 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2828 rc = -EIO;
2829 return rc;
2830 }
2831
2832 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2833 struct CommandList *c)
2834 {
2835 const u8 *cdb = c->Request.CDB;
2836 const u8 *lun = c->Header.LUN.LunAddrBytes;
2837
2838 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2839 txt, lun, cdb);
2840 }
2841
2842 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2843 struct CommandList *cp)
2844 {
2845 const struct ErrorInfo *ei = cp->err_info;
2846 struct device *d = &cp->h->pdev->dev;
2847 u8 sense_key, asc, ascq;
2848 int sense_len;
2849
2850 switch (ei->CommandStatus) {
2851 case CMD_TARGET_STATUS:
2852 if (ei->SenseLen > sizeof(ei->SenseInfo))
2853 sense_len = sizeof(ei->SenseInfo);
2854 else
2855 sense_len = ei->SenseLen;
2856 decode_sense_data(ei->SenseInfo, sense_len,
2857 &sense_key, &asc, &ascq);
2858 hpsa_print_cmd(h, "SCSI status", cp);
2859 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2860 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2861 sense_key, asc, ascq);
2862 else
2863 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2864 if (ei->ScsiStatus == 0)
2865 dev_warn(d, "SCSI status is abnormally zero. "
2866 "(probably indicates selection timeout "
2867 "reported incorrectly due to a known "
2868 "firmware bug, circa July, 2001.)\n");
2869 break;
2870 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2871 break;
2872 case CMD_DATA_OVERRUN:
2873 hpsa_print_cmd(h, "overrun condition", cp);
2874 break;
2875 case CMD_INVALID: {
2876 /* controller unfortunately reports SCSI passthru's
2877 * to non-existent targets as invalid commands.
2878 */
2879 hpsa_print_cmd(h, "invalid command", cp);
2880 dev_warn(d, "probably means device no longer present\n");
2881 }
2882 break;
2883 case CMD_PROTOCOL_ERR:
2884 hpsa_print_cmd(h, "protocol error", cp);
2885 break;
2886 case CMD_HARDWARE_ERR:
2887 hpsa_print_cmd(h, "hardware error", cp);
2888 break;
2889 case CMD_CONNECTION_LOST:
2890 hpsa_print_cmd(h, "connection lost", cp);
2891 break;
2892 case CMD_ABORTED:
2893 hpsa_print_cmd(h, "aborted", cp);
2894 break;
2895 case CMD_ABORT_FAILED:
2896 hpsa_print_cmd(h, "abort failed", cp);
2897 break;
2898 case CMD_UNSOLICITED_ABORT:
2899 hpsa_print_cmd(h, "unsolicited abort", cp);
2900 break;
2901 case CMD_TIMEOUT:
2902 hpsa_print_cmd(h, "timed out", cp);
2903 break;
2904 case CMD_UNABORTABLE:
2905 hpsa_print_cmd(h, "unabortable", cp);
2906 break;
2907 case CMD_CTLR_LOCKUP:
2908 hpsa_print_cmd(h, "controller lockup detected", cp);
2909 break;
2910 default:
2911 hpsa_print_cmd(h, "unknown status", cp);
2912 dev_warn(d, "Unknown command status %x\n",
2913 ei->CommandStatus);
2914 }
2915 }
2916
2917 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2918 u16 page, unsigned char *buf,
2919 unsigned char bufsize)
2920 {
2921 int rc = IO_OK;
2922 struct CommandList *c;
2923 struct ErrorInfo *ei;
2924
2925 c = cmd_alloc(h);
2926
2927 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2928 page, scsi3addr, TYPE_CMD)) {
2929 rc = -1;
2930 goto out;
2931 }
2932 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2933 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2934 if (rc)
2935 goto out;
2936 ei = c->err_info;
2937 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2938 hpsa_scsi_interpret_error(h, c);
2939 rc = -1;
2940 }
2941 out:
2942 cmd_free(h, c);
2943 return rc;
2944 }
2945
2946 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2947 u8 reset_type, int reply_queue)
2948 {
2949 int rc = IO_OK;
2950 struct CommandList *c;
2951 struct ErrorInfo *ei;
2952
2953 c = cmd_alloc(h);
2954
2955
2956 /* fill_cmd can't fail here, no data buffer to map. */
2957 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2958 scsi3addr, TYPE_MSG);
2959 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2960 if (rc) {
2961 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2962 goto out;
2963 }
2964 /* no unmap needed here because no data xfer. */
2965
2966 ei = c->err_info;
2967 if (ei->CommandStatus != 0) {
2968 hpsa_scsi_interpret_error(h, c);
2969 rc = -1;
2970 }
2971 out:
2972 cmd_free(h, c);
2973 return rc;
2974 }
2975
2976 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2977 struct hpsa_scsi_dev_t *dev,
2978 unsigned char *scsi3addr)
2979 {
2980 int i;
2981 bool match = false;
2982 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2983 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2984
2985 if (hpsa_is_cmd_idle(c))
2986 return false;
2987
2988 switch (c->cmd_type) {
2989 case CMD_SCSI:
2990 case CMD_IOCTL_PEND:
2991 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2992 sizeof(c->Header.LUN.LunAddrBytes));
2993 break;
2994
2995 case CMD_IOACCEL1:
2996 case CMD_IOACCEL2:
2997 if (c->phys_disk == dev) {
2998 /* HBA mode match */
2999 match = true;
3000 } else {
3001 /* Possible RAID mode -- check each phys dev. */
3002 /* FIXME: Do we need to take out a lock here? If
3003 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3004 * instead. */
3005 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3006 /* FIXME: an alternate test might be
3007 *
3008 * match = dev->phys_disk[i]->ioaccel_handle
3009 * == c2->scsi_nexus; */
3010 match = dev->phys_disk[i] == c->phys_disk;
3011 }
3012 }
3013 break;
3014
3015 case IOACCEL2_TMF:
3016 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3017 match = dev->phys_disk[i]->ioaccel_handle ==
3018 le32_to_cpu(ac->it_nexus);
3019 }
3020 break;
3021
3022 case 0: /* The command is in the middle of being initialized. */
3023 match = false;
3024 break;
3025
3026 default:
3027 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3028 c->cmd_type);
3029 BUG();
3030 }
3031
3032 return match;
3033 }
3034
3035 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3036 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3037 {
3038 int i;
3039 int rc = 0;
3040
3041 /* We can really only handle one reset at a time */
3042 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3043 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3044 return -EINTR;
3045 }
3046
3047 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3048
3049 for (i = 0; i < h->nr_cmds; i++) {
3050 struct CommandList *c = h->cmd_pool + i;
3051 int refcount = atomic_inc_return(&c->refcount);
3052
3053 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3054 unsigned long flags;
3055
3056 /*
3057 * Mark the target command as having a reset pending,
3058 * then lock a lock so that the command cannot complete
3059 * while we're considering it. If the command is not
3060 * idle then count it; otherwise revoke the event.
3061 */
3062 c->reset_pending = dev;
3063 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3064 if (!hpsa_is_cmd_idle(c))
3065 atomic_inc(&dev->reset_cmds_out);
3066 else
3067 c->reset_pending = NULL;
3068 spin_unlock_irqrestore(&h->lock, flags);
3069 }
3070
3071 cmd_free(h, c);
3072 }
3073
3074 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3075 if (!rc)
3076 wait_event(h->event_sync_wait_queue,
3077 atomic_read(&dev->reset_cmds_out) == 0 ||
3078 lockup_detected(h));
3079
3080 if (unlikely(lockup_detected(h))) {
3081 dev_warn(&h->pdev->dev,
3082 "Controller lockup detected during reset wait\n");
3083 rc = -ENODEV;
3084 }
3085
3086 if (unlikely(rc))
3087 atomic_set(&dev->reset_cmds_out, 0);
3088 else
3089 wait_for_device_to_become_ready(h, scsi3addr, 0);
3090
3091 mutex_unlock(&h->reset_mutex);
3092 return rc;
3093 }
3094
3095 static void hpsa_get_raid_level(struct ctlr_info *h,
3096 unsigned char *scsi3addr, unsigned char *raid_level)
3097 {
3098 int rc;
3099 unsigned char *buf;
3100
3101 *raid_level = RAID_UNKNOWN;
3102 buf = kzalloc(64, GFP_KERNEL);
3103 if (!buf)
3104 return;
3105
3106 if (!hpsa_vpd_page_supported(h, scsi3addr,
3107 HPSA_VPD_LV_DEVICE_GEOMETRY))
3108 goto exit;
3109
3110 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3111 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3112
3113 if (rc == 0)
3114 *raid_level = buf[8];
3115 if (*raid_level > RAID_UNKNOWN)
3116 *raid_level = RAID_UNKNOWN;
3117 exit:
3118 kfree(buf);
3119 return;
3120 }
3121
3122 #define HPSA_MAP_DEBUG
3123 #ifdef HPSA_MAP_DEBUG
3124 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3125 struct raid_map_data *map_buff)
3126 {
3127 struct raid_map_disk_data *dd = &map_buff->data[0];
3128 int map, row, col;
3129 u16 map_cnt, row_cnt, disks_per_row;
3130
3131 if (rc != 0)
3132 return;
3133
3134 /* Show details only if debugging has been activated. */
3135 if (h->raid_offload_debug < 2)
3136 return;
3137
3138 dev_info(&h->pdev->dev, "structure_size = %u\n",
3139 le32_to_cpu(map_buff->structure_size));
3140 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3141 le32_to_cpu(map_buff->volume_blk_size));
3142 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3143 le64_to_cpu(map_buff->volume_blk_cnt));
3144 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3145 map_buff->phys_blk_shift);
3146 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3147 map_buff->parity_rotation_shift);
3148 dev_info(&h->pdev->dev, "strip_size = %u\n",
3149 le16_to_cpu(map_buff->strip_size));
3150 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3151 le64_to_cpu(map_buff->disk_starting_blk));
3152 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3153 le64_to_cpu(map_buff->disk_blk_cnt));
3154 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3155 le16_to_cpu(map_buff->data_disks_per_row));
3156 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3157 le16_to_cpu(map_buff->metadata_disks_per_row));
3158 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3159 le16_to_cpu(map_buff->row_cnt));
3160 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3161 le16_to_cpu(map_buff->layout_map_count));
3162 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3163 le16_to_cpu(map_buff->flags));
3164 dev_info(&h->pdev->dev, "encrypytion = %s\n",
3165 le16_to_cpu(map_buff->flags) &
3166 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3167 dev_info(&h->pdev->dev, "dekindex = %u\n",
3168 le16_to_cpu(map_buff->dekindex));
3169 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3170 for (map = 0; map < map_cnt; map++) {
3171 dev_info(&h->pdev->dev, "Map%u:\n", map);
3172 row_cnt = le16_to_cpu(map_buff->row_cnt);
3173 for (row = 0; row < row_cnt; row++) {
3174 dev_info(&h->pdev->dev, " Row%u:\n", row);
3175 disks_per_row =
3176 le16_to_cpu(map_buff->data_disks_per_row);
3177 for (col = 0; col < disks_per_row; col++, dd++)
3178 dev_info(&h->pdev->dev,
3179 " D%02u: h=0x%04x xor=%u,%u\n",
3180 col, dd->ioaccel_handle,
3181 dd->xor_mult[0], dd->xor_mult[1]);
3182 disks_per_row =
3183 le16_to_cpu(map_buff->metadata_disks_per_row);
3184 for (col = 0; col < disks_per_row; col++, dd++)
3185 dev_info(&h->pdev->dev,
3186 " M%02u: h=0x%04x xor=%u,%u\n",
3187 col, dd->ioaccel_handle,
3188 dd->xor_mult[0], dd->xor_mult[1]);
3189 }
3190 }
3191 }
3192 #else
3193 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3194 __attribute__((unused)) int rc,
3195 __attribute__((unused)) struct raid_map_data *map_buff)
3196 {
3197 }
3198 #endif
3199
3200 static int hpsa_get_raid_map(struct ctlr_info *h,
3201 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3202 {
3203 int rc = 0;
3204 struct CommandList *c;
3205 struct ErrorInfo *ei;
3206
3207 c = cmd_alloc(h);
3208
3209 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3210 sizeof(this_device->raid_map), 0,
3211 scsi3addr, TYPE_CMD)) {
3212 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3213 cmd_free(h, c);
3214 return -1;
3215 }
3216 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3217 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3218 if (rc)
3219 goto out;
3220 ei = c->err_info;
3221 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3222 hpsa_scsi_interpret_error(h, c);
3223 rc = -1;
3224 goto out;
3225 }
3226 cmd_free(h, c);
3227
3228 /* @todo in the future, dynamically allocate RAID map memory */
3229 if (le32_to_cpu(this_device->raid_map.structure_size) >
3230 sizeof(this_device->raid_map)) {
3231 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3232 rc = -1;
3233 }
3234 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3235 return rc;
3236 out:
3237 cmd_free(h, c);
3238 return rc;
3239 }
3240
3241 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3242 unsigned char scsi3addr[], u16 bmic_device_index,
3243 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3244 {
3245 int rc = IO_OK;
3246 struct CommandList *c;
3247 struct ErrorInfo *ei;
3248
3249 c = cmd_alloc(h);
3250
3251 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3252 0, RAID_CTLR_LUNID, TYPE_CMD);
3253 if (rc)
3254 goto out;
3255
3256 c->Request.CDB[2] = bmic_device_index & 0xff;
3257 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3258
3259 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3260 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3261 if (rc)
3262 goto out;
3263 ei = c->err_info;
3264 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3265 hpsa_scsi_interpret_error(h, c);
3266 rc = -1;
3267 }
3268 out:
3269 cmd_free(h, c);
3270 return rc;
3271 }
3272
3273 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3274 struct bmic_identify_controller *buf, size_t bufsize)
3275 {
3276 int rc = IO_OK;
3277 struct CommandList *c;
3278 struct ErrorInfo *ei;
3279
3280 c = cmd_alloc(h);
3281
3282 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3283 0, RAID_CTLR_LUNID, TYPE_CMD);
3284 if (rc)
3285 goto out;
3286
3287 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3288 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3289 if (rc)
3290 goto out;
3291 ei = c->err_info;
3292 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3293 hpsa_scsi_interpret_error(h, c);
3294 rc = -1;
3295 }
3296 out:
3297 cmd_free(h, c);
3298 return rc;
3299 }
3300
3301 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3302 unsigned char scsi3addr[], u16 bmic_device_index,
3303 struct bmic_identify_physical_device *buf, size_t bufsize)
3304 {
3305 int rc = IO_OK;
3306 struct CommandList *c;
3307 struct ErrorInfo *ei;
3308
3309 c = cmd_alloc(h);
3310 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3311 0, RAID_CTLR_LUNID, TYPE_CMD);
3312 if (rc)
3313 goto out;
3314
3315 c->Request.CDB[2] = bmic_device_index & 0xff;
3316 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3317
3318 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3319 DEFAULT_TIMEOUT);
3320 ei = c->err_info;
3321 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3322 hpsa_scsi_interpret_error(h, c);
3323 rc = -1;
3324 }
3325 out:
3326 cmd_free(h, c);
3327
3328 return rc;
3329 }
3330
3331 /*
3332 * get enclosure information
3333 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3334 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3335 * Uses id_physical_device to determine the box_index.
3336 */
3337 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3338 unsigned char *scsi3addr,
3339 struct ReportExtendedLUNdata *rlep, int rle_index,
3340 struct hpsa_scsi_dev_t *encl_dev)
3341 {
3342 int rc = -1;
3343 struct CommandList *c = NULL;
3344 struct ErrorInfo *ei = NULL;
3345 struct bmic_sense_storage_box_params *bssbp = NULL;
3346 struct bmic_identify_physical_device *id_phys = NULL;
3347 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3348 u16 bmic_device_index = 0;
3349
3350 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3351
3352 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3353 rc = IO_OK;
3354 goto out;
3355 }
3356
3357 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3358 if (!bssbp)
3359 goto out;
3360
3361 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3362 if (!id_phys)
3363 goto out;
3364
3365 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3366 id_phys, sizeof(*id_phys));
3367 if (rc) {
3368 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3369 __func__, encl_dev->external, bmic_device_index);
3370 goto out;
3371 }
3372
3373 c = cmd_alloc(h);
3374
3375 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3376 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3377
3378 if (rc)
3379 goto out;
3380
3381 if (id_phys->phys_connector[1] == 'E')
3382 c->Request.CDB[5] = id_phys->box_index;
3383 else
3384 c->Request.CDB[5] = 0;
3385
3386 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3387 DEFAULT_TIMEOUT);
3388 if (rc)
3389 goto out;
3390
3391 ei = c->err_info;
3392 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3393 rc = -1;
3394 goto out;
3395 }
3396
3397 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3398 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3399 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3400
3401 rc = IO_OK;
3402 out:
3403 kfree(bssbp);
3404 kfree(id_phys);
3405
3406 if (c)
3407 cmd_free(h, c);
3408
3409 if (rc != IO_OK)
3410 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3411 "Error, could not get enclosure information\n");
3412 }
3413
3414 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3415 unsigned char *scsi3addr)
3416 {
3417 struct ReportExtendedLUNdata *physdev;
3418 u32 nphysicals;
3419 u64 sa = 0;
3420 int i;
3421
3422 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3423 if (!physdev)
3424 return 0;
3425
3426 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3427 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3428 kfree(physdev);
3429 return 0;
3430 }
3431 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3432
3433 for (i = 0; i < nphysicals; i++)
3434 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3435 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3436 break;
3437 }
3438
3439 kfree(physdev);
3440
3441 return sa;
3442 }
3443
3444 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3445 struct hpsa_scsi_dev_t *dev)
3446 {
3447 int rc;
3448 u64 sa = 0;
3449
3450 if (is_hba_lunid(scsi3addr)) {
3451 struct bmic_sense_subsystem_info *ssi;
3452
3453 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3454 if (!ssi)
3455 return;
3456
3457 rc = hpsa_bmic_sense_subsystem_information(h,
3458 scsi3addr, 0, ssi, sizeof(*ssi));
3459 if (rc == 0) {
3460 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3461 h->sas_address = sa;
3462 }
3463
3464 kfree(ssi);
3465 } else
3466 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3467
3468 dev->sas_address = sa;
3469 }
3470
3471 /* Get a device id from inquiry page 0x83 */
3472 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3473 unsigned char scsi3addr[], u8 page)
3474 {
3475 int rc;
3476 int i;
3477 int pages;
3478 unsigned char *buf, bufsize;
3479
3480 buf = kzalloc(256, GFP_KERNEL);
3481 if (!buf)
3482 return false;
3483
3484 /* Get the size of the page list first */
3485 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3486 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3487 buf, HPSA_VPD_HEADER_SZ);
3488 if (rc != 0)
3489 goto exit_unsupported;
3490 pages = buf[3];
3491 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3492 bufsize = pages + HPSA_VPD_HEADER_SZ;
3493 else
3494 bufsize = 255;
3495
3496 /* Get the whole VPD page list */
3497 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3498 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3499 buf, bufsize);
3500 if (rc != 0)
3501 goto exit_unsupported;
3502
3503 pages = buf[3];
3504 for (i = 1; i <= pages; i++)
3505 if (buf[3 + i] == page)
3506 goto exit_supported;
3507 exit_unsupported:
3508 kfree(buf);
3509 return false;
3510 exit_supported:
3511 kfree(buf);
3512 return true;
3513 }
3514
3515 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3516 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3517 {
3518 int rc;
3519 unsigned char *buf;
3520 u8 ioaccel_status;
3521
3522 this_device->offload_config = 0;
3523 this_device->offload_enabled = 0;
3524 this_device->offload_to_be_enabled = 0;
3525
3526 buf = kzalloc(64, GFP_KERNEL);
3527 if (!buf)
3528 return;
3529 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3530 goto out;
3531 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3532 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3533 if (rc != 0)
3534 goto out;
3535
3536 #define IOACCEL_STATUS_BYTE 4
3537 #define OFFLOAD_CONFIGURED_BIT 0x01
3538 #define OFFLOAD_ENABLED_BIT 0x02
3539 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3540 this_device->offload_config =
3541 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3542 if (this_device->offload_config) {
3543 this_device->offload_enabled =
3544 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3545 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3546 this_device->offload_enabled = 0;
3547 }
3548 this_device->offload_to_be_enabled = this_device->offload_enabled;
3549 out:
3550 kfree(buf);
3551 return;
3552 }
3553
3554 /* Get the device id from inquiry page 0x83 */
3555 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3556 unsigned char *device_id, int index, int buflen)
3557 {
3558 int rc;
3559 unsigned char *buf;
3560
3561 /* Does controller have VPD for device id? */
3562 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3563 return 1; /* not supported */
3564
3565 buf = kzalloc(64, GFP_KERNEL);
3566 if (!buf)
3567 return -ENOMEM;
3568
3569 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3570 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3571 if (rc == 0) {
3572 if (buflen > 16)
3573 buflen = 16;
3574 memcpy(device_id, &buf[8], buflen);
3575 }
3576
3577 kfree(buf);
3578
3579 return rc; /*0 - got id, otherwise, didn't */
3580 }
3581
3582 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3583 void *buf, int bufsize,
3584 int extended_response)
3585 {
3586 int rc = IO_OK;
3587 struct CommandList *c;
3588 unsigned char scsi3addr[8];
3589 struct ErrorInfo *ei;
3590
3591 c = cmd_alloc(h);
3592
3593 /* address the controller */
3594 memset(scsi3addr, 0, sizeof(scsi3addr));
3595 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3596 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3597 rc = -1;
3598 goto out;
3599 }
3600 if (extended_response)
3601 c->Request.CDB[1] = extended_response;
3602 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3603 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3604 if (rc)
3605 goto out;
3606 ei = c->err_info;
3607 if (ei->CommandStatus != 0 &&
3608 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3609 hpsa_scsi_interpret_error(h, c);
3610 rc = -1;
3611 } else {
3612 struct ReportLUNdata *rld = buf;
3613
3614 if (rld->extended_response_flag != extended_response) {
3615 dev_err(&h->pdev->dev,
3616 "report luns requested format %u, got %u\n",
3617 extended_response,
3618 rld->extended_response_flag);
3619 rc = -1;
3620 }
3621 }
3622 out:
3623 cmd_free(h, c);
3624 return rc;
3625 }
3626
3627 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3628 struct ReportExtendedLUNdata *buf, int bufsize)
3629 {
3630 int rc;
3631 struct ReportLUNdata *lbuf;
3632
3633 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3634 HPSA_REPORT_PHYS_EXTENDED);
3635 if (!rc || !hpsa_allow_any)
3636 return rc;
3637
3638 /* REPORT PHYS EXTENDED is not supported */
3639 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3640 if (!lbuf)
3641 return -ENOMEM;
3642
3643 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3644 if (!rc) {
3645 int i;
3646 u32 nphys;
3647
3648 /* Copy ReportLUNdata header */
3649 memcpy(buf, lbuf, 8);
3650 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3651 for (i = 0; i < nphys; i++)
3652 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3653 }
3654 kfree(lbuf);
3655 return rc;
3656 }
3657
3658 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3659 struct ReportLUNdata *buf, int bufsize)
3660 {
3661 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3662 }
3663
3664 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3665 int bus, int target, int lun)
3666 {
3667 device->bus = bus;
3668 device->target = target;
3669 device->lun = lun;
3670 }
3671
3672 /* Use VPD inquiry to get details of volume status */
3673 static int hpsa_get_volume_status(struct ctlr_info *h,
3674 unsigned char scsi3addr[])
3675 {
3676 int rc;
3677 int status;
3678 int size;
3679 unsigned char *buf;
3680
3681 buf = kzalloc(64, GFP_KERNEL);
3682 if (!buf)
3683 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3684
3685 /* Does controller have VPD for logical volume status? */
3686 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3687 goto exit_failed;
3688
3689 /* Get the size of the VPD return buffer */
3690 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3691 buf, HPSA_VPD_HEADER_SZ);
3692 if (rc != 0)
3693 goto exit_failed;
3694 size = buf[3];
3695
3696 /* Now get the whole VPD buffer */
3697 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3698 buf, size + HPSA_VPD_HEADER_SZ);
3699 if (rc != 0)
3700 goto exit_failed;
3701 status = buf[4]; /* status byte */
3702
3703 kfree(buf);
3704 return status;
3705 exit_failed:
3706 kfree(buf);
3707 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3708 }
3709
3710 /* Determine offline status of a volume.
3711 * Return either:
3712 * 0 (not offline)
3713 * 0xff (offline for unknown reasons)
3714 * # (integer code indicating one of several NOT READY states
3715 * describing why a volume is to be kept offline)
3716 */
3717 static int hpsa_volume_offline(struct ctlr_info *h,
3718 unsigned char scsi3addr[])
3719 {
3720 struct CommandList *c;
3721 unsigned char *sense;
3722 u8 sense_key, asc, ascq;
3723 int sense_len;
3724 int rc, ldstat = 0;
3725 u16 cmd_status;
3726 u8 scsi_status;
3727 #define ASC_LUN_NOT_READY 0x04
3728 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3729 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3730
3731 c = cmd_alloc(h);
3732
3733 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3734 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3735 DEFAULT_TIMEOUT);
3736 if (rc) {
3737 cmd_free(h, c);
3738 return 0;
3739 }
3740 sense = c->err_info->SenseInfo;
3741 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3742 sense_len = sizeof(c->err_info->SenseInfo);
3743 else
3744 sense_len = c->err_info->SenseLen;
3745 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3746 cmd_status = c->err_info->CommandStatus;
3747 scsi_status = c->err_info->ScsiStatus;
3748 cmd_free(h, c);
3749 /* Is the volume 'not ready'? */
3750 if (cmd_status != CMD_TARGET_STATUS ||
3751 scsi_status != SAM_STAT_CHECK_CONDITION ||
3752 sense_key != NOT_READY ||
3753 asc != ASC_LUN_NOT_READY) {
3754 return 0;
3755 }
3756
3757 /* Determine the reason for not ready state */
3758 ldstat = hpsa_get_volume_status(h, scsi3addr);
3759
3760 /* Keep volume offline in certain cases: */
3761 switch (ldstat) {
3762 case HPSA_LV_UNDERGOING_ERASE:
3763 case HPSA_LV_NOT_AVAILABLE:
3764 case HPSA_LV_UNDERGOING_RPI:
3765 case HPSA_LV_PENDING_RPI:
3766 case HPSA_LV_ENCRYPTED_NO_KEY:
3767 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3768 case HPSA_LV_UNDERGOING_ENCRYPTION:
3769 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3770 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3771 return ldstat;
3772 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3773 /* If VPD status page isn't available,
3774 * use ASC/ASCQ to determine state
3775 */
3776 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3777 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3778 return ldstat;
3779 break;
3780 default:
3781 break;
3782 }
3783 return 0;
3784 }
3785
3786 /*
3787 * Find out if a logical device supports aborts by simply trying one.
3788 * Smart Array may claim not to support aborts on logical drives, but
3789 * if a MSA2000 * is connected, the drives on that will be presented
3790 * by the Smart Array as logical drives, and aborts may be sent to
3791 * those devices successfully. So the simplest way to find out is
3792 * to simply try an abort and see how the device responds.
3793 */
3794 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3795 unsigned char *scsi3addr)
3796 {
3797 struct CommandList *c;
3798 struct ErrorInfo *ei;
3799 int rc = 0;
3800
3801 u64 tag = (u64) -1; /* bogus tag */
3802
3803 /* Assume that physical devices support aborts */
3804 if (!is_logical_dev_addr_mode(scsi3addr))
3805 return 1;
3806
3807 c = cmd_alloc(h);
3808
3809 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3810 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3811 DEFAULT_TIMEOUT);
3812 /* no unmap needed here because no data xfer. */
3813 ei = c->err_info;
3814 switch (ei->CommandStatus) {
3815 case CMD_INVALID:
3816 rc = 0;
3817 break;
3818 case CMD_UNABORTABLE:
3819 case CMD_ABORT_FAILED:
3820 rc = 1;
3821 break;
3822 case CMD_TMF_STATUS:
3823 rc = hpsa_evaluate_tmf_status(h, c);
3824 break;
3825 default:
3826 rc = 0;
3827 break;
3828 }
3829 cmd_free(h, c);
3830 return rc;
3831 }
3832
3833 static int hpsa_update_device_info(struct ctlr_info *h,
3834 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3835 unsigned char *is_OBDR_device)
3836 {
3837
3838 #define OBDR_SIG_OFFSET 43
3839 #define OBDR_TAPE_SIG "$DR-10"
3840 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3841 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3842
3843 unsigned char *inq_buff;
3844 unsigned char *obdr_sig;
3845 int rc = 0;
3846
3847 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3848 if (!inq_buff) {
3849 rc = -ENOMEM;
3850 goto bail_out;
3851 }
3852
3853 /* Do an inquiry to the device to see what it is. */
3854 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3855 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3856 /* Inquiry failed (msg printed already) */
3857 dev_err(&h->pdev->dev,
3858 "hpsa_update_device_info: inquiry failed\n");
3859 rc = -EIO;
3860 goto bail_out;
3861 }
3862
3863 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3864 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3865
3866 this_device->devtype = (inq_buff[0] & 0x1f);
3867 memcpy(this_device->scsi3addr, scsi3addr, 8);
3868 memcpy(this_device->vendor, &inq_buff[8],
3869 sizeof(this_device->vendor));
3870 memcpy(this_device->model, &inq_buff[16],
3871 sizeof(this_device->model));
3872 this_device->rev = inq_buff[2];
3873 memset(this_device->device_id, 0,
3874 sizeof(this_device->device_id));
3875 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3876 sizeof(this_device->device_id)))
3877 dev_err(&h->pdev->dev,
3878 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3879 h->ctlr, __func__,
3880 h->scsi_host->host_no,
3881 this_device->target, this_device->lun,
3882 scsi_device_type(this_device->devtype),
3883 this_device->model);
3884
3885 if ((this_device->devtype == TYPE_DISK ||
3886 this_device->devtype == TYPE_ZBC) &&
3887 is_logical_dev_addr_mode(scsi3addr)) {
3888 int volume_offline;
3889
3890 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3891 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3892 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3893 volume_offline = hpsa_volume_offline(h, scsi3addr);
3894 if (volume_offline < 0 || volume_offline > 0xff)
3895 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3896 this_device->volume_offline = volume_offline & 0xff;
3897 } else {
3898 this_device->raid_level = RAID_UNKNOWN;
3899 this_device->offload_config = 0;
3900 this_device->offload_enabled = 0;
3901 this_device->offload_to_be_enabled = 0;
3902 this_device->hba_ioaccel_enabled = 0;
3903 this_device->volume_offline = 0;
3904 this_device->queue_depth = h->nr_cmds;
3905 }
3906
3907 if (is_OBDR_device) {
3908 /* See if this is a One-Button-Disaster-Recovery device
3909 * by looking for "$DR-10" at offset 43 in inquiry data.
3910 */
3911 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3912 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3913 strncmp(obdr_sig, OBDR_TAPE_SIG,
3914 OBDR_SIG_LEN) == 0);
3915 }
3916 kfree(inq_buff);
3917 return 0;
3918
3919 bail_out:
3920 kfree(inq_buff);
3921 return rc;
3922 }
3923
3924 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3925 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3926 {
3927 unsigned long flags;
3928 int rc, entry;
3929 /*
3930 * See if this device supports aborts. If we already know
3931 * the device, we already know if it supports aborts, otherwise
3932 * we have to find out if it supports aborts by trying one.
3933 */
3934 spin_lock_irqsave(&h->devlock, flags);
3935 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3936 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3937 entry >= 0 && entry < h->ndevices) {
3938 dev->supports_aborts = h->dev[entry]->supports_aborts;
3939 spin_unlock_irqrestore(&h->devlock, flags);
3940 } else {
3941 spin_unlock_irqrestore(&h->devlock, flags);
3942 dev->supports_aborts =
3943 hpsa_device_supports_aborts(h, scsi3addr);
3944 if (dev->supports_aborts < 0)
3945 dev->supports_aborts = 0;
3946 }
3947 }
3948
3949 /*
3950 * Helper function to assign bus, target, lun mapping of devices.
3951 * Logical drive target and lun are assigned at this time, but
3952 * physical device lun and target assignment are deferred (assigned
3953 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3954 */
3955 static void figure_bus_target_lun(struct ctlr_info *h,
3956 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3957 {
3958 u32 lunid = get_unaligned_le32(lunaddrbytes);
3959
3960 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3961 /* physical device, target and lun filled in later */
3962 if (is_hba_lunid(lunaddrbytes)) {
3963 int bus = HPSA_HBA_BUS;
3964
3965 if (!device->rev)
3966 bus = HPSA_LEGACY_HBA_BUS;
3967 hpsa_set_bus_target_lun(device,
3968 bus, 0, lunid & 0x3fff);
3969 } else
3970 /* defer target, lun assignment for physical devices */
3971 hpsa_set_bus_target_lun(device,
3972 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3973 return;
3974 }
3975 /* It's a logical device */
3976 if (device->external) {
3977 hpsa_set_bus_target_lun(device,
3978 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3979 lunid & 0x00ff);
3980 return;
3981 }
3982 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3983 0, lunid & 0x3fff);
3984 }
3985
3986
3987 /*
3988 * Get address of physical disk used for an ioaccel2 mode command:
3989 * 1. Extract ioaccel2 handle from the command.
3990 * 2. Find a matching ioaccel2 handle from list of physical disks.
3991 * 3. Return:
3992 * 1 and set scsi3addr to address of matching physical
3993 * 0 if no matching physical disk was found.
3994 */
3995 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3996 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3997 {
3998 struct io_accel2_cmd *c2 =
3999 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4000 unsigned long flags;
4001 int i;
4002
4003 spin_lock_irqsave(&h->devlock, flags);
4004 for (i = 0; i < h->ndevices; i++)
4005 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4006 memcpy(scsi3addr, h->dev[i]->scsi3addr,
4007 sizeof(h->dev[i]->scsi3addr));
4008 spin_unlock_irqrestore(&h->devlock, flags);
4009 return 1;
4010 }
4011 spin_unlock_irqrestore(&h->devlock, flags);
4012 return 0;
4013 }
4014
4015 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4016 int i, int nphysicals, int nlocal_logicals)
4017 {
4018 /* In report logicals, local logicals are listed first,
4019 * then any externals.
4020 */
4021 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4022
4023 if (i == raid_ctlr_position)
4024 return 0;
4025
4026 if (i < logicals_start)
4027 return 0;
4028
4029 /* i is in logicals range, but still within local logicals */
4030 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4031 return 0;
4032
4033 return 1; /* it's an external lun */
4034 }
4035
4036 /*
4037 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4038 * logdev. The number of luns in physdev and logdev are returned in
4039 * *nphysicals and *nlogicals, respectively.
4040 * Returns 0 on success, -1 otherwise.
4041 */
4042 static int hpsa_gather_lun_info(struct ctlr_info *h,
4043 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4044 struct ReportLUNdata *logdev, u32 *nlogicals)
4045 {
4046 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4047 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4048 return -1;
4049 }
4050 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4051 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4052 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4053 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4054 *nphysicals = HPSA_MAX_PHYS_LUN;
4055 }
4056 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4057 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4058 return -1;
4059 }
4060 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4061 /* Reject Logicals in excess of our max capability. */
4062 if (*nlogicals > HPSA_MAX_LUN) {
4063 dev_warn(&h->pdev->dev,
4064 "maximum logical LUNs (%d) exceeded. "
4065 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4066 *nlogicals - HPSA_MAX_LUN);
4067 *nlogicals = HPSA_MAX_LUN;
4068 }
4069 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4070 dev_warn(&h->pdev->dev,
4071 "maximum logical + physical LUNs (%d) exceeded. "
4072 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4073 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4074 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4075 }
4076 return 0;
4077 }
4078
4079 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4080 int i, int nphysicals, int nlogicals,
4081 struct ReportExtendedLUNdata *physdev_list,
4082 struct ReportLUNdata *logdev_list)
4083 {
4084 /* Helper function, figure out where the LUN ID info is coming from
4085 * given index i, lists of physical and logical devices, where in
4086 * the list the raid controller is supposed to appear (first or last)
4087 */
4088
4089 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4090 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4091
4092 if (i == raid_ctlr_position)
4093 return RAID_CTLR_LUNID;
4094
4095 if (i < logicals_start)
4096 return &physdev_list->LUN[i -
4097 (raid_ctlr_position == 0)].lunid[0];
4098
4099 if (i < last_device)
4100 return &logdev_list->LUN[i - nphysicals -
4101 (raid_ctlr_position == 0)][0];
4102 BUG();
4103 return NULL;
4104 }
4105
4106 /* get physical drive ioaccel handle and queue depth */
4107 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4108 struct hpsa_scsi_dev_t *dev,
4109 struct ReportExtendedLUNdata *rlep, int rle_index,
4110 struct bmic_identify_physical_device *id_phys)
4111 {
4112 int rc;
4113 struct ext_report_lun_entry *rle;
4114
4115 /*
4116 * external targets don't support BMIC
4117 */
4118 if (dev->external) {
4119 dev->queue_depth = 7;
4120 return;
4121 }
4122
4123 rle = &rlep->LUN[rle_index];
4124
4125 dev->ioaccel_handle = rle->ioaccel_handle;
4126 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4127 dev->hba_ioaccel_enabled = 1;
4128 memset(id_phys, 0, sizeof(*id_phys));
4129 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4130 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4131 sizeof(*id_phys));
4132 if (!rc)
4133 /* Reserve space for FW operations */
4134 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4135 #define DRIVE_QUEUE_DEPTH 7
4136 dev->queue_depth =
4137 le16_to_cpu(id_phys->current_queue_depth_limit) -
4138 DRIVE_CMDS_RESERVED_FOR_FW;
4139 else
4140 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4141 }
4142
4143 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4144 struct ReportExtendedLUNdata *rlep, int rle_index,
4145 struct bmic_identify_physical_device *id_phys)
4146 {
4147 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4148
4149 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4150 this_device->hba_ioaccel_enabled = 1;
4151
4152 memcpy(&this_device->active_path_index,
4153 &id_phys->active_path_number,
4154 sizeof(this_device->active_path_index));
4155 memcpy(&this_device->path_map,
4156 &id_phys->redundant_path_present_map,
4157 sizeof(this_device->path_map));
4158 memcpy(&this_device->box,
4159 &id_phys->alternate_paths_phys_box_on_port,
4160 sizeof(this_device->box));
4161 memcpy(&this_device->phys_connector,
4162 &id_phys->alternate_paths_phys_connector,
4163 sizeof(this_device->phys_connector));
4164 memcpy(&this_device->bay,
4165 &id_phys->phys_bay_in_box,
4166 sizeof(this_device->bay));
4167 }
4168
4169 /* get number of local logical disks. */
4170 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4171 struct bmic_identify_controller *id_ctlr,
4172 u32 *nlocals)
4173 {
4174 int rc;
4175
4176 if (!id_ctlr) {
4177 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4178 __func__);
4179 return -ENOMEM;
4180 }
4181 memset(id_ctlr, 0, sizeof(*id_ctlr));
4182 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4183 if (!rc)
4184 if (id_ctlr->configured_logical_drive_count < 256)
4185 *nlocals = id_ctlr->configured_logical_drive_count;
4186 else
4187 *nlocals = le16_to_cpu(
4188 id_ctlr->extended_logical_unit_count);
4189 else
4190 *nlocals = -1;
4191 return rc;
4192 }
4193
4194 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4195 {
4196 struct bmic_identify_physical_device *id_phys;
4197 bool is_spare = false;
4198 int rc;
4199
4200 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4201 if (!id_phys)
4202 return false;
4203
4204 rc = hpsa_bmic_id_physical_device(h,
4205 lunaddrbytes,
4206 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4207 id_phys, sizeof(*id_phys));
4208 if (rc == 0)
4209 is_spare = (id_phys->more_flags >> 6) & 0x01;
4210
4211 kfree(id_phys);
4212 return is_spare;
4213 }
4214
4215 #define RPL_DEV_FLAG_NON_DISK 0x1
4216 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4217 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4218
4219 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4220
4221 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4222 struct ext_report_lun_entry *rle)
4223 {
4224 u8 device_flags;
4225 u8 device_type;
4226
4227 if (!MASKED_DEVICE(lunaddrbytes))
4228 return false;
4229
4230 device_flags = rle->device_flags;
4231 device_type = rle->device_type;
4232
4233 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4234 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4235 return false;
4236 return true;
4237 }
4238
4239 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4240 return false;
4241
4242 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4243 return false;
4244
4245 /*
4246 * Spares may be spun down, we do not want to
4247 * do an Inquiry to a RAID set spare drive as
4248 * that would have them spun up, that is a
4249 * performance hit because I/O to the RAID device
4250 * stops while the spin up occurs which can take
4251 * over 50 seconds.
4252 */
4253 if (hpsa_is_disk_spare(h, lunaddrbytes))
4254 return true;
4255
4256 return false;
4257 }
4258
4259 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4260 {
4261 /* the idea here is we could get notified
4262 * that some devices have changed, so we do a report
4263 * physical luns and report logical luns cmd, and adjust
4264 * our list of devices accordingly.
4265 *
4266 * The scsi3addr's of devices won't change so long as the
4267 * adapter is not reset. That means we can rescan and
4268 * tell which devices we already know about, vs. new
4269 * devices, vs. disappearing devices.
4270 */
4271 struct ReportExtendedLUNdata *physdev_list = NULL;
4272 struct ReportLUNdata *logdev_list = NULL;
4273 struct bmic_identify_physical_device *id_phys = NULL;
4274 struct bmic_identify_controller *id_ctlr = NULL;
4275 u32 nphysicals = 0;
4276 u32 nlogicals = 0;
4277 u32 nlocal_logicals = 0;
4278 u32 ndev_allocated = 0;
4279 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4280 int ncurrent = 0;
4281 int i, n_ext_target_devs, ndevs_to_allocate;
4282 int raid_ctlr_position;
4283 bool physical_device;
4284 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4285
4286 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4287 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4288 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4289 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4290 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4291 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4292
4293 if (!currentsd || !physdev_list || !logdev_list ||
4294 !tmpdevice || !id_phys || !id_ctlr) {
4295 dev_err(&h->pdev->dev, "out of memory\n");
4296 goto out;
4297 }
4298 memset(lunzerobits, 0, sizeof(lunzerobits));
4299
4300 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4301
4302 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4303 logdev_list, &nlogicals)) {
4304 h->drv_req_rescan = 1;
4305 goto out;
4306 }
4307
4308 /* Set number of local logicals (non PTRAID) */
4309 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4310 dev_warn(&h->pdev->dev,
4311 "%s: Can't determine number of local logical devices.\n",
4312 __func__);
4313 }
4314
4315 /* We might see up to the maximum number of logical and physical disks
4316 * plus external target devices, and a device for the local RAID
4317 * controller.
4318 */
4319 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4320
4321 /* Allocate the per device structures */
4322 for (i = 0; i < ndevs_to_allocate; i++) {
4323 if (i >= HPSA_MAX_DEVICES) {
4324 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4325 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4326 ndevs_to_allocate - HPSA_MAX_DEVICES);
4327 break;
4328 }
4329
4330 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4331 if (!currentsd[i]) {
4332 h->drv_req_rescan = 1;
4333 goto out;
4334 }
4335 ndev_allocated++;
4336 }
4337
4338 if (is_scsi_rev_5(h))
4339 raid_ctlr_position = 0;
4340 else
4341 raid_ctlr_position = nphysicals + nlogicals;
4342
4343 /* adjust our table of devices */
4344 n_ext_target_devs = 0;
4345 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4346 u8 *lunaddrbytes, is_OBDR = 0;
4347 int rc = 0;
4348 int phys_dev_index = i - (raid_ctlr_position == 0);
4349 bool skip_device = false;
4350
4351 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4352
4353 /* Figure out where the LUN ID info is coming from */
4354 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4355 i, nphysicals, nlogicals, physdev_list, logdev_list);
4356
4357 /* Determine if this is a lun from an external target array */
4358 tmpdevice->external =
4359 figure_external_status(h, raid_ctlr_position, i,
4360 nphysicals, nlocal_logicals);
4361
4362 /*
4363 * Skip over some devices such as a spare.
4364 */
4365 if (!tmpdevice->external && physical_device) {
4366 skip_device = hpsa_skip_device(h, lunaddrbytes,
4367 &physdev_list->LUN[phys_dev_index]);
4368 if (skip_device)
4369 continue;
4370 }
4371
4372 /* Get device type, vendor, model, device id */
4373 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4374 &is_OBDR);
4375 if (rc == -ENOMEM) {
4376 dev_warn(&h->pdev->dev,
4377 "Out of memory, rescan deferred.\n");
4378 h->drv_req_rescan = 1;
4379 goto out;
4380 }
4381 if (rc) {
4382 dev_warn(&h->pdev->dev,
4383 "Inquiry failed, skipping device.\n");
4384 continue;
4385 }
4386
4387 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4388 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4389 this_device = currentsd[ncurrent];
4390
4391 /* Turn on discovery_polling if there are ext target devices.
4392 * Event-based change notification is unreliable for those.
4393 */
4394 if (!h->discovery_polling) {
4395 if (tmpdevice->external) {
4396 h->discovery_polling = 1;
4397 dev_info(&h->pdev->dev,
4398 "External target, activate discovery polling.\n");
4399 }
4400 }
4401
4402
4403 *this_device = *tmpdevice;
4404 this_device->physical_device = physical_device;
4405
4406 /*
4407 * Expose all devices except for physical devices that
4408 * are masked.
4409 */
4410 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4411 this_device->expose_device = 0;
4412 else
4413 this_device->expose_device = 1;
4414
4415
4416 /*
4417 * Get the SAS address for physical devices that are exposed.
4418 */
4419 if (this_device->physical_device && this_device->expose_device)
4420 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4421
4422 switch (this_device->devtype) {
4423 case TYPE_ROM:
4424 /* We don't *really* support actual CD-ROM devices,
4425 * just "One Button Disaster Recovery" tape drive
4426 * which temporarily pretends to be a CD-ROM drive.
4427 * So we check that the device is really an OBDR tape
4428 * device by checking for "$DR-10" in bytes 43-48 of
4429 * the inquiry data.
4430 */
4431 if (is_OBDR)
4432 ncurrent++;
4433 break;
4434 case TYPE_DISK:
4435 case TYPE_ZBC:
4436 if (this_device->physical_device) {
4437 /* The disk is in HBA mode. */
4438 /* Never use RAID mapper in HBA mode. */
4439 this_device->offload_enabled = 0;
4440 hpsa_get_ioaccel_drive_info(h, this_device,
4441 physdev_list, phys_dev_index, id_phys);
4442 hpsa_get_path_info(this_device,
4443 physdev_list, phys_dev_index, id_phys);
4444 }
4445 ncurrent++;
4446 break;
4447 case TYPE_TAPE:
4448 case TYPE_MEDIUM_CHANGER:
4449 ncurrent++;
4450 break;
4451 case TYPE_ENCLOSURE:
4452 if (!this_device->external)
4453 hpsa_get_enclosure_info(h, lunaddrbytes,
4454 physdev_list, phys_dev_index,
4455 this_device);
4456 ncurrent++;
4457 break;
4458 case TYPE_RAID:
4459 /* Only present the Smartarray HBA as a RAID controller.
4460 * If it's a RAID controller other than the HBA itself
4461 * (an external RAID controller, MSA500 or similar)
4462 * don't present it.
4463 */
4464 if (!is_hba_lunid(lunaddrbytes))
4465 break;
4466 ncurrent++;
4467 break;
4468 default:
4469 break;
4470 }
4471 if (ncurrent >= HPSA_MAX_DEVICES)
4472 break;
4473 }
4474
4475 if (h->sas_host == NULL) {
4476 int rc = 0;
4477
4478 rc = hpsa_add_sas_host(h);
4479 if (rc) {
4480 dev_warn(&h->pdev->dev,
4481 "Could not add sas host %d\n", rc);
4482 goto out;
4483 }
4484 }
4485
4486 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4487 out:
4488 kfree(tmpdevice);
4489 for (i = 0; i < ndev_allocated; i++)
4490 kfree(currentsd[i]);
4491 kfree(currentsd);
4492 kfree(physdev_list);
4493 kfree(logdev_list);
4494 kfree(id_ctlr);
4495 kfree(id_phys);
4496 }
4497
4498 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4499 struct scatterlist *sg)
4500 {
4501 u64 addr64 = (u64) sg_dma_address(sg);
4502 unsigned int len = sg_dma_len(sg);
4503
4504 desc->Addr = cpu_to_le64(addr64);
4505 desc->Len = cpu_to_le32(len);
4506 desc->Ext = 0;
4507 }
4508
4509 /*
4510 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4511 * dma mapping and fills in the scatter gather entries of the
4512 * hpsa command, cp.
4513 */
4514 static int hpsa_scatter_gather(struct ctlr_info *h,
4515 struct CommandList *cp,
4516 struct scsi_cmnd *cmd)
4517 {
4518 struct scatterlist *sg;
4519 int use_sg, i, sg_limit, chained, last_sg;
4520 struct SGDescriptor *curr_sg;
4521
4522 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4523
4524 use_sg = scsi_dma_map(cmd);
4525 if (use_sg < 0)
4526 return use_sg;
4527
4528 if (!use_sg)
4529 goto sglist_finished;
4530
4531 /*
4532 * If the number of entries is greater than the max for a single list,
4533 * then we have a chained list; we will set up all but one entry in the
4534 * first list (the last entry is saved for link information);
4535 * otherwise, we don't have a chained list and we'll set up at each of
4536 * the entries in the one list.
4537 */
4538 curr_sg = cp->SG;
4539 chained = use_sg > h->max_cmd_sg_entries;
4540 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4541 last_sg = scsi_sg_count(cmd) - 1;
4542 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4543 hpsa_set_sg_descriptor(curr_sg, sg);
4544 curr_sg++;
4545 }
4546
4547 if (chained) {
4548 /*
4549 * Continue with the chained list. Set curr_sg to the chained
4550 * list. Modify the limit to the total count less the entries
4551 * we've already set up. Resume the scan at the list entry
4552 * where the previous loop left off.
4553 */
4554 curr_sg = h->cmd_sg_list[cp->cmdindex];
4555 sg_limit = use_sg - sg_limit;
4556 for_each_sg(sg, sg, sg_limit, i) {
4557 hpsa_set_sg_descriptor(curr_sg, sg);
4558 curr_sg++;
4559 }
4560 }
4561
4562 /* Back the pointer up to the last entry and mark it as "last". */
4563 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4564
4565 if (use_sg + chained > h->maxSG)
4566 h->maxSG = use_sg + chained;
4567
4568 if (chained) {
4569 cp->Header.SGList = h->max_cmd_sg_entries;
4570 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4571 if (hpsa_map_sg_chain_block(h, cp)) {
4572 scsi_dma_unmap(cmd);
4573 return -1;
4574 }
4575 return 0;
4576 }
4577
4578 sglist_finished:
4579
4580 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4581 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4582 return 0;
4583 }
4584
4585 #define IO_ACCEL_INELIGIBLE (1)
4586 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4587 {
4588 int is_write = 0;
4589 u32 block;
4590 u32 block_cnt;
4591
4592 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4593 switch (cdb[0]) {
4594 case WRITE_6:
4595 case WRITE_12:
4596 is_write = 1;
4597 case READ_6:
4598 case READ_12:
4599 if (*cdb_len == 6) {
4600 block = (((cdb[1] & 0x1F) << 16) |
4601 (cdb[2] << 8) |
4602 cdb[3]);
4603 block_cnt = cdb[4];
4604 if (block_cnt == 0)
4605 block_cnt = 256;
4606 } else {
4607 BUG_ON(*cdb_len != 12);
4608 block = get_unaligned_be32(&cdb[2]);
4609 block_cnt = get_unaligned_be32(&cdb[6]);
4610 }
4611 if (block_cnt > 0xffff)
4612 return IO_ACCEL_INELIGIBLE;
4613
4614 cdb[0] = is_write ? WRITE_10 : READ_10;
4615 cdb[1] = 0;
4616 cdb[2] = (u8) (block >> 24);
4617 cdb[3] = (u8) (block >> 16);
4618 cdb[4] = (u8) (block >> 8);
4619 cdb[5] = (u8) (block);
4620 cdb[6] = 0;
4621 cdb[7] = (u8) (block_cnt >> 8);
4622 cdb[8] = (u8) (block_cnt);
4623 cdb[9] = 0;
4624 *cdb_len = 10;
4625 break;
4626 }
4627 return 0;
4628 }
4629
4630 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4631 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4632 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4633 {
4634 struct scsi_cmnd *cmd = c->scsi_cmd;
4635 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4636 unsigned int len;
4637 unsigned int total_len = 0;
4638 struct scatterlist *sg;
4639 u64 addr64;
4640 int use_sg, i;
4641 struct SGDescriptor *curr_sg;
4642 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4643
4644 /* TODO: implement chaining support */
4645 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4646 atomic_dec(&phys_disk->ioaccel_cmds_out);
4647 return IO_ACCEL_INELIGIBLE;
4648 }
4649
4650 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4651
4652 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4653 atomic_dec(&phys_disk->ioaccel_cmds_out);
4654 return IO_ACCEL_INELIGIBLE;
4655 }
4656
4657 c->cmd_type = CMD_IOACCEL1;
4658
4659 /* Adjust the DMA address to point to the accelerated command buffer */
4660 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4661 (c->cmdindex * sizeof(*cp));
4662 BUG_ON(c->busaddr & 0x0000007F);
4663
4664 use_sg = scsi_dma_map(cmd);
4665 if (use_sg < 0) {
4666 atomic_dec(&phys_disk->ioaccel_cmds_out);
4667 return use_sg;
4668 }
4669
4670 if (use_sg) {
4671 curr_sg = cp->SG;
4672 scsi_for_each_sg(cmd, sg, use_sg, i) {
4673 addr64 = (u64) sg_dma_address(sg);
4674 len = sg_dma_len(sg);
4675 total_len += len;
4676 curr_sg->Addr = cpu_to_le64(addr64);
4677 curr_sg->Len = cpu_to_le32(len);
4678 curr_sg->Ext = cpu_to_le32(0);
4679 curr_sg++;
4680 }
4681 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4682
4683 switch (cmd->sc_data_direction) {
4684 case DMA_TO_DEVICE:
4685 control |= IOACCEL1_CONTROL_DATA_OUT;
4686 break;
4687 case DMA_FROM_DEVICE:
4688 control |= IOACCEL1_CONTROL_DATA_IN;
4689 break;
4690 case DMA_NONE:
4691 control |= IOACCEL1_CONTROL_NODATAXFER;
4692 break;
4693 default:
4694 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4695 cmd->sc_data_direction);
4696 BUG();
4697 break;
4698 }
4699 } else {
4700 control |= IOACCEL1_CONTROL_NODATAXFER;
4701 }
4702
4703 c->Header.SGList = use_sg;
4704 /* Fill out the command structure to submit */
4705 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4706 cp->transfer_len = cpu_to_le32(total_len);
4707 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4708 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4709 cp->control = cpu_to_le32(control);
4710 memcpy(cp->CDB, cdb, cdb_len);
4711 memcpy(cp->CISS_LUN, scsi3addr, 8);
4712 /* Tag was already set at init time. */
4713 enqueue_cmd_and_start_io(h, c);
4714 return 0;
4715 }
4716
4717 /*
4718 * Queue a command directly to a device behind the controller using the
4719 * I/O accelerator path.
4720 */
4721 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4722 struct CommandList *c)
4723 {
4724 struct scsi_cmnd *cmd = c->scsi_cmd;
4725 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4726
4727 if (!dev)
4728 return -1;
4729
4730 c->phys_disk = dev;
4731
4732 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4733 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4734 }
4735
4736 /*
4737 * Set encryption parameters for the ioaccel2 request
4738 */
4739 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4740 struct CommandList *c, struct io_accel2_cmd *cp)
4741 {
4742 struct scsi_cmnd *cmd = c->scsi_cmd;
4743 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4744 struct raid_map_data *map = &dev->raid_map;
4745 u64 first_block;
4746
4747 /* Are we doing encryption on this device */
4748 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4749 return;
4750 /* Set the data encryption key index. */
4751 cp->dekindex = map->dekindex;
4752
4753 /* Set the encryption enable flag, encoded into direction field. */
4754 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4755
4756 /* Set encryption tweak values based on logical block address
4757 * If block size is 512, tweak value is LBA.
4758 * For other block sizes, tweak is (LBA * block size)/ 512)
4759 */
4760 switch (cmd->cmnd[0]) {
4761 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4762 case READ_6:
4763 case WRITE_6:
4764 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4765 (cmd->cmnd[2] << 8) |
4766 cmd->cmnd[3]);
4767 break;
4768 case WRITE_10:
4769 case READ_10:
4770 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4771 case WRITE_12:
4772 case READ_12:
4773 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4774 break;
4775 case WRITE_16:
4776 case READ_16:
4777 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4778 break;
4779 default:
4780 dev_err(&h->pdev->dev,
4781 "ERROR: %s: size (0x%x) not supported for encryption\n",
4782 __func__, cmd->cmnd[0]);
4783 BUG();
4784 break;
4785 }
4786
4787 if (le32_to_cpu(map->volume_blk_size) != 512)
4788 first_block = first_block *
4789 le32_to_cpu(map->volume_blk_size)/512;
4790
4791 cp->tweak_lower = cpu_to_le32(first_block);
4792 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4793 }
4794
4795 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4796 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4797 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4798 {
4799 struct scsi_cmnd *cmd = c->scsi_cmd;
4800 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4801 struct ioaccel2_sg_element *curr_sg;
4802 int use_sg, i;
4803 struct scatterlist *sg;
4804 u64 addr64;
4805 u32 len;
4806 u32 total_len = 0;
4807
4808 if (!cmd->device)
4809 return -1;
4810
4811 if (!cmd->device->hostdata)
4812 return -1;
4813
4814 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4815
4816 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4817 atomic_dec(&phys_disk->ioaccel_cmds_out);
4818 return IO_ACCEL_INELIGIBLE;
4819 }
4820
4821 c->cmd_type = CMD_IOACCEL2;
4822 /* Adjust the DMA address to point to the accelerated command buffer */
4823 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4824 (c->cmdindex * sizeof(*cp));
4825 BUG_ON(c->busaddr & 0x0000007F);
4826
4827 memset(cp, 0, sizeof(*cp));
4828 cp->IU_type = IOACCEL2_IU_TYPE;
4829
4830 use_sg = scsi_dma_map(cmd);
4831 if (use_sg < 0) {
4832 atomic_dec(&phys_disk->ioaccel_cmds_out);
4833 return use_sg;
4834 }
4835
4836 if (use_sg) {
4837 curr_sg = cp->sg;
4838 if (use_sg > h->ioaccel_maxsg) {
4839 addr64 = le64_to_cpu(
4840 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4841 curr_sg->address = cpu_to_le64(addr64);
4842 curr_sg->length = 0;
4843 curr_sg->reserved[0] = 0;
4844 curr_sg->reserved[1] = 0;
4845 curr_sg->reserved[2] = 0;
4846 curr_sg->chain_indicator = 0x80;
4847
4848 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4849 }
4850 scsi_for_each_sg(cmd, sg, use_sg, i) {
4851 addr64 = (u64) sg_dma_address(sg);
4852 len = sg_dma_len(sg);
4853 total_len += len;
4854 curr_sg->address = cpu_to_le64(addr64);
4855 curr_sg->length = cpu_to_le32(len);
4856 curr_sg->reserved[0] = 0;
4857 curr_sg->reserved[1] = 0;
4858 curr_sg->reserved[2] = 0;
4859 curr_sg->chain_indicator = 0;
4860 curr_sg++;
4861 }
4862
4863 switch (cmd->sc_data_direction) {
4864 case DMA_TO_DEVICE:
4865 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4866 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4867 break;
4868 case DMA_FROM_DEVICE:
4869 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4870 cp->direction |= IOACCEL2_DIR_DATA_IN;
4871 break;
4872 case DMA_NONE:
4873 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4874 cp->direction |= IOACCEL2_DIR_NO_DATA;
4875 break;
4876 default:
4877 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4878 cmd->sc_data_direction);
4879 BUG();
4880 break;
4881 }
4882 } else {
4883 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4884 cp->direction |= IOACCEL2_DIR_NO_DATA;
4885 }
4886
4887 /* Set encryption parameters, if necessary */
4888 set_encrypt_ioaccel2(h, c, cp);
4889
4890 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4891 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4892 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4893
4894 cp->data_len = cpu_to_le32(total_len);
4895 cp->err_ptr = cpu_to_le64(c->busaddr +
4896 offsetof(struct io_accel2_cmd, error_data));
4897 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4898
4899 /* fill in sg elements */
4900 if (use_sg > h->ioaccel_maxsg) {
4901 cp->sg_count = 1;
4902 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4903 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4904 atomic_dec(&phys_disk->ioaccel_cmds_out);
4905 scsi_dma_unmap(cmd);
4906 return -1;
4907 }
4908 } else
4909 cp->sg_count = (u8) use_sg;
4910
4911 enqueue_cmd_and_start_io(h, c);
4912 return 0;
4913 }
4914
4915 /*
4916 * Queue a command to the correct I/O accelerator path.
4917 */
4918 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4919 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4920 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4921 {
4922 if (!c->scsi_cmd->device)
4923 return -1;
4924
4925 if (!c->scsi_cmd->device->hostdata)
4926 return -1;
4927
4928 /* Try to honor the device's queue depth */
4929 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4930 phys_disk->queue_depth) {
4931 atomic_dec(&phys_disk->ioaccel_cmds_out);
4932 return IO_ACCEL_INELIGIBLE;
4933 }
4934 if (h->transMethod & CFGTBL_Trans_io_accel1)
4935 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4936 cdb, cdb_len, scsi3addr,
4937 phys_disk);
4938 else
4939 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4940 cdb, cdb_len, scsi3addr,
4941 phys_disk);
4942 }
4943
4944 static void raid_map_helper(struct raid_map_data *map,
4945 int offload_to_mirror, u32 *map_index, u32 *current_group)
4946 {
4947 if (offload_to_mirror == 0) {
4948 /* use physical disk in the first mirrored group. */
4949 *map_index %= le16_to_cpu(map->data_disks_per_row);
4950 return;
4951 }
4952 do {
4953 /* determine mirror group that *map_index indicates */
4954 *current_group = *map_index /
4955 le16_to_cpu(map->data_disks_per_row);
4956 if (offload_to_mirror == *current_group)
4957 continue;
4958 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4959 /* select map index from next group */
4960 *map_index += le16_to_cpu(map->data_disks_per_row);
4961 (*current_group)++;
4962 } else {
4963 /* select map index from first group */
4964 *map_index %= le16_to_cpu(map->data_disks_per_row);
4965 *current_group = 0;
4966 }
4967 } while (offload_to_mirror != *current_group);
4968 }
4969
4970 /*
4971 * Attempt to perform offload RAID mapping for a logical volume I/O.
4972 */
4973 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4974 struct CommandList *c)
4975 {
4976 struct scsi_cmnd *cmd = c->scsi_cmd;
4977 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4978 struct raid_map_data *map = &dev->raid_map;
4979 struct raid_map_disk_data *dd = &map->data[0];
4980 int is_write = 0;
4981 u32 map_index;
4982 u64 first_block, last_block;
4983 u32 block_cnt;
4984 u32 blocks_per_row;
4985 u64 first_row, last_row;
4986 u32 first_row_offset, last_row_offset;
4987 u32 first_column, last_column;
4988 u64 r0_first_row, r0_last_row;
4989 u32 r5or6_blocks_per_row;
4990 u64 r5or6_first_row, r5or6_last_row;
4991 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4992 u32 r5or6_first_column, r5or6_last_column;
4993 u32 total_disks_per_row;
4994 u32 stripesize;
4995 u32 first_group, last_group, current_group;
4996 u32 map_row;
4997 u32 disk_handle;
4998 u64 disk_block;
4999 u32 disk_block_cnt;
5000 u8 cdb[16];
5001 u8 cdb_len;
5002 u16 strip_size;
5003 #if BITS_PER_LONG == 32
5004 u64 tmpdiv;
5005 #endif
5006 int offload_to_mirror;
5007
5008 if (!dev)
5009 return -1;
5010
5011 /* check for valid opcode, get LBA and block count */
5012 switch (cmd->cmnd[0]) {
5013 case WRITE_6:
5014 is_write = 1;
5015 case READ_6:
5016 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5017 (cmd->cmnd[2] << 8) |
5018 cmd->cmnd[3]);
5019 block_cnt = cmd->cmnd[4];
5020 if (block_cnt == 0)
5021 block_cnt = 256;
5022 break;
5023 case WRITE_10:
5024 is_write = 1;
5025 case READ_10:
5026 first_block =
5027 (((u64) cmd->cmnd[2]) << 24) |
5028 (((u64) cmd->cmnd[3]) << 16) |
5029 (((u64) cmd->cmnd[4]) << 8) |
5030 cmd->cmnd[5];
5031 block_cnt =
5032 (((u32) cmd->cmnd[7]) << 8) |
5033 cmd->cmnd[8];
5034 break;
5035 case WRITE_12:
5036 is_write = 1;
5037 case READ_12:
5038 first_block =
5039 (((u64) cmd->cmnd[2]) << 24) |
5040 (((u64) cmd->cmnd[3]) << 16) |
5041 (((u64) cmd->cmnd[4]) << 8) |
5042 cmd->cmnd[5];
5043 block_cnt =
5044 (((u32) cmd->cmnd[6]) << 24) |
5045 (((u32) cmd->cmnd[7]) << 16) |
5046 (((u32) cmd->cmnd[8]) << 8) |
5047 cmd->cmnd[9];
5048 break;
5049 case WRITE_16:
5050 is_write = 1;
5051 case READ_16:
5052 first_block =
5053 (((u64) cmd->cmnd[2]) << 56) |
5054 (((u64) cmd->cmnd[3]) << 48) |
5055 (((u64) cmd->cmnd[4]) << 40) |
5056 (((u64) cmd->cmnd[5]) << 32) |
5057 (((u64) cmd->cmnd[6]) << 24) |
5058 (((u64) cmd->cmnd[7]) << 16) |
5059 (((u64) cmd->cmnd[8]) << 8) |
5060 cmd->cmnd[9];
5061 block_cnt =
5062 (((u32) cmd->cmnd[10]) << 24) |
5063 (((u32) cmd->cmnd[11]) << 16) |
5064 (((u32) cmd->cmnd[12]) << 8) |
5065 cmd->cmnd[13];
5066 break;
5067 default:
5068 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5069 }
5070 last_block = first_block + block_cnt - 1;
5071
5072 /* check for write to non-RAID-0 */
5073 if (is_write && dev->raid_level != 0)
5074 return IO_ACCEL_INELIGIBLE;
5075
5076 /* check for invalid block or wraparound */
5077 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5078 last_block < first_block)
5079 return IO_ACCEL_INELIGIBLE;
5080
5081 /* calculate stripe information for the request */
5082 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5083 le16_to_cpu(map->strip_size);
5084 strip_size = le16_to_cpu(map->strip_size);
5085 #if BITS_PER_LONG == 32
5086 tmpdiv = first_block;
5087 (void) do_div(tmpdiv, blocks_per_row);
5088 first_row = tmpdiv;
5089 tmpdiv = last_block;
5090 (void) do_div(tmpdiv, blocks_per_row);
5091 last_row = tmpdiv;
5092 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5093 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5094 tmpdiv = first_row_offset;
5095 (void) do_div(tmpdiv, strip_size);
5096 first_column = tmpdiv;
5097 tmpdiv = last_row_offset;
5098 (void) do_div(tmpdiv, strip_size);
5099 last_column = tmpdiv;
5100 #else
5101 first_row = first_block / blocks_per_row;
5102 last_row = last_block / blocks_per_row;
5103 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5104 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5105 first_column = first_row_offset / strip_size;
5106 last_column = last_row_offset / strip_size;
5107 #endif
5108
5109 /* if this isn't a single row/column then give to the controller */
5110 if ((first_row != last_row) || (first_column != last_column))
5111 return IO_ACCEL_INELIGIBLE;
5112
5113 /* proceeding with driver mapping */
5114 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5115 le16_to_cpu(map->metadata_disks_per_row);
5116 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5117 le16_to_cpu(map->row_cnt);
5118 map_index = (map_row * total_disks_per_row) + first_column;
5119
5120 switch (dev->raid_level) {
5121 case HPSA_RAID_0:
5122 break; /* nothing special to do */
5123 case HPSA_RAID_1:
5124 /* Handles load balance across RAID 1 members.
5125 * (2-drive R1 and R10 with even # of drives.)
5126 * Appropriate for SSDs, not optimal for HDDs
5127 */
5128 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5129 if (dev->offload_to_mirror)
5130 map_index += le16_to_cpu(map->data_disks_per_row);
5131 dev->offload_to_mirror = !dev->offload_to_mirror;
5132 break;
5133 case HPSA_RAID_ADM:
5134 /* Handles N-way mirrors (R1-ADM)
5135 * and R10 with # of drives divisible by 3.)
5136 */
5137 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5138
5139 offload_to_mirror = dev->offload_to_mirror;
5140 raid_map_helper(map, offload_to_mirror,
5141 &map_index, &current_group);
5142 /* set mirror group to use next time */
5143 offload_to_mirror =
5144 (offload_to_mirror >=
5145 le16_to_cpu(map->layout_map_count) - 1)
5146 ? 0 : offload_to_mirror + 1;
5147 dev->offload_to_mirror = offload_to_mirror;
5148 /* Avoid direct use of dev->offload_to_mirror within this
5149 * function since multiple threads might simultaneously
5150 * increment it beyond the range of dev->layout_map_count -1.
5151 */
5152 break;
5153 case HPSA_RAID_5:
5154 case HPSA_RAID_6:
5155 if (le16_to_cpu(map->layout_map_count) <= 1)
5156 break;
5157
5158 /* Verify first and last block are in same RAID group */
5159 r5or6_blocks_per_row =
5160 le16_to_cpu(map->strip_size) *
5161 le16_to_cpu(map->data_disks_per_row);
5162 BUG_ON(r5or6_blocks_per_row == 0);
5163 stripesize = r5or6_blocks_per_row *
5164 le16_to_cpu(map->layout_map_count);
5165 #if BITS_PER_LONG == 32
5166 tmpdiv = first_block;
5167 first_group = do_div(tmpdiv, stripesize);
5168 tmpdiv = first_group;
5169 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5170 first_group = tmpdiv;
5171 tmpdiv = last_block;
5172 last_group = do_div(tmpdiv, stripesize);
5173 tmpdiv = last_group;
5174 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5175 last_group = tmpdiv;
5176 #else
5177 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5178 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5179 #endif
5180 if (first_group != last_group)
5181 return IO_ACCEL_INELIGIBLE;
5182
5183 /* Verify request is in a single row of RAID 5/6 */
5184 #if BITS_PER_LONG == 32
5185 tmpdiv = first_block;
5186 (void) do_div(tmpdiv, stripesize);
5187 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5188 tmpdiv = last_block;
5189 (void) do_div(tmpdiv, stripesize);
5190 r5or6_last_row = r0_last_row = tmpdiv;
5191 #else
5192 first_row = r5or6_first_row = r0_first_row =
5193 first_block / stripesize;
5194 r5or6_last_row = r0_last_row = last_block / stripesize;
5195 #endif
5196 if (r5or6_first_row != r5or6_last_row)
5197 return IO_ACCEL_INELIGIBLE;
5198
5199
5200 /* Verify request is in a single column */
5201 #if BITS_PER_LONG == 32
5202 tmpdiv = first_block;
5203 first_row_offset = do_div(tmpdiv, stripesize);
5204 tmpdiv = first_row_offset;
5205 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5206 r5or6_first_row_offset = first_row_offset;
5207 tmpdiv = last_block;
5208 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5209 tmpdiv = r5or6_last_row_offset;
5210 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5211 tmpdiv = r5or6_first_row_offset;
5212 (void) do_div(tmpdiv, map->strip_size);
5213 first_column = r5or6_first_column = tmpdiv;
5214 tmpdiv = r5or6_last_row_offset;
5215 (void) do_div(tmpdiv, map->strip_size);
5216 r5or6_last_column = tmpdiv;
5217 #else
5218 first_row_offset = r5or6_first_row_offset =
5219 (u32)((first_block % stripesize) %
5220 r5or6_blocks_per_row);
5221
5222 r5or6_last_row_offset =
5223 (u32)((last_block % stripesize) %
5224 r5or6_blocks_per_row);
5225
5226 first_column = r5or6_first_column =
5227 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5228 r5or6_last_column =
5229 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5230 #endif
5231 if (r5or6_first_column != r5or6_last_column)
5232 return IO_ACCEL_INELIGIBLE;
5233
5234 /* Request is eligible */
5235 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5236 le16_to_cpu(map->row_cnt);
5237
5238 map_index = (first_group *
5239 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5240 (map_row * total_disks_per_row) + first_column;
5241 break;
5242 default:
5243 return IO_ACCEL_INELIGIBLE;
5244 }
5245
5246 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5247 return IO_ACCEL_INELIGIBLE;
5248
5249 c->phys_disk = dev->phys_disk[map_index];
5250 if (!c->phys_disk)
5251 return IO_ACCEL_INELIGIBLE;
5252
5253 disk_handle = dd[map_index].ioaccel_handle;
5254 disk_block = le64_to_cpu(map->disk_starting_blk) +
5255 first_row * le16_to_cpu(map->strip_size) +
5256 (first_row_offset - first_column *
5257 le16_to_cpu(map->strip_size));
5258 disk_block_cnt = block_cnt;
5259
5260 /* handle differing logical/physical block sizes */
5261 if (map->phys_blk_shift) {
5262 disk_block <<= map->phys_blk_shift;
5263 disk_block_cnt <<= map->phys_blk_shift;
5264 }
5265 BUG_ON(disk_block_cnt > 0xffff);
5266
5267 /* build the new CDB for the physical disk I/O */
5268 if (disk_block > 0xffffffff) {
5269 cdb[0] = is_write ? WRITE_16 : READ_16;
5270 cdb[1] = 0;
5271 cdb[2] = (u8) (disk_block >> 56);
5272 cdb[3] = (u8) (disk_block >> 48);
5273 cdb[4] = (u8) (disk_block >> 40);
5274 cdb[5] = (u8) (disk_block >> 32);
5275 cdb[6] = (u8) (disk_block >> 24);
5276 cdb[7] = (u8) (disk_block >> 16);
5277 cdb[8] = (u8) (disk_block >> 8);
5278 cdb[9] = (u8) (disk_block);
5279 cdb[10] = (u8) (disk_block_cnt >> 24);
5280 cdb[11] = (u8) (disk_block_cnt >> 16);
5281 cdb[12] = (u8) (disk_block_cnt >> 8);
5282 cdb[13] = (u8) (disk_block_cnt);
5283 cdb[14] = 0;
5284 cdb[15] = 0;
5285 cdb_len = 16;
5286 } else {
5287 cdb[0] = is_write ? WRITE_10 : READ_10;
5288 cdb[1] = 0;
5289 cdb[2] = (u8) (disk_block >> 24);
5290 cdb[3] = (u8) (disk_block >> 16);
5291 cdb[4] = (u8) (disk_block >> 8);
5292 cdb[5] = (u8) (disk_block);
5293 cdb[6] = 0;
5294 cdb[7] = (u8) (disk_block_cnt >> 8);
5295 cdb[8] = (u8) (disk_block_cnt);
5296 cdb[9] = 0;
5297 cdb_len = 10;
5298 }
5299 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5300 dev->scsi3addr,
5301 dev->phys_disk[map_index]);
5302 }
5303
5304 /*
5305 * Submit commands down the "normal" RAID stack path
5306 * All callers to hpsa_ciss_submit must check lockup_detected
5307 * beforehand, before (opt.) and after calling cmd_alloc
5308 */
5309 static int hpsa_ciss_submit(struct ctlr_info *h,
5310 struct CommandList *c, struct scsi_cmnd *cmd,
5311 unsigned char scsi3addr[])
5312 {
5313 cmd->host_scribble = (unsigned char *) c;
5314 c->cmd_type = CMD_SCSI;
5315 c->scsi_cmd = cmd;
5316 c->Header.ReplyQueue = 0; /* unused in simple mode */
5317 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5318 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5319
5320 /* Fill in the request block... */
5321
5322 c->Request.Timeout = 0;
5323 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5324 c->Request.CDBLen = cmd->cmd_len;
5325 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5326 switch (cmd->sc_data_direction) {
5327 case DMA_TO_DEVICE:
5328 c->Request.type_attr_dir =
5329 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5330 break;
5331 case DMA_FROM_DEVICE:
5332 c->Request.type_attr_dir =
5333 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5334 break;
5335 case DMA_NONE:
5336 c->Request.type_attr_dir =
5337 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5338 break;
5339 case DMA_BIDIRECTIONAL:
5340 /* This can happen if a buggy application does a scsi passthru
5341 * and sets both inlen and outlen to non-zero. ( see
5342 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5343 */
5344
5345 c->Request.type_attr_dir =
5346 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5347 /* This is technically wrong, and hpsa controllers should
5348 * reject it with CMD_INVALID, which is the most correct
5349 * response, but non-fibre backends appear to let it
5350 * slide by, and give the same results as if this field
5351 * were set correctly. Either way is acceptable for
5352 * our purposes here.
5353 */
5354
5355 break;
5356
5357 default:
5358 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5359 cmd->sc_data_direction);
5360 BUG();
5361 break;
5362 }
5363
5364 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5365 hpsa_cmd_resolve_and_free(h, c);
5366 return SCSI_MLQUEUE_HOST_BUSY;
5367 }
5368 enqueue_cmd_and_start_io(h, c);
5369 /* the cmd'll come back via intr handler in complete_scsi_command() */
5370 return 0;
5371 }
5372
5373 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5374 struct CommandList *c)
5375 {
5376 dma_addr_t cmd_dma_handle, err_dma_handle;
5377
5378 /* Zero out all of commandlist except the last field, refcount */
5379 memset(c, 0, offsetof(struct CommandList, refcount));
5380 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5381 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5382 c->err_info = h->errinfo_pool + index;
5383 memset(c->err_info, 0, sizeof(*c->err_info));
5384 err_dma_handle = h->errinfo_pool_dhandle
5385 + index * sizeof(*c->err_info);
5386 c->cmdindex = index;
5387 c->busaddr = (u32) cmd_dma_handle;
5388 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5389 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5390 c->h = h;
5391 c->scsi_cmd = SCSI_CMD_IDLE;
5392 }
5393
5394 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5395 {
5396 int i;
5397
5398 for (i = 0; i < h->nr_cmds; i++) {
5399 struct CommandList *c = h->cmd_pool + i;
5400
5401 hpsa_cmd_init(h, i, c);
5402 atomic_set(&c->refcount, 0);
5403 }
5404 }
5405
5406 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5407 struct CommandList *c)
5408 {
5409 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5410
5411 BUG_ON(c->cmdindex != index);
5412
5413 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5414 memset(c->err_info, 0, sizeof(*c->err_info));
5415 c->busaddr = (u32) cmd_dma_handle;
5416 }
5417
5418 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5419 struct CommandList *c, struct scsi_cmnd *cmd,
5420 unsigned char *scsi3addr)
5421 {
5422 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5423 int rc = IO_ACCEL_INELIGIBLE;
5424
5425 if (!dev)
5426 return SCSI_MLQUEUE_HOST_BUSY;
5427
5428 cmd->host_scribble = (unsigned char *) c;
5429
5430 if (dev->offload_enabled) {
5431 hpsa_cmd_init(h, c->cmdindex, c);
5432 c->cmd_type = CMD_SCSI;
5433 c->scsi_cmd = cmd;
5434 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5435 if (rc < 0) /* scsi_dma_map failed. */
5436 rc = SCSI_MLQUEUE_HOST_BUSY;
5437 } else if (dev->hba_ioaccel_enabled) {
5438 hpsa_cmd_init(h, c->cmdindex, c);
5439 c->cmd_type = CMD_SCSI;
5440 c->scsi_cmd = cmd;
5441 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5442 if (rc < 0) /* scsi_dma_map failed. */
5443 rc = SCSI_MLQUEUE_HOST_BUSY;
5444 }
5445 return rc;
5446 }
5447
5448 static void hpsa_command_resubmit_worker(struct work_struct *work)
5449 {
5450 struct scsi_cmnd *cmd;
5451 struct hpsa_scsi_dev_t *dev;
5452 struct CommandList *c = container_of(work, struct CommandList, work);
5453
5454 cmd = c->scsi_cmd;
5455 dev = cmd->device->hostdata;
5456 if (!dev) {
5457 cmd->result = DID_NO_CONNECT << 16;
5458 return hpsa_cmd_free_and_done(c->h, c, cmd);
5459 }
5460 if (c->reset_pending)
5461 return hpsa_cmd_resolve_and_free(c->h, c);
5462 if (c->abort_pending)
5463 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5464 if (c->cmd_type == CMD_IOACCEL2) {
5465 struct ctlr_info *h = c->h;
5466 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5467 int rc;
5468
5469 if (c2->error_data.serv_response ==
5470 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5471 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5472 if (rc == 0)
5473 return;
5474 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5475 /*
5476 * If we get here, it means dma mapping failed.
5477 * Try again via scsi mid layer, which will
5478 * then get SCSI_MLQUEUE_HOST_BUSY.
5479 */
5480 cmd->result = DID_IMM_RETRY << 16;
5481 return hpsa_cmd_free_and_done(h, c, cmd);
5482 }
5483 /* else, fall thru and resubmit down CISS path */
5484 }
5485 }
5486 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5487 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5488 /*
5489 * If we get here, it means dma mapping failed. Try
5490 * again via scsi mid layer, which will then get
5491 * SCSI_MLQUEUE_HOST_BUSY.
5492 *
5493 * hpsa_ciss_submit will have already freed c
5494 * if it encountered a dma mapping failure.
5495 */
5496 cmd->result = DID_IMM_RETRY << 16;
5497 cmd->scsi_done(cmd);
5498 }
5499 }
5500
5501 /* Running in struct Scsi_Host->host_lock less mode */
5502 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5503 {
5504 struct ctlr_info *h;
5505 struct hpsa_scsi_dev_t *dev;
5506 unsigned char scsi3addr[8];
5507 struct CommandList *c;
5508 int rc = 0;
5509
5510 /* Get the ptr to our adapter structure out of cmd->host. */
5511 h = sdev_to_hba(cmd->device);
5512
5513 BUG_ON(cmd->request->tag < 0);
5514
5515 dev = cmd->device->hostdata;
5516 if (!dev) {
5517 cmd->result = DID_NO_CONNECT << 16;
5518 cmd->scsi_done(cmd);
5519 return 0;
5520 }
5521
5522 if (dev->removed) {
5523 cmd->result = DID_NO_CONNECT << 16;
5524 cmd->scsi_done(cmd);
5525 return 0;
5526 }
5527
5528 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5529
5530 if (unlikely(lockup_detected(h))) {
5531 cmd->result = DID_NO_CONNECT << 16;
5532 cmd->scsi_done(cmd);
5533 return 0;
5534 }
5535 c = cmd_tagged_alloc(h, cmd);
5536
5537 /*
5538 * Call alternate submit routine for I/O accelerated commands.
5539 * Retries always go down the normal I/O path.
5540 */
5541 if (likely(cmd->retries == 0 &&
5542 !blk_rq_is_passthrough(cmd->request) &&
5543 h->acciopath_status)) {
5544 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5545 if (rc == 0)
5546 return 0;
5547 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5548 hpsa_cmd_resolve_and_free(h, c);
5549 return SCSI_MLQUEUE_HOST_BUSY;
5550 }
5551 }
5552 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5553 }
5554
5555 static void hpsa_scan_complete(struct ctlr_info *h)
5556 {
5557 unsigned long flags;
5558
5559 spin_lock_irqsave(&h->scan_lock, flags);
5560 h->scan_finished = 1;
5561 wake_up_all(&h->scan_wait_queue);
5562 spin_unlock_irqrestore(&h->scan_lock, flags);
5563 }
5564
5565 static void hpsa_scan_start(struct Scsi_Host *sh)
5566 {
5567 struct ctlr_info *h = shost_to_hba(sh);
5568 unsigned long flags;
5569
5570 /*
5571 * Don't let rescans be initiated on a controller known to be locked
5572 * up. If the controller locks up *during* a rescan, that thread is
5573 * probably hosed, but at least we can prevent new rescan threads from
5574 * piling up on a locked up controller.
5575 */
5576 if (unlikely(lockup_detected(h)))
5577 return hpsa_scan_complete(h);
5578
5579 /* wait until any scan already in progress is finished. */
5580 while (1) {
5581 spin_lock_irqsave(&h->scan_lock, flags);
5582 if (h->scan_finished)
5583 break;
5584 spin_unlock_irqrestore(&h->scan_lock, flags);
5585 wait_event(h->scan_wait_queue, h->scan_finished);
5586 /* Note: We don't need to worry about a race between this
5587 * thread and driver unload because the midlayer will
5588 * have incremented the reference count, so unload won't
5589 * happen if we're in here.
5590 */
5591 }
5592 h->scan_finished = 0; /* mark scan as in progress */
5593 spin_unlock_irqrestore(&h->scan_lock, flags);
5594
5595 if (unlikely(lockup_detected(h)))
5596 return hpsa_scan_complete(h);
5597
5598 /*
5599 * Do the scan after a reset completion
5600 */
5601 if (h->reset_in_progress) {
5602 h->drv_req_rescan = 1;
5603 return;
5604 }
5605
5606 hpsa_update_scsi_devices(h);
5607
5608 hpsa_scan_complete(h);
5609 }
5610
5611 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5612 {
5613 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5614
5615 if (!logical_drive)
5616 return -ENODEV;
5617
5618 if (qdepth < 1)
5619 qdepth = 1;
5620 else if (qdepth > logical_drive->queue_depth)
5621 qdepth = logical_drive->queue_depth;
5622
5623 return scsi_change_queue_depth(sdev, qdepth);
5624 }
5625
5626 static int hpsa_scan_finished(struct Scsi_Host *sh,
5627 unsigned long elapsed_time)
5628 {
5629 struct ctlr_info *h = shost_to_hba(sh);
5630 unsigned long flags;
5631 int finished;
5632
5633 spin_lock_irqsave(&h->scan_lock, flags);
5634 finished = h->scan_finished;
5635 spin_unlock_irqrestore(&h->scan_lock, flags);
5636 return finished;
5637 }
5638
5639 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5640 {
5641 struct Scsi_Host *sh;
5642
5643 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5644 if (sh == NULL) {
5645 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5646 return -ENOMEM;
5647 }
5648
5649 sh->io_port = 0;
5650 sh->n_io_port = 0;
5651 sh->this_id = -1;
5652 sh->max_channel = 3;
5653 sh->max_cmd_len = MAX_COMMAND_SIZE;
5654 sh->max_lun = HPSA_MAX_LUN;
5655 sh->max_id = HPSA_MAX_LUN;
5656 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5657 sh->cmd_per_lun = sh->can_queue;
5658 sh->sg_tablesize = h->maxsgentries;
5659 sh->transportt = hpsa_sas_transport_template;
5660 sh->hostdata[0] = (unsigned long) h;
5661 sh->irq = pci_irq_vector(h->pdev, 0);
5662 sh->unique_id = sh->irq;
5663
5664 h->scsi_host = sh;
5665 return 0;
5666 }
5667
5668 static int hpsa_scsi_add_host(struct ctlr_info *h)
5669 {
5670 int rv;
5671
5672 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5673 if (rv) {
5674 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5675 return rv;
5676 }
5677 scsi_scan_host(h->scsi_host);
5678 return 0;
5679 }
5680
5681 /*
5682 * The block layer has already gone to the trouble of picking out a unique,
5683 * small-integer tag for this request. We use an offset from that value as
5684 * an index to select our command block. (The offset allows us to reserve the
5685 * low-numbered entries for our own uses.)
5686 */
5687 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5688 {
5689 int idx = scmd->request->tag;
5690
5691 if (idx < 0)
5692 return idx;
5693
5694 /* Offset to leave space for internal cmds. */
5695 return idx += HPSA_NRESERVED_CMDS;
5696 }
5697
5698 /*
5699 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5700 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5701 */
5702 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5703 struct CommandList *c, unsigned char lunaddr[],
5704 int reply_queue)
5705 {
5706 int rc;
5707
5708 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5709 (void) fill_cmd(c, TEST_UNIT_READY, h,
5710 NULL, 0, 0, lunaddr, TYPE_CMD);
5711 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5712 if (rc)
5713 return rc;
5714 /* no unmap needed here because no data xfer. */
5715
5716 /* Check if the unit is already ready. */
5717 if (c->err_info->CommandStatus == CMD_SUCCESS)
5718 return 0;
5719
5720 /*
5721 * The first command sent after reset will receive "unit attention" to
5722 * indicate that the LUN has been reset...this is actually what we're
5723 * looking for (but, success is good too).
5724 */
5725 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5726 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5727 (c->err_info->SenseInfo[2] == NO_SENSE ||
5728 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5729 return 0;
5730
5731 return 1;
5732 }
5733
5734 /*
5735 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5736 * returns zero when the unit is ready, and non-zero when giving up.
5737 */
5738 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5739 struct CommandList *c,
5740 unsigned char lunaddr[], int reply_queue)
5741 {
5742 int rc;
5743 int count = 0;
5744 int waittime = 1; /* seconds */
5745
5746 /* Send test unit ready until device ready, or give up. */
5747 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5748
5749 /*
5750 * Wait for a bit. do this first, because if we send
5751 * the TUR right away, the reset will just abort it.
5752 */
5753 msleep(1000 * waittime);
5754
5755 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5756 if (!rc)
5757 break;
5758
5759 /* Increase wait time with each try, up to a point. */
5760 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5761 waittime *= 2;
5762
5763 dev_warn(&h->pdev->dev,
5764 "waiting %d secs for device to become ready.\n",
5765 waittime);
5766 }
5767
5768 return rc;
5769 }
5770
5771 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5772 unsigned char lunaddr[],
5773 int reply_queue)
5774 {
5775 int first_queue;
5776 int last_queue;
5777 int rq;
5778 int rc = 0;
5779 struct CommandList *c;
5780
5781 c = cmd_alloc(h);
5782
5783 /*
5784 * If no specific reply queue was requested, then send the TUR
5785 * repeatedly, requesting a reply on each reply queue; otherwise execute
5786 * the loop exactly once using only the specified queue.
5787 */
5788 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5789 first_queue = 0;
5790 last_queue = h->nreply_queues - 1;
5791 } else {
5792 first_queue = reply_queue;
5793 last_queue = reply_queue;
5794 }
5795
5796 for (rq = first_queue; rq <= last_queue; rq++) {
5797 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5798 if (rc)
5799 break;
5800 }
5801
5802 if (rc)
5803 dev_warn(&h->pdev->dev, "giving up on device.\n");
5804 else
5805 dev_warn(&h->pdev->dev, "device is ready.\n");
5806
5807 cmd_free(h, c);
5808 return rc;
5809 }
5810
5811 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5812 * complaining. Doing a host- or bus-reset can't do anything good here.
5813 */
5814 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5815 {
5816 int rc;
5817 struct ctlr_info *h;
5818 struct hpsa_scsi_dev_t *dev;
5819 u8 reset_type;
5820 char msg[48];
5821
5822 /* find the controller to which the command to be aborted was sent */
5823 h = sdev_to_hba(scsicmd->device);
5824 if (h == NULL) /* paranoia */
5825 return FAILED;
5826
5827 if (lockup_detected(h))
5828 return FAILED;
5829
5830 dev = scsicmd->device->hostdata;
5831 if (!dev) {
5832 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5833 return FAILED;
5834 }
5835
5836 /* if controller locked up, we can guarantee command won't complete */
5837 if (lockup_detected(h)) {
5838 snprintf(msg, sizeof(msg),
5839 "cmd %d RESET FAILED, lockup detected",
5840 hpsa_get_cmd_index(scsicmd));
5841 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5842 return FAILED;
5843 }
5844
5845 /* this reset request might be the result of a lockup; check */
5846 if (detect_controller_lockup(h)) {
5847 snprintf(msg, sizeof(msg),
5848 "cmd %d RESET FAILED, new lockup detected",
5849 hpsa_get_cmd_index(scsicmd));
5850 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5851 return FAILED;
5852 }
5853
5854 /* Do not attempt on controller */
5855 if (is_hba_lunid(dev->scsi3addr))
5856 return SUCCESS;
5857
5858 if (is_logical_dev_addr_mode(dev->scsi3addr))
5859 reset_type = HPSA_DEVICE_RESET_MSG;
5860 else
5861 reset_type = HPSA_PHYS_TARGET_RESET;
5862
5863 sprintf(msg, "resetting %s",
5864 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5865 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5866
5867 h->reset_in_progress = 1;
5868
5869 /* send a reset to the SCSI LUN which the command was sent to */
5870 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5871 DEFAULT_REPLY_QUEUE);
5872 sprintf(msg, "reset %s %s",
5873 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5874 rc == 0 ? "completed successfully" : "failed");
5875 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5876 h->reset_in_progress = 0;
5877 return rc == 0 ? SUCCESS : FAILED;
5878 }
5879
5880 static void swizzle_abort_tag(u8 *tag)
5881 {
5882 u8 original_tag[8];
5883
5884 memcpy(original_tag, tag, 8);
5885 tag[0] = original_tag[3];
5886 tag[1] = original_tag[2];
5887 tag[2] = original_tag[1];
5888 tag[3] = original_tag[0];
5889 tag[4] = original_tag[7];
5890 tag[5] = original_tag[6];
5891 tag[6] = original_tag[5];
5892 tag[7] = original_tag[4];
5893 }
5894
5895 static void hpsa_get_tag(struct ctlr_info *h,
5896 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5897 {
5898 u64 tag;
5899 if (c->cmd_type == CMD_IOACCEL1) {
5900 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5901 &h->ioaccel_cmd_pool[c->cmdindex];
5902 tag = le64_to_cpu(cm1->tag);
5903 *tagupper = cpu_to_le32(tag >> 32);
5904 *taglower = cpu_to_le32(tag);
5905 return;
5906 }
5907 if (c->cmd_type == CMD_IOACCEL2) {
5908 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5909 &h->ioaccel2_cmd_pool[c->cmdindex];
5910 /* upper tag not used in ioaccel2 mode */
5911 memset(tagupper, 0, sizeof(*tagupper));
5912 *taglower = cm2->Tag;
5913 return;
5914 }
5915 tag = le64_to_cpu(c->Header.tag);
5916 *tagupper = cpu_to_le32(tag >> 32);
5917 *taglower = cpu_to_le32(tag);
5918 }
5919
5920 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5921 struct CommandList *abort, int reply_queue)
5922 {
5923 int rc = IO_OK;
5924 struct CommandList *c;
5925 struct ErrorInfo *ei;
5926 __le32 tagupper, taglower;
5927
5928 c = cmd_alloc(h);
5929
5930 /* fill_cmd can't fail here, no buffer to map */
5931 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5932 0, 0, scsi3addr, TYPE_MSG);
5933 if (h->needs_abort_tags_swizzled)
5934 swizzle_abort_tag(&c->Request.CDB[4]);
5935 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5936 hpsa_get_tag(h, abort, &taglower, &tagupper);
5937 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5938 __func__, tagupper, taglower);
5939 /* no unmap needed here because no data xfer. */
5940
5941 ei = c->err_info;
5942 switch (ei->CommandStatus) {
5943 case CMD_SUCCESS:
5944 break;
5945 case CMD_TMF_STATUS:
5946 rc = hpsa_evaluate_tmf_status(h, c);
5947 break;
5948 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5949 rc = -1;
5950 break;
5951 default:
5952 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5953 __func__, tagupper, taglower);
5954 hpsa_scsi_interpret_error(h, c);
5955 rc = -1;
5956 break;
5957 }
5958 cmd_free(h, c);
5959 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5960 __func__, tagupper, taglower);
5961 return rc;
5962 }
5963
5964 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5965 struct CommandList *command_to_abort, int reply_queue)
5966 {
5967 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5968 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5969 struct io_accel2_cmd *c2a =
5970 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5971 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5972 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5973
5974 if (!dev)
5975 return;
5976
5977 /*
5978 * We're overlaying struct hpsa_tmf_struct on top of something which
5979 * was allocated as a struct io_accel2_cmd, so we better be sure it
5980 * actually fits, and doesn't overrun the error info space.
5981 */
5982 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5983 sizeof(struct io_accel2_cmd));
5984 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5985 offsetof(struct hpsa_tmf_struct, error_len) +
5986 sizeof(ac->error_len));
5987
5988 c->cmd_type = IOACCEL2_TMF;
5989 c->scsi_cmd = SCSI_CMD_BUSY;
5990
5991 /* Adjust the DMA address to point to the accelerated command buffer */
5992 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5993 (c->cmdindex * sizeof(struct io_accel2_cmd));
5994 BUG_ON(c->busaddr & 0x0000007F);
5995
5996 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5997 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5998 ac->reply_queue = reply_queue;
5999 ac->tmf = IOACCEL2_TMF_ABORT;
6000 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6001 memset(ac->lun_id, 0, sizeof(ac->lun_id));
6002 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6003 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6004 ac->error_ptr = cpu_to_le64(c->busaddr +
6005 offsetof(struct io_accel2_cmd, error_data));
6006 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6007 }
6008
6009 /* ioaccel2 path firmware cannot handle abort task requests.
6010 * Change abort requests to physical target reset, and send to the
6011 * address of the physical disk used for the ioaccel 2 command.
6012 * Return 0 on success (IO_OK)
6013 * -1 on failure
6014 */
6015
6016 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6017 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6018 {
6019 int rc = IO_OK;
6020 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6021 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6022 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6023 unsigned char *psa = &phys_scsi3addr[0];
6024
6025 /* Get a pointer to the hpsa logical device. */
6026 scmd = abort->scsi_cmd;
6027 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6028 if (dev == NULL) {
6029 dev_warn(&h->pdev->dev,
6030 "Cannot abort: no device pointer for command.\n");
6031 return -1; /* not abortable */
6032 }
6033
6034 if (h->raid_offload_debug > 0)
6035 dev_info(&h->pdev->dev,
6036 "scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6037 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6038 "Reset as abort", scsi3addr);
6039
6040 if (!dev->offload_enabled) {
6041 dev_warn(&h->pdev->dev,
6042 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6043 return -1; /* not abortable */
6044 }
6045
6046 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6047 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6048 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6049 return -1; /* not abortable */
6050 }
6051
6052 /* send the reset */
6053 if (h->raid_offload_debug > 0)
6054 dev_info(&h->pdev->dev,
6055 "Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6056 psa);
6057 rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6058 if (rc != 0) {
6059 dev_warn(&h->pdev->dev,
6060 "Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6061 psa);
6062 return rc; /* failed to reset */
6063 }
6064
6065 /* wait for device to recover */
6066 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6067 dev_warn(&h->pdev->dev,
6068 "Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6069 psa);
6070 return -1; /* failed to recover */
6071 }
6072
6073 /* device recovered */
6074 dev_info(&h->pdev->dev,
6075 "Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6076 psa);
6077
6078 return rc; /* success */
6079 }
6080
6081 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6082 struct CommandList *abort, int reply_queue)
6083 {
6084 int rc = IO_OK;
6085 struct CommandList *c;
6086 __le32 taglower, tagupper;
6087 struct hpsa_scsi_dev_t *dev;
6088 struct io_accel2_cmd *c2;
6089
6090 dev = abort->scsi_cmd->device->hostdata;
6091 if (!dev)
6092 return -1;
6093
6094 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6095 return -1;
6096
6097 c = cmd_alloc(h);
6098 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6099 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6100 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6101 hpsa_get_tag(h, abort, &taglower, &tagupper);
6102 dev_dbg(&h->pdev->dev,
6103 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6104 __func__, tagupper, taglower);
6105 /* no unmap needed here because no data xfer. */
6106
6107 dev_dbg(&h->pdev->dev,
6108 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6109 __func__, tagupper, taglower, c2->error_data.serv_response);
6110 switch (c2->error_data.serv_response) {
6111 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6112 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6113 rc = 0;
6114 break;
6115 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6116 case IOACCEL2_SERV_RESPONSE_FAILURE:
6117 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6118 rc = -1;
6119 break;
6120 default:
6121 dev_warn(&h->pdev->dev,
6122 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6123 __func__, tagupper, taglower,
6124 c2->error_data.serv_response);
6125 rc = -1;
6126 }
6127 cmd_free(h, c);
6128 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6129 tagupper, taglower);
6130 return rc;
6131 }
6132
6133 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6134 struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6135 {
6136 /*
6137 * ioccelerator mode 2 commands should be aborted via the
6138 * accelerated path, since RAID path is unaware of these commands,
6139 * but not all underlying firmware can handle abort TMF.
6140 * Change abort to physical device reset when abort TMF is unsupported.
6141 */
6142 if (abort->cmd_type == CMD_IOACCEL2) {
6143 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6144 dev->physical_device)
6145 return hpsa_send_abort_ioaccel2(h, abort,
6146 reply_queue);
6147 else
6148 return hpsa_send_reset_as_abort_ioaccel2(h,
6149 dev->scsi3addr,
6150 abort, reply_queue);
6151 }
6152 return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6153 }
6154
6155 /* Find out which reply queue a command was meant to return on */
6156 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6157 struct CommandList *c)
6158 {
6159 if (c->cmd_type == CMD_IOACCEL2)
6160 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6161 return c->Header.ReplyQueue;
6162 }
6163
6164 /*
6165 * Limit concurrency of abort commands to prevent
6166 * over-subscription of commands
6167 */
6168 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6169 {
6170 #define ABORT_CMD_WAIT_MSECS 5000
6171 return !wait_event_timeout(h->abort_cmd_wait_queue,
6172 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6173 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6174 }
6175
6176 /* Send an abort for the specified command.
6177 * If the device and controller support it,
6178 * send a task abort request.
6179 */
6180 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6181 {
6182
6183 int rc;
6184 struct ctlr_info *h;
6185 struct hpsa_scsi_dev_t *dev;
6186 struct CommandList *abort; /* pointer to command to be aborted */
6187 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
6188 char msg[256]; /* For debug messaging. */
6189 int ml = 0;
6190 __le32 tagupper, taglower;
6191 int refcount, reply_queue;
6192
6193 if (sc == NULL)
6194 return FAILED;
6195
6196 if (sc->device == NULL)
6197 return FAILED;
6198
6199 /* Find the controller of the command to be aborted */
6200 h = sdev_to_hba(sc->device);
6201 if (h == NULL)
6202 return FAILED;
6203
6204 /* Find the device of the command to be aborted */
6205 dev = sc->device->hostdata;
6206 if (!dev) {
6207 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6208 msg);
6209 return FAILED;
6210 }
6211
6212 /* If controller locked up, we can guarantee command won't complete */
6213 if (lockup_detected(h)) {
6214 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6215 "ABORT FAILED, lockup detected");
6216 return FAILED;
6217 }
6218
6219 /* This is a good time to check if controller lockup has occurred */
6220 if (detect_controller_lockup(h)) {
6221 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6222 "ABORT FAILED, new lockup detected");
6223 return FAILED;
6224 }
6225
6226 /* Check that controller supports some kind of task abort */
6227 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6228 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6229 return FAILED;
6230
6231 memset(msg, 0, sizeof(msg));
6232 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6233 h->scsi_host->host_no, sc->device->channel,
6234 sc->device->id, sc->device->lun,
6235 "Aborting command", sc);
6236
6237 /* Get SCSI command to be aborted */
6238 abort = (struct CommandList *) sc->host_scribble;
6239 if (abort == NULL) {
6240 /* This can happen if the command already completed. */
6241 return SUCCESS;
6242 }
6243 refcount = atomic_inc_return(&abort->refcount);
6244 if (refcount == 1) { /* Command is done already. */
6245 cmd_free(h, abort);
6246 return SUCCESS;
6247 }
6248
6249 /* Don't bother trying the abort if we know it won't work. */
6250 if (abort->cmd_type != CMD_IOACCEL2 &&
6251 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6252 cmd_free(h, abort);
6253 return FAILED;
6254 }
6255
6256 /*
6257 * Check that we're aborting the right command.
6258 * It's possible the CommandList already completed and got re-used.
6259 */
6260 if (abort->scsi_cmd != sc) {
6261 cmd_free(h, abort);
6262 return SUCCESS;
6263 }
6264
6265 abort->abort_pending = true;
6266 hpsa_get_tag(h, abort, &taglower, &tagupper);
6267 reply_queue = hpsa_extract_reply_queue(h, abort);
6268 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6269 as = abort->scsi_cmd;
6270 if (as != NULL)
6271 ml += sprintf(msg+ml,
6272 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6273 as->cmd_len, as->cmnd[0], as->cmnd[1],
6274 as->serial_number);
6275 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6276 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6277
6278 /*
6279 * Command is in flight, or possibly already completed
6280 * by the firmware (but not to the scsi mid layer) but we can't
6281 * distinguish which. Send the abort down.
6282 */
6283 if (wait_for_available_abort_cmd(h)) {
6284 dev_warn(&h->pdev->dev,
6285 "%s FAILED, timeout waiting for an abort command to become available.\n",
6286 msg);
6287 cmd_free(h, abort);
6288 return FAILED;
6289 }
6290 rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6291 atomic_inc(&h->abort_cmds_available);
6292 wake_up_all(&h->abort_cmd_wait_queue);
6293 if (rc != 0) {
6294 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6295 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6296 "FAILED to abort command");
6297 cmd_free(h, abort);
6298 return FAILED;
6299 }
6300 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6301 wait_event(h->event_sync_wait_queue,
6302 abort->scsi_cmd != sc || lockup_detected(h));
6303 cmd_free(h, abort);
6304 return !lockup_detected(h) ? SUCCESS : FAILED;
6305 }
6306
6307 /*
6308 * For operations with an associated SCSI command, a command block is allocated
6309 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6310 * block request tag as an index into a table of entries. cmd_tagged_free() is
6311 * the complement, although cmd_free() may be called instead.
6312 */
6313 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6314 struct scsi_cmnd *scmd)
6315 {
6316 int idx = hpsa_get_cmd_index(scmd);
6317 struct CommandList *c = h->cmd_pool + idx;
6318
6319 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6320 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6321 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6322 /* The index value comes from the block layer, so if it's out of
6323 * bounds, it's probably not our bug.
6324 */
6325 BUG();
6326 }
6327
6328 atomic_inc(&c->refcount);
6329 if (unlikely(!hpsa_is_cmd_idle(c))) {
6330 /*
6331 * We expect that the SCSI layer will hand us a unique tag
6332 * value. Thus, there should never be a collision here between
6333 * two requests...because if the selected command isn't idle
6334 * then someone is going to be very disappointed.
6335 */
6336 dev_err(&h->pdev->dev,
6337 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6338 idx);
6339 if (c->scsi_cmd != NULL)
6340 scsi_print_command(c->scsi_cmd);
6341 scsi_print_command(scmd);
6342 }
6343
6344 hpsa_cmd_partial_init(h, idx, c);
6345 return c;
6346 }
6347
6348 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6349 {
6350 /*
6351 * Release our reference to the block. We don't need to do anything
6352 * else to free it, because it is accessed by index. (There's no point
6353 * in checking the result of the decrement, since we cannot guarantee
6354 * that there isn't a concurrent abort which is also accessing it.)
6355 */
6356 (void)atomic_dec(&c->refcount);
6357 }
6358
6359 /*
6360 * For operations that cannot sleep, a command block is allocated at init,
6361 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6362 * which ones are free or in use. Lock must be held when calling this.
6363 * cmd_free() is the complement.
6364 * This function never gives up and returns NULL. If it hangs,
6365 * another thread must call cmd_free() to free some tags.
6366 */
6367
6368 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6369 {
6370 struct CommandList *c;
6371 int refcount, i;
6372 int offset = 0;
6373
6374 /*
6375 * There is some *extremely* small but non-zero chance that that
6376 * multiple threads could get in here, and one thread could
6377 * be scanning through the list of bits looking for a free
6378 * one, but the free ones are always behind him, and other
6379 * threads sneak in behind him and eat them before he can
6380 * get to them, so that while there is always a free one, a
6381 * very unlucky thread might be starved anyway, never able to
6382 * beat the other threads. In reality, this happens so
6383 * infrequently as to be indistinguishable from never.
6384 *
6385 * Note that we start allocating commands before the SCSI host structure
6386 * is initialized. Since the search starts at bit zero, this
6387 * all works, since we have at least one command structure available;
6388 * however, it means that the structures with the low indexes have to be
6389 * reserved for driver-initiated requests, while requests from the block
6390 * layer will use the higher indexes.
6391 */
6392
6393 for (;;) {
6394 i = find_next_zero_bit(h->cmd_pool_bits,
6395 HPSA_NRESERVED_CMDS,
6396 offset);
6397 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6398 offset = 0;
6399 continue;
6400 }
6401 c = h->cmd_pool + i;
6402 refcount = atomic_inc_return(&c->refcount);
6403 if (unlikely(refcount > 1)) {
6404 cmd_free(h, c); /* already in use */
6405 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6406 continue;
6407 }
6408 set_bit(i & (BITS_PER_LONG - 1),
6409 h->cmd_pool_bits + (i / BITS_PER_LONG));
6410 break; /* it's ours now. */
6411 }
6412 hpsa_cmd_partial_init(h, i, c);
6413 return c;
6414 }
6415
6416 /*
6417 * This is the complementary operation to cmd_alloc(). Note, however, in some
6418 * corner cases it may also be used to free blocks allocated by
6419 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6420 * the clear-bit is harmless.
6421 */
6422 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6423 {
6424 if (atomic_dec_and_test(&c->refcount)) {
6425 int i;
6426
6427 i = c - h->cmd_pool;
6428 clear_bit(i & (BITS_PER_LONG - 1),
6429 h->cmd_pool_bits + (i / BITS_PER_LONG));
6430 }
6431 }
6432
6433 #ifdef CONFIG_COMPAT
6434
6435 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6436 void __user *arg)
6437 {
6438 IOCTL32_Command_struct __user *arg32 =
6439 (IOCTL32_Command_struct __user *) arg;
6440 IOCTL_Command_struct arg64;
6441 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6442 int err;
6443 u32 cp;
6444
6445 memset(&arg64, 0, sizeof(arg64));
6446 err = 0;
6447 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6448 sizeof(arg64.LUN_info));
6449 err |= copy_from_user(&arg64.Request, &arg32->Request,
6450 sizeof(arg64.Request));
6451 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6452 sizeof(arg64.error_info));
6453 err |= get_user(arg64.buf_size, &arg32->buf_size);
6454 err |= get_user(cp, &arg32->buf);
6455 arg64.buf = compat_ptr(cp);
6456 err |= copy_to_user(p, &arg64, sizeof(arg64));
6457
6458 if (err)
6459 return -EFAULT;
6460
6461 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6462 if (err)
6463 return err;
6464 err |= copy_in_user(&arg32->error_info, &p->error_info,
6465 sizeof(arg32->error_info));
6466 if (err)
6467 return -EFAULT;
6468 return err;
6469 }
6470
6471 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6472 int cmd, void __user *arg)
6473 {
6474 BIG_IOCTL32_Command_struct __user *arg32 =
6475 (BIG_IOCTL32_Command_struct __user *) arg;
6476 BIG_IOCTL_Command_struct arg64;
6477 BIG_IOCTL_Command_struct __user *p =
6478 compat_alloc_user_space(sizeof(arg64));
6479 int err;
6480 u32 cp;
6481
6482 memset(&arg64, 0, sizeof(arg64));
6483 err = 0;
6484 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6485 sizeof(arg64.LUN_info));
6486 err |= copy_from_user(&arg64.Request, &arg32->Request,
6487 sizeof(arg64.Request));
6488 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6489 sizeof(arg64.error_info));
6490 err |= get_user(arg64.buf_size, &arg32->buf_size);
6491 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6492 err |= get_user(cp, &arg32->buf);
6493 arg64.buf = compat_ptr(cp);
6494 err |= copy_to_user(p, &arg64, sizeof(arg64));
6495
6496 if (err)
6497 return -EFAULT;
6498
6499 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6500 if (err)
6501 return err;
6502 err |= copy_in_user(&arg32->error_info, &p->error_info,
6503 sizeof(arg32->error_info));
6504 if (err)
6505 return -EFAULT;
6506 return err;
6507 }
6508
6509 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6510 {
6511 switch (cmd) {
6512 case CCISS_GETPCIINFO:
6513 case CCISS_GETINTINFO:
6514 case CCISS_SETINTINFO:
6515 case CCISS_GETNODENAME:
6516 case CCISS_SETNODENAME:
6517 case CCISS_GETHEARTBEAT:
6518 case CCISS_GETBUSTYPES:
6519 case CCISS_GETFIRMVER:
6520 case CCISS_GETDRIVVER:
6521 case CCISS_REVALIDVOLS:
6522 case CCISS_DEREGDISK:
6523 case CCISS_REGNEWDISK:
6524 case CCISS_REGNEWD:
6525 case CCISS_RESCANDISK:
6526 case CCISS_GETLUNINFO:
6527 return hpsa_ioctl(dev, cmd, arg);
6528
6529 case CCISS_PASSTHRU32:
6530 return hpsa_ioctl32_passthru(dev, cmd, arg);
6531 case CCISS_BIG_PASSTHRU32:
6532 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6533
6534 default:
6535 return -ENOIOCTLCMD;
6536 }
6537 }
6538 #endif
6539
6540 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6541 {
6542 struct hpsa_pci_info pciinfo;
6543
6544 if (!argp)
6545 return -EINVAL;
6546 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6547 pciinfo.bus = h->pdev->bus->number;
6548 pciinfo.dev_fn = h->pdev->devfn;
6549 pciinfo.board_id = h->board_id;
6550 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6551 return -EFAULT;
6552 return 0;
6553 }
6554
6555 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6556 {
6557 DriverVer_type DriverVer;
6558 unsigned char vmaj, vmin, vsubmin;
6559 int rc;
6560
6561 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6562 &vmaj, &vmin, &vsubmin);
6563 if (rc != 3) {
6564 dev_info(&h->pdev->dev, "driver version string '%s' "
6565 "unrecognized.", HPSA_DRIVER_VERSION);
6566 vmaj = 0;
6567 vmin = 0;
6568 vsubmin = 0;
6569 }
6570 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6571 if (!argp)
6572 return -EINVAL;
6573 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6574 return -EFAULT;
6575 return 0;
6576 }
6577
6578 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6579 {
6580 IOCTL_Command_struct iocommand;
6581 struct CommandList *c;
6582 char *buff = NULL;
6583 u64 temp64;
6584 int rc = 0;
6585
6586 if (!argp)
6587 return -EINVAL;
6588 if (!capable(CAP_SYS_RAWIO))
6589 return -EPERM;
6590 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6591 return -EFAULT;
6592 if ((iocommand.buf_size < 1) &&
6593 (iocommand.Request.Type.Direction != XFER_NONE)) {
6594 return -EINVAL;
6595 }
6596 if (iocommand.buf_size > 0) {
6597 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6598 if (buff == NULL)
6599 return -ENOMEM;
6600 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6601 /* Copy the data into the buffer we created */
6602 if (copy_from_user(buff, iocommand.buf,
6603 iocommand.buf_size)) {
6604 rc = -EFAULT;
6605 goto out_kfree;
6606 }
6607 } else {
6608 memset(buff, 0, iocommand.buf_size);
6609 }
6610 }
6611 c = cmd_alloc(h);
6612
6613 /* Fill in the command type */
6614 c->cmd_type = CMD_IOCTL_PEND;
6615 c->scsi_cmd = SCSI_CMD_BUSY;
6616 /* Fill in Command Header */
6617 c->Header.ReplyQueue = 0; /* unused in simple mode */
6618 if (iocommand.buf_size > 0) { /* buffer to fill */
6619 c->Header.SGList = 1;
6620 c->Header.SGTotal = cpu_to_le16(1);
6621 } else { /* no buffers to fill */
6622 c->Header.SGList = 0;
6623 c->Header.SGTotal = cpu_to_le16(0);
6624 }
6625 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6626
6627 /* Fill in Request block */
6628 memcpy(&c->Request, &iocommand.Request,
6629 sizeof(c->Request));
6630
6631 /* Fill in the scatter gather information */
6632 if (iocommand.buf_size > 0) {
6633 temp64 = pci_map_single(h->pdev, buff,
6634 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6635 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6636 c->SG[0].Addr = cpu_to_le64(0);
6637 c->SG[0].Len = cpu_to_le32(0);
6638 rc = -ENOMEM;
6639 goto out;
6640 }
6641 c->SG[0].Addr = cpu_to_le64(temp64);
6642 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6643 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6644 }
6645 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6646 NO_TIMEOUT);
6647 if (iocommand.buf_size > 0)
6648 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6649 check_ioctl_unit_attention(h, c);
6650 if (rc) {
6651 rc = -EIO;
6652 goto out;
6653 }
6654
6655 /* Copy the error information out */
6656 memcpy(&iocommand.error_info, c->err_info,
6657 sizeof(iocommand.error_info));
6658 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6659 rc = -EFAULT;
6660 goto out;
6661 }
6662 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6663 iocommand.buf_size > 0) {
6664 /* Copy the data out of the buffer we created */
6665 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6666 rc = -EFAULT;
6667 goto out;
6668 }
6669 }
6670 out:
6671 cmd_free(h, c);
6672 out_kfree:
6673 kfree(buff);
6674 return rc;
6675 }
6676
6677 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6678 {
6679 BIG_IOCTL_Command_struct *ioc;
6680 struct CommandList *c;
6681 unsigned char **buff = NULL;
6682 int *buff_size = NULL;
6683 u64 temp64;
6684 BYTE sg_used = 0;
6685 int status = 0;
6686 u32 left;
6687 u32 sz;
6688 BYTE __user *data_ptr;
6689
6690 if (!argp)
6691 return -EINVAL;
6692 if (!capable(CAP_SYS_RAWIO))
6693 return -EPERM;
6694 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6695 if (!ioc) {
6696 status = -ENOMEM;
6697 goto cleanup1;
6698 }
6699 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6700 status = -EFAULT;
6701 goto cleanup1;
6702 }
6703 if ((ioc->buf_size < 1) &&
6704 (ioc->Request.Type.Direction != XFER_NONE)) {
6705 status = -EINVAL;
6706 goto cleanup1;
6707 }
6708 /* Check kmalloc limits using all SGs */
6709 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6710 status = -EINVAL;
6711 goto cleanup1;
6712 }
6713 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6714 status = -EINVAL;
6715 goto cleanup1;
6716 }
6717 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6718 if (!buff) {
6719 status = -ENOMEM;
6720 goto cleanup1;
6721 }
6722 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6723 if (!buff_size) {
6724 status = -ENOMEM;
6725 goto cleanup1;
6726 }
6727 left = ioc->buf_size;
6728 data_ptr = ioc->buf;
6729 while (left) {
6730 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6731 buff_size[sg_used] = sz;
6732 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6733 if (buff[sg_used] == NULL) {
6734 status = -ENOMEM;
6735 goto cleanup1;
6736 }
6737 if (ioc->Request.Type.Direction & XFER_WRITE) {
6738 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6739 status = -EFAULT;
6740 goto cleanup1;
6741 }
6742 } else
6743 memset(buff[sg_used], 0, sz);
6744 left -= sz;
6745 data_ptr += sz;
6746 sg_used++;
6747 }
6748 c = cmd_alloc(h);
6749
6750 c->cmd_type = CMD_IOCTL_PEND;
6751 c->scsi_cmd = SCSI_CMD_BUSY;
6752 c->Header.ReplyQueue = 0;
6753 c->Header.SGList = (u8) sg_used;
6754 c->Header.SGTotal = cpu_to_le16(sg_used);
6755 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6756 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6757 if (ioc->buf_size > 0) {
6758 int i;
6759 for (i = 0; i < sg_used; i++) {
6760 temp64 = pci_map_single(h->pdev, buff[i],
6761 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6762 if (dma_mapping_error(&h->pdev->dev,
6763 (dma_addr_t) temp64)) {
6764 c->SG[i].Addr = cpu_to_le64(0);
6765 c->SG[i].Len = cpu_to_le32(0);
6766 hpsa_pci_unmap(h->pdev, c, i,
6767 PCI_DMA_BIDIRECTIONAL);
6768 status = -ENOMEM;
6769 goto cleanup0;
6770 }
6771 c->SG[i].Addr = cpu_to_le64(temp64);
6772 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6773 c->SG[i].Ext = cpu_to_le32(0);
6774 }
6775 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6776 }
6777 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6778 NO_TIMEOUT);
6779 if (sg_used)
6780 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6781 check_ioctl_unit_attention(h, c);
6782 if (status) {
6783 status = -EIO;
6784 goto cleanup0;
6785 }
6786
6787 /* Copy the error information out */
6788 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6789 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6790 status = -EFAULT;
6791 goto cleanup0;
6792 }
6793 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6794 int i;
6795
6796 /* Copy the data out of the buffer we created */
6797 BYTE __user *ptr = ioc->buf;
6798 for (i = 0; i < sg_used; i++) {
6799 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6800 status = -EFAULT;
6801 goto cleanup0;
6802 }
6803 ptr += buff_size[i];
6804 }
6805 }
6806 status = 0;
6807 cleanup0:
6808 cmd_free(h, c);
6809 cleanup1:
6810 if (buff) {
6811 int i;
6812
6813 for (i = 0; i < sg_used; i++)
6814 kfree(buff[i]);
6815 kfree(buff);
6816 }
6817 kfree(buff_size);
6818 kfree(ioc);
6819 return status;
6820 }
6821
6822 static void check_ioctl_unit_attention(struct ctlr_info *h,
6823 struct CommandList *c)
6824 {
6825 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6826 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6827 (void) check_for_unit_attention(h, c);
6828 }
6829
6830 /*
6831 * ioctl
6832 */
6833 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6834 {
6835 struct ctlr_info *h;
6836 void __user *argp = (void __user *)arg;
6837 int rc;
6838
6839 h = sdev_to_hba(dev);
6840
6841 switch (cmd) {
6842 case CCISS_DEREGDISK:
6843 case CCISS_REGNEWDISK:
6844 case CCISS_REGNEWD:
6845 hpsa_scan_start(h->scsi_host);
6846 return 0;
6847 case CCISS_GETPCIINFO:
6848 return hpsa_getpciinfo_ioctl(h, argp);
6849 case CCISS_GETDRIVVER:
6850 return hpsa_getdrivver_ioctl(h, argp);
6851 case CCISS_PASSTHRU:
6852 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6853 return -EAGAIN;
6854 rc = hpsa_passthru_ioctl(h, argp);
6855 atomic_inc(&h->passthru_cmds_avail);
6856 return rc;
6857 case CCISS_BIG_PASSTHRU:
6858 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6859 return -EAGAIN;
6860 rc = hpsa_big_passthru_ioctl(h, argp);
6861 atomic_inc(&h->passthru_cmds_avail);
6862 return rc;
6863 default:
6864 return -ENOTTY;
6865 }
6866 }
6867
6868 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6869 u8 reset_type)
6870 {
6871 struct CommandList *c;
6872
6873 c = cmd_alloc(h);
6874
6875 /* fill_cmd can't fail here, no data buffer to map */
6876 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6877 RAID_CTLR_LUNID, TYPE_MSG);
6878 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6879 c->waiting = NULL;
6880 enqueue_cmd_and_start_io(h, c);
6881 /* Don't wait for completion, the reset won't complete. Don't free
6882 * the command either. This is the last command we will send before
6883 * re-initializing everything, so it doesn't matter and won't leak.
6884 */
6885 return;
6886 }
6887
6888 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6889 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6890 int cmd_type)
6891 {
6892 int pci_dir = XFER_NONE;
6893 u64 tag; /* for commands to be aborted */
6894
6895 c->cmd_type = CMD_IOCTL_PEND;
6896 c->scsi_cmd = SCSI_CMD_BUSY;
6897 c->Header.ReplyQueue = 0;
6898 if (buff != NULL && size > 0) {
6899 c->Header.SGList = 1;
6900 c->Header.SGTotal = cpu_to_le16(1);
6901 } else {
6902 c->Header.SGList = 0;
6903 c->Header.SGTotal = cpu_to_le16(0);
6904 }
6905 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6906
6907 if (cmd_type == TYPE_CMD) {
6908 switch (cmd) {
6909 case HPSA_INQUIRY:
6910 /* are we trying to read a vital product page */
6911 if (page_code & VPD_PAGE) {
6912 c->Request.CDB[1] = 0x01;
6913 c->Request.CDB[2] = (page_code & 0xff);
6914 }
6915 c->Request.CDBLen = 6;
6916 c->Request.type_attr_dir =
6917 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6918 c->Request.Timeout = 0;
6919 c->Request.CDB[0] = HPSA_INQUIRY;
6920 c->Request.CDB[4] = size & 0xFF;
6921 break;
6922 case HPSA_REPORT_LOG:
6923 case HPSA_REPORT_PHYS:
6924 /* Talking to controller so It's a physical command
6925 mode = 00 target = 0. Nothing to write.
6926 */
6927 c->Request.CDBLen = 12;
6928 c->Request.type_attr_dir =
6929 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6930 c->Request.Timeout = 0;
6931 c->Request.CDB[0] = cmd;
6932 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6933 c->Request.CDB[7] = (size >> 16) & 0xFF;
6934 c->Request.CDB[8] = (size >> 8) & 0xFF;
6935 c->Request.CDB[9] = size & 0xFF;
6936 break;
6937 case BMIC_SENSE_DIAG_OPTIONS:
6938 c->Request.CDBLen = 16;
6939 c->Request.type_attr_dir =
6940 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6941 c->Request.Timeout = 0;
6942 /* Spec says this should be BMIC_WRITE */
6943 c->Request.CDB[0] = BMIC_READ;
6944 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6945 break;
6946 case BMIC_SET_DIAG_OPTIONS:
6947 c->Request.CDBLen = 16;
6948 c->Request.type_attr_dir =
6949 TYPE_ATTR_DIR(cmd_type,
6950 ATTR_SIMPLE, XFER_WRITE);
6951 c->Request.Timeout = 0;
6952 c->Request.CDB[0] = BMIC_WRITE;
6953 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6954 break;
6955 case HPSA_CACHE_FLUSH:
6956 c->Request.CDBLen = 12;
6957 c->Request.type_attr_dir =
6958 TYPE_ATTR_DIR(cmd_type,
6959 ATTR_SIMPLE, XFER_WRITE);
6960 c->Request.Timeout = 0;
6961 c->Request.CDB[0] = BMIC_WRITE;
6962 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6963 c->Request.CDB[7] = (size >> 8) & 0xFF;
6964 c->Request.CDB[8] = size & 0xFF;
6965 break;
6966 case TEST_UNIT_READY:
6967 c->Request.CDBLen = 6;
6968 c->Request.type_attr_dir =
6969 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6970 c->Request.Timeout = 0;
6971 break;
6972 case HPSA_GET_RAID_MAP:
6973 c->Request.CDBLen = 12;
6974 c->Request.type_attr_dir =
6975 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6976 c->Request.Timeout = 0;
6977 c->Request.CDB[0] = HPSA_CISS_READ;
6978 c->Request.CDB[1] = cmd;
6979 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6980 c->Request.CDB[7] = (size >> 16) & 0xFF;
6981 c->Request.CDB[8] = (size >> 8) & 0xFF;
6982 c->Request.CDB[9] = size & 0xFF;
6983 break;
6984 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6985 c->Request.CDBLen = 10;
6986 c->Request.type_attr_dir =
6987 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6988 c->Request.Timeout = 0;
6989 c->Request.CDB[0] = BMIC_READ;
6990 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6991 c->Request.CDB[7] = (size >> 16) & 0xFF;
6992 c->Request.CDB[8] = (size >> 8) & 0xFF;
6993 break;
6994 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6995 c->Request.CDBLen = 10;
6996 c->Request.type_attr_dir =
6997 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6998 c->Request.Timeout = 0;
6999 c->Request.CDB[0] = BMIC_READ;
7000 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7001 c->Request.CDB[7] = (size >> 16) & 0xFF;
7002 c->Request.CDB[8] = (size >> 8) & 0XFF;
7003 break;
7004 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7005 c->Request.CDBLen = 10;
7006 c->Request.type_attr_dir =
7007 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7008 c->Request.Timeout = 0;
7009 c->Request.CDB[0] = BMIC_READ;
7010 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7011 c->Request.CDB[7] = (size >> 16) & 0xFF;
7012 c->Request.CDB[8] = (size >> 8) & 0XFF;
7013 break;
7014 case BMIC_SENSE_STORAGE_BOX_PARAMS:
7015 c->Request.CDBLen = 10;
7016 c->Request.type_attr_dir =
7017 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7018 c->Request.Timeout = 0;
7019 c->Request.CDB[0] = BMIC_READ;
7020 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7021 c->Request.CDB[7] = (size >> 16) & 0xFF;
7022 c->Request.CDB[8] = (size >> 8) & 0XFF;
7023 break;
7024 case BMIC_IDENTIFY_CONTROLLER:
7025 c->Request.CDBLen = 10;
7026 c->Request.type_attr_dir =
7027 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7028 c->Request.Timeout = 0;
7029 c->Request.CDB[0] = BMIC_READ;
7030 c->Request.CDB[1] = 0;
7031 c->Request.CDB[2] = 0;
7032 c->Request.CDB[3] = 0;
7033 c->Request.CDB[4] = 0;
7034 c->Request.CDB[5] = 0;
7035 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7036 c->Request.CDB[7] = (size >> 16) & 0xFF;
7037 c->Request.CDB[8] = (size >> 8) & 0XFF;
7038 c->Request.CDB[9] = 0;
7039 break;
7040 default:
7041 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7042 BUG();
7043 return -1;
7044 }
7045 } else if (cmd_type == TYPE_MSG) {
7046 switch (cmd) {
7047
7048 case HPSA_PHYS_TARGET_RESET:
7049 c->Request.CDBLen = 16;
7050 c->Request.type_attr_dir =
7051 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7052 c->Request.Timeout = 0; /* Don't time out */
7053 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7054 c->Request.CDB[0] = HPSA_RESET;
7055 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7056 /* Physical target reset needs no control bytes 4-7*/
7057 c->Request.CDB[4] = 0x00;
7058 c->Request.CDB[5] = 0x00;
7059 c->Request.CDB[6] = 0x00;
7060 c->Request.CDB[7] = 0x00;
7061 break;
7062 case HPSA_DEVICE_RESET_MSG:
7063 c->Request.CDBLen = 16;
7064 c->Request.type_attr_dir =
7065 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7066 c->Request.Timeout = 0; /* Don't time out */
7067 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7068 c->Request.CDB[0] = cmd;
7069 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7070 /* If bytes 4-7 are zero, it means reset the */
7071 /* LunID device */
7072 c->Request.CDB[4] = 0x00;
7073 c->Request.CDB[5] = 0x00;
7074 c->Request.CDB[6] = 0x00;
7075 c->Request.CDB[7] = 0x00;
7076 break;
7077 case HPSA_ABORT_MSG:
7078 memcpy(&tag, buff, sizeof(tag));
7079 dev_dbg(&h->pdev->dev,
7080 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7081 tag, c->Header.tag);
7082 c->Request.CDBLen = 16;
7083 c->Request.type_attr_dir =
7084 TYPE_ATTR_DIR(cmd_type,
7085 ATTR_SIMPLE, XFER_WRITE);
7086 c->Request.Timeout = 0; /* Don't time out */
7087 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7088 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7089 c->Request.CDB[2] = 0x00; /* reserved */
7090 c->Request.CDB[3] = 0x00; /* reserved */
7091 /* Tag to abort goes in CDB[4]-CDB[11] */
7092 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7093 c->Request.CDB[12] = 0x00; /* reserved */
7094 c->Request.CDB[13] = 0x00; /* reserved */
7095 c->Request.CDB[14] = 0x00; /* reserved */
7096 c->Request.CDB[15] = 0x00; /* reserved */
7097 break;
7098 default:
7099 dev_warn(&h->pdev->dev, "unknown message type %d\n",
7100 cmd);
7101 BUG();
7102 }
7103 } else {
7104 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7105 BUG();
7106 }
7107
7108 switch (GET_DIR(c->Request.type_attr_dir)) {
7109 case XFER_READ:
7110 pci_dir = PCI_DMA_FROMDEVICE;
7111 break;
7112 case XFER_WRITE:
7113 pci_dir = PCI_DMA_TODEVICE;
7114 break;
7115 case XFER_NONE:
7116 pci_dir = PCI_DMA_NONE;
7117 break;
7118 default:
7119 pci_dir = PCI_DMA_BIDIRECTIONAL;
7120 }
7121 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7122 return -1;
7123 return 0;
7124 }
7125
7126 /*
7127 * Map (physical) PCI mem into (virtual) kernel space
7128 */
7129 static void __iomem *remap_pci_mem(ulong base, ulong size)
7130 {
7131 ulong page_base = ((ulong) base) & PAGE_MASK;
7132 ulong page_offs = ((ulong) base) - page_base;
7133 void __iomem *page_remapped = ioremap_nocache(page_base,
7134 page_offs + size);
7135
7136 return page_remapped ? (page_remapped + page_offs) : NULL;
7137 }
7138
7139 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7140 {
7141 return h->access.command_completed(h, q);
7142 }
7143
7144 static inline bool interrupt_pending(struct ctlr_info *h)
7145 {
7146 return h->access.intr_pending(h);
7147 }
7148
7149 static inline long interrupt_not_for_us(struct ctlr_info *h)
7150 {
7151 return (h->access.intr_pending(h) == 0) ||
7152 (h->interrupts_enabled == 0);
7153 }
7154
7155 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7156 u32 raw_tag)
7157 {
7158 if (unlikely(tag_index >= h->nr_cmds)) {
7159 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7160 return 1;
7161 }
7162 return 0;
7163 }
7164
7165 static inline void finish_cmd(struct CommandList *c)
7166 {
7167 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7168 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7169 || c->cmd_type == CMD_IOACCEL2))
7170 complete_scsi_command(c);
7171 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7172 complete(c->waiting);
7173 }
7174
7175 /* process completion of an indexed ("direct lookup") command */
7176 static inline void process_indexed_cmd(struct ctlr_info *h,
7177 u32 raw_tag)
7178 {
7179 u32 tag_index;
7180 struct CommandList *c;
7181
7182 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7183 if (!bad_tag(h, tag_index, raw_tag)) {
7184 c = h->cmd_pool + tag_index;
7185 finish_cmd(c);
7186 }
7187 }
7188
7189 /* Some controllers, like p400, will give us one interrupt
7190 * after a soft reset, even if we turned interrupts off.
7191 * Only need to check for this in the hpsa_xxx_discard_completions
7192 * functions.
7193 */
7194 static int ignore_bogus_interrupt(struct ctlr_info *h)
7195 {
7196 if (likely(!reset_devices))
7197 return 0;
7198
7199 if (likely(h->interrupts_enabled))
7200 return 0;
7201
7202 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7203 "(known firmware bug.) Ignoring.\n");
7204
7205 return 1;
7206 }
7207
7208 /*
7209 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7210 * Relies on (h-q[x] == x) being true for x such that
7211 * 0 <= x < MAX_REPLY_QUEUES.
7212 */
7213 static struct ctlr_info *queue_to_hba(u8 *queue)
7214 {
7215 return container_of((queue - *queue), struct ctlr_info, q[0]);
7216 }
7217
7218 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7219 {
7220 struct ctlr_info *h = queue_to_hba(queue);
7221 u8 q = *(u8 *) queue;
7222 u32 raw_tag;
7223
7224 if (ignore_bogus_interrupt(h))
7225 return IRQ_NONE;
7226
7227 if (interrupt_not_for_us(h))
7228 return IRQ_NONE;
7229 h->last_intr_timestamp = get_jiffies_64();
7230 while (interrupt_pending(h)) {
7231 raw_tag = get_next_completion(h, q);
7232 while (raw_tag != FIFO_EMPTY)
7233 raw_tag = next_command(h, q);
7234 }
7235 return IRQ_HANDLED;
7236 }
7237
7238 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7239 {
7240 struct ctlr_info *h = queue_to_hba(queue);
7241 u32 raw_tag;
7242 u8 q = *(u8 *) queue;
7243
7244 if (ignore_bogus_interrupt(h))
7245 return IRQ_NONE;
7246
7247 h->last_intr_timestamp = get_jiffies_64();
7248 raw_tag = get_next_completion(h, q);
7249 while (raw_tag != FIFO_EMPTY)
7250 raw_tag = next_command(h, q);
7251 return IRQ_HANDLED;
7252 }
7253
7254 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7255 {
7256 struct ctlr_info *h = queue_to_hba((u8 *) queue);
7257 u32 raw_tag;
7258 u8 q = *(u8 *) queue;
7259
7260 if (interrupt_not_for_us(h))
7261 return IRQ_NONE;
7262 h->last_intr_timestamp = get_jiffies_64();
7263 while (interrupt_pending(h)) {
7264 raw_tag = get_next_completion(h, q);
7265 while (raw_tag != FIFO_EMPTY) {
7266 process_indexed_cmd(h, raw_tag);
7267 raw_tag = next_command(h, q);
7268 }
7269 }
7270 return IRQ_HANDLED;
7271 }
7272
7273 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7274 {
7275 struct ctlr_info *h = queue_to_hba(queue);
7276 u32 raw_tag;
7277 u8 q = *(u8 *) queue;
7278
7279 h->last_intr_timestamp = get_jiffies_64();
7280 raw_tag = get_next_completion(h, q);
7281 while (raw_tag != FIFO_EMPTY) {
7282 process_indexed_cmd(h, raw_tag);
7283 raw_tag = next_command(h, q);
7284 }
7285 return IRQ_HANDLED;
7286 }
7287
7288 /* Send a message CDB to the firmware. Careful, this only works
7289 * in simple mode, not performant mode due to the tag lookup.
7290 * We only ever use this immediately after a controller reset.
7291 */
7292 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7293 unsigned char type)
7294 {
7295 struct Command {
7296 struct CommandListHeader CommandHeader;
7297 struct RequestBlock Request;
7298 struct ErrDescriptor ErrorDescriptor;
7299 };
7300 struct Command *cmd;
7301 static const size_t cmd_sz = sizeof(*cmd) +
7302 sizeof(cmd->ErrorDescriptor);
7303 dma_addr_t paddr64;
7304 __le32 paddr32;
7305 u32 tag;
7306 void __iomem *vaddr;
7307 int i, err;
7308
7309 vaddr = pci_ioremap_bar(pdev, 0);
7310 if (vaddr == NULL)
7311 return -ENOMEM;
7312
7313 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7314 * CCISS commands, so they must be allocated from the lower 4GiB of
7315 * memory.
7316 */
7317 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7318 if (err) {
7319 iounmap(vaddr);
7320 return err;
7321 }
7322
7323 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7324 if (cmd == NULL) {
7325 iounmap(vaddr);
7326 return -ENOMEM;
7327 }
7328
7329 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7330 * although there's no guarantee, we assume that the address is at
7331 * least 4-byte aligned (most likely, it's page-aligned).
7332 */
7333 paddr32 = cpu_to_le32(paddr64);
7334
7335 cmd->CommandHeader.ReplyQueue = 0;
7336 cmd->CommandHeader.SGList = 0;
7337 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7338 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7339 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7340
7341 cmd->Request.CDBLen = 16;
7342 cmd->Request.type_attr_dir =
7343 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7344 cmd->Request.Timeout = 0; /* Don't time out */
7345 cmd->Request.CDB[0] = opcode;
7346 cmd->Request.CDB[1] = type;
7347 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7348 cmd->ErrorDescriptor.Addr =
7349 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7350 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7351
7352 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7353
7354 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7355 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7356 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7357 break;
7358 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7359 }
7360
7361 iounmap(vaddr);
7362
7363 /* we leak the DMA buffer here ... no choice since the controller could
7364 * still complete the command.
7365 */
7366 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7367 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7368 opcode, type);
7369 return -ETIMEDOUT;
7370 }
7371
7372 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7373
7374 if (tag & HPSA_ERROR_BIT) {
7375 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7376 opcode, type);
7377 return -EIO;
7378 }
7379
7380 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7381 opcode, type);
7382 return 0;
7383 }
7384
7385 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7386
7387 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7388 void __iomem *vaddr, u32 use_doorbell)
7389 {
7390
7391 if (use_doorbell) {
7392 /* For everything after the P600, the PCI power state method
7393 * of resetting the controller doesn't work, so we have this
7394 * other way using the doorbell register.
7395 */
7396 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7397 writel(use_doorbell, vaddr + SA5_DOORBELL);
7398
7399 /* PMC hardware guys tell us we need a 10 second delay after
7400 * doorbell reset and before any attempt to talk to the board
7401 * at all to ensure that this actually works and doesn't fall
7402 * over in some weird corner cases.
7403 */
7404 msleep(10000);
7405 } else { /* Try to do it the PCI power state way */
7406
7407 /* Quoting from the Open CISS Specification: "The Power
7408 * Management Control/Status Register (CSR) controls the power
7409 * state of the device. The normal operating state is D0,
7410 * CSR=00h. The software off state is D3, CSR=03h. To reset
7411 * the controller, place the interface device in D3 then to D0,
7412 * this causes a secondary PCI reset which will reset the
7413 * controller." */
7414
7415 int rc = 0;
7416
7417 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7418
7419 /* enter the D3hot power management state */
7420 rc = pci_set_power_state(pdev, PCI_D3hot);
7421 if (rc)
7422 return rc;
7423
7424 msleep(500);
7425
7426 /* enter the D0 power management state */
7427 rc = pci_set_power_state(pdev, PCI_D0);
7428 if (rc)
7429 return rc;
7430
7431 /*
7432 * The P600 requires a small delay when changing states.
7433 * Otherwise we may think the board did not reset and we bail.
7434 * This for kdump only and is particular to the P600.
7435 */
7436 msleep(500);
7437 }
7438 return 0;
7439 }
7440
7441 static void init_driver_version(char *driver_version, int len)
7442 {
7443 memset(driver_version, 0, len);
7444 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7445 }
7446
7447 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7448 {
7449 char *driver_version;
7450 int i, size = sizeof(cfgtable->driver_version);
7451
7452 driver_version = kmalloc(size, GFP_KERNEL);
7453 if (!driver_version)
7454 return -ENOMEM;
7455
7456 init_driver_version(driver_version, size);
7457 for (i = 0; i < size; i++)
7458 writeb(driver_version[i], &cfgtable->driver_version[i]);
7459 kfree(driver_version);
7460 return 0;
7461 }
7462
7463 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7464 unsigned char *driver_ver)
7465 {
7466 int i;
7467
7468 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7469 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7470 }
7471
7472 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7473 {
7474
7475 char *driver_ver, *old_driver_ver;
7476 int rc, size = sizeof(cfgtable->driver_version);
7477
7478 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7479 if (!old_driver_ver)
7480 return -ENOMEM;
7481 driver_ver = old_driver_ver + size;
7482
7483 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7484 * should have been changed, otherwise we know the reset failed.
7485 */
7486 init_driver_version(old_driver_ver, size);
7487 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7488 rc = !memcmp(driver_ver, old_driver_ver, size);
7489 kfree(old_driver_ver);
7490 return rc;
7491 }
7492 /* This does a hard reset of the controller using PCI power management
7493 * states or the using the doorbell register.
7494 */
7495 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7496 {
7497 u64 cfg_offset;
7498 u32 cfg_base_addr;
7499 u64 cfg_base_addr_index;
7500 void __iomem *vaddr;
7501 unsigned long paddr;
7502 u32 misc_fw_support;
7503 int rc;
7504 struct CfgTable __iomem *cfgtable;
7505 u32 use_doorbell;
7506 u16 command_register;
7507
7508 /* For controllers as old as the P600, this is very nearly
7509 * the same thing as
7510 *
7511 * pci_save_state(pci_dev);
7512 * pci_set_power_state(pci_dev, PCI_D3hot);
7513 * pci_set_power_state(pci_dev, PCI_D0);
7514 * pci_restore_state(pci_dev);
7515 *
7516 * For controllers newer than the P600, the pci power state
7517 * method of resetting doesn't work so we have another way
7518 * using the doorbell register.
7519 */
7520
7521 if (!ctlr_is_resettable(board_id)) {
7522 dev_warn(&pdev->dev, "Controller not resettable\n");
7523 return -ENODEV;
7524 }
7525
7526 /* if controller is soft- but not hard resettable... */
7527 if (!ctlr_is_hard_resettable(board_id))
7528 return -ENOTSUPP; /* try soft reset later. */
7529
7530 /* Save the PCI command register */
7531 pci_read_config_word(pdev, 4, &command_register);
7532 pci_save_state(pdev);
7533
7534 /* find the first memory BAR, so we can find the cfg table */
7535 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7536 if (rc)
7537 return rc;
7538 vaddr = remap_pci_mem(paddr, 0x250);
7539 if (!vaddr)
7540 return -ENOMEM;
7541
7542 /* find cfgtable in order to check if reset via doorbell is supported */
7543 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7544 &cfg_base_addr_index, &cfg_offset);
7545 if (rc)
7546 goto unmap_vaddr;
7547 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7548 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7549 if (!cfgtable) {
7550 rc = -ENOMEM;
7551 goto unmap_vaddr;
7552 }
7553 rc = write_driver_ver_to_cfgtable(cfgtable);
7554 if (rc)
7555 goto unmap_cfgtable;
7556
7557 /* If reset via doorbell register is supported, use that.
7558 * There are two such methods. Favor the newest method.
7559 */
7560 misc_fw_support = readl(&cfgtable->misc_fw_support);
7561 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7562 if (use_doorbell) {
7563 use_doorbell = DOORBELL_CTLR_RESET2;
7564 } else {
7565 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7566 if (use_doorbell) {
7567 dev_warn(&pdev->dev,
7568 "Soft reset not supported. Firmware update is required.\n");
7569 rc = -ENOTSUPP; /* try soft reset */
7570 goto unmap_cfgtable;
7571 }
7572 }
7573
7574 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7575 if (rc)
7576 goto unmap_cfgtable;
7577
7578 pci_restore_state(pdev);
7579 pci_write_config_word(pdev, 4, command_register);
7580
7581 /* Some devices (notably the HP Smart Array 5i Controller)
7582 need a little pause here */
7583 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7584
7585 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7586 if (rc) {
7587 dev_warn(&pdev->dev,
7588 "Failed waiting for board to become ready after hard reset\n");
7589 goto unmap_cfgtable;
7590 }
7591
7592 rc = controller_reset_failed(vaddr);
7593 if (rc < 0)
7594 goto unmap_cfgtable;
7595 if (rc) {
7596 dev_warn(&pdev->dev, "Unable to successfully reset "
7597 "controller. Will try soft reset.\n");
7598 rc = -ENOTSUPP;
7599 } else {
7600 dev_info(&pdev->dev, "board ready after hard reset.\n");
7601 }
7602
7603 unmap_cfgtable:
7604 iounmap(cfgtable);
7605
7606 unmap_vaddr:
7607 iounmap(vaddr);
7608 return rc;
7609 }
7610
7611 /*
7612 * We cannot read the structure directly, for portability we must use
7613 * the io functions.
7614 * This is for debug only.
7615 */
7616 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7617 {
7618 #ifdef HPSA_DEBUG
7619 int i;
7620 char temp_name[17];
7621
7622 dev_info(dev, "Controller Configuration information\n");
7623 dev_info(dev, "------------------------------------\n");
7624 for (i = 0; i < 4; i++)
7625 temp_name[i] = readb(&(tb->Signature[i]));
7626 temp_name[4] = '\0';
7627 dev_info(dev, " Signature = %s\n", temp_name);
7628 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7629 dev_info(dev, " Transport methods supported = 0x%x\n",
7630 readl(&(tb->TransportSupport)));
7631 dev_info(dev, " Transport methods active = 0x%x\n",
7632 readl(&(tb->TransportActive)));
7633 dev_info(dev, " Requested transport Method = 0x%x\n",
7634 readl(&(tb->HostWrite.TransportRequest)));
7635 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7636 readl(&(tb->HostWrite.CoalIntDelay)));
7637 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7638 readl(&(tb->HostWrite.CoalIntCount)));
7639 dev_info(dev, " Max outstanding commands = %d\n",
7640 readl(&(tb->CmdsOutMax)));
7641 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7642 for (i = 0; i < 16; i++)
7643 temp_name[i] = readb(&(tb->ServerName[i]));
7644 temp_name[16] = '\0';
7645 dev_info(dev, " Server Name = %s\n", temp_name);
7646 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7647 readl(&(tb->HeartBeat)));
7648 #endif /* HPSA_DEBUG */
7649 }
7650
7651 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7652 {
7653 int i, offset, mem_type, bar_type;
7654
7655 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7656 return 0;
7657 offset = 0;
7658 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7659 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7660 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7661 offset += 4;
7662 else {
7663 mem_type = pci_resource_flags(pdev, i) &
7664 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7665 switch (mem_type) {
7666 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7667 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7668 offset += 4; /* 32 bit */
7669 break;
7670 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7671 offset += 8;
7672 break;
7673 default: /* reserved in PCI 2.2 */
7674 dev_warn(&pdev->dev,
7675 "base address is invalid\n");
7676 return -1;
7677 break;
7678 }
7679 }
7680 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7681 return i + 1;
7682 }
7683 return -1;
7684 }
7685
7686 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7687 {
7688 pci_free_irq_vectors(h->pdev);
7689 h->msix_vectors = 0;
7690 }
7691
7692 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7693 * controllers that are capable. If not, we use legacy INTx mode.
7694 */
7695 static int hpsa_interrupt_mode(struct ctlr_info *h)
7696 {
7697 unsigned int flags = PCI_IRQ_LEGACY;
7698 int ret;
7699
7700 /* Some boards advertise MSI but don't really support it */
7701 switch (h->board_id) {
7702 case 0x40700E11:
7703 case 0x40800E11:
7704 case 0x40820E11:
7705 case 0x40830E11:
7706 break;
7707 default:
7708 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7709 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7710 if (ret > 0) {
7711 h->msix_vectors = ret;
7712 return 0;
7713 }
7714
7715 flags |= PCI_IRQ_MSI;
7716 break;
7717 }
7718
7719 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7720 if (ret < 0)
7721 return ret;
7722 return 0;
7723 }
7724
7725 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7726 {
7727 int i;
7728 u32 subsystem_vendor_id, subsystem_device_id;
7729
7730 subsystem_vendor_id = pdev->subsystem_vendor;
7731 subsystem_device_id = pdev->subsystem_device;
7732 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7733 subsystem_vendor_id;
7734
7735 for (i = 0; i < ARRAY_SIZE(products); i++)
7736 if (*board_id == products[i].board_id)
7737 return i;
7738
7739 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7740 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7741 !hpsa_allow_any) {
7742 dev_warn(&pdev->dev, "unrecognized board ID: "
7743 "0x%08x, ignoring.\n", *board_id);
7744 return -ENODEV;
7745 }
7746 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7747 }
7748
7749 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7750 unsigned long *memory_bar)
7751 {
7752 int i;
7753
7754 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7755 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7756 /* addressing mode bits already removed */
7757 *memory_bar = pci_resource_start(pdev, i);
7758 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7759 *memory_bar);
7760 return 0;
7761 }
7762 dev_warn(&pdev->dev, "no memory BAR found\n");
7763 return -ENODEV;
7764 }
7765
7766 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7767 int wait_for_ready)
7768 {
7769 int i, iterations;
7770 u32 scratchpad;
7771 if (wait_for_ready)
7772 iterations = HPSA_BOARD_READY_ITERATIONS;
7773 else
7774 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7775
7776 for (i = 0; i < iterations; i++) {
7777 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7778 if (wait_for_ready) {
7779 if (scratchpad == HPSA_FIRMWARE_READY)
7780 return 0;
7781 } else {
7782 if (scratchpad != HPSA_FIRMWARE_READY)
7783 return 0;
7784 }
7785 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7786 }
7787 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7788 return -ENODEV;
7789 }
7790
7791 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7792 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7793 u64 *cfg_offset)
7794 {
7795 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7796 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7797 *cfg_base_addr &= (u32) 0x0000ffff;
7798 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7799 if (*cfg_base_addr_index == -1) {
7800 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7801 return -ENODEV;
7802 }
7803 return 0;
7804 }
7805
7806 static void hpsa_free_cfgtables(struct ctlr_info *h)
7807 {
7808 if (h->transtable) {
7809 iounmap(h->transtable);
7810 h->transtable = NULL;
7811 }
7812 if (h->cfgtable) {
7813 iounmap(h->cfgtable);
7814 h->cfgtable = NULL;
7815 }
7816 }
7817
7818 /* Find and map CISS config table and transfer table
7819 + * several items must be unmapped (freed) later
7820 + * */
7821 static int hpsa_find_cfgtables(struct ctlr_info *h)
7822 {
7823 u64 cfg_offset;
7824 u32 cfg_base_addr;
7825 u64 cfg_base_addr_index;
7826 u32 trans_offset;
7827 int rc;
7828
7829 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7830 &cfg_base_addr_index, &cfg_offset);
7831 if (rc)
7832 return rc;
7833 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7834 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7835 if (!h->cfgtable) {
7836 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7837 return -ENOMEM;
7838 }
7839 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7840 if (rc)
7841 return rc;
7842 /* Find performant mode table. */
7843 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7844 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7845 cfg_base_addr_index)+cfg_offset+trans_offset,
7846 sizeof(*h->transtable));
7847 if (!h->transtable) {
7848 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7849 hpsa_free_cfgtables(h);
7850 return -ENOMEM;
7851 }
7852 return 0;
7853 }
7854
7855 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7856 {
7857 #define MIN_MAX_COMMANDS 16
7858 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7859
7860 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7861
7862 /* Limit commands in memory limited kdump scenario. */
7863 if (reset_devices && h->max_commands > 32)
7864 h->max_commands = 32;
7865
7866 if (h->max_commands < MIN_MAX_COMMANDS) {
7867 dev_warn(&h->pdev->dev,
7868 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7869 h->max_commands,
7870 MIN_MAX_COMMANDS);
7871 h->max_commands = MIN_MAX_COMMANDS;
7872 }
7873 }
7874
7875 /* If the controller reports that the total max sg entries is greater than 512,
7876 * then we know that chained SG blocks work. (Original smart arrays did not
7877 * support chained SG blocks and would return zero for max sg entries.)
7878 */
7879 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7880 {
7881 return h->maxsgentries > 512;
7882 }
7883
7884 /* Interrogate the hardware for some limits:
7885 * max commands, max SG elements without chaining, and with chaining,
7886 * SG chain block size, etc.
7887 */
7888 static void hpsa_find_board_params(struct ctlr_info *h)
7889 {
7890 hpsa_get_max_perf_mode_cmds(h);
7891 h->nr_cmds = h->max_commands;
7892 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7893 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7894 if (hpsa_supports_chained_sg_blocks(h)) {
7895 /* Limit in-command s/g elements to 32 save dma'able memory. */
7896 h->max_cmd_sg_entries = 32;
7897 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7898 h->maxsgentries--; /* save one for chain pointer */
7899 } else {
7900 /*
7901 * Original smart arrays supported at most 31 s/g entries
7902 * embedded inline in the command (trying to use more
7903 * would lock up the controller)
7904 */
7905 h->max_cmd_sg_entries = 31;
7906 h->maxsgentries = 31; /* default to traditional values */
7907 h->chainsize = 0;
7908 }
7909
7910 /* Find out what task management functions are supported and cache */
7911 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7912 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7913 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7914 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7915 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7916 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7917 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7918 }
7919
7920 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7921 {
7922 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7923 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7924 return false;
7925 }
7926 return true;
7927 }
7928
7929 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7930 {
7931 u32 driver_support;
7932
7933 driver_support = readl(&(h->cfgtable->driver_support));
7934 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7935 #ifdef CONFIG_X86
7936 driver_support |= ENABLE_SCSI_PREFETCH;
7937 #endif
7938 driver_support |= ENABLE_UNIT_ATTN;
7939 writel(driver_support, &(h->cfgtable->driver_support));
7940 }
7941
7942 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7943 * in a prefetch beyond physical memory.
7944 */
7945 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7946 {
7947 u32 dma_prefetch;
7948
7949 if (h->board_id != 0x3225103C)
7950 return;
7951 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7952 dma_prefetch |= 0x8000;
7953 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7954 }
7955
7956 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7957 {
7958 int i;
7959 u32 doorbell_value;
7960 unsigned long flags;
7961 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7962 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7963 spin_lock_irqsave(&h->lock, flags);
7964 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7965 spin_unlock_irqrestore(&h->lock, flags);
7966 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7967 goto done;
7968 /* delay and try again */
7969 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7970 }
7971 return -ENODEV;
7972 done:
7973 return 0;
7974 }
7975
7976 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7977 {
7978 int i;
7979 u32 doorbell_value;
7980 unsigned long flags;
7981
7982 /* under certain very rare conditions, this can take awhile.
7983 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7984 * as we enter this code.)
7985 */
7986 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7987 if (h->remove_in_progress)
7988 goto done;
7989 spin_lock_irqsave(&h->lock, flags);
7990 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7991 spin_unlock_irqrestore(&h->lock, flags);
7992 if (!(doorbell_value & CFGTBL_ChangeReq))
7993 goto done;
7994 /* delay and try again */
7995 msleep(MODE_CHANGE_WAIT_INTERVAL);
7996 }
7997 return -ENODEV;
7998 done:
7999 return 0;
8000 }
8001
8002 /* return -ENODEV or other reason on error, 0 on success */
8003 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8004 {
8005 u32 trans_support;
8006
8007 trans_support = readl(&(h->cfgtable->TransportSupport));
8008 if (!(trans_support & SIMPLE_MODE))
8009 return -ENOTSUPP;
8010
8011 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8012
8013 /* Update the field, and then ring the doorbell */
8014 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8015 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8016 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8017 if (hpsa_wait_for_mode_change_ack(h))
8018 goto error;
8019 print_cfg_table(&h->pdev->dev, h->cfgtable);
8020 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8021 goto error;
8022 h->transMethod = CFGTBL_Trans_Simple;
8023 return 0;
8024 error:
8025 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8026 return -ENODEV;
8027 }
8028
8029 /* free items allocated or mapped by hpsa_pci_init */
8030 static void hpsa_free_pci_init(struct ctlr_info *h)
8031 {
8032 hpsa_free_cfgtables(h); /* pci_init 4 */
8033 iounmap(h->vaddr); /* pci_init 3 */
8034 h->vaddr = NULL;
8035 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8036 /*
8037 * call pci_disable_device before pci_release_regions per
8038 * Documentation/PCI/pci.txt
8039 */
8040 pci_disable_device(h->pdev); /* pci_init 1 */
8041 pci_release_regions(h->pdev); /* pci_init 2 */
8042 }
8043
8044 /* several items must be freed later */
8045 static int hpsa_pci_init(struct ctlr_info *h)
8046 {
8047 int prod_index, err;
8048
8049 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8050 if (prod_index < 0)
8051 return prod_index;
8052 h->product_name = products[prod_index].product_name;
8053 h->access = *(products[prod_index].access);
8054
8055 h->needs_abort_tags_swizzled =
8056 ctlr_needs_abort_tags_swizzled(h->board_id);
8057
8058 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8059 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8060
8061 err = pci_enable_device(h->pdev);
8062 if (err) {
8063 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8064 pci_disable_device(h->pdev);
8065 return err;
8066 }
8067
8068 err = pci_request_regions(h->pdev, HPSA);
8069 if (err) {
8070 dev_err(&h->pdev->dev,
8071 "failed to obtain PCI resources\n");
8072 pci_disable_device(h->pdev);
8073 return err;
8074 }
8075
8076 pci_set_master(h->pdev);
8077
8078 err = hpsa_interrupt_mode(h);
8079 if (err)
8080 goto clean1;
8081 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8082 if (err)
8083 goto clean2; /* intmode+region, pci */
8084 h->vaddr = remap_pci_mem(h->paddr, 0x250);
8085 if (!h->vaddr) {
8086 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8087 err = -ENOMEM;
8088 goto clean2; /* intmode+region, pci */
8089 }
8090 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8091 if (err)
8092 goto clean3; /* vaddr, intmode+region, pci */
8093 err = hpsa_find_cfgtables(h);
8094 if (err)
8095 goto clean3; /* vaddr, intmode+region, pci */
8096 hpsa_find_board_params(h);
8097
8098 if (!hpsa_CISS_signature_present(h)) {
8099 err = -ENODEV;
8100 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
8101 }
8102 hpsa_set_driver_support_bits(h);
8103 hpsa_p600_dma_prefetch_quirk(h);
8104 err = hpsa_enter_simple_mode(h);
8105 if (err)
8106 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
8107 return 0;
8108
8109 clean4: /* cfgtables, vaddr, intmode+region, pci */
8110 hpsa_free_cfgtables(h);
8111 clean3: /* vaddr, intmode+region, pci */
8112 iounmap(h->vaddr);
8113 h->vaddr = NULL;
8114 clean2: /* intmode+region, pci */
8115 hpsa_disable_interrupt_mode(h);
8116 clean1:
8117 /*
8118 * call pci_disable_device before pci_release_regions per
8119 * Documentation/PCI/pci.txt
8120 */
8121 pci_disable_device(h->pdev);
8122 pci_release_regions(h->pdev);
8123 return err;
8124 }
8125
8126 static void hpsa_hba_inquiry(struct ctlr_info *h)
8127 {
8128 int rc;
8129
8130 #define HBA_INQUIRY_BYTE_COUNT 64
8131 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8132 if (!h->hba_inquiry_data)
8133 return;
8134 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8135 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8136 if (rc != 0) {
8137 kfree(h->hba_inquiry_data);
8138 h->hba_inquiry_data = NULL;
8139 }
8140 }
8141
8142 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8143 {
8144 int rc, i;
8145 void __iomem *vaddr;
8146
8147 if (!reset_devices)
8148 return 0;
8149
8150 /* kdump kernel is loading, we don't know in which state is
8151 * the pci interface. The dev->enable_cnt is equal zero
8152 * so we call enable+disable, wait a while and switch it on.
8153 */
8154 rc = pci_enable_device(pdev);
8155 if (rc) {
8156 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8157 return -ENODEV;
8158 }
8159 pci_disable_device(pdev);
8160 msleep(260); /* a randomly chosen number */
8161 rc = pci_enable_device(pdev);
8162 if (rc) {
8163 dev_warn(&pdev->dev, "failed to enable device.\n");
8164 return -ENODEV;
8165 }
8166
8167 pci_set_master(pdev);
8168
8169 vaddr = pci_ioremap_bar(pdev, 0);
8170 if (vaddr == NULL) {
8171 rc = -ENOMEM;
8172 goto out_disable;
8173 }
8174 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8175 iounmap(vaddr);
8176
8177 /* Reset the controller with a PCI power-cycle or via doorbell */
8178 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8179
8180 /* -ENOTSUPP here means we cannot reset the controller
8181 * but it's already (and still) up and running in
8182 * "performant mode". Or, it might be 640x, which can't reset
8183 * due to concerns about shared bbwc between 6402/6404 pair.
8184 */
8185 if (rc)
8186 goto out_disable;
8187
8188 /* Now try to get the controller to respond to a no-op */
8189 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8190 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8191 if (hpsa_noop(pdev) == 0)
8192 break;
8193 else
8194 dev_warn(&pdev->dev, "no-op failed%s\n",
8195 (i < 11 ? "; re-trying" : ""));
8196 }
8197
8198 out_disable:
8199
8200 pci_disable_device(pdev);
8201 return rc;
8202 }
8203
8204 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8205 {
8206 kfree(h->cmd_pool_bits);
8207 h->cmd_pool_bits = NULL;
8208 if (h->cmd_pool) {
8209 pci_free_consistent(h->pdev,
8210 h->nr_cmds * sizeof(struct CommandList),
8211 h->cmd_pool,
8212 h->cmd_pool_dhandle);
8213 h->cmd_pool = NULL;
8214 h->cmd_pool_dhandle = 0;
8215 }
8216 if (h->errinfo_pool) {
8217 pci_free_consistent(h->pdev,
8218 h->nr_cmds * sizeof(struct ErrorInfo),
8219 h->errinfo_pool,
8220 h->errinfo_pool_dhandle);
8221 h->errinfo_pool = NULL;
8222 h->errinfo_pool_dhandle = 0;
8223 }
8224 }
8225
8226 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8227 {
8228 h->cmd_pool_bits = kzalloc(
8229 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8230 sizeof(unsigned long), GFP_KERNEL);
8231 h->cmd_pool = pci_alloc_consistent(h->pdev,
8232 h->nr_cmds * sizeof(*h->cmd_pool),
8233 &(h->cmd_pool_dhandle));
8234 h->errinfo_pool = pci_alloc_consistent(h->pdev,
8235 h->nr_cmds * sizeof(*h->errinfo_pool),
8236 &(h->errinfo_pool_dhandle));
8237 if ((h->cmd_pool_bits == NULL)
8238 || (h->cmd_pool == NULL)
8239 || (h->errinfo_pool == NULL)) {
8240 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8241 goto clean_up;
8242 }
8243 hpsa_preinitialize_commands(h);
8244 return 0;
8245 clean_up:
8246 hpsa_free_cmd_pool(h);
8247 return -ENOMEM;
8248 }
8249
8250 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8251 static void hpsa_free_irqs(struct ctlr_info *h)
8252 {
8253 int i;
8254
8255 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8256 /* Single reply queue, only one irq to free */
8257 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8258 h->q[h->intr_mode] = 0;
8259 return;
8260 }
8261
8262 for (i = 0; i < h->msix_vectors; i++) {
8263 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8264 h->q[i] = 0;
8265 }
8266 for (; i < MAX_REPLY_QUEUES; i++)
8267 h->q[i] = 0;
8268 }
8269
8270 /* returns 0 on success; cleans up and returns -Enn on error */
8271 static int hpsa_request_irqs(struct ctlr_info *h,
8272 irqreturn_t (*msixhandler)(int, void *),
8273 irqreturn_t (*intxhandler)(int, void *))
8274 {
8275 int rc, i;
8276
8277 /*
8278 * initialize h->q[x] = x so that interrupt handlers know which
8279 * queue to process.
8280 */
8281 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8282 h->q[i] = (u8) i;
8283
8284 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8285 /* If performant mode and MSI-X, use multiple reply queues */
8286 for (i = 0; i < h->msix_vectors; i++) {
8287 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8288 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8289 0, h->intrname[i],
8290 &h->q[i]);
8291 if (rc) {
8292 int j;
8293
8294 dev_err(&h->pdev->dev,
8295 "failed to get irq %d for %s\n",
8296 pci_irq_vector(h->pdev, i), h->devname);
8297 for (j = 0; j < i; j++) {
8298 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8299 h->q[j] = 0;
8300 }
8301 for (; j < MAX_REPLY_QUEUES; j++)
8302 h->q[j] = 0;
8303 return rc;
8304 }
8305 }
8306 } else {
8307 /* Use single reply pool */
8308 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8309 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8310 h->msix_vectors ? "x" : "");
8311 rc = request_irq(pci_irq_vector(h->pdev, 0),
8312 msixhandler, 0,
8313 h->intrname[0],
8314 &h->q[h->intr_mode]);
8315 } else {
8316 sprintf(h->intrname[h->intr_mode],
8317 "%s-intx", h->devname);
8318 rc = request_irq(pci_irq_vector(h->pdev, 0),
8319 intxhandler, IRQF_SHARED,
8320 h->intrname[0],
8321 &h->q[h->intr_mode]);
8322 }
8323 }
8324 if (rc) {
8325 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8326 pci_irq_vector(h->pdev, 0), h->devname);
8327 hpsa_free_irqs(h);
8328 return -ENODEV;
8329 }
8330 return 0;
8331 }
8332
8333 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8334 {
8335 int rc;
8336 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8337
8338 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8339 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8340 if (rc) {
8341 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8342 return rc;
8343 }
8344
8345 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8346 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8347 if (rc) {
8348 dev_warn(&h->pdev->dev, "Board failed to become ready "
8349 "after soft reset.\n");
8350 return rc;
8351 }
8352
8353 return 0;
8354 }
8355
8356 static void hpsa_free_reply_queues(struct ctlr_info *h)
8357 {
8358 int i;
8359
8360 for (i = 0; i < h->nreply_queues; i++) {
8361 if (!h->reply_queue[i].head)
8362 continue;
8363 pci_free_consistent(h->pdev,
8364 h->reply_queue_size,
8365 h->reply_queue[i].head,
8366 h->reply_queue[i].busaddr);
8367 h->reply_queue[i].head = NULL;
8368 h->reply_queue[i].busaddr = 0;
8369 }
8370 h->reply_queue_size = 0;
8371 }
8372
8373 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8374 {
8375 hpsa_free_performant_mode(h); /* init_one 7 */
8376 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8377 hpsa_free_cmd_pool(h); /* init_one 5 */
8378 hpsa_free_irqs(h); /* init_one 4 */
8379 scsi_host_put(h->scsi_host); /* init_one 3 */
8380 h->scsi_host = NULL; /* init_one 3 */
8381 hpsa_free_pci_init(h); /* init_one 2_5 */
8382 free_percpu(h->lockup_detected); /* init_one 2 */
8383 h->lockup_detected = NULL; /* init_one 2 */
8384 if (h->resubmit_wq) {
8385 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8386 h->resubmit_wq = NULL;
8387 }
8388 if (h->rescan_ctlr_wq) {
8389 destroy_workqueue(h->rescan_ctlr_wq);
8390 h->rescan_ctlr_wq = NULL;
8391 }
8392 kfree(h); /* init_one 1 */
8393 }
8394
8395 /* Called when controller lockup detected. */
8396 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8397 {
8398 int i, refcount;
8399 struct CommandList *c;
8400 int failcount = 0;
8401
8402 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8403 for (i = 0; i < h->nr_cmds; i++) {
8404 c = h->cmd_pool + i;
8405 refcount = atomic_inc_return(&c->refcount);
8406 if (refcount > 1) {
8407 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8408 finish_cmd(c);
8409 atomic_dec(&h->commands_outstanding);
8410 failcount++;
8411 }
8412 cmd_free(h, c);
8413 }
8414 dev_warn(&h->pdev->dev,
8415 "failed %d commands in fail_all\n", failcount);
8416 }
8417
8418 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8419 {
8420 int cpu;
8421
8422 for_each_online_cpu(cpu) {
8423 u32 *lockup_detected;
8424 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8425 *lockup_detected = value;
8426 }
8427 wmb(); /* be sure the per-cpu variables are out to memory */
8428 }
8429
8430 static void controller_lockup_detected(struct ctlr_info *h)
8431 {
8432 unsigned long flags;
8433 u32 lockup_detected;
8434
8435 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8436 spin_lock_irqsave(&h->lock, flags);
8437 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8438 if (!lockup_detected) {
8439 /* no heartbeat, but controller gave us a zero. */
8440 dev_warn(&h->pdev->dev,
8441 "lockup detected after %d but scratchpad register is zero\n",
8442 h->heartbeat_sample_interval / HZ);
8443 lockup_detected = 0xffffffff;
8444 }
8445 set_lockup_detected_for_all_cpus(h, lockup_detected);
8446 spin_unlock_irqrestore(&h->lock, flags);
8447 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8448 lockup_detected, h->heartbeat_sample_interval / HZ);
8449 pci_disable_device(h->pdev);
8450 fail_all_outstanding_cmds(h);
8451 }
8452
8453 static int detect_controller_lockup(struct ctlr_info *h)
8454 {
8455 u64 now;
8456 u32 heartbeat;
8457 unsigned long flags;
8458
8459 now = get_jiffies_64();
8460 /* If we've received an interrupt recently, we're ok. */
8461 if (time_after64(h->last_intr_timestamp +
8462 (h->heartbeat_sample_interval), now))
8463 return false;
8464
8465 /*
8466 * If we've already checked the heartbeat recently, we're ok.
8467 * This could happen if someone sends us a signal. We
8468 * otherwise don't care about signals in this thread.
8469 */
8470 if (time_after64(h->last_heartbeat_timestamp +
8471 (h->heartbeat_sample_interval), now))
8472 return false;
8473
8474 /* If heartbeat has not changed since we last looked, we're not ok. */
8475 spin_lock_irqsave(&h->lock, flags);
8476 heartbeat = readl(&h->cfgtable->HeartBeat);
8477 spin_unlock_irqrestore(&h->lock, flags);
8478 if (h->last_heartbeat == heartbeat) {
8479 controller_lockup_detected(h);
8480 return true;
8481 }
8482
8483 /* We're ok. */
8484 h->last_heartbeat = heartbeat;
8485 h->last_heartbeat_timestamp = now;
8486 return false;
8487 }
8488
8489 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8490 {
8491 int i;
8492 char *event_type;
8493
8494 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8495 return;
8496
8497 /* Ask the controller to clear the events we're handling. */
8498 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8499 | CFGTBL_Trans_io_accel2)) &&
8500 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8501 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8502
8503 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8504 event_type = "state change";
8505 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8506 event_type = "configuration change";
8507 /* Stop sending new RAID offload reqs via the IO accelerator */
8508 scsi_block_requests(h->scsi_host);
8509 for (i = 0; i < h->ndevices; i++) {
8510 h->dev[i]->offload_enabled = 0;
8511 h->dev[i]->offload_to_be_enabled = 0;
8512 }
8513 hpsa_drain_accel_commands(h);
8514 /* Set 'accelerator path config change' bit */
8515 dev_warn(&h->pdev->dev,
8516 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8517 h->events, event_type);
8518 writel(h->events, &(h->cfgtable->clear_event_notify));
8519 /* Set the "clear event notify field update" bit 6 */
8520 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8521 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8522 hpsa_wait_for_clear_event_notify_ack(h);
8523 scsi_unblock_requests(h->scsi_host);
8524 } else {
8525 /* Acknowledge controller notification events. */
8526 writel(h->events, &(h->cfgtable->clear_event_notify));
8527 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8528 hpsa_wait_for_clear_event_notify_ack(h);
8529 #if 0
8530 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8531 hpsa_wait_for_mode_change_ack(h);
8532 #endif
8533 }
8534 return;
8535 }
8536
8537 /* Check a register on the controller to see if there are configuration
8538 * changes (added/changed/removed logical drives, etc.) which mean that
8539 * we should rescan the controller for devices.
8540 * Also check flag for driver-initiated rescan.
8541 */
8542 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8543 {
8544 if (h->drv_req_rescan) {
8545 h->drv_req_rescan = 0;
8546 return 1;
8547 }
8548
8549 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8550 return 0;
8551
8552 h->events = readl(&(h->cfgtable->event_notify));
8553 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8554 }
8555
8556 /*
8557 * Check if any of the offline devices have become ready
8558 */
8559 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8560 {
8561 unsigned long flags;
8562 struct offline_device_entry *d;
8563 struct list_head *this, *tmp;
8564
8565 spin_lock_irqsave(&h->offline_device_lock, flags);
8566 list_for_each_safe(this, tmp, &h->offline_device_list) {
8567 d = list_entry(this, struct offline_device_entry,
8568 offline_list);
8569 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8570 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8571 spin_lock_irqsave(&h->offline_device_lock, flags);
8572 list_del(&d->offline_list);
8573 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8574 return 1;
8575 }
8576 spin_lock_irqsave(&h->offline_device_lock, flags);
8577 }
8578 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8579 return 0;
8580 }
8581
8582 static int hpsa_luns_changed(struct ctlr_info *h)
8583 {
8584 int rc = 1; /* assume there are changes */
8585 struct ReportLUNdata *logdev = NULL;
8586
8587 /* if we can't find out if lun data has changed,
8588 * assume that it has.
8589 */
8590
8591 if (!h->lastlogicals)
8592 return rc;
8593
8594 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8595 if (!logdev)
8596 return rc;
8597
8598 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8599 dev_warn(&h->pdev->dev,
8600 "report luns failed, can't track lun changes.\n");
8601 goto out;
8602 }
8603 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8604 dev_info(&h->pdev->dev,
8605 "Lun changes detected.\n");
8606 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8607 goto out;
8608 } else
8609 rc = 0; /* no changes detected. */
8610 out:
8611 kfree(logdev);
8612 return rc;
8613 }
8614
8615 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8616 {
8617 unsigned long flags;
8618 struct ctlr_info *h = container_of(to_delayed_work(work),
8619 struct ctlr_info, rescan_ctlr_work);
8620
8621
8622 if (h->remove_in_progress)
8623 return;
8624
8625 /*
8626 * Do the scan after the reset
8627 */
8628 if (h->reset_in_progress) {
8629 h->drv_req_rescan = 1;
8630 return;
8631 }
8632
8633 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8634 scsi_host_get(h->scsi_host);
8635 hpsa_ack_ctlr_events(h);
8636 hpsa_scan_start(h->scsi_host);
8637 scsi_host_put(h->scsi_host);
8638 } else if (h->discovery_polling) {
8639 hpsa_disable_rld_caching(h);
8640 if (hpsa_luns_changed(h)) {
8641 struct Scsi_Host *sh = NULL;
8642
8643 dev_info(&h->pdev->dev,
8644 "driver discovery polling rescan.\n");
8645 sh = scsi_host_get(h->scsi_host);
8646 if (sh != NULL) {
8647 hpsa_scan_start(sh);
8648 scsi_host_put(sh);
8649 }
8650 }
8651 }
8652 spin_lock_irqsave(&h->lock, flags);
8653 if (!h->remove_in_progress)
8654 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8655 h->heartbeat_sample_interval);
8656 spin_unlock_irqrestore(&h->lock, flags);
8657 }
8658
8659 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8660 {
8661 unsigned long flags;
8662 struct ctlr_info *h = container_of(to_delayed_work(work),
8663 struct ctlr_info, monitor_ctlr_work);
8664
8665 detect_controller_lockup(h);
8666 if (lockup_detected(h))
8667 return;
8668
8669 spin_lock_irqsave(&h->lock, flags);
8670 if (!h->remove_in_progress)
8671 schedule_delayed_work(&h->monitor_ctlr_work,
8672 h->heartbeat_sample_interval);
8673 spin_unlock_irqrestore(&h->lock, flags);
8674 }
8675
8676 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8677 char *name)
8678 {
8679 struct workqueue_struct *wq = NULL;
8680
8681 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8682 if (!wq)
8683 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8684
8685 return wq;
8686 }
8687
8688 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8689 {
8690 int dac, rc;
8691 struct ctlr_info *h;
8692 int try_soft_reset = 0;
8693 unsigned long flags;
8694 u32 board_id;
8695
8696 if (number_of_controllers == 0)
8697 printk(KERN_INFO DRIVER_NAME "\n");
8698
8699 rc = hpsa_lookup_board_id(pdev, &board_id);
8700 if (rc < 0) {
8701 dev_warn(&pdev->dev, "Board ID not found\n");
8702 return rc;
8703 }
8704
8705 rc = hpsa_init_reset_devices(pdev, board_id);
8706 if (rc) {
8707 if (rc != -ENOTSUPP)
8708 return rc;
8709 /* If the reset fails in a particular way (it has no way to do
8710 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8711 * a soft reset once we get the controller configured up to the
8712 * point that it can accept a command.
8713 */
8714 try_soft_reset = 1;
8715 rc = 0;
8716 }
8717
8718 reinit_after_soft_reset:
8719
8720 /* Command structures must be aligned on a 32-byte boundary because
8721 * the 5 lower bits of the address are used by the hardware. and by
8722 * the driver. See comments in hpsa.h for more info.
8723 */
8724 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8725 h = kzalloc(sizeof(*h), GFP_KERNEL);
8726 if (!h) {
8727 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8728 return -ENOMEM;
8729 }
8730
8731 h->pdev = pdev;
8732
8733 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8734 INIT_LIST_HEAD(&h->offline_device_list);
8735 spin_lock_init(&h->lock);
8736 spin_lock_init(&h->offline_device_lock);
8737 spin_lock_init(&h->scan_lock);
8738 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8739 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8740
8741 /* Allocate and clear per-cpu variable lockup_detected */
8742 h->lockup_detected = alloc_percpu(u32);
8743 if (!h->lockup_detected) {
8744 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8745 rc = -ENOMEM;
8746 goto clean1; /* aer/h */
8747 }
8748 set_lockup_detected_for_all_cpus(h, 0);
8749
8750 rc = hpsa_pci_init(h);
8751 if (rc)
8752 goto clean2; /* lu, aer/h */
8753
8754 /* relies on h-> settings made by hpsa_pci_init, including
8755 * interrupt_mode h->intr */
8756 rc = hpsa_scsi_host_alloc(h);
8757 if (rc)
8758 goto clean2_5; /* pci, lu, aer/h */
8759
8760 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8761 h->ctlr = number_of_controllers;
8762 number_of_controllers++;
8763
8764 /* configure PCI DMA stuff */
8765 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8766 if (rc == 0) {
8767 dac = 1;
8768 } else {
8769 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8770 if (rc == 0) {
8771 dac = 0;
8772 } else {
8773 dev_err(&pdev->dev, "no suitable DMA available\n");
8774 goto clean3; /* shost, pci, lu, aer/h */
8775 }
8776 }
8777
8778 /* make sure the board interrupts are off */
8779 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8780
8781 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8782 if (rc)
8783 goto clean3; /* shost, pci, lu, aer/h */
8784 rc = hpsa_alloc_cmd_pool(h);
8785 if (rc)
8786 goto clean4; /* irq, shost, pci, lu, aer/h */
8787 rc = hpsa_alloc_sg_chain_blocks(h);
8788 if (rc)
8789 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8790 init_waitqueue_head(&h->scan_wait_queue);
8791 init_waitqueue_head(&h->abort_cmd_wait_queue);
8792 init_waitqueue_head(&h->event_sync_wait_queue);
8793 mutex_init(&h->reset_mutex);
8794 h->scan_finished = 1; /* no scan currently in progress */
8795
8796 pci_set_drvdata(pdev, h);
8797 h->ndevices = 0;
8798
8799 spin_lock_init(&h->devlock);
8800 rc = hpsa_put_ctlr_into_performant_mode(h);
8801 if (rc)
8802 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8803
8804 /* create the resubmit workqueue */
8805 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8806 if (!h->rescan_ctlr_wq) {
8807 rc = -ENOMEM;
8808 goto clean7;
8809 }
8810
8811 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8812 if (!h->resubmit_wq) {
8813 rc = -ENOMEM;
8814 goto clean7; /* aer/h */
8815 }
8816
8817 /*
8818 * At this point, the controller is ready to take commands.
8819 * Now, if reset_devices and the hard reset didn't work, try
8820 * the soft reset and see if that works.
8821 */
8822 if (try_soft_reset) {
8823
8824 /* This is kind of gross. We may or may not get a completion
8825 * from the soft reset command, and if we do, then the value
8826 * from the fifo may or may not be valid. So, we wait 10 secs
8827 * after the reset throwing away any completions we get during
8828 * that time. Unregister the interrupt handler and register
8829 * fake ones to scoop up any residual completions.
8830 */
8831 spin_lock_irqsave(&h->lock, flags);
8832 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8833 spin_unlock_irqrestore(&h->lock, flags);
8834 hpsa_free_irqs(h);
8835 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8836 hpsa_intx_discard_completions);
8837 if (rc) {
8838 dev_warn(&h->pdev->dev,
8839 "Failed to request_irq after soft reset.\n");
8840 /*
8841 * cannot goto clean7 or free_irqs will be called
8842 * again. Instead, do its work
8843 */
8844 hpsa_free_performant_mode(h); /* clean7 */
8845 hpsa_free_sg_chain_blocks(h); /* clean6 */
8846 hpsa_free_cmd_pool(h); /* clean5 */
8847 /*
8848 * skip hpsa_free_irqs(h) clean4 since that
8849 * was just called before request_irqs failed
8850 */
8851 goto clean3;
8852 }
8853
8854 rc = hpsa_kdump_soft_reset(h);
8855 if (rc)
8856 /* Neither hard nor soft reset worked, we're hosed. */
8857 goto clean7;
8858
8859 dev_info(&h->pdev->dev, "Board READY.\n");
8860 dev_info(&h->pdev->dev,
8861 "Waiting for stale completions to drain.\n");
8862 h->access.set_intr_mask(h, HPSA_INTR_ON);
8863 msleep(10000);
8864 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8865
8866 rc = controller_reset_failed(h->cfgtable);
8867 if (rc)
8868 dev_info(&h->pdev->dev,
8869 "Soft reset appears to have failed.\n");
8870
8871 /* since the controller's reset, we have to go back and re-init
8872 * everything. Easiest to just forget what we've done and do it
8873 * all over again.
8874 */
8875 hpsa_undo_allocations_after_kdump_soft_reset(h);
8876 try_soft_reset = 0;
8877 if (rc)
8878 /* don't goto clean, we already unallocated */
8879 return -ENODEV;
8880
8881 goto reinit_after_soft_reset;
8882 }
8883
8884 /* Enable Accelerated IO path at driver layer */
8885 h->acciopath_status = 1;
8886 /* Disable discovery polling.*/
8887 h->discovery_polling = 0;
8888
8889
8890 /* Turn the interrupts on so we can service requests */
8891 h->access.set_intr_mask(h, HPSA_INTR_ON);
8892
8893 hpsa_hba_inquiry(h);
8894
8895 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8896 if (!h->lastlogicals)
8897 dev_info(&h->pdev->dev,
8898 "Can't track change to report lun data\n");
8899
8900 /* hook into SCSI subsystem */
8901 rc = hpsa_scsi_add_host(h);
8902 if (rc)
8903 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8904
8905 /* Monitor the controller for firmware lockups */
8906 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8907 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8908 schedule_delayed_work(&h->monitor_ctlr_work,
8909 h->heartbeat_sample_interval);
8910 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8911 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8912 h->heartbeat_sample_interval);
8913 return 0;
8914
8915 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8916 hpsa_free_performant_mode(h);
8917 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8918 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8919 hpsa_free_sg_chain_blocks(h);
8920 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8921 hpsa_free_cmd_pool(h);
8922 clean4: /* irq, shost, pci, lu, aer/h */
8923 hpsa_free_irqs(h);
8924 clean3: /* shost, pci, lu, aer/h */
8925 scsi_host_put(h->scsi_host);
8926 h->scsi_host = NULL;
8927 clean2_5: /* pci, lu, aer/h */
8928 hpsa_free_pci_init(h);
8929 clean2: /* lu, aer/h */
8930 if (h->lockup_detected) {
8931 free_percpu(h->lockup_detected);
8932 h->lockup_detected = NULL;
8933 }
8934 clean1: /* wq/aer/h */
8935 if (h->resubmit_wq) {
8936 destroy_workqueue(h->resubmit_wq);
8937 h->resubmit_wq = NULL;
8938 }
8939 if (h->rescan_ctlr_wq) {
8940 destroy_workqueue(h->rescan_ctlr_wq);
8941 h->rescan_ctlr_wq = NULL;
8942 }
8943 kfree(h);
8944 return rc;
8945 }
8946
8947 static void hpsa_flush_cache(struct ctlr_info *h)
8948 {
8949 char *flush_buf;
8950 struct CommandList *c;
8951 int rc;
8952
8953 if (unlikely(lockup_detected(h)))
8954 return;
8955 flush_buf = kzalloc(4, GFP_KERNEL);
8956 if (!flush_buf)
8957 return;
8958
8959 c = cmd_alloc(h);
8960
8961 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8962 RAID_CTLR_LUNID, TYPE_CMD)) {
8963 goto out;
8964 }
8965 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8966 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8967 if (rc)
8968 goto out;
8969 if (c->err_info->CommandStatus != 0)
8970 out:
8971 dev_warn(&h->pdev->dev,
8972 "error flushing cache on controller\n");
8973 cmd_free(h, c);
8974 kfree(flush_buf);
8975 }
8976
8977 /* Make controller gather fresh report lun data each time we
8978 * send down a report luns request
8979 */
8980 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8981 {
8982 u32 *options;
8983 struct CommandList *c;
8984 int rc;
8985
8986 /* Don't bother trying to set diag options if locked up */
8987 if (unlikely(h->lockup_detected))
8988 return;
8989
8990 options = kzalloc(sizeof(*options), GFP_KERNEL);
8991 if (!options)
8992 return;
8993
8994 c = cmd_alloc(h);
8995
8996 /* first, get the current diag options settings */
8997 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8998 RAID_CTLR_LUNID, TYPE_CMD))
8999 goto errout;
9000
9001 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9002 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9003 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9004 goto errout;
9005
9006 /* Now, set the bit for disabling the RLD caching */
9007 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9008
9009 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9010 RAID_CTLR_LUNID, TYPE_CMD))
9011 goto errout;
9012
9013 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9014 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9015 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9016 goto errout;
9017
9018 /* Now verify that it got set: */
9019 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9020 RAID_CTLR_LUNID, TYPE_CMD))
9021 goto errout;
9022
9023 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9024 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9025 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9026 goto errout;
9027
9028 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9029 goto out;
9030
9031 errout:
9032 dev_err(&h->pdev->dev,
9033 "Error: failed to disable report lun data caching.\n");
9034 out:
9035 cmd_free(h, c);
9036 kfree(options);
9037 }
9038
9039 static void hpsa_shutdown(struct pci_dev *pdev)
9040 {
9041 struct ctlr_info *h;
9042
9043 h = pci_get_drvdata(pdev);
9044 /* Turn board interrupts off and send the flush cache command
9045 * sendcmd will turn off interrupt, and send the flush...
9046 * To write all data in the battery backed cache to disks
9047 */
9048 hpsa_flush_cache(h);
9049 h->access.set_intr_mask(h, HPSA_INTR_OFF);
9050 hpsa_free_irqs(h); /* init_one 4 */
9051 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
9052 }
9053
9054 static void hpsa_free_device_info(struct ctlr_info *h)
9055 {
9056 int i;
9057
9058 for (i = 0; i < h->ndevices; i++) {
9059 kfree(h->dev[i]);
9060 h->dev[i] = NULL;
9061 }
9062 }
9063
9064 static void hpsa_remove_one(struct pci_dev *pdev)
9065 {
9066 struct ctlr_info *h;
9067 unsigned long flags;
9068
9069 if (pci_get_drvdata(pdev) == NULL) {
9070 dev_err(&pdev->dev, "unable to remove device\n");
9071 return;
9072 }
9073 h = pci_get_drvdata(pdev);
9074
9075 /* Get rid of any controller monitoring work items */
9076 spin_lock_irqsave(&h->lock, flags);
9077 h->remove_in_progress = 1;
9078 spin_unlock_irqrestore(&h->lock, flags);
9079 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9080 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9081 destroy_workqueue(h->rescan_ctlr_wq);
9082 destroy_workqueue(h->resubmit_wq);
9083
9084 /*
9085 * Call before disabling interrupts.
9086 * scsi_remove_host can trigger I/O operations especially
9087 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9088 * operations which cannot complete and will hang the system.
9089 */
9090 if (h->scsi_host)
9091 scsi_remove_host(h->scsi_host); /* init_one 8 */
9092 /* includes hpsa_free_irqs - init_one 4 */
9093 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9094 hpsa_shutdown(pdev);
9095
9096 hpsa_free_device_info(h); /* scan */
9097
9098 kfree(h->hba_inquiry_data); /* init_one 10 */
9099 h->hba_inquiry_data = NULL; /* init_one 10 */
9100 hpsa_free_ioaccel2_sg_chain_blocks(h);
9101 hpsa_free_performant_mode(h); /* init_one 7 */
9102 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9103 hpsa_free_cmd_pool(h); /* init_one 5 */
9104 kfree(h->lastlogicals);
9105
9106 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9107
9108 scsi_host_put(h->scsi_host); /* init_one 3 */
9109 h->scsi_host = NULL; /* init_one 3 */
9110
9111 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9112 hpsa_free_pci_init(h); /* init_one 2.5 */
9113
9114 free_percpu(h->lockup_detected); /* init_one 2 */
9115 h->lockup_detected = NULL; /* init_one 2 */
9116 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9117
9118 hpsa_delete_sas_host(h);
9119
9120 kfree(h); /* init_one 1 */
9121 }
9122
9123 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9124 __attribute__((unused)) pm_message_t state)
9125 {
9126 return -ENOSYS;
9127 }
9128
9129 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9130 {
9131 return -ENOSYS;
9132 }
9133
9134 static struct pci_driver hpsa_pci_driver = {
9135 .name = HPSA,
9136 .probe = hpsa_init_one,
9137 .remove = hpsa_remove_one,
9138 .id_table = hpsa_pci_device_id, /* id_table */
9139 .shutdown = hpsa_shutdown,
9140 .suspend = hpsa_suspend,
9141 .resume = hpsa_resume,
9142 };
9143
9144 /* Fill in bucket_map[], given nsgs (the max number of
9145 * scatter gather elements supported) and bucket[],
9146 * which is an array of 8 integers. The bucket[] array
9147 * contains 8 different DMA transfer sizes (in 16
9148 * byte increments) which the controller uses to fetch
9149 * commands. This function fills in bucket_map[], which
9150 * maps a given number of scatter gather elements to one of
9151 * the 8 DMA transfer sizes. The point of it is to allow the
9152 * controller to only do as much DMA as needed to fetch the
9153 * command, with the DMA transfer size encoded in the lower
9154 * bits of the command address.
9155 */
9156 static void calc_bucket_map(int bucket[], int num_buckets,
9157 int nsgs, int min_blocks, u32 *bucket_map)
9158 {
9159 int i, j, b, size;
9160
9161 /* Note, bucket_map must have nsgs+1 entries. */
9162 for (i = 0; i <= nsgs; i++) {
9163 /* Compute size of a command with i SG entries */
9164 size = i + min_blocks;
9165 b = num_buckets; /* Assume the biggest bucket */
9166 /* Find the bucket that is just big enough */
9167 for (j = 0; j < num_buckets; j++) {
9168 if (bucket[j] >= size) {
9169 b = j;
9170 break;
9171 }
9172 }
9173 /* for a command with i SG entries, use bucket b. */
9174 bucket_map[i] = b;
9175 }
9176 }
9177
9178 /*
9179 * return -ENODEV on err, 0 on success (or no action)
9180 * allocates numerous items that must be freed later
9181 */
9182 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9183 {
9184 int i;
9185 unsigned long register_value;
9186 unsigned long transMethod = CFGTBL_Trans_Performant |
9187 (trans_support & CFGTBL_Trans_use_short_tags) |
9188 CFGTBL_Trans_enable_directed_msix |
9189 (trans_support & (CFGTBL_Trans_io_accel1 |
9190 CFGTBL_Trans_io_accel2));
9191 struct access_method access = SA5_performant_access;
9192
9193 /* This is a bit complicated. There are 8 registers on
9194 * the controller which we write to to tell it 8 different
9195 * sizes of commands which there may be. It's a way of
9196 * reducing the DMA done to fetch each command. Encoded into
9197 * each command's tag are 3 bits which communicate to the controller
9198 * which of the eight sizes that command fits within. The size of
9199 * each command depends on how many scatter gather entries there are.
9200 * Each SG entry requires 16 bytes. The eight registers are programmed
9201 * with the number of 16-byte blocks a command of that size requires.
9202 * The smallest command possible requires 5 such 16 byte blocks.
9203 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9204 * blocks. Note, this only extends to the SG entries contained
9205 * within the command block, and does not extend to chained blocks
9206 * of SG elements. bft[] contains the eight values we write to
9207 * the registers. They are not evenly distributed, but have more
9208 * sizes for small commands, and fewer sizes for larger commands.
9209 */
9210 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9211 #define MIN_IOACCEL2_BFT_ENTRY 5
9212 #define HPSA_IOACCEL2_HEADER_SZ 4
9213 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9214 13, 14, 15, 16, 17, 18, 19,
9215 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9216 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9217 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9218 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9219 16 * MIN_IOACCEL2_BFT_ENTRY);
9220 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9221 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9222 /* 5 = 1 s/g entry or 4k
9223 * 6 = 2 s/g entry or 8k
9224 * 8 = 4 s/g entry or 16k
9225 * 10 = 6 s/g entry or 24k
9226 */
9227
9228 /* If the controller supports either ioaccel method then
9229 * we can also use the RAID stack submit path that does not
9230 * perform the superfluous readl() after each command submission.
9231 */
9232 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9233 access = SA5_performant_access_no_read;
9234
9235 /* Controller spec: zero out this buffer. */
9236 for (i = 0; i < h->nreply_queues; i++)
9237 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9238
9239 bft[7] = SG_ENTRIES_IN_CMD + 4;
9240 calc_bucket_map(bft, ARRAY_SIZE(bft),
9241 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9242 for (i = 0; i < 8; i++)
9243 writel(bft[i], &h->transtable->BlockFetch[i]);
9244
9245 /* size of controller ring buffer */
9246 writel(h->max_commands, &h->transtable->RepQSize);
9247 writel(h->nreply_queues, &h->transtable->RepQCount);
9248 writel(0, &h->transtable->RepQCtrAddrLow32);
9249 writel(0, &h->transtable->RepQCtrAddrHigh32);
9250
9251 for (i = 0; i < h->nreply_queues; i++) {
9252 writel(0, &h->transtable->RepQAddr[i].upper);
9253 writel(h->reply_queue[i].busaddr,
9254 &h->transtable->RepQAddr[i].lower);
9255 }
9256
9257 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9258 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9259 /*
9260 * enable outbound interrupt coalescing in accelerator mode;
9261 */
9262 if (trans_support & CFGTBL_Trans_io_accel1) {
9263 access = SA5_ioaccel_mode1_access;
9264 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9265 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9266 } else {
9267 if (trans_support & CFGTBL_Trans_io_accel2) {
9268 access = SA5_ioaccel_mode2_access;
9269 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9270 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9271 }
9272 }
9273 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9274 if (hpsa_wait_for_mode_change_ack(h)) {
9275 dev_err(&h->pdev->dev,
9276 "performant mode problem - doorbell timeout\n");
9277 return -ENODEV;
9278 }
9279 register_value = readl(&(h->cfgtable->TransportActive));
9280 if (!(register_value & CFGTBL_Trans_Performant)) {
9281 dev_err(&h->pdev->dev,
9282 "performant mode problem - transport not active\n");
9283 return -ENODEV;
9284 }
9285 /* Change the access methods to the performant access methods */
9286 h->access = access;
9287 h->transMethod = transMethod;
9288
9289 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9290 (trans_support & CFGTBL_Trans_io_accel2)))
9291 return 0;
9292
9293 if (trans_support & CFGTBL_Trans_io_accel1) {
9294 /* Set up I/O accelerator mode */
9295 for (i = 0; i < h->nreply_queues; i++) {
9296 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9297 h->reply_queue[i].current_entry =
9298 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9299 }
9300 bft[7] = h->ioaccel_maxsg + 8;
9301 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9302 h->ioaccel1_blockFetchTable);
9303
9304 /* initialize all reply queue entries to unused */
9305 for (i = 0; i < h->nreply_queues; i++)
9306 memset(h->reply_queue[i].head,
9307 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9308 h->reply_queue_size);
9309
9310 /* set all the constant fields in the accelerator command
9311 * frames once at init time to save CPU cycles later.
9312 */
9313 for (i = 0; i < h->nr_cmds; i++) {
9314 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9315
9316 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9317 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9318 (i * sizeof(struct ErrorInfo)));
9319 cp->err_info_len = sizeof(struct ErrorInfo);
9320 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9321 cp->host_context_flags =
9322 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9323 cp->timeout_sec = 0;
9324 cp->ReplyQueue = 0;
9325 cp->tag =
9326 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9327 cp->host_addr =
9328 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9329 (i * sizeof(struct io_accel1_cmd)));
9330 }
9331 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9332 u64 cfg_offset, cfg_base_addr_index;
9333 u32 bft2_offset, cfg_base_addr;
9334 int rc;
9335
9336 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9337 &cfg_base_addr_index, &cfg_offset);
9338 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9339 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9340 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9341 4, h->ioaccel2_blockFetchTable);
9342 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9343 BUILD_BUG_ON(offsetof(struct CfgTable,
9344 io_accel_request_size_offset) != 0xb8);
9345 h->ioaccel2_bft2_regs =
9346 remap_pci_mem(pci_resource_start(h->pdev,
9347 cfg_base_addr_index) +
9348 cfg_offset + bft2_offset,
9349 ARRAY_SIZE(bft2) *
9350 sizeof(*h->ioaccel2_bft2_regs));
9351 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9352 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9353 }
9354 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9355 if (hpsa_wait_for_mode_change_ack(h)) {
9356 dev_err(&h->pdev->dev,
9357 "performant mode problem - enabling ioaccel mode\n");
9358 return -ENODEV;
9359 }
9360 return 0;
9361 }
9362
9363 /* Free ioaccel1 mode command blocks and block fetch table */
9364 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9365 {
9366 if (h->ioaccel_cmd_pool) {
9367 pci_free_consistent(h->pdev,
9368 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9369 h->ioaccel_cmd_pool,
9370 h->ioaccel_cmd_pool_dhandle);
9371 h->ioaccel_cmd_pool = NULL;
9372 h->ioaccel_cmd_pool_dhandle = 0;
9373 }
9374 kfree(h->ioaccel1_blockFetchTable);
9375 h->ioaccel1_blockFetchTable = NULL;
9376 }
9377
9378 /* Allocate ioaccel1 mode command blocks and block fetch table */
9379 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9380 {
9381 h->ioaccel_maxsg =
9382 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9383 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9384 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9385
9386 /* Command structures must be aligned on a 128-byte boundary
9387 * because the 7 lower bits of the address are used by the
9388 * hardware.
9389 */
9390 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9391 IOACCEL1_COMMANDLIST_ALIGNMENT);
9392 h->ioaccel_cmd_pool =
9393 pci_alloc_consistent(h->pdev,
9394 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9395 &(h->ioaccel_cmd_pool_dhandle));
9396
9397 h->ioaccel1_blockFetchTable =
9398 kmalloc(((h->ioaccel_maxsg + 1) *
9399 sizeof(u32)), GFP_KERNEL);
9400
9401 if ((h->ioaccel_cmd_pool == NULL) ||
9402 (h->ioaccel1_blockFetchTable == NULL))
9403 goto clean_up;
9404
9405 memset(h->ioaccel_cmd_pool, 0,
9406 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9407 return 0;
9408
9409 clean_up:
9410 hpsa_free_ioaccel1_cmd_and_bft(h);
9411 return -ENOMEM;
9412 }
9413
9414 /* Free ioaccel2 mode command blocks and block fetch table */
9415 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9416 {
9417 hpsa_free_ioaccel2_sg_chain_blocks(h);
9418
9419 if (h->ioaccel2_cmd_pool) {
9420 pci_free_consistent(h->pdev,
9421 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9422 h->ioaccel2_cmd_pool,
9423 h->ioaccel2_cmd_pool_dhandle);
9424 h->ioaccel2_cmd_pool = NULL;
9425 h->ioaccel2_cmd_pool_dhandle = 0;
9426 }
9427 kfree(h->ioaccel2_blockFetchTable);
9428 h->ioaccel2_blockFetchTable = NULL;
9429 }
9430
9431 /* Allocate ioaccel2 mode command blocks and block fetch table */
9432 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9433 {
9434 int rc;
9435
9436 /* Allocate ioaccel2 mode command blocks and block fetch table */
9437
9438 h->ioaccel_maxsg =
9439 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9440 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9441 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9442
9443 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9444 IOACCEL2_COMMANDLIST_ALIGNMENT);
9445 h->ioaccel2_cmd_pool =
9446 pci_alloc_consistent(h->pdev,
9447 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9448 &(h->ioaccel2_cmd_pool_dhandle));
9449
9450 h->ioaccel2_blockFetchTable =
9451 kmalloc(((h->ioaccel_maxsg + 1) *
9452 sizeof(u32)), GFP_KERNEL);
9453
9454 if ((h->ioaccel2_cmd_pool == NULL) ||
9455 (h->ioaccel2_blockFetchTable == NULL)) {
9456 rc = -ENOMEM;
9457 goto clean_up;
9458 }
9459
9460 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9461 if (rc)
9462 goto clean_up;
9463
9464 memset(h->ioaccel2_cmd_pool, 0,
9465 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9466 return 0;
9467
9468 clean_up:
9469 hpsa_free_ioaccel2_cmd_and_bft(h);
9470 return rc;
9471 }
9472
9473 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9474 static void hpsa_free_performant_mode(struct ctlr_info *h)
9475 {
9476 kfree(h->blockFetchTable);
9477 h->blockFetchTable = NULL;
9478 hpsa_free_reply_queues(h);
9479 hpsa_free_ioaccel1_cmd_and_bft(h);
9480 hpsa_free_ioaccel2_cmd_and_bft(h);
9481 }
9482
9483 /* return -ENODEV on error, 0 on success (or no action)
9484 * allocates numerous items that must be freed later
9485 */
9486 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9487 {
9488 u32 trans_support;
9489 unsigned long transMethod = CFGTBL_Trans_Performant |
9490 CFGTBL_Trans_use_short_tags;
9491 int i, rc;
9492
9493 if (hpsa_simple_mode)
9494 return 0;
9495
9496 trans_support = readl(&(h->cfgtable->TransportSupport));
9497 if (!(trans_support & PERFORMANT_MODE))
9498 return 0;
9499
9500 /* Check for I/O accelerator mode support */
9501 if (trans_support & CFGTBL_Trans_io_accel1) {
9502 transMethod |= CFGTBL_Trans_io_accel1 |
9503 CFGTBL_Trans_enable_directed_msix;
9504 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9505 if (rc)
9506 return rc;
9507 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9508 transMethod |= CFGTBL_Trans_io_accel2 |
9509 CFGTBL_Trans_enable_directed_msix;
9510 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9511 if (rc)
9512 return rc;
9513 }
9514
9515 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9516 hpsa_get_max_perf_mode_cmds(h);
9517 /* Performant mode ring buffer and supporting data structures */
9518 h->reply_queue_size = h->max_commands * sizeof(u64);
9519
9520 for (i = 0; i < h->nreply_queues; i++) {
9521 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9522 h->reply_queue_size,
9523 &(h->reply_queue[i].busaddr));
9524 if (!h->reply_queue[i].head) {
9525 rc = -ENOMEM;
9526 goto clean1; /* rq, ioaccel */
9527 }
9528 h->reply_queue[i].size = h->max_commands;
9529 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9530 h->reply_queue[i].current_entry = 0;
9531 }
9532
9533 /* Need a block fetch table for performant mode */
9534 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9535 sizeof(u32)), GFP_KERNEL);
9536 if (!h->blockFetchTable) {
9537 rc = -ENOMEM;
9538 goto clean1; /* rq, ioaccel */
9539 }
9540
9541 rc = hpsa_enter_performant_mode(h, trans_support);
9542 if (rc)
9543 goto clean2; /* bft, rq, ioaccel */
9544 return 0;
9545
9546 clean2: /* bft, rq, ioaccel */
9547 kfree(h->blockFetchTable);
9548 h->blockFetchTable = NULL;
9549 clean1: /* rq, ioaccel */
9550 hpsa_free_reply_queues(h);
9551 hpsa_free_ioaccel1_cmd_and_bft(h);
9552 hpsa_free_ioaccel2_cmd_and_bft(h);
9553 return rc;
9554 }
9555
9556 static int is_accelerated_cmd(struct CommandList *c)
9557 {
9558 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9559 }
9560
9561 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9562 {
9563 struct CommandList *c = NULL;
9564 int i, accel_cmds_out;
9565 int refcount;
9566
9567 do { /* wait for all outstanding ioaccel commands to drain out */
9568 accel_cmds_out = 0;
9569 for (i = 0; i < h->nr_cmds; i++) {
9570 c = h->cmd_pool + i;
9571 refcount = atomic_inc_return(&c->refcount);
9572 if (refcount > 1) /* Command is allocated */
9573 accel_cmds_out += is_accelerated_cmd(c);
9574 cmd_free(h, c);
9575 }
9576 if (accel_cmds_out <= 0)
9577 break;
9578 msleep(100);
9579 } while (1);
9580 }
9581
9582 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9583 struct hpsa_sas_port *hpsa_sas_port)
9584 {
9585 struct hpsa_sas_phy *hpsa_sas_phy;
9586 struct sas_phy *phy;
9587
9588 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9589 if (!hpsa_sas_phy)
9590 return NULL;
9591
9592 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9593 hpsa_sas_port->next_phy_index);
9594 if (!phy) {
9595 kfree(hpsa_sas_phy);
9596 return NULL;
9597 }
9598
9599 hpsa_sas_port->next_phy_index++;
9600 hpsa_sas_phy->phy = phy;
9601 hpsa_sas_phy->parent_port = hpsa_sas_port;
9602
9603 return hpsa_sas_phy;
9604 }
9605
9606 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9607 {
9608 struct sas_phy *phy = hpsa_sas_phy->phy;
9609
9610 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9611 sas_phy_free(phy);
9612 if (hpsa_sas_phy->added_to_port)
9613 list_del(&hpsa_sas_phy->phy_list_entry);
9614 kfree(hpsa_sas_phy);
9615 }
9616
9617 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9618 {
9619 int rc;
9620 struct hpsa_sas_port *hpsa_sas_port;
9621 struct sas_phy *phy;
9622 struct sas_identify *identify;
9623
9624 hpsa_sas_port = hpsa_sas_phy->parent_port;
9625 phy = hpsa_sas_phy->phy;
9626
9627 identify = &phy->identify;
9628 memset(identify, 0, sizeof(*identify));
9629 identify->sas_address = hpsa_sas_port->sas_address;
9630 identify->device_type = SAS_END_DEVICE;
9631 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9632 identify->target_port_protocols = SAS_PROTOCOL_STP;
9633 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9634 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9635 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9636 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9637 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9638
9639 rc = sas_phy_add(hpsa_sas_phy->phy);
9640 if (rc)
9641 return rc;
9642
9643 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9644 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9645 &hpsa_sas_port->phy_list_head);
9646 hpsa_sas_phy->added_to_port = true;
9647
9648 return 0;
9649 }
9650
9651 static int
9652 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9653 struct sas_rphy *rphy)
9654 {
9655 struct sas_identify *identify;
9656
9657 identify = &rphy->identify;
9658 identify->sas_address = hpsa_sas_port->sas_address;
9659 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9660 identify->target_port_protocols = SAS_PROTOCOL_STP;
9661
9662 return sas_rphy_add(rphy);
9663 }
9664
9665 static struct hpsa_sas_port
9666 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9667 u64 sas_address)
9668 {
9669 int rc;
9670 struct hpsa_sas_port *hpsa_sas_port;
9671 struct sas_port *port;
9672
9673 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9674 if (!hpsa_sas_port)
9675 return NULL;
9676
9677 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9678 hpsa_sas_port->parent_node = hpsa_sas_node;
9679
9680 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9681 if (!port)
9682 goto free_hpsa_port;
9683
9684 rc = sas_port_add(port);
9685 if (rc)
9686 goto free_sas_port;
9687
9688 hpsa_sas_port->port = port;
9689 hpsa_sas_port->sas_address = sas_address;
9690 list_add_tail(&hpsa_sas_port->port_list_entry,
9691 &hpsa_sas_node->port_list_head);
9692
9693 return hpsa_sas_port;
9694
9695 free_sas_port:
9696 sas_port_free(port);
9697 free_hpsa_port:
9698 kfree(hpsa_sas_port);
9699
9700 return NULL;
9701 }
9702
9703 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9704 {
9705 struct hpsa_sas_phy *hpsa_sas_phy;
9706 struct hpsa_sas_phy *next;
9707
9708 list_for_each_entry_safe(hpsa_sas_phy, next,
9709 &hpsa_sas_port->phy_list_head, phy_list_entry)
9710 hpsa_free_sas_phy(hpsa_sas_phy);
9711
9712 sas_port_delete(hpsa_sas_port->port);
9713 list_del(&hpsa_sas_port->port_list_entry);
9714 kfree(hpsa_sas_port);
9715 }
9716
9717 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9718 {
9719 struct hpsa_sas_node *hpsa_sas_node;
9720
9721 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9722 if (hpsa_sas_node) {
9723 hpsa_sas_node->parent_dev = parent_dev;
9724 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9725 }
9726
9727 return hpsa_sas_node;
9728 }
9729
9730 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9731 {
9732 struct hpsa_sas_port *hpsa_sas_port;
9733 struct hpsa_sas_port *next;
9734
9735 if (!hpsa_sas_node)
9736 return;
9737
9738 list_for_each_entry_safe(hpsa_sas_port, next,
9739 &hpsa_sas_node->port_list_head, port_list_entry)
9740 hpsa_free_sas_port(hpsa_sas_port);
9741
9742 kfree(hpsa_sas_node);
9743 }
9744
9745 static struct hpsa_scsi_dev_t
9746 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9747 struct sas_rphy *rphy)
9748 {
9749 int i;
9750 struct hpsa_scsi_dev_t *device;
9751
9752 for (i = 0; i < h->ndevices; i++) {
9753 device = h->dev[i];
9754 if (!device->sas_port)
9755 continue;
9756 if (device->sas_port->rphy == rphy)
9757 return device;
9758 }
9759
9760 return NULL;
9761 }
9762
9763 static int hpsa_add_sas_host(struct ctlr_info *h)
9764 {
9765 int rc;
9766 struct device *parent_dev;
9767 struct hpsa_sas_node *hpsa_sas_node;
9768 struct hpsa_sas_port *hpsa_sas_port;
9769 struct hpsa_sas_phy *hpsa_sas_phy;
9770
9771 parent_dev = &h->scsi_host->shost_gendev;
9772
9773 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9774 if (!hpsa_sas_node)
9775 return -ENOMEM;
9776
9777 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9778 if (!hpsa_sas_port) {
9779 rc = -ENODEV;
9780 goto free_sas_node;
9781 }
9782
9783 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9784 if (!hpsa_sas_phy) {
9785 rc = -ENODEV;
9786 goto free_sas_port;
9787 }
9788
9789 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9790 if (rc)
9791 goto free_sas_phy;
9792
9793 h->sas_host = hpsa_sas_node;
9794
9795 return 0;
9796
9797 free_sas_phy:
9798 hpsa_free_sas_phy(hpsa_sas_phy);
9799 free_sas_port:
9800 hpsa_free_sas_port(hpsa_sas_port);
9801 free_sas_node:
9802 hpsa_free_sas_node(hpsa_sas_node);
9803
9804 return rc;
9805 }
9806
9807 static void hpsa_delete_sas_host(struct ctlr_info *h)
9808 {
9809 hpsa_free_sas_node(h->sas_host);
9810 }
9811
9812 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9813 struct hpsa_scsi_dev_t *device)
9814 {
9815 int rc;
9816 struct hpsa_sas_port *hpsa_sas_port;
9817 struct sas_rphy *rphy;
9818
9819 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9820 if (!hpsa_sas_port)
9821 return -ENOMEM;
9822
9823 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9824 if (!rphy) {
9825 rc = -ENODEV;
9826 goto free_sas_port;
9827 }
9828
9829 hpsa_sas_port->rphy = rphy;
9830 device->sas_port = hpsa_sas_port;
9831
9832 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9833 if (rc)
9834 goto free_sas_port;
9835
9836 return 0;
9837
9838 free_sas_port:
9839 hpsa_free_sas_port(hpsa_sas_port);
9840 device->sas_port = NULL;
9841
9842 return rc;
9843 }
9844
9845 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9846 {
9847 if (device->sas_port) {
9848 hpsa_free_sas_port(device->sas_port);
9849 device->sas_port = NULL;
9850 }
9851 }
9852
9853 static int
9854 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9855 {
9856 return 0;
9857 }
9858
9859 static int
9860 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9861 {
9862 *identifier = 0;
9863 return 0;
9864 }
9865
9866 static int
9867 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9868 {
9869 return -ENXIO;
9870 }
9871
9872 static int
9873 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9874 {
9875 return 0;
9876 }
9877
9878 static int
9879 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9880 {
9881 return 0;
9882 }
9883
9884 static int
9885 hpsa_sas_phy_setup(struct sas_phy *phy)
9886 {
9887 return 0;
9888 }
9889
9890 static void
9891 hpsa_sas_phy_release(struct sas_phy *phy)
9892 {
9893 }
9894
9895 static int
9896 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9897 {
9898 return -EINVAL;
9899 }
9900
9901 /* SMP = Serial Management Protocol */
9902 static int
9903 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9904 struct request *req)
9905 {
9906 return -EINVAL;
9907 }
9908
9909 static struct sas_function_template hpsa_sas_transport_functions = {
9910 .get_linkerrors = hpsa_sas_get_linkerrors,
9911 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9912 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9913 .phy_reset = hpsa_sas_phy_reset,
9914 .phy_enable = hpsa_sas_phy_enable,
9915 .phy_setup = hpsa_sas_phy_setup,
9916 .phy_release = hpsa_sas_phy_release,
9917 .set_phy_speed = hpsa_sas_phy_speed,
9918 .smp_handler = hpsa_sas_smp_handler,
9919 };
9920
9921 /*
9922 * This is it. Register the PCI driver information for the cards we control
9923 * the OS will call our registered routines when it finds one of our cards.
9924 */
9925 static int __init hpsa_init(void)
9926 {
9927 int rc;
9928
9929 hpsa_sas_transport_template =
9930 sas_attach_transport(&hpsa_sas_transport_functions);
9931 if (!hpsa_sas_transport_template)
9932 return -ENODEV;
9933
9934 rc = pci_register_driver(&hpsa_pci_driver);
9935
9936 if (rc)
9937 sas_release_transport(hpsa_sas_transport_template);
9938
9939 return rc;
9940 }
9941
9942 static void __exit hpsa_cleanup(void)
9943 {
9944 pci_unregister_driver(&hpsa_pci_driver);
9945 sas_release_transport(hpsa_sas_transport_template);
9946 }
9947
9948 static void __attribute__((unused)) verify_offsets(void)
9949 {
9950 #define VERIFY_OFFSET(member, offset) \
9951 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9952
9953 VERIFY_OFFSET(structure_size, 0);
9954 VERIFY_OFFSET(volume_blk_size, 4);
9955 VERIFY_OFFSET(volume_blk_cnt, 8);
9956 VERIFY_OFFSET(phys_blk_shift, 16);
9957 VERIFY_OFFSET(parity_rotation_shift, 17);
9958 VERIFY_OFFSET(strip_size, 18);
9959 VERIFY_OFFSET(disk_starting_blk, 20);
9960 VERIFY_OFFSET(disk_blk_cnt, 28);
9961 VERIFY_OFFSET(data_disks_per_row, 36);
9962 VERIFY_OFFSET(metadata_disks_per_row, 38);
9963 VERIFY_OFFSET(row_cnt, 40);
9964 VERIFY_OFFSET(layout_map_count, 42);
9965 VERIFY_OFFSET(flags, 44);
9966 VERIFY_OFFSET(dekindex, 46);
9967 /* VERIFY_OFFSET(reserved, 48 */
9968 VERIFY_OFFSET(data, 64);
9969
9970 #undef VERIFY_OFFSET
9971
9972 #define VERIFY_OFFSET(member, offset) \
9973 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9974
9975 VERIFY_OFFSET(IU_type, 0);
9976 VERIFY_OFFSET(direction, 1);
9977 VERIFY_OFFSET(reply_queue, 2);
9978 /* VERIFY_OFFSET(reserved1, 3); */
9979 VERIFY_OFFSET(scsi_nexus, 4);
9980 VERIFY_OFFSET(Tag, 8);
9981 VERIFY_OFFSET(cdb, 16);
9982 VERIFY_OFFSET(cciss_lun, 32);
9983 VERIFY_OFFSET(data_len, 40);
9984 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9985 VERIFY_OFFSET(sg_count, 45);
9986 /* VERIFY_OFFSET(reserved3 */
9987 VERIFY_OFFSET(err_ptr, 48);
9988 VERIFY_OFFSET(err_len, 56);
9989 /* VERIFY_OFFSET(reserved4 */
9990 VERIFY_OFFSET(sg, 64);
9991
9992 #undef VERIFY_OFFSET
9993
9994 #define VERIFY_OFFSET(member, offset) \
9995 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9996
9997 VERIFY_OFFSET(dev_handle, 0x00);
9998 VERIFY_OFFSET(reserved1, 0x02);
9999 VERIFY_OFFSET(function, 0x03);
10000 VERIFY_OFFSET(reserved2, 0x04);
10001 VERIFY_OFFSET(err_info, 0x0C);
10002 VERIFY_OFFSET(reserved3, 0x10);
10003 VERIFY_OFFSET(err_info_len, 0x12);
10004 VERIFY_OFFSET(reserved4, 0x13);
10005 VERIFY_OFFSET(sgl_offset, 0x14);
10006 VERIFY_OFFSET(reserved5, 0x15);
10007 VERIFY_OFFSET(transfer_len, 0x1C);
10008 VERIFY_OFFSET(reserved6, 0x20);
10009 VERIFY_OFFSET(io_flags, 0x24);
10010 VERIFY_OFFSET(reserved7, 0x26);
10011 VERIFY_OFFSET(LUN, 0x34);
10012 VERIFY_OFFSET(control, 0x3C);
10013 VERIFY_OFFSET(CDB, 0x40);
10014 VERIFY_OFFSET(reserved8, 0x50);
10015 VERIFY_OFFSET(host_context_flags, 0x60);
10016 VERIFY_OFFSET(timeout_sec, 0x62);
10017 VERIFY_OFFSET(ReplyQueue, 0x64);
10018 VERIFY_OFFSET(reserved9, 0x65);
10019 VERIFY_OFFSET(tag, 0x68);
10020 VERIFY_OFFSET(host_addr, 0x70);
10021 VERIFY_OFFSET(CISS_LUN, 0x78);
10022 VERIFY_OFFSET(SG, 0x78 + 8);
10023 #undef VERIFY_OFFSET
10024 }
10025
10026 module_init(hpsa_init);
10027 module_exit(hpsa_cleanup);