]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/sd.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS 16
101 #else
102 #define SD_MINORS 0
103 #endif
104
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int sd_probe(struct device *);
110 static int sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125
126 static DEFINE_SPINLOCK(sd_index_lock);
127 static DEFINE_IDA(sd_index_ida);
128
129 /* This semaphore is used to mediate the 0->1 reference get in the
130 * face of object destruction (i.e. we can't allow a get on an
131 * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136
137 static const char *sd_cache_types[] = {
138 "write through", "none", "write back",
139 "write back, no read (daft)"
140 };
141
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 bool wc = false, fua = false;
145
146 if (sdkp->WCE) {
147 wc = true;
148 if (sdkp->DPOFUA)
149 fua = true;
150 }
151
152 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 const char *buf, size_t count)
158 {
159 int ct, rcd, wce, sp;
160 struct scsi_disk *sdkp = to_scsi_disk(dev);
161 struct scsi_device *sdp = sdkp->device;
162 char buffer[64];
163 char *buffer_data;
164 struct scsi_mode_data data;
165 struct scsi_sense_hdr sshdr;
166 static const char temp[] = "temporary ";
167 int len;
168
169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 /* no cache control on RBC devices; theoretically they
171 * can do it, but there's probably so many exceptions
172 * it's not worth the risk */
173 return -EINVAL;
174
175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 buf += sizeof(temp) - 1;
177 sdkp->cache_override = 1;
178 } else {
179 sdkp->cache_override = 0;
180 }
181
182 ct = sysfs_match_string(sd_cache_types, buf);
183 if (ct < 0)
184 return -EINVAL;
185
186 rcd = ct & 0x01 ? 1 : 0;
187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188
189 if (sdkp->cache_override) {
190 sdkp->WCE = wce;
191 sdkp->RCD = rcd;
192 sd_set_flush_flag(sdkp);
193 return count;
194 }
195
196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 SD_MAX_RETRIES, &data, NULL))
198 return -EINVAL;
199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 data.block_descriptor_length);
201 buffer_data = buffer + data.header_length +
202 data.block_descriptor_length;
203 buffer_data[2] &= ~0x05;
204 buffer_data[2] |= wce << 2 | rcd;
205 sp = buffer_data[0] & 0x80 ? 1 : 0;
206 buffer_data[0] &= ~0x80;
207
208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
209 SD_MAX_RETRIES, &data, &sshdr)) {
210 if (scsi_sense_valid(&sshdr))
211 sd_print_sense_hdr(sdkp, &sshdr);
212 return -EINVAL;
213 }
214 revalidate_disk(sdkp->disk);
215 return count;
216 }
217
218 static ssize_t
219 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
220 char *buf)
221 {
222 struct scsi_disk *sdkp = to_scsi_disk(dev);
223 struct scsi_device *sdp = sdkp->device;
224
225 return sprintf(buf, "%u\n", sdp->manage_start_stop);
226 }
227
228 static ssize_t
229 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
230 const char *buf, size_t count)
231 {
232 struct scsi_disk *sdkp = to_scsi_disk(dev);
233 struct scsi_device *sdp = sdkp->device;
234
235 if (!capable(CAP_SYS_ADMIN))
236 return -EACCES;
237
238 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
239
240 return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247 struct scsi_disk *sdkp = to_scsi_disk(dev);
248
249 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
250 }
251
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254 const char *buf, size_t count)
255 {
256 struct scsi_disk *sdkp = to_scsi_disk(dev);
257 struct scsi_device *sdp = sdkp->device;
258
259 if (!capable(CAP_SYS_ADMIN))
260 return -EACCES;
261
262 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
263 return -EINVAL;
264
265 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
266
267 return count;
268 }
269 static DEVICE_ATTR_RW(allow_restart);
270
271 static ssize_t
272 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
273 {
274 struct scsi_disk *sdkp = to_scsi_disk(dev);
275 int ct = sdkp->RCD + 2*sdkp->WCE;
276
277 return sprintf(buf, "%s\n", sd_cache_types[ct]);
278 }
279 static DEVICE_ATTR_RW(cache_type);
280
281 static ssize_t
282 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 struct scsi_disk *sdkp = to_scsi_disk(dev);
285
286 return sprintf(buf, "%u\n", sdkp->DPOFUA);
287 }
288 static DEVICE_ATTR_RO(FUA);
289
290 static ssize_t
291 protection_type_show(struct device *dev, struct device_attribute *attr,
292 char *buf)
293 {
294 struct scsi_disk *sdkp = to_scsi_disk(dev);
295
296 return sprintf(buf, "%u\n", sdkp->protection_type);
297 }
298
299 static ssize_t
300 protection_type_store(struct device *dev, struct device_attribute *attr,
301 const char *buf, size_t count)
302 {
303 struct scsi_disk *sdkp = to_scsi_disk(dev);
304 unsigned int val;
305 int err;
306
307 if (!capable(CAP_SYS_ADMIN))
308 return -EACCES;
309
310 err = kstrtouint(buf, 10, &val);
311
312 if (err)
313 return err;
314
315 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
316 sdkp->protection_type = val;
317
318 return count;
319 }
320 static DEVICE_ATTR_RW(protection_type);
321
322 static ssize_t
323 protection_mode_show(struct device *dev, struct device_attribute *attr,
324 char *buf)
325 {
326 struct scsi_disk *sdkp = to_scsi_disk(dev);
327 struct scsi_device *sdp = sdkp->device;
328 unsigned int dif, dix;
329
330 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
331 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
332
333 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
334 dif = 0;
335 dix = 1;
336 }
337
338 if (!dif && !dix)
339 return sprintf(buf, "none\n");
340
341 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
342 }
343 static DEVICE_ATTR_RO(protection_mode);
344
345 static ssize_t
346 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
347 {
348 struct scsi_disk *sdkp = to_scsi_disk(dev);
349
350 return sprintf(buf, "%u\n", sdkp->ATO);
351 }
352 static DEVICE_ATTR_RO(app_tag_own);
353
354 static ssize_t
355 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
356 char *buf)
357 {
358 struct scsi_disk *sdkp = to_scsi_disk(dev);
359
360 return sprintf(buf, "%u\n", sdkp->lbpme);
361 }
362 static DEVICE_ATTR_RO(thin_provisioning);
363
364 /* sysfs_match_string() requires dense arrays */
365 static const char *lbp_mode[] = {
366 [SD_LBP_FULL] = "full",
367 [SD_LBP_UNMAP] = "unmap",
368 [SD_LBP_WS16] = "writesame_16",
369 [SD_LBP_WS10] = "writesame_10",
370 [SD_LBP_ZERO] = "writesame_zero",
371 [SD_LBP_DISABLE] = "disabled",
372 };
373
374 static ssize_t
375 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
376 char *buf)
377 {
378 struct scsi_disk *sdkp = to_scsi_disk(dev);
379
380 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
381 }
382
383 static ssize_t
384 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
385 const char *buf, size_t count)
386 {
387 struct scsi_disk *sdkp = to_scsi_disk(dev);
388 struct scsi_device *sdp = sdkp->device;
389 int mode;
390
391 if (!capable(CAP_SYS_ADMIN))
392 return -EACCES;
393
394 if (sd_is_zoned(sdkp)) {
395 sd_config_discard(sdkp, SD_LBP_DISABLE);
396 return count;
397 }
398
399 if (sdp->type != TYPE_DISK)
400 return -EINVAL;
401
402 mode = sysfs_match_string(lbp_mode, buf);
403 if (mode < 0)
404 return -EINVAL;
405
406 sd_config_discard(sdkp, mode);
407
408 return count;
409 }
410 static DEVICE_ATTR_RW(provisioning_mode);
411
412 /* sysfs_match_string() requires dense arrays */
413 static const char *zeroing_mode[] = {
414 [SD_ZERO_WRITE] = "write",
415 [SD_ZERO_WS] = "writesame",
416 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
417 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
418 };
419
420 static ssize_t
421 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
422 char *buf)
423 {
424 struct scsi_disk *sdkp = to_scsi_disk(dev);
425
426 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
427 }
428
429 static ssize_t
430 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
431 const char *buf, size_t count)
432 {
433 struct scsi_disk *sdkp = to_scsi_disk(dev);
434 int mode;
435
436 if (!capable(CAP_SYS_ADMIN))
437 return -EACCES;
438
439 mode = sysfs_match_string(zeroing_mode, buf);
440 if (mode < 0)
441 return -EINVAL;
442
443 sdkp->zeroing_mode = mode;
444
445 return count;
446 }
447 static DEVICE_ATTR_RW(zeroing_mode);
448
449 static ssize_t
450 max_medium_access_timeouts_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452 {
453 struct scsi_disk *sdkp = to_scsi_disk(dev);
454
455 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
456 }
457
458 static ssize_t
459 max_medium_access_timeouts_store(struct device *dev,
460 struct device_attribute *attr, const char *buf,
461 size_t count)
462 {
463 struct scsi_disk *sdkp = to_scsi_disk(dev);
464 int err;
465
466 if (!capable(CAP_SYS_ADMIN))
467 return -EACCES;
468
469 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
470
471 return err ? err : count;
472 }
473 static DEVICE_ATTR_RW(max_medium_access_timeouts);
474
475 static ssize_t
476 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
477 char *buf)
478 {
479 struct scsi_disk *sdkp = to_scsi_disk(dev);
480
481 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
482 }
483
484 static ssize_t
485 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
486 const char *buf, size_t count)
487 {
488 struct scsi_disk *sdkp = to_scsi_disk(dev);
489 struct scsi_device *sdp = sdkp->device;
490 unsigned long max;
491 int err;
492
493 if (!capable(CAP_SYS_ADMIN))
494 return -EACCES;
495
496 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
497 return -EINVAL;
498
499 err = kstrtoul(buf, 10, &max);
500
501 if (err)
502 return err;
503
504 if (max == 0)
505 sdp->no_write_same = 1;
506 else if (max <= SD_MAX_WS16_BLOCKS) {
507 sdp->no_write_same = 0;
508 sdkp->max_ws_blocks = max;
509 }
510
511 sd_config_write_same(sdkp);
512
513 return count;
514 }
515 static DEVICE_ATTR_RW(max_write_same_blocks);
516
517 static struct attribute *sd_disk_attrs[] = {
518 &dev_attr_cache_type.attr,
519 &dev_attr_FUA.attr,
520 &dev_attr_allow_restart.attr,
521 &dev_attr_manage_start_stop.attr,
522 &dev_attr_protection_type.attr,
523 &dev_attr_protection_mode.attr,
524 &dev_attr_app_tag_own.attr,
525 &dev_attr_thin_provisioning.attr,
526 &dev_attr_provisioning_mode.attr,
527 &dev_attr_zeroing_mode.attr,
528 &dev_attr_max_write_same_blocks.attr,
529 &dev_attr_max_medium_access_timeouts.attr,
530 NULL,
531 };
532 ATTRIBUTE_GROUPS(sd_disk);
533
534 static struct class sd_disk_class = {
535 .name = "scsi_disk",
536 .owner = THIS_MODULE,
537 .dev_release = scsi_disk_release,
538 .dev_groups = sd_disk_groups,
539 };
540
541 static const struct dev_pm_ops sd_pm_ops = {
542 .suspend = sd_suspend_system,
543 .resume = sd_resume,
544 .poweroff = sd_suspend_system,
545 .restore = sd_resume,
546 .runtime_suspend = sd_suspend_runtime,
547 .runtime_resume = sd_resume,
548 };
549
550 static struct scsi_driver sd_template = {
551 .gendrv = {
552 .name = "sd",
553 .owner = THIS_MODULE,
554 .probe = sd_probe,
555 .remove = sd_remove,
556 .shutdown = sd_shutdown,
557 .pm = &sd_pm_ops,
558 },
559 .rescan = sd_rescan,
560 .init_command = sd_init_command,
561 .uninit_command = sd_uninit_command,
562 .done = sd_done,
563 .eh_action = sd_eh_action,
564 .eh_reset = sd_eh_reset,
565 };
566
567 /*
568 * Dummy kobj_map->probe function.
569 * The default ->probe function will call modprobe, which is
570 * pointless as this module is already loaded.
571 */
572 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
573 {
574 return NULL;
575 }
576
577 /*
578 * Device no to disk mapping:
579 *
580 * major disc2 disc p1
581 * |............|.............|....|....| <- dev_t
582 * 31 20 19 8 7 4 3 0
583 *
584 * Inside a major, we have 16k disks, however mapped non-
585 * contiguously. The first 16 disks are for major0, the next
586 * ones with major1, ... Disk 256 is for major0 again, disk 272
587 * for major1, ...
588 * As we stay compatible with our numbering scheme, we can reuse
589 * the well-know SCSI majors 8, 65--71, 136--143.
590 */
591 static int sd_major(int major_idx)
592 {
593 switch (major_idx) {
594 case 0:
595 return SCSI_DISK0_MAJOR;
596 case 1 ... 7:
597 return SCSI_DISK1_MAJOR + major_idx - 1;
598 case 8 ... 15:
599 return SCSI_DISK8_MAJOR + major_idx - 8;
600 default:
601 BUG();
602 return 0; /* shut up gcc */
603 }
604 }
605
606 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
607 {
608 struct scsi_disk *sdkp = NULL;
609
610 mutex_lock(&sd_ref_mutex);
611
612 if (disk->private_data) {
613 sdkp = scsi_disk(disk);
614 if (scsi_device_get(sdkp->device) == 0)
615 get_device(&sdkp->dev);
616 else
617 sdkp = NULL;
618 }
619 mutex_unlock(&sd_ref_mutex);
620 return sdkp;
621 }
622
623 static void scsi_disk_put(struct scsi_disk *sdkp)
624 {
625 struct scsi_device *sdev = sdkp->device;
626
627 mutex_lock(&sd_ref_mutex);
628 put_device(&sdkp->dev);
629 scsi_device_put(sdev);
630 mutex_unlock(&sd_ref_mutex);
631 }
632
633 #ifdef CONFIG_BLK_SED_OPAL
634 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
635 size_t len, bool send)
636 {
637 struct scsi_device *sdev = data;
638 u8 cdb[12] = { 0, };
639 int ret;
640
641 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
642 cdb[1] = secp;
643 put_unaligned_be16(spsp, &cdb[2]);
644 put_unaligned_be32(len, &cdb[6]);
645
646 ret = scsi_execute_req(sdev, cdb,
647 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
648 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
649 return ret <= 0 ? ret : -EIO;
650 }
651 #endif /* CONFIG_BLK_SED_OPAL */
652
653 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
654 unsigned int dix, unsigned int dif)
655 {
656 struct bio *bio = scmd->request->bio;
657 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
658 unsigned int protect = 0;
659
660 if (dix) { /* DIX Type 0, 1, 2, 3 */
661 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
662 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
663
664 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
665 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
666 }
667
668 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
669 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
670
671 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
672 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
673 }
674
675 if (dif) { /* DIX/DIF Type 1, 2, 3 */
676 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
677
678 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
679 protect = 3 << 5; /* Disable target PI checking */
680 else
681 protect = 1 << 5; /* Enable target PI checking */
682 }
683
684 scsi_set_prot_op(scmd, prot_op);
685 scsi_set_prot_type(scmd, dif);
686 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
687
688 return protect;
689 }
690
691 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
692 {
693 struct request_queue *q = sdkp->disk->queue;
694 unsigned int logical_block_size = sdkp->device->sector_size;
695 unsigned int max_blocks = 0;
696
697 q->limits.discard_alignment =
698 sdkp->unmap_alignment * logical_block_size;
699 q->limits.discard_granularity =
700 max(sdkp->physical_block_size,
701 sdkp->unmap_granularity * logical_block_size);
702 sdkp->provisioning_mode = mode;
703
704 switch (mode) {
705
706 case SD_LBP_FULL:
707 case SD_LBP_DISABLE:
708 blk_queue_max_discard_sectors(q, 0);
709 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
710 return;
711
712 case SD_LBP_UNMAP:
713 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
714 (u32)SD_MAX_WS16_BLOCKS);
715 break;
716
717 case SD_LBP_WS16:
718 if (sdkp->device->unmap_limit_for_ws)
719 max_blocks = sdkp->max_unmap_blocks;
720 else
721 max_blocks = sdkp->max_ws_blocks;
722
723 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
724 break;
725
726 case SD_LBP_WS10:
727 if (sdkp->device->unmap_limit_for_ws)
728 max_blocks = sdkp->max_unmap_blocks;
729 else
730 max_blocks = sdkp->max_ws_blocks;
731
732 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
733 break;
734
735 case SD_LBP_ZERO:
736 max_blocks = min_not_zero(sdkp->max_ws_blocks,
737 (u32)SD_MAX_WS10_BLOCKS);
738 break;
739 }
740
741 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
742 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
743 }
744
745 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
746 {
747 struct scsi_device *sdp = cmd->device;
748 struct request *rq = cmd->request;
749 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
750 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
751 unsigned int data_len = 24;
752 char *buf;
753
754 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
755 if (!rq->special_vec.bv_page)
756 return BLKPREP_DEFER;
757 rq->special_vec.bv_offset = 0;
758 rq->special_vec.bv_len = data_len;
759 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
760
761 cmd->cmd_len = 10;
762 cmd->cmnd[0] = UNMAP;
763 cmd->cmnd[8] = 24;
764
765 buf = page_address(rq->special_vec.bv_page);
766 put_unaligned_be16(6 + 16, &buf[0]);
767 put_unaligned_be16(16, &buf[2]);
768 put_unaligned_be64(sector, &buf[8]);
769 put_unaligned_be32(nr_sectors, &buf[16]);
770
771 cmd->allowed = SD_MAX_RETRIES;
772 cmd->transfersize = data_len;
773 rq->timeout = SD_TIMEOUT;
774 scsi_req(rq)->resid_len = data_len;
775
776 return scsi_init_io(cmd);
777 }
778
779 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
780 {
781 struct scsi_device *sdp = cmd->device;
782 struct request *rq = cmd->request;
783 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
784 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
785 u32 data_len = sdp->sector_size;
786
787 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
788 if (!rq->special_vec.bv_page)
789 return BLKPREP_DEFER;
790 rq->special_vec.bv_offset = 0;
791 rq->special_vec.bv_len = data_len;
792 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
793
794 cmd->cmd_len = 16;
795 cmd->cmnd[0] = WRITE_SAME_16;
796 if (unmap)
797 cmd->cmnd[1] = 0x8; /* UNMAP */
798 put_unaligned_be64(sector, &cmd->cmnd[2]);
799 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
800
801 cmd->allowed = SD_MAX_RETRIES;
802 cmd->transfersize = data_len;
803 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
804 scsi_req(rq)->resid_len = data_len;
805
806 return scsi_init_io(cmd);
807 }
808
809 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
810 {
811 struct scsi_device *sdp = cmd->device;
812 struct request *rq = cmd->request;
813 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
814 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
815 u32 data_len = sdp->sector_size;
816
817 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
818 if (!rq->special_vec.bv_page)
819 return BLKPREP_DEFER;
820 rq->special_vec.bv_offset = 0;
821 rq->special_vec.bv_len = data_len;
822 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
823
824 cmd->cmd_len = 10;
825 cmd->cmnd[0] = WRITE_SAME;
826 if (unmap)
827 cmd->cmnd[1] = 0x8; /* UNMAP */
828 put_unaligned_be32(sector, &cmd->cmnd[2]);
829 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
830
831 cmd->allowed = SD_MAX_RETRIES;
832 cmd->transfersize = data_len;
833 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
834 scsi_req(rq)->resid_len = data_len;
835
836 return scsi_init_io(cmd);
837 }
838
839 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
840 {
841 struct request *rq = cmd->request;
842 struct scsi_device *sdp = cmd->device;
843 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
844 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
845 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
846 int ret;
847
848 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
849 switch (sdkp->zeroing_mode) {
850 case SD_ZERO_WS16_UNMAP:
851 ret = sd_setup_write_same16_cmnd(cmd, true);
852 goto out;
853 case SD_ZERO_WS10_UNMAP:
854 ret = sd_setup_write_same10_cmnd(cmd, true);
855 goto out;
856 }
857 }
858
859 if (sdp->no_write_same)
860 return BLKPREP_INVALID;
861
862 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
863 ret = sd_setup_write_same16_cmnd(cmd, false);
864 else
865 ret = sd_setup_write_same10_cmnd(cmd, false);
866
867 out:
868 if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
869 return sd_zbc_write_lock_zone(cmd);
870
871 return ret;
872 }
873
874 static void sd_config_write_same(struct scsi_disk *sdkp)
875 {
876 struct request_queue *q = sdkp->disk->queue;
877 unsigned int logical_block_size = sdkp->device->sector_size;
878
879 if (sdkp->device->no_write_same) {
880 sdkp->max_ws_blocks = 0;
881 goto out;
882 }
883
884 /* Some devices can not handle block counts above 0xffff despite
885 * supporting WRITE SAME(16). Consequently we default to 64k
886 * blocks per I/O unless the device explicitly advertises a
887 * bigger limit.
888 */
889 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
890 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
891 (u32)SD_MAX_WS16_BLOCKS);
892 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
893 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
894 (u32)SD_MAX_WS10_BLOCKS);
895 else {
896 sdkp->device->no_write_same = 1;
897 sdkp->max_ws_blocks = 0;
898 }
899
900 if (sdkp->lbprz && sdkp->lbpws)
901 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
902 else if (sdkp->lbprz && sdkp->lbpws10)
903 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
904 else if (sdkp->max_ws_blocks)
905 sdkp->zeroing_mode = SD_ZERO_WS;
906 else
907 sdkp->zeroing_mode = SD_ZERO_WRITE;
908
909 out:
910 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
911 (logical_block_size >> 9));
912 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
913 (logical_block_size >> 9));
914 }
915
916 /**
917 * sd_setup_write_same_cmnd - write the same data to multiple blocks
918 * @cmd: command to prepare
919 *
920 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
921 * the preference indicated by the target device.
922 **/
923 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
924 {
925 struct request *rq = cmd->request;
926 struct scsi_device *sdp = cmd->device;
927 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
928 struct bio *bio = rq->bio;
929 sector_t sector = blk_rq_pos(rq);
930 unsigned int nr_sectors = blk_rq_sectors(rq);
931 unsigned int nr_bytes = blk_rq_bytes(rq);
932 int ret;
933
934 if (sdkp->device->no_write_same)
935 return BLKPREP_INVALID;
936
937 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
938
939 if (sd_is_zoned(sdkp)) {
940 ret = sd_zbc_write_lock_zone(cmd);
941 if (ret != BLKPREP_OK)
942 return ret;
943 }
944
945 sector >>= ilog2(sdp->sector_size) - 9;
946 nr_sectors >>= ilog2(sdp->sector_size) - 9;
947
948 rq->timeout = SD_WRITE_SAME_TIMEOUT;
949
950 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
951 cmd->cmd_len = 16;
952 cmd->cmnd[0] = WRITE_SAME_16;
953 put_unaligned_be64(sector, &cmd->cmnd[2]);
954 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
955 } else {
956 cmd->cmd_len = 10;
957 cmd->cmnd[0] = WRITE_SAME;
958 put_unaligned_be32(sector, &cmd->cmnd[2]);
959 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
960 }
961
962 cmd->transfersize = sdp->sector_size;
963 cmd->allowed = SD_MAX_RETRIES;
964
965 /*
966 * For WRITE SAME the data transferred via the DATA OUT buffer is
967 * different from the amount of data actually written to the target.
968 *
969 * We set up __data_len to the amount of data transferred via the
970 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
971 * to transfer a single sector of data first, but then reset it to
972 * the amount of data to be written right after so that the I/O path
973 * knows how much to actually write.
974 */
975 rq->__data_len = sdp->sector_size;
976 ret = scsi_init_io(cmd);
977 rq->__data_len = nr_bytes;
978
979 if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
980 sd_zbc_write_unlock_zone(cmd);
981
982 return ret;
983 }
984
985 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
986 {
987 struct request *rq = cmd->request;
988
989 /* flush requests don't perform I/O, zero the S/G table */
990 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
991
992 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
993 cmd->cmd_len = 10;
994 cmd->transfersize = 0;
995 cmd->allowed = SD_MAX_RETRIES;
996
997 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
998 return BLKPREP_OK;
999 }
1000
1001 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1002 {
1003 struct request *rq = SCpnt->request;
1004 struct scsi_device *sdp = SCpnt->device;
1005 struct gendisk *disk = rq->rq_disk;
1006 struct scsi_disk *sdkp = scsi_disk(disk);
1007 sector_t block = blk_rq_pos(rq);
1008 sector_t threshold;
1009 unsigned int this_count = blk_rq_sectors(rq);
1010 unsigned int dif, dix;
1011 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
1012 int ret;
1013 unsigned char protect;
1014
1015 if (zoned_write) {
1016 ret = sd_zbc_write_lock_zone(SCpnt);
1017 if (ret != BLKPREP_OK)
1018 return ret;
1019 }
1020
1021 ret = scsi_init_io(SCpnt);
1022 if (ret != BLKPREP_OK)
1023 goto out;
1024 SCpnt = rq->special;
1025
1026 /* from here on until we're complete, any goto out
1027 * is used for a killable error condition */
1028 ret = BLKPREP_KILL;
1029
1030 SCSI_LOG_HLQUEUE(1,
1031 scmd_printk(KERN_INFO, SCpnt,
1032 "%s: block=%llu, count=%d\n",
1033 __func__, (unsigned long long)block, this_count));
1034
1035 if (!sdp || !scsi_device_online(sdp) ||
1036 block + blk_rq_sectors(rq) > get_capacity(disk)) {
1037 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1038 "Finishing %u sectors\n",
1039 blk_rq_sectors(rq)));
1040 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1041 "Retry with 0x%p\n", SCpnt));
1042 goto out;
1043 }
1044
1045 if (sdp->changed) {
1046 /*
1047 * quietly refuse to do anything to a changed disc until
1048 * the changed bit has been reset
1049 */
1050 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1051 goto out;
1052 }
1053
1054 /*
1055 * Some SD card readers can't handle multi-sector accesses which touch
1056 * the last one or two hardware sectors. Split accesses as needed.
1057 */
1058 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1059 (sdp->sector_size / 512);
1060
1061 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1062 if (block < threshold) {
1063 /* Access up to the threshold but not beyond */
1064 this_count = threshold - block;
1065 } else {
1066 /* Access only a single hardware sector */
1067 this_count = sdp->sector_size / 512;
1068 }
1069 }
1070
1071 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1072 (unsigned long long)block));
1073
1074 /*
1075 * If we have a 1K hardware sectorsize, prevent access to single
1076 * 512 byte sectors. In theory we could handle this - in fact
1077 * the scsi cdrom driver must be able to handle this because
1078 * we typically use 1K blocksizes, and cdroms typically have
1079 * 2K hardware sectorsizes. Of course, things are simpler
1080 * with the cdrom, since it is read-only. For performance
1081 * reasons, the filesystems should be able to handle this
1082 * and not force the scsi disk driver to use bounce buffers
1083 * for this.
1084 */
1085 if (sdp->sector_size == 1024) {
1086 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1087 scmd_printk(KERN_ERR, SCpnt,
1088 "Bad block number requested\n");
1089 goto out;
1090 } else {
1091 block = block >> 1;
1092 this_count = this_count >> 1;
1093 }
1094 }
1095 if (sdp->sector_size == 2048) {
1096 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1097 scmd_printk(KERN_ERR, SCpnt,
1098 "Bad block number requested\n");
1099 goto out;
1100 } else {
1101 block = block >> 2;
1102 this_count = this_count >> 2;
1103 }
1104 }
1105 if (sdp->sector_size == 4096) {
1106 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1107 scmd_printk(KERN_ERR, SCpnt,
1108 "Bad block number requested\n");
1109 goto out;
1110 } else {
1111 block = block >> 3;
1112 this_count = this_count >> 3;
1113 }
1114 }
1115 if (rq_data_dir(rq) == WRITE) {
1116 SCpnt->cmnd[0] = WRITE_6;
1117
1118 if (blk_integrity_rq(rq))
1119 sd_dif_prepare(SCpnt);
1120
1121 } else if (rq_data_dir(rq) == READ) {
1122 SCpnt->cmnd[0] = READ_6;
1123 } else {
1124 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1125 goto out;
1126 }
1127
1128 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1129 "%s %d/%u 512 byte blocks.\n",
1130 (rq_data_dir(rq) == WRITE) ?
1131 "writing" : "reading", this_count,
1132 blk_rq_sectors(rq)));
1133
1134 dix = scsi_prot_sg_count(SCpnt);
1135 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1136
1137 if (dif || dix)
1138 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1139 else
1140 protect = 0;
1141
1142 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1143 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1144
1145 if (unlikely(SCpnt->cmnd == NULL)) {
1146 ret = BLKPREP_DEFER;
1147 goto out;
1148 }
1149
1150 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1151 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1152 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1153 SCpnt->cmnd[7] = 0x18;
1154 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1155 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1156
1157 /* LBA */
1158 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1159 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1160 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1161 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1162 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1163 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1164 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1165 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1166
1167 /* Expected Indirect LBA */
1168 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1169 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1170 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1171 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1172
1173 /* Transfer length */
1174 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1175 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1176 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1177 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1178 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1179 SCpnt->cmnd[0] += READ_16 - READ_6;
1180 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1181 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1182 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1183 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1184 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1185 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1186 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1187 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1188 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1189 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1190 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1191 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1192 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1193 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1194 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1195 scsi_device_protection(SCpnt->device) ||
1196 SCpnt->device->use_10_for_rw) {
1197 SCpnt->cmnd[0] += READ_10 - READ_6;
1198 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1199 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1200 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1201 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1202 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1203 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1204 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1205 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1206 } else {
1207 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1208 /*
1209 * This happens only if this drive failed
1210 * 10byte rw command with ILLEGAL_REQUEST
1211 * during operation and thus turned off
1212 * use_10_for_rw.
1213 */
1214 scmd_printk(KERN_ERR, SCpnt,
1215 "FUA write on READ/WRITE(6) drive\n");
1216 goto out;
1217 }
1218
1219 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1220 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1221 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1222 SCpnt->cmnd[4] = (unsigned char) this_count;
1223 SCpnt->cmnd[5] = 0;
1224 }
1225 SCpnt->sdb.length = this_count * sdp->sector_size;
1226
1227 /*
1228 * We shouldn't disconnect in the middle of a sector, so with a dumb
1229 * host adapter, it's safe to assume that we can at least transfer
1230 * this many bytes between each connect / disconnect.
1231 */
1232 SCpnt->transfersize = sdp->sector_size;
1233 SCpnt->underflow = this_count << 9;
1234 SCpnt->allowed = SD_MAX_RETRIES;
1235
1236 /*
1237 * This indicates that the command is ready from our end to be
1238 * queued.
1239 */
1240 ret = BLKPREP_OK;
1241 out:
1242 if (zoned_write && ret != BLKPREP_OK)
1243 sd_zbc_write_unlock_zone(SCpnt);
1244
1245 return ret;
1246 }
1247
1248 static int sd_init_command(struct scsi_cmnd *cmd)
1249 {
1250 struct request *rq = cmd->request;
1251
1252 switch (req_op(rq)) {
1253 case REQ_OP_DISCARD:
1254 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1255 case SD_LBP_UNMAP:
1256 return sd_setup_unmap_cmnd(cmd);
1257 case SD_LBP_WS16:
1258 return sd_setup_write_same16_cmnd(cmd, true);
1259 case SD_LBP_WS10:
1260 return sd_setup_write_same10_cmnd(cmd, true);
1261 case SD_LBP_ZERO:
1262 return sd_setup_write_same10_cmnd(cmd, false);
1263 default:
1264 return BLKPREP_INVALID;
1265 }
1266 case REQ_OP_WRITE_ZEROES:
1267 return sd_setup_write_zeroes_cmnd(cmd);
1268 case REQ_OP_WRITE_SAME:
1269 return sd_setup_write_same_cmnd(cmd);
1270 case REQ_OP_FLUSH:
1271 return sd_setup_flush_cmnd(cmd);
1272 case REQ_OP_READ:
1273 case REQ_OP_WRITE:
1274 return sd_setup_read_write_cmnd(cmd);
1275 case REQ_OP_ZONE_REPORT:
1276 return sd_zbc_setup_report_cmnd(cmd);
1277 case REQ_OP_ZONE_RESET:
1278 return sd_zbc_setup_reset_cmnd(cmd);
1279 default:
1280 BUG();
1281 }
1282 }
1283
1284 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1285 {
1286 struct request *rq = SCpnt->request;
1287
1288 if (SCpnt->flags & SCMD_ZONE_WRITE_LOCK)
1289 sd_zbc_write_unlock_zone(SCpnt);
1290
1291 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1292 __free_page(rq->special_vec.bv_page);
1293
1294 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1295 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1296 SCpnt->cmnd = NULL;
1297 SCpnt->cmd_len = 0;
1298 }
1299 }
1300
1301 /**
1302 * sd_open - open a scsi disk device
1303 * @bdev: Block device of the scsi disk to open
1304 * @mode: FMODE_* mask
1305 *
1306 * Returns 0 if successful. Returns a negated errno value in case
1307 * of error.
1308 *
1309 * Note: This can be called from a user context (e.g. fsck(1) )
1310 * or from within the kernel (e.g. as a result of a mount(1) ).
1311 * In the latter case @inode and @filp carry an abridged amount
1312 * of information as noted above.
1313 *
1314 * Locking: called with bdev->bd_mutex held.
1315 **/
1316 static int sd_open(struct block_device *bdev, fmode_t mode)
1317 {
1318 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1319 struct scsi_device *sdev;
1320 int retval;
1321
1322 if (!sdkp)
1323 return -ENXIO;
1324
1325 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1326
1327 sdev = sdkp->device;
1328
1329 /*
1330 * If the device is in error recovery, wait until it is done.
1331 * If the device is offline, then disallow any access to it.
1332 */
1333 retval = -ENXIO;
1334 if (!scsi_block_when_processing_errors(sdev))
1335 goto error_out;
1336
1337 if (sdev->removable || sdkp->write_prot)
1338 check_disk_change(bdev);
1339
1340 /*
1341 * If the drive is empty, just let the open fail.
1342 */
1343 retval = -ENOMEDIUM;
1344 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1345 goto error_out;
1346
1347 /*
1348 * If the device has the write protect tab set, have the open fail
1349 * if the user expects to be able to write to the thing.
1350 */
1351 retval = -EROFS;
1352 if (sdkp->write_prot && (mode & FMODE_WRITE))
1353 goto error_out;
1354
1355 /*
1356 * It is possible that the disk changing stuff resulted in
1357 * the device being taken offline. If this is the case,
1358 * report this to the user, and don't pretend that the
1359 * open actually succeeded.
1360 */
1361 retval = -ENXIO;
1362 if (!scsi_device_online(sdev))
1363 goto error_out;
1364
1365 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1366 if (scsi_block_when_processing_errors(sdev))
1367 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1368 }
1369
1370 return 0;
1371
1372 error_out:
1373 scsi_disk_put(sdkp);
1374 return retval;
1375 }
1376
1377 /**
1378 * sd_release - invoked when the (last) close(2) is called on this
1379 * scsi disk.
1380 * @disk: disk to release
1381 * @mode: FMODE_* mask
1382 *
1383 * Returns 0.
1384 *
1385 * Note: may block (uninterruptible) if error recovery is underway
1386 * on this disk.
1387 *
1388 * Locking: called with bdev->bd_mutex held.
1389 **/
1390 static void sd_release(struct gendisk *disk, fmode_t mode)
1391 {
1392 struct scsi_disk *sdkp = scsi_disk(disk);
1393 struct scsi_device *sdev = sdkp->device;
1394
1395 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1396
1397 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1398 if (scsi_block_when_processing_errors(sdev))
1399 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1400 }
1401
1402 /*
1403 * XXX and what if there are packets in flight and this close()
1404 * XXX is followed by a "rmmod sd_mod"?
1405 */
1406
1407 scsi_disk_put(sdkp);
1408 }
1409
1410 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1411 {
1412 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1413 struct scsi_device *sdp = sdkp->device;
1414 struct Scsi_Host *host = sdp->host;
1415 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1416 int diskinfo[4];
1417
1418 /* default to most commonly used values */
1419 diskinfo[0] = 0x40; /* 1 << 6 */
1420 diskinfo[1] = 0x20; /* 1 << 5 */
1421 diskinfo[2] = capacity >> 11;
1422
1423 /* override with calculated, extended default, or driver values */
1424 if (host->hostt->bios_param)
1425 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1426 else
1427 scsicam_bios_param(bdev, capacity, diskinfo);
1428
1429 geo->heads = diskinfo[0];
1430 geo->sectors = diskinfo[1];
1431 geo->cylinders = diskinfo[2];
1432 return 0;
1433 }
1434
1435 /**
1436 * sd_ioctl - process an ioctl
1437 * @bdev: target block device
1438 * @mode: FMODE_* mask
1439 * @cmd: ioctl command number
1440 * @arg: this is third argument given to ioctl(2) system call.
1441 * Often contains a pointer.
1442 *
1443 * Returns 0 if successful (some ioctls return positive numbers on
1444 * success as well). Returns a negated errno value in case of error.
1445 *
1446 * Note: most ioctls are forward onto the block subsystem or further
1447 * down in the scsi subsystem.
1448 **/
1449 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1450 unsigned int cmd, unsigned long arg)
1451 {
1452 struct gendisk *disk = bdev->bd_disk;
1453 struct scsi_disk *sdkp = scsi_disk(disk);
1454 struct scsi_device *sdp = sdkp->device;
1455 void __user *p = (void __user *)arg;
1456 int error;
1457
1458 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1459 "cmd=0x%x\n", disk->disk_name, cmd));
1460
1461 error = scsi_verify_blk_ioctl(bdev, cmd);
1462 if (error < 0)
1463 return error;
1464
1465 /*
1466 * If we are in the middle of error recovery, don't let anyone
1467 * else try and use this device. Also, if error recovery fails, it
1468 * may try and take the device offline, in which case all further
1469 * access to the device is prohibited.
1470 */
1471 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1472 (mode & FMODE_NDELAY) != 0);
1473 if (error)
1474 goto out;
1475
1476 if (is_sed_ioctl(cmd))
1477 return sed_ioctl(sdkp->opal_dev, cmd, p);
1478
1479 /*
1480 * Send SCSI addressing ioctls directly to mid level, send other
1481 * ioctls to block level and then onto mid level if they can't be
1482 * resolved.
1483 */
1484 switch (cmd) {
1485 case SCSI_IOCTL_GET_IDLUN:
1486 case SCSI_IOCTL_GET_BUS_NUMBER:
1487 error = scsi_ioctl(sdp, cmd, p);
1488 break;
1489 default:
1490 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1491 if (error != -ENOTTY)
1492 break;
1493 error = scsi_ioctl(sdp, cmd, p);
1494 break;
1495 }
1496 out:
1497 return error;
1498 }
1499
1500 static void set_media_not_present(struct scsi_disk *sdkp)
1501 {
1502 if (sdkp->media_present)
1503 sdkp->device->changed = 1;
1504
1505 if (sdkp->device->removable) {
1506 sdkp->media_present = 0;
1507 sdkp->capacity = 0;
1508 }
1509 }
1510
1511 static int media_not_present(struct scsi_disk *sdkp,
1512 struct scsi_sense_hdr *sshdr)
1513 {
1514 if (!scsi_sense_valid(sshdr))
1515 return 0;
1516
1517 /* not invoked for commands that could return deferred errors */
1518 switch (sshdr->sense_key) {
1519 case UNIT_ATTENTION:
1520 case NOT_READY:
1521 /* medium not present */
1522 if (sshdr->asc == 0x3A) {
1523 set_media_not_present(sdkp);
1524 return 1;
1525 }
1526 }
1527 return 0;
1528 }
1529
1530 /**
1531 * sd_check_events - check media events
1532 * @disk: kernel device descriptor
1533 * @clearing: disk events currently being cleared
1534 *
1535 * Returns mask of DISK_EVENT_*.
1536 *
1537 * Note: this function is invoked from the block subsystem.
1538 **/
1539 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1540 {
1541 struct scsi_disk *sdkp = scsi_disk_get(disk);
1542 struct scsi_device *sdp;
1543 int retval;
1544
1545 if (!sdkp)
1546 return 0;
1547
1548 sdp = sdkp->device;
1549 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1550
1551 /*
1552 * If the device is offline, don't send any commands - just pretend as
1553 * if the command failed. If the device ever comes back online, we
1554 * can deal with it then. It is only because of unrecoverable errors
1555 * that we would ever take a device offline in the first place.
1556 */
1557 if (!scsi_device_online(sdp)) {
1558 set_media_not_present(sdkp);
1559 goto out;
1560 }
1561
1562 /*
1563 * Using TEST_UNIT_READY enables differentiation between drive with
1564 * no cartridge loaded - NOT READY, drive with changed cartridge -
1565 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1566 *
1567 * Drives that auto spin down. eg iomega jaz 1G, will be started
1568 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1569 * sd_revalidate() is called.
1570 */
1571 if (scsi_block_when_processing_errors(sdp)) {
1572 struct scsi_sense_hdr sshdr = { 0, };
1573
1574 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1575 &sshdr);
1576
1577 /* failed to execute TUR, assume media not present */
1578 if (host_byte(retval)) {
1579 set_media_not_present(sdkp);
1580 goto out;
1581 }
1582
1583 if (media_not_present(sdkp, &sshdr))
1584 goto out;
1585 }
1586
1587 /*
1588 * For removable scsi disk we have to recognise the presence
1589 * of a disk in the drive.
1590 */
1591 if (!sdkp->media_present)
1592 sdp->changed = 1;
1593 sdkp->media_present = 1;
1594 out:
1595 /*
1596 * sdp->changed is set under the following conditions:
1597 *
1598 * Medium present state has changed in either direction.
1599 * Device has indicated UNIT_ATTENTION.
1600 */
1601 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1602 sdp->changed = 0;
1603 scsi_disk_put(sdkp);
1604 return retval;
1605 }
1606
1607 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1608 {
1609 int retries, res;
1610 struct scsi_device *sdp = sdkp->device;
1611 const int timeout = sdp->request_queue->rq_timeout
1612 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1613 struct scsi_sense_hdr my_sshdr;
1614
1615 if (!scsi_device_online(sdp))
1616 return -ENODEV;
1617
1618 /* caller might not be interested in sense, but we need it */
1619 if (!sshdr)
1620 sshdr = &my_sshdr;
1621
1622 for (retries = 3; retries > 0; --retries) {
1623 unsigned char cmd[10] = { 0 };
1624
1625 cmd[0] = SYNCHRONIZE_CACHE;
1626 /*
1627 * Leave the rest of the command zero to indicate
1628 * flush everything.
1629 */
1630 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1631 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1632 if (res == 0)
1633 break;
1634 }
1635
1636 if (res) {
1637 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1638
1639 if (driver_byte(res) & DRIVER_SENSE)
1640 sd_print_sense_hdr(sdkp, sshdr);
1641
1642 /* we need to evaluate the error return */
1643 if (scsi_sense_valid(sshdr) &&
1644 (sshdr->asc == 0x3a || /* medium not present */
1645 sshdr->asc == 0x20)) /* invalid command */
1646 /* this is no error here */
1647 return 0;
1648
1649 switch (host_byte(res)) {
1650 /* ignore errors due to racing a disconnection */
1651 case DID_BAD_TARGET:
1652 case DID_NO_CONNECT:
1653 return 0;
1654 /* signal the upper layer it might try again */
1655 case DID_BUS_BUSY:
1656 case DID_IMM_RETRY:
1657 case DID_REQUEUE:
1658 case DID_SOFT_ERROR:
1659 return -EBUSY;
1660 default:
1661 return -EIO;
1662 }
1663 }
1664 return 0;
1665 }
1666
1667 static void sd_rescan(struct device *dev)
1668 {
1669 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1670
1671 revalidate_disk(sdkp->disk);
1672 }
1673
1674
1675 #ifdef CONFIG_COMPAT
1676 /*
1677 * This gets directly called from VFS. When the ioctl
1678 * is not recognized we go back to the other translation paths.
1679 */
1680 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1681 unsigned int cmd, unsigned long arg)
1682 {
1683 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1684 int error;
1685
1686 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1687 (mode & FMODE_NDELAY) != 0);
1688 if (error)
1689 return error;
1690
1691 /*
1692 * Let the static ioctl translation table take care of it.
1693 */
1694 if (!sdev->host->hostt->compat_ioctl)
1695 return -ENOIOCTLCMD;
1696 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1697 }
1698 #endif
1699
1700 static char sd_pr_type(enum pr_type type)
1701 {
1702 switch (type) {
1703 case PR_WRITE_EXCLUSIVE:
1704 return 0x01;
1705 case PR_EXCLUSIVE_ACCESS:
1706 return 0x03;
1707 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1708 return 0x05;
1709 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1710 return 0x06;
1711 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1712 return 0x07;
1713 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1714 return 0x08;
1715 default:
1716 return 0;
1717 }
1718 };
1719
1720 static int sd_pr_command(struct block_device *bdev, u8 sa,
1721 u64 key, u64 sa_key, u8 type, u8 flags)
1722 {
1723 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1724 struct scsi_sense_hdr sshdr;
1725 int result;
1726 u8 cmd[16] = { 0, };
1727 u8 data[24] = { 0, };
1728
1729 cmd[0] = PERSISTENT_RESERVE_OUT;
1730 cmd[1] = sa;
1731 cmd[2] = type;
1732 put_unaligned_be32(sizeof(data), &cmd[5]);
1733
1734 put_unaligned_be64(key, &data[0]);
1735 put_unaligned_be64(sa_key, &data[8]);
1736 data[20] = flags;
1737
1738 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1739 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1740
1741 if ((driver_byte(result) & DRIVER_SENSE) &&
1742 (scsi_sense_valid(&sshdr))) {
1743 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1744 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1745 }
1746
1747 return result;
1748 }
1749
1750 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1751 u32 flags)
1752 {
1753 if (flags & ~PR_FL_IGNORE_KEY)
1754 return -EOPNOTSUPP;
1755 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1756 old_key, new_key, 0,
1757 (1 << 0) /* APTPL */);
1758 }
1759
1760 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1761 u32 flags)
1762 {
1763 if (flags)
1764 return -EOPNOTSUPP;
1765 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1766 }
1767
1768 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1769 {
1770 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1771 }
1772
1773 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1774 enum pr_type type, bool abort)
1775 {
1776 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1777 sd_pr_type(type), 0);
1778 }
1779
1780 static int sd_pr_clear(struct block_device *bdev, u64 key)
1781 {
1782 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1783 }
1784
1785 static const struct pr_ops sd_pr_ops = {
1786 .pr_register = sd_pr_register,
1787 .pr_reserve = sd_pr_reserve,
1788 .pr_release = sd_pr_release,
1789 .pr_preempt = sd_pr_preempt,
1790 .pr_clear = sd_pr_clear,
1791 };
1792
1793 static const struct block_device_operations sd_fops = {
1794 .owner = THIS_MODULE,
1795 .open = sd_open,
1796 .release = sd_release,
1797 .ioctl = sd_ioctl,
1798 .getgeo = sd_getgeo,
1799 #ifdef CONFIG_COMPAT
1800 .compat_ioctl = sd_compat_ioctl,
1801 #endif
1802 .check_events = sd_check_events,
1803 .revalidate_disk = sd_revalidate_disk,
1804 .unlock_native_capacity = sd_unlock_native_capacity,
1805 .pr_ops = &sd_pr_ops,
1806 };
1807
1808 /**
1809 * sd_eh_reset - reset error handling callback
1810 * @scmd: sd-issued command that has failed
1811 *
1812 * This function is called by the SCSI midlayer before starting
1813 * SCSI EH. When counting medium access failures we have to be
1814 * careful to register it only only once per device and SCSI EH run;
1815 * there might be several timed out commands which will cause the
1816 * 'max_medium_access_timeouts' counter to trigger after the first
1817 * SCSI EH run already and set the device to offline.
1818 * So this function resets the internal counter before starting SCSI EH.
1819 **/
1820 static void sd_eh_reset(struct scsi_cmnd *scmd)
1821 {
1822 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1823
1824 /* New SCSI EH run, reset gate variable */
1825 sdkp->ignore_medium_access_errors = false;
1826 }
1827
1828 /**
1829 * sd_eh_action - error handling callback
1830 * @scmd: sd-issued command that has failed
1831 * @eh_disp: The recovery disposition suggested by the midlayer
1832 *
1833 * This function is called by the SCSI midlayer upon completion of an
1834 * error test command (currently TEST UNIT READY). The result of sending
1835 * the eh command is passed in eh_disp. We're looking for devices that
1836 * fail medium access commands but are OK with non access commands like
1837 * test unit ready (so wrongly see the device as having a successful
1838 * recovery)
1839 **/
1840 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1841 {
1842 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1843 struct scsi_device *sdev = scmd->device;
1844
1845 if (!scsi_device_online(sdev) ||
1846 !scsi_medium_access_command(scmd) ||
1847 host_byte(scmd->result) != DID_TIME_OUT ||
1848 eh_disp != SUCCESS)
1849 return eh_disp;
1850
1851 /*
1852 * The device has timed out executing a medium access command.
1853 * However, the TEST UNIT READY command sent during error
1854 * handling completed successfully. Either the device is in the
1855 * process of recovering or has it suffered an internal failure
1856 * that prevents access to the storage medium.
1857 */
1858 if (!sdkp->ignore_medium_access_errors) {
1859 sdkp->medium_access_timed_out++;
1860 sdkp->ignore_medium_access_errors = true;
1861 }
1862
1863 /*
1864 * If the device keeps failing read/write commands but TEST UNIT
1865 * READY always completes successfully we assume that medium
1866 * access is no longer possible and take the device offline.
1867 */
1868 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1869 scmd_printk(KERN_ERR, scmd,
1870 "Medium access timeout failure. Offlining disk!\n");
1871 mutex_lock(&sdev->state_mutex);
1872 scsi_device_set_state(sdev, SDEV_OFFLINE);
1873 mutex_unlock(&sdev->state_mutex);
1874
1875 return SUCCESS;
1876 }
1877
1878 return eh_disp;
1879 }
1880
1881 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1882 {
1883 struct request *req = scmd->request;
1884 struct scsi_device *sdev = scmd->device;
1885 unsigned int transferred, good_bytes;
1886 u64 start_lba, end_lba, bad_lba;
1887
1888 /*
1889 * Some commands have a payload smaller than the device logical
1890 * block size (e.g. INQUIRY on a 4K disk).
1891 */
1892 if (scsi_bufflen(scmd) <= sdev->sector_size)
1893 return 0;
1894
1895 /* Check if we have a 'bad_lba' information */
1896 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1897 SCSI_SENSE_BUFFERSIZE,
1898 &bad_lba))
1899 return 0;
1900
1901 /*
1902 * If the bad lba was reported incorrectly, we have no idea where
1903 * the error is.
1904 */
1905 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1906 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1907 if (bad_lba < start_lba || bad_lba >= end_lba)
1908 return 0;
1909
1910 /*
1911 * resid is optional but mostly filled in. When it's unused,
1912 * its value is zero, so we assume the whole buffer transferred
1913 */
1914 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1915
1916 /* This computation should always be done in terms of the
1917 * resolution of the device's medium.
1918 */
1919 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1920
1921 return min(good_bytes, transferred);
1922 }
1923
1924 /**
1925 * sd_done - bottom half handler: called when the lower level
1926 * driver has completed (successfully or otherwise) a scsi command.
1927 * @SCpnt: mid-level's per command structure.
1928 *
1929 * Note: potentially run from within an ISR. Must not block.
1930 **/
1931 static int sd_done(struct scsi_cmnd *SCpnt)
1932 {
1933 int result = SCpnt->result;
1934 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1935 unsigned int sector_size = SCpnt->device->sector_size;
1936 unsigned int resid;
1937 struct scsi_sense_hdr sshdr;
1938 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1939 struct request *req = SCpnt->request;
1940 int sense_valid = 0;
1941 int sense_deferred = 0;
1942
1943 switch (req_op(req)) {
1944 case REQ_OP_DISCARD:
1945 case REQ_OP_WRITE_ZEROES:
1946 case REQ_OP_WRITE_SAME:
1947 case REQ_OP_ZONE_RESET:
1948 if (!result) {
1949 good_bytes = blk_rq_bytes(req);
1950 scsi_set_resid(SCpnt, 0);
1951 } else {
1952 good_bytes = 0;
1953 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1954 }
1955 break;
1956 case REQ_OP_ZONE_REPORT:
1957 if (!result) {
1958 good_bytes = scsi_bufflen(SCpnt)
1959 - scsi_get_resid(SCpnt);
1960 scsi_set_resid(SCpnt, 0);
1961 } else {
1962 good_bytes = 0;
1963 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1964 }
1965 break;
1966 default:
1967 /*
1968 * In case of bogus fw or device, we could end up having
1969 * an unaligned partial completion. Check this here and force
1970 * alignment.
1971 */
1972 resid = scsi_get_resid(SCpnt);
1973 if (resid & (sector_size - 1)) {
1974 sd_printk(KERN_INFO, sdkp,
1975 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1976 resid, sector_size);
1977 resid = min(scsi_bufflen(SCpnt),
1978 round_up(resid, sector_size));
1979 scsi_set_resid(SCpnt, resid);
1980 }
1981 }
1982
1983 if (result) {
1984 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1985 if (sense_valid)
1986 sense_deferred = scsi_sense_is_deferred(&sshdr);
1987 }
1988 sdkp->medium_access_timed_out = 0;
1989
1990 if (driver_byte(result) != DRIVER_SENSE &&
1991 (!sense_valid || sense_deferred))
1992 goto out;
1993
1994 switch (sshdr.sense_key) {
1995 case HARDWARE_ERROR:
1996 case MEDIUM_ERROR:
1997 good_bytes = sd_completed_bytes(SCpnt);
1998 break;
1999 case RECOVERED_ERROR:
2000 good_bytes = scsi_bufflen(SCpnt);
2001 break;
2002 case NO_SENSE:
2003 /* This indicates a false check condition, so ignore it. An
2004 * unknown amount of data was transferred so treat it as an
2005 * error.
2006 */
2007 SCpnt->result = 0;
2008 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2009 break;
2010 case ABORTED_COMMAND:
2011 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2012 good_bytes = sd_completed_bytes(SCpnt);
2013 break;
2014 case ILLEGAL_REQUEST:
2015 switch (sshdr.asc) {
2016 case 0x10: /* DIX: Host detected corruption */
2017 good_bytes = sd_completed_bytes(SCpnt);
2018 break;
2019 case 0x20: /* INVALID COMMAND OPCODE */
2020 case 0x24: /* INVALID FIELD IN CDB */
2021 switch (SCpnt->cmnd[0]) {
2022 case UNMAP:
2023 sd_config_discard(sdkp, SD_LBP_DISABLE);
2024 break;
2025 case WRITE_SAME_16:
2026 case WRITE_SAME:
2027 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2028 sd_config_discard(sdkp, SD_LBP_DISABLE);
2029 } else {
2030 sdkp->device->no_write_same = 1;
2031 sd_config_write_same(sdkp);
2032 req->__data_len = blk_rq_bytes(req);
2033 req->rq_flags |= RQF_QUIET;
2034 }
2035 break;
2036 }
2037 }
2038 break;
2039 default:
2040 break;
2041 }
2042
2043 out:
2044 if (sd_is_zoned(sdkp))
2045 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2046
2047 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2048 "sd_done: completed %d of %d bytes\n",
2049 good_bytes, scsi_bufflen(SCpnt)));
2050
2051 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2052 sd_dif_complete(SCpnt, good_bytes);
2053
2054 return good_bytes;
2055 }
2056
2057 /*
2058 * spinup disk - called only in sd_revalidate_disk()
2059 */
2060 static void
2061 sd_spinup_disk(struct scsi_disk *sdkp)
2062 {
2063 unsigned char cmd[10];
2064 unsigned long spintime_expire = 0;
2065 int retries, spintime;
2066 unsigned int the_result;
2067 struct scsi_sense_hdr sshdr;
2068 int sense_valid = 0;
2069
2070 spintime = 0;
2071
2072 /* Spin up drives, as required. Only do this at boot time */
2073 /* Spinup needs to be done for module loads too. */
2074 do {
2075 retries = 0;
2076
2077 do {
2078 cmd[0] = TEST_UNIT_READY;
2079 memset((void *) &cmd[1], 0, 9);
2080
2081 the_result = scsi_execute_req(sdkp->device, cmd,
2082 DMA_NONE, NULL, 0,
2083 &sshdr, SD_TIMEOUT,
2084 SD_MAX_RETRIES, NULL);
2085
2086 /*
2087 * If the drive has indicated to us that it
2088 * doesn't have any media in it, don't bother
2089 * with any more polling.
2090 */
2091 if (media_not_present(sdkp, &sshdr))
2092 return;
2093
2094 if (the_result)
2095 sense_valid = scsi_sense_valid(&sshdr);
2096 retries++;
2097 } while (retries < 3 &&
2098 (!scsi_status_is_good(the_result) ||
2099 ((driver_byte(the_result) & DRIVER_SENSE) &&
2100 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2101
2102 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2103 /* no sense, TUR either succeeded or failed
2104 * with a status error */
2105 if(!spintime && !scsi_status_is_good(the_result)) {
2106 sd_print_result(sdkp, "Test Unit Ready failed",
2107 the_result);
2108 }
2109 break;
2110 }
2111
2112 /*
2113 * The device does not want the automatic start to be issued.
2114 */
2115 if (sdkp->device->no_start_on_add)
2116 break;
2117
2118 if (sense_valid && sshdr.sense_key == NOT_READY) {
2119 if (sshdr.asc == 4 && sshdr.ascq == 3)
2120 break; /* manual intervention required */
2121 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2122 break; /* standby */
2123 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2124 break; /* unavailable */
2125 /*
2126 * Issue command to spin up drive when not ready
2127 */
2128 if (!spintime) {
2129 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2130 cmd[0] = START_STOP;
2131 cmd[1] = 1; /* Return immediately */
2132 memset((void *) &cmd[2], 0, 8);
2133 cmd[4] = 1; /* Start spin cycle */
2134 if (sdkp->device->start_stop_pwr_cond)
2135 cmd[4] |= 1 << 4;
2136 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2137 NULL, 0, &sshdr,
2138 SD_TIMEOUT, SD_MAX_RETRIES,
2139 NULL);
2140 spintime_expire = jiffies + 100 * HZ;
2141 spintime = 1;
2142 }
2143 /* Wait 1 second for next try */
2144 msleep(1000);
2145 printk(".");
2146
2147 /*
2148 * Wait for USB flash devices with slow firmware.
2149 * Yes, this sense key/ASC combination shouldn't
2150 * occur here. It's characteristic of these devices.
2151 */
2152 } else if (sense_valid &&
2153 sshdr.sense_key == UNIT_ATTENTION &&
2154 sshdr.asc == 0x28) {
2155 if (!spintime) {
2156 spintime_expire = jiffies + 5 * HZ;
2157 spintime = 1;
2158 }
2159 /* Wait 1 second for next try */
2160 msleep(1000);
2161 } else {
2162 /* we don't understand the sense code, so it's
2163 * probably pointless to loop */
2164 if(!spintime) {
2165 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2166 sd_print_sense_hdr(sdkp, &sshdr);
2167 }
2168 break;
2169 }
2170
2171 } while (spintime && time_before_eq(jiffies, spintime_expire));
2172
2173 if (spintime) {
2174 if (scsi_status_is_good(the_result))
2175 printk("ready\n");
2176 else
2177 printk("not responding...\n");
2178 }
2179 }
2180
2181 /*
2182 * Determine whether disk supports Data Integrity Field.
2183 */
2184 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2185 {
2186 struct scsi_device *sdp = sdkp->device;
2187 u8 type;
2188 int ret = 0;
2189
2190 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2191 return ret;
2192
2193 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2194
2195 if (type > T10_PI_TYPE3_PROTECTION)
2196 ret = -ENODEV;
2197 else if (scsi_host_dif_capable(sdp->host, type))
2198 ret = 1;
2199
2200 if (sdkp->first_scan || type != sdkp->protection_type)
2201 switch (ret) {
2202 case -ENODEV:
2203 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2204 " protection type %u. Disabling disk!\n",
2205 type);
2206 break;
2207 case 1:
2208 sd_printk(KERN_NOTICE, sdkp,
2209 "Enabling DIF Type %u protection\n", type);
2210 break;
2211 case 0:
2212 sd_printk(KERN_NOTICE, sdkp,
2213 "Disabling DIF Type %u protection\n", type);
2214 break;
2215 }
2216
2217 sdkp->protection_type = type;
2218
2219 return ret;
2220 }
2221
2222 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2223 struct scsi_sense_hdr *sshdr, int sense_valid,
2224 int the_result)
2225 {
2226 if (driver_byte(the_result) & DRIVER_SENSE)
2227 sd_print_sense_hdr(sdkp, sshdr);
2228 else
2229 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2230
2231 /*
2232 * Set dirty bit for removable devices if not ready -
2233 * sometimes drives will not report this properly.
2234 */
2235 if (sdp->removable &&
2236 sense_valid && sshdr->sense_key == NOT_READY)
2237 set_media_not_present(sdkp);
2238
2239 /*
2240 * We used to set media_present to 0 here to indicate no media
2241 * in the drive, but some drives fail read capacity even with
2242 * media present, so we can't do that.
2243 */
2244 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2245 }
2246
2247 #define RC16_LEN 32
2248 #if RC16_LEN > SD_BUF_SIZE
2249 #error RC16_LEN must not be more than SD_BUF_SIZE
2250 #endif
2251
2252 #define READ_CAPACITY_RETRIES_ON_RESET 10
2253
2254 /*
2255 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2256 * and the reported logical block size is bigger than 512 bytes. Note
2257 * that last_sector is a u64 and therefore logical_to_sectors() is not
2258 * applicable.
2259 */
2260 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2261 {
2262 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2263
2264 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2265 return false;
2266
2267 return true;
2268 }
2269
2270 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2271 unsigned char *buffer)
2272 {
2273 unsigned char cmd[16];
2274 struct scsi_sense_hdr sshdr;
2275 int sense_valid = 0;
2276 int the_result;
2277 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2278 unsigned int alignment;
2279 unsigned long long lba;
2280 unsigned sector_size;
2281
2282 if (sdp->no_read_capacity_16)
2283 return -EINVAL;
2284
2285 do {
2286 memset(cmd, 0, 16);
2287 cmd[0] = SERVICE_ACTION_IN_16;
2288 cmd[1] = SAI_READ_CAPACITY_16;
2289 cmd[13] = RC16_LEN;
2290 memset(buffer, 0, RC16_LEN);
2291
2292 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2293 buffer, RC16_LEN, &sshdr,
2294 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2295
2296 if (media_not_present(sdkp, &sshdr))
2297 return -ENODEV;
2298
2299 if (the_result) {
2300 sense_valid = scsi_sense_valid(&sshdr);
2301 if (sense_valid &&
2302 sshdr.sense_key == ILLEGAL_REQUEST &&
2303 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2304 sshdr.ascq == 0x00)
2305 /* Invalid Command Operation Code or
2306 * Invalid Field in CDB, just retry
2307 * silently with RC10 */
2308 return -EINVAL;
2309 if (sense_valid &&
2310 sshdr.sense_key == UNIT_ATTENTION &&
2311 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2312 /* Device reset might occur several times,
2313 * give it one more chance */
2314 if (--reset_retries > 0)
2315 continue;
2316 }
2317 retries--;
2318
2319 } while (the_result && retries);
2320
2321 if (the_result) {
2322 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2323 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2324 return -EINVAL;
2325 }
2326
2327 sector_size = get_unaligned_be32(&buffer[8]);
2328 lba = get_unaligned_be64(&buffer[0]);
2329
2330 if (sd_read_protection_type(sdkp, buffer) < 0) {
2331 sdkp->capacity = 0;
2332 return -ENODEV;
2333 }
2334
2335 if (!sd_addressable_capacity(lba, sector_size)) {
2336 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2337 "kernel compiled with support for large block "
2338 "devices.\n");
2339 sdkp->capacity = 0;
2340 return -EOVERFLOW;
2341 }
2342
2343 /* Logical blocks per physical block exponent */
2344 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2345
2346 /* RC basis */
2347 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2348
2349 /* Lowest aligned logical block */
2350 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2351 blk_queue_alignment_offset(sdp->request_queue, alignment);
2352 if (alignment && sdkp->first_scan)
2353 sd_printk(KERN_NOTICE, sdkp,
2354 "physical block alignment offset: %u\n", alignment);
2355
2356 if (buffer[14] & 0x80) { /* LBPME */
2357 sdkp->lbpme = 1;
2358
2359 if (buffer[14] & 0x40) /* LBPRZ */
2360 sdkp->lbprz = 1;
2361
2362 sd_config_discard(sdkp, SD_LBP_WS16);
2363 }
2364
2365 sdkp->capacity = lba + 1;
2366 return sector_size;
2367 }
2368
2369 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2370 unsigned char *buffer)
2371 {
2372 unsigned char cmd[16];
2373 struct scsi_sense_hdr sshdr;
2374 int sense_valid = 0;
2375 int the_result;
2376 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2377 sector_t lba;
2378 unsigned sector_size;
2379
2380 do {
2381 cmd[0] = READ_CAPACITY;
2382 memset(&cmd[1], 0, 9);
2383 memset(buffer, 0, 8);
2384
2385 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2386 buffer, 8, &sshdr,
2387 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2388
2389 if (media_not_present(sdkp, &sshdr))
2390 return -ENODEV;
2391
2392 if (the_result) {
2393 sense_valid = scsi_sense_valid(&sshdr);
2394 if (sense_valid &&
2395 sshdr.sense_key == UNIT_ATTENTION &&
2396 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2397 /* Device reset might occur several times,
2398 * give it one more chance */
2399 if (--reset_retries > 0)
2400 continue;
2401 }
2402 retries--;
2403
2404 } while (the_result && retries);
2405
2406 if (the_result) {
2407 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2408 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2409 return -EINVAL;
2410 }
2411
2412 sector_size = get_unaligned_be32(&buffer[4]);
2413 lba = get_unaligned_be32(&buffer[0]);
2414
2415 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2416 /* Some buggy (usb cardreader) devices return an lba of
2417 0xffffffff when the want to report a size of 0 (with
2418 which they really mean no media is present) */
2419 sdkp->capacity = 0;
2420 sdkp->physical_block_size = sector_size;
2421 return sector_size;
2422 }
2423
2424 if (!sd_addressable_capacity(lba, sector_size)) {
2425 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2426 "kernel compiled with support for large block "
2427 "devices.\n");
2428 sdkp->capacity = 0;
2429 return -EOVERFLOW;
2430 }
2431
2432 sdkp->capacity = lba + 1;
2433 sdkp->physical_block_size = sector_size;
2434 return sector_size;
2435 }
2436
2437 static int sd_try_rc16_first(struct scsi_device *sdp)
2438 {
2439 if (sdp->host->max_cmd_len < 16)
2440 return 0;
2441 if (sdp->try_rc_10_first)
2442 return 0;
2443 if (sdp->scsi_level > SCSI_SPC_2)
2444 return 1;
2445 if (scsi_device_protection(sdp))
2446 return 1;
2447 return 0;
2448 }
2449
2450 /*
2451 * read disk capacity
2452 */
2453 static void
2454 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2455 {
2456 int sector_size;
2457 struct scsi_device *sdp = sdkp->device;
2458
2459 if (sd_try_rc16_first(sdp)) {
2460 sector_size = read_capacity_16(sdkp, sdp, buffer);
2461 if (sector_size == -EOVERFLOW)
2462 goto got_data;
2463 if (sector_size == -ENODEV)
2464 return;
2465 if (sector_size < 0)
2466 sector_size = read_capacity_10(sdkp, sdp, buffer);
2467 if (sector_size < 0)
2468 return;
2469 } else {
2470 sector_size = read_capacity_10(sdkp, sdp, buffer);
2471 if (sector_size == -EOVERFLOW)
2472 goto got_data;
2473 if (sector_size < 0)
2474 return;
2475 if ((sizeof(sdkp->capacity) > 4) &&
2476 (sdkp->capacity > 0xffffffffULL)) {
2477 int old_sector_size = sector_size;
2478 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2479 "Trying to use READ CAPACITY(16).\n");
2480 sector_size = read_capacity_16(sdkp, sdp, buffer);
2481 if (sector_size < 0) {
2482 sd_printk(KERN_NOTICE, sdkp,
2483 "Using 0xffffffff as device size\n");
2484 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2485 sector_size = old_sector_size;
2486 goto got_data;
2487 }
2488 }
2489 }
2490
2491 /* Some devices are known to return the total number of blocks,
2492 * not the highest block number. Some devices have versions
2493 * which do this and others which do not. Some devices we might
2494 * suspect of doing this but we don't know for certain.
2495 *
2496 * If we know the reported capacity is wrong, decrement it. If
2497 * we can only guess, then assume the number of blocks is even
2498 * (usually true but not always) and err on the side of lowering
2499 * the capacity.
2500 */
2501 if (sdp->fix_capacity ||
2502 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2503 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2504 "from its reported value: %llu\n",
2505 (unsigned long long) sdkp->capacity);
2506 --sdkp->capacity;
2507 }
2508
2509 got_data:
2510 if (sector_size == 0) {
2511 sector_size = 512;
2512 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2513 "assuming 512.\n");
2514 }
2515
2516 if (sector_size != 512 &&
2517 sector_size != 1024 &&
2518 sector_size != 2048 &&
2519 sector_size != 4096) {
2520 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2521 sector_size);
2522 /*
2523 * The user might want to re-format the drive with
2524 * a supported sectorsize. Once this happens, it
2525 * would be relatively trivial to set the thing up.
2526 * For this reason, we leave the thing in the table.
2527 */
2528 sdkp->capacity = 0;
2529 /*
2530 * set a bogus sector size so the normal read/write
2531 * logic in the block layer will eventually refuse any
2532 * request on this device without tripping over power
2533 * of two sector size assumptions
2534 */
2535 sector_size = 512;
2536 }
2537 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2538 blk_queue_physical_block_size(sdp->request_queue,
2539 sdkp->physical_block_size);
2540 sdkp->device->sector_size = sector_size;
2541
2542 if (sdkp->capacity > 0xffffffff)
2543 sdp->use_16_for_rw = 1;
2544
2545 }
2546
2547 /*
2548 * Print disk capacity
2549 */
2550 static void
2551 sd_print_capacity(struct scsi_disk *sdkp,
2552 sector_t old_capacity)
2553 {
2554 int sector_size = sdkp->device->sector_size;
2555 char cap_str_2[10], cap_str_10[10];
2556
2557 string_get_size(sdkp->capacity, sector_size,
2558 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2559 string_get_size(sdkp->capacity, sector_size,
2560 STRING_UNITS_10, cap_str_10,
2561 sizeof(cap_str_10));
2562
2563 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2564 sd_printk(KERN_NOTICE, sdkp,
2565 "%llu %d-byte logical blocks: (%s/%s)\n",
2566 (unsigned long long)sdkp->capacity,
2567 sector_size, cap_str_10, cap_str_2);
2568
2569 if (sdkp->physical_block_size != sector_size)
2570 sd_printk(KERN_NOTICE, sdkp,
2571 "%u-byte physical blocks\n",
2572 sdkp->physical_block_size);
2573
2574 sd_zbc_print_zones(sdkp);
2575 }
2576 }
2577
2578 /* called with buffer of length 512 */
2579 static inline int
2580 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2581 unsigned char *buffer, int len, struct scsi_mode_data *data,
2582 struct scsi_sense_hdr *sshdr)
2583 {
2584 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2585 SD_TIMEOUT, SD_MAX_RETRIES, data,
2586 sshdr);
2587 }
2588
2589 /*
2590 * read write protect setting, if possible - called only in sd_revalidate_disk()
2591 * called with buffer of length SD_BUF_SIZE
2592 */
2593 static void
2594 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2595 {
2596 int res;
2597 struct scsi_device *sdp = sdkp->device;
2598 struct scsi_mode_data data;
2599 int old_wp = sdkp->write_prot;
2600
2601 set_disk_ro(sdkp->disk, 0);
2602 if (sdp->skip_ms_page_3f) {
2603 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2604 return;
2605 }
2606
2607 if (sdp->use_192_bytes_for_3f) {
2608 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2609 } else {
2610 /*
2611 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2612 * We have to start carefully: some devices hang if we ask
2613 * for more than is available.
2614 */
2615 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2616
2617 /*
2618 * Second attempt: ask for page 0 When only page 0 is
2619 * implemented, a request for page 3F may return Sense Key
2620 * 5: Illegal Request, Sense Code 24: Invalid field in
2621 * CDB.
2622 */
2623 if (!scsi_status_is_good(res))
2624 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2625
2626 /*
2627 * Third attempt: ask 255 bytes, as we did earlier.
2628 */
2629 if (!scsi_status_is_good(res))
2630 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2631 &data, NULL);
2632 }
2633
2634 if (!scsi_status_is_good(res)) {
2635 sd_first_printk(KERN_WARNING, sdkp,
2636 "Test WP failed, assume Write Enabled\n");
2637 } else {
2638 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2639 set_disk_ro(sdkp->disk, sdkp->write_prot);
2640 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2641 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2642 sdkp->write_prot ? "on" : "off");
2643 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2644 }
2645 }
2646 }
2647
2648 /*
2649 * sd_read_cache_type - called only from sd_revalidate_disk()
2650 * called with buffer of length SD_BUF_SIZE
2651 */
2652 static void
2653 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2654 {
2655 int len = 0, res;
2656 struct scsi_device *sdp = sdkp->device;
2657
2658 int dbd;
2659 int modepage;
2660 int first_len;
2661 struct scsi_mode_data data;
2662 struct scsi_sense_hdr sshdr;
2663 int old_wce = sdkp->WCE;
2664 int old_rcd = sdkp->RCD;
2665 int old_dpofua = sdkp->DPOFUA;
2666
2667
2668 if (sdkp->cache_override)
2669 return;
2670
2671 first_len = 4;
2672 if (sdp->skip_ms_page_8) {
2673 if (sdp->type == TYPE_RBC)
2674 goto defaults;
2675 else {
2676 if (sdp->skip_ms_page_3f)
2677 goto defaults;
2678 modepage = 0x3F;
2679 if (sdp->use_192_bytes_for_3f)
2680 first_len = 192;
2681 dbd = 0;
2682 }
2683 } else if (sdp->type == TYPE_RBC) {
2684 modepage = 6;
2685 dbd = 8;
2686 } else {
2687 modepage = 8;
2688 dbd = 0;
2689 }
2690
2691 /* cautiously ask */
2692 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2693 &data, &sshdr);
2694
2695 if (!scsi_status_is_good(res))
2696 goto bad_sense;
2697
2698 if (!data.header_length) {
2699 modepage = 6;
2700 first_len = 0;
2701 sd_first_printk(KERN_ERR, sdkp,
2702 "Missing header in MODE_SENSE response\n");
2703 }
2704
2705 /* that went OK, now ask for the proper length */
2706 len = data.length;
2707
2708 /*
2709 * We're only interested in the first three bytes, actually.
2710 * But the data cache page is defined for the first 20.
2711 */
2712 if (len < 3)
2713 goto bad_sense;
2714 else if (len > SD_BUF_SIZE) {
2715 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2716 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2717 len = SD_BUF_SIZE;
2718 }
2719 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2720 len = 192;
2721
2722 /* Get the data */
2723 if (len > first_len)
2724 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2725 &data, &sshdr);
2726
2727 if (scsi_status_is_good(res)) {
2728 int offset = data.header_length + data.block_descriptor_length;
2729
2730 while (offset < len) {
2731 u8 page_code = buffer[offset] & 0x3F;
2732 u8 spf = buffer[offset] & 0x40;
2733
2734 if (page_code == 8 || page_code == 6) {
2735 /* We're interested only in the first 3 bytes.
2736 */
2737 if (len - offset <= 2) {
2738 sd_first_printk(KERN_ERR, sdkp,
2739 "Incomplete mode parameter "
2740 "data\n");
2741 goto defaults;
2742 } else {
2743 modepage = page_code;
2744 goto Page_found;
2745 }
2746 } else {
2747 /* Go to the next page */
2748 if (spf && len - offset > 3)
2749 offset += 4 + (buffer[offset+2] << 8) +
2750 buffer[offset+3];
2751 else if (!spf && len - offset > 1)
2752 offset += 2 + buffer[offset+1];
2753 else {
2754 sd_first_printk(KERN_ERR, sdkp,
2755 "Incomplete mode "
2756 "parameter data\n");
2757 goto defaults;
2758 }
2759 }
2760 }
2761
2762 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2763 goto defaults;
2764
2765 Page_found:
2766 if (modepage == 8) {
2767 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2768 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2769 } else {
2770 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2771 sdkp->RCD = 0;
2772 }
2773
2774 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2775 if (sdp->broken_fua) {
2776 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2777 sdkp->DPOFUA = 0;
2778 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2779 !sdkp->device->use_16_for_rw) {
2780 sd_first_printk(KERN_NOTICE, sdkp,
2781 "Uses READ/WRITE(6), disabling FUA\n");
2782 sdkp->DPOFUA = 0;
2783 }
2784
2785 /* No cache flush allowed for write protected devices */
2786 if (sdkp->WCE && sdkp->write_prot)
2787 sdkp->WCE = 0;
2788
2789 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2790 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2791 sd_printk(KERN_NOTICE, sdkp,
2792 "Write cache: %s, read cache: %s, %s\n",
2793 sdkp->WCE ? "enabled" : "disabled",
2794 sdkp->RCD ? "disabled" : "enabled",
2795 sdkp->DPOFUA ? "supports DPO and FUA"
2796 : "doesn't support DPO or FUA");
2797
2798 return;
2799 }
2800
2801 bad_sense:
2802 if (scsi_sense_valid(&sshdr) &&
2803 sshdr.sense_key == ILLEGAL_REQUEST &&
2804 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2805 /* Invalid field in CDB */
2806 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2807 else
2808 sd_first_printk(KERN_ERR, sdkp,
2809 "Asking for cache data failed\n");
2810
2811 defaults:
2812 if (sdp->wce_default_on) {
2813 sd_first_printk(KERN_NOTICE, sdkp,
2814 "Assuming drive cache: write back\n");
2815 sdkp->WCE = 1;
2816 } else {
2817 sd_first_printk(KERN_ERR, sdkp,
2818 "Assuming drive cache: write through\n");
2819 sdkp->WCE = 0;
2820 }
2821 sdkp->RCD = 0;
2822 sdkp->DPOFUA = 0;
2823 }
2824
2825 /*
2826 * The ATO bit indicates whether the DIF application tag is available
2827 * for use by the operating system.
2828 */
2829 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2830 {
2831 int res, offset;
2832 struct scsi_device *sdp = sdkp->device;
2833 struct scsi_mode_data data;
2834 struct scsi_sense_hdr sshdr;
2835
2836 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2837 return;
2838
2839 if (sdkp->protection_type == 0)
2840 return;
2841
2842 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2843 SD_MAX_RETRIES, &data, &sshdr);
2844
2845 if (!scsi_status_is_good(res) || !data.header_length ||
2846 data.length < 6) {
2847 sd_first_printk(KERN_WARNING, sdkp,
2848 "getting Control mode page failed, assume no ATO\n");
2849
2850 if (scsi_sense_valid(&sshdr))
2851 sd_print_sense_hdr(sdkp, &sshdr);
2852
2853 return;
2854 }
2855
2856 offset = data.header_length + data.block_descriptor_length;
2857
2858 if ((buffer[offset] & 0x3f) != 0x0a) {
2859 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2860 return;
2861 }
2862
2863 if ((buffer[offset + 5] & 0x80) == 0)
2864 return;
2865
2866 sdkp->ATO = 1;
2867
2868 return;
2869 }
2870
2871 /**
2872 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2873 * @sdkp: disk to query
2874 */
2875 static void sd_read_block_limits(struct scsi_disk *sdkp)
2876 {
2877 unsigned int sector_sz = sdkp->device->sector_size;
2878 const int vpd_len = 64;
2879 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2880
2881 if (!buffer ||
2882 /* Block Limits VPD */
2883 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2884 goto out;
2885
2886 blk_queue_io_min(sdkp->disk->queue,
2887 get_unaligned_be16(&buffer[6]) * sector_sz);
2888
2889 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2890 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2891
2892 if (buffer[3] == 0x3c) {
2893 unsigned int lba_count, desc_count;
2894
2895 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2896
2897 if (!sdkp->lbpme)
2898 goto out;
2899
2900 lba_count = get_unaligned_be32(&buffer[20]);
2901 desc_count = get_unaligned_be32(&buffer[24]);
2902
2903 if (lba_count && desc_count)
2904 sdkp->max_unmap_blocks = lba_count;
2905
2906 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2907
2908 if (buffer[32] & 0x80)
2909 sdkp->unmap_alignment =
2910 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2911
2912 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2913
2914 if (sdkp->max_unmap_blocks)
2915 sd_config_discard(sdkp, SD_LBP_UNMAP);
2916 else
2917 sd_config_discard(sdkp, SD_LBP_WS16);
2918
2919 } else { /* LBP VPD page tells us what to use */
2920 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2921 sd_config_discard(sdkp, SD_LBP_UNMAP);
2922 else if (sdkp->lbpws)
2923 sd_config_discard(sdkp, SD_LBP_WS16);
2924 else if (sdkp->lbpws10)
2925 sd_config_discard(sdkp, SD_LBP_WS10);
2926 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2927 sd_config_discard(sdkp, SD_LBP_UNMAP);
2928 else
2929 sd_config_discard(sdkp, SD_LBP_DISABLE);
2930 }
2931 }
2932
2933 out:
2934 kfree(buffer);
2935 }
2936
2937 /**
2938 * sd_read_block_characteristics - Query block dev. characteristics
2939 * @sdkp: disk to query
2940 */
2941 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2942 {
2943 struct request_queue *q = sdkp->disk->queue;
2944 unsigned char *buffer;
2945 u16 rot;
2946 const int vpd_len = 64;
2947
2948 buffer = kmalloc(vpd_len, GFP_KERNEL);
2949
2950 if (!buffer ||
2951 /* Block Device Characteristics VPD */
2952 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2953 goto out;
2954
2955 rot = get_unaligned_be16(&buffer[4]);
2956
2957 if (rot == 1) {
2958 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2959 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2960 }
2961
2962 if (sdkp->device->type == TYPE_ZBC) {
2963 /* Host-managed */
2964 q->limits.zoned = BLK_ZONED_HM;
2965 } else {
2966 sdkp->zoned = (buffer[8] >> 4) & 3;
2967 if (sdkp->zoned == 1)
2968 /* Host-aware */
2969 q->limits.zoned = BLK_ZONED_HA;
2970 else
2971 /*
2972 * Treat drive-managed devices as
2973 * regular block devices.
2974 */
2975 q->limits.zoned = BLK_ZONED_NONE;
2976 }
2977 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2978 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2979 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2980
2981 out:
2982 kfree(buffer);
2983 }
2984
2985 /**
2986 * sd_read_block_provisioning - Query provisioning VPD page
2987 * @sdkp: disk to query
2988 */
2989 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2990 {
2991 unsigned char *buffer;
2992 const int vpd_len = 8;
2993
2994 if (sdkp->lbpme == 0)
2995 return;
2996
2997 buffer = kmalloc(vpd_len, GFP_KERNEL);
2998
2999 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3000 goto out;
3001
3002 sdkp->lbpvpd = 1;
3003 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3004 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3005 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3006
3007 out:
3008 kfree(buffer);
3009 }
3010
3011 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3012 {
3013 struct scsi_device *sdev = sdkp->device;
3014
3015 if (sdev->host->no_write_same) {
3016 sdev->no_write_same = 1;
3017
3018 return;
3019 }
3020
3021 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3022 /* too large values might cause issues with arcmsr */
3023 int vpd_buf_len = 64;
3024
3025 sdev->no_report_opcodes = 1;
3026
3027 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3028 * CODES is unsupported and the device has an ATA
3029 * Information VPD page (SAT).
3030 */
3031 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3032 sdev->no_write_same = 1;
3033 }
3034
3035 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3036 sdkp->ws16 = 1;
3037
3038 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3039 sdkp->ws10 = 1;
3040 }
3041
3042 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3043 {
3044 struct scsi_device *sdev = sdkp->device;
3045
3046 if (!sdev->security_supported)
3047 return;
3048
3049 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3050 SECURITY_PROTOCOL_IN) == 1 &&
3051 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3052 SECURITY_PROTOCOL_OUT) == 1)
3053 sdkp->security = 1;
3054 }
3055
3056 /**
3057 * sd_revalidate_disk - called the first time a new disk is seen,
3058 * performs disk spin up, read_capacity, etc.
3059 * @disk: struct gendisk we care about
3060 **/
3061 static int sd_revalidate_disk(struct gendisk *disk)
3062 {
3063 struct scsi_disk *sdkp = scsi_disk(disk);
3064 struct scsi_device *sdp = sdkp->device;
3065 struct request_queue *q = sdkp->disk->queue;
3066 sector_t old_capacity = sdkp->capacity;
3067 unsigned char *buffer;
3068 unsigned int dev_max, rw_max;
3069
3070 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3071 "sd_revalidate_disk\n"));
3072
3073 /*
3074 * If the device is offline, don't try and read capacity or any
3075 * of the other niceties.
3076 */
3077 if (!scsi_device_online(sdp))
3078 goto out;
3079
3080 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3081 if (!buffer) {
3082 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3083 "allocation failure.\n");
3084 goto out;
3085 }
3086
3087 sd_spinup_disk(sdkp);
3088
3089 /*
3090 * Without media there is no reason to ask; moreover, some devices
3091 * react badly if we do.
3092 */
3093 if (sdkp->media_present) {
3094 sd_read_capacity(sdkp, buffer);
3095
3096 if (scsi_device_supports_vpd(sdp)) {
3097 sd_read_block_provisioning(sdkp);
3098 sd_read_block_limits(sdkp);
3099 sd_read_block_characteristics(sdkp);
3100 sd_zbc_read_zones(sdkp, buffer);
3101 }
3102
3103 sd_print_capacity(sdkp, old_capacity);
3104
3105 sd_read_write_protect_flag(sdkp, buffer);
3106 sd_read_cache_type(sdkp, buffer);
3107 sd_read_app_tag_own(sdkp, buffer);
3108 sd_read_write_same(sdkp, buffer);
3109 sd_read_security(sdkp, buffer);
3110 }
3111
3112 /*
3113 * We now have all cache related info, determine how we deal
3114 * with flush requests.
3115 */
3116 sd_set_flush_flag(sdkp);
3117
3118 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3119 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3120
3121 /* Some devices report a maximum block count for READ/WRITE requests. */
3122 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3123 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3124
3125 /*
3126 * Determine the device's preferred I/O size for reads and writes
3127 * unless the reported value is unreasonably small, large, or
3128 * garbage.
3129 */
3130 if (sdkp->opt_xfer_blocks &&
3131 sdkp->opt_xfer_blocks <= dev_max &&
3132 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3133 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3134 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3135 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3136 } else
3137 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3138 (sector_t)BLK_DEF_MAX_SECTORS);
3139
3140 /* Do not exceed controller limit */
3141 rw_max = min(rw_max, queue_max_hw_sectors(q));
3142
3143 /*
3144 * Only update max_sectors if previously unset or if the current value
3145 * exceeds the capabilities of the hardware.
3146 */
3147 if (sdkp->first_scan ||
3148 q->limits.max_sectors > q->limits.max_dev_sectors ||
3149 q->limits.max_sectors > q->limits.max_hw_sectors)
3150 q->limits.max_sectors = rw_max;
3151
3152 sdkp->first_scan = 0;
3153
3154 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3155 sd_config_write_same(sdkp);
3156 kfree(buffer);
3157
3158 out:
3159 return 0;
3160 }
3161
3162 /**
3163 * sd_unlock_native_capacity - unlock native capacity
3164 * @disk: struct gendisk to set capacity for
3165 *
3166 * Block layer calls this function if it detects that partitions
3167 * on @disk reach beyond the end of the device. If the SCSI host
3168 * implements ->unlock_native_capacity() method, it's invoked to
3169 * give it a chance to adjust the device capacity.
3170 *
3171 * CONTEXT:
3172 * Defined by block layer. Might sleep.
3173 */
3174 static void sd_unlock_native_capacity(struct gendisk *disk)
3175 {
3176 struct scsi_device *sdev = scsi_disk(disk)->device;
3177
3178 if (sdev->host->hostt->unlock_native_capacity)
3179 sdev->host->hostt->unlock_native_capacity(sdev);
3180 }
3181
3182 /**
3183 * sd_format_disk_name - format disk name
3184 * @prefix: name prefix - ie. "sd" for SCSI disks
3185 * @index: index of the disk to format name for
3186 * @buf: output buffer
3187 * @buflen: length of the output buffer
3188 *
3189 * SCSI disk names starts at sda. The 26th device is sdz and the
3190 * 27th is sdaa. The last one for two lettered suffix is sdzz
3191 * which is followed by sdaaa.
3192 *
3193 * This is basically 26 base counting with one extra 'nil' entry
3194 * at the beginning from the second digit on and can be
3195 * determined using similar method as 26 base conversion with the
3196 * index shifted -1 after each digit is computed.
3197 *
3198 * CONTEXT:
3199 * Don't care.
3200 *
3201 * RETURNS:
3202 * 0 on success, -errno on failure.
3203 */
3204 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3205 {
3206 const int base = 'z' - 'a' + 1;
3207 char *begin = buf + strlen(prefix);
3208 char *end = buf + buflen;
3209 char *p;
3210 int unit;
3211
3212 p = end - 1;
3213 *p = '\0';
3214 unit = base;
3215 do {
3216 if (p == begin)
3217 return -EINVAL;
3218 *--p = 'a' + (index % unit);
3219 index = (index / unit) - 1;
3220 } while (index >= 0);
3221
3222 memmove(begin, p, end - p);
3223 memcpy(buf, prefix, strlen(prefix));
3224
3225 return 0;
3226 }
3227
3228 /*
3229 * The asynchronous part of sd_probe
3230 */
3231 static void sd_probe_async(void *data, async_cookie_t cookie)
3232 {
3233 struct scsi_disk *sdkp = data;
3234 struct scsi_device *sdp;
3235 struct gendisk *gd;
3236 u32 index;
3237 struct device *dev;
3238
3239 sdp = sdkp->device;
3240 gd = sdkp->disk;
3241 index = sdkp->index;
3242 dev = &sdp->sdev_gendev;
3243
3244 gd->major = sd_major((index & 0xf0) >> 4);
3245 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3246 gd->minors = SD_MINORS;
3247
3248 gd->fops = &sd_fops;
3249 gd->private_data = &sdkp->driver;
3250 gd->queue = sdkp->device->request_queue;
3251
3252 /* defaults, until the device tells us otherwise */
3253 sdp->sector_size = 512;
3254 sdkp->capacity = 0;
3255 sdkp->media_present = 1;
3256 sdkp->write_prot = 0;
3257 sdkp->cache_override = 0;
3258 sdkp->WCE = 0;
3259 sdkp->RCD = 0;
3260 sdkp->ATO = 0;
3261 sdkp->first_scan = 1;
3262 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3263
3264 sd_revalidate_disk(gd);
3265
3266 gd->flags = GENHD_FL_EXT_DEVT;
3267 if (sdp->removable) {
3268 gd->flags |= GENHD_FL_REMOVABLE;
3269 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3270 }
3271
3272 blk_pm_runtime_init(sdp->request_queue, dev);
3273 device_add_disk(dev, gd);
3274 if (sdkp->capacity)
3275 sd_dif_config_host(sdkp);
3276
3277 sd_revalidate_disk(gd);
3278
3279 if (sdkp->security) {
3280 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3281 if (sdkp->opal_dev)
3282 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3283 }
3284
3285 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3286 sdp->removable ? "removable " : "");
3287 scsi_autopm_put_device(sdp);
3288 put_device(&sdkp->dev);
3289 }
3290
3291 /**
3292 * sd_probe - called during driver initialization and whenever a
3293 * new scsi device is attached to the system. It is called once
3294 * for each scsi device (not just disks) present.
3295 * @dev: pointer to device object
3296 *
3297 * Returns 0 if successful (or not interested in this scsi device
3298 * (e.g. scanner)); 1 when there is an error.
3299 *
3300 * Note: this function is invoked from the scsi mid-level.
3301 * This function sets up the mapping between a given
3302 * <host,channel,id,lun> (found in sdp) and new device name
3303 * (e.g. /dev/sda). More precisely it is the block device major
3304 * and minor number that is chosen here.
3305 *
3306 * Assume sd_probe is not re-entrant (for time being)
3307 * Also think about sd_probe() and sd_remove() running coincidentally.
3308 **/
3309 static int sd_probe(struct device *dev)
3310 {
3311 struct scsi_device *sdp = to_scsi_device(dev);
3312 struct scsi_disk *sdkp;
3313 struct gendisk *gd;
3314 int index;
3315 int error;
3316
3317 scsi_autopm_get_device(sdp);
3318 error = -ENODEV;
3319 if (sdp->type != TYPE_DISK &&
3320 sdp->type != TYPE_ZBC &&
3321 sdp->type != TYPE_MOD &&
3322 sdp->type != TYPE_RBC)
3323 goto out;
3324
3325 #ifndef CONFIG_BLK_DEV_ZONED
3326 if (sdp->type == TYPE_ZBC)
3327 goto out;
3328 #endif
3329 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3330 "sd_probe\n"));
3331
3332 error = -ENOMEM;
3333 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3334 if (!sdkp)
3335 goto out;
3336
3337 gd = alloc_disk(SD_MINORS);
3338 if (!gd)
3339 goto out_free;
3340
3341 do {
3342 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3343 goto out_put;
3344
3345 spin_lock(&sd_index_lock);
3346 error = ida_get_new(&sd_index_ida, &index);
3347 spin_unlock(&sd_index_lock);
3348 } while (error == -EAGAIN);
3349
3350 if (error) {
3351 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3352 goto out_put;
3353 }
3354
3355 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3356 if (error) {
3357 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3358 goto out_free_index;
3359 }
3360
3361 sdkp->device = sdp;
3362 sdkp->driver = &sd_template;
3363 sdkp->disk = gd;
3364 sdkp->index = index;
3365 atomic_set(&sdkp->openers, 0);
3366 atomic_set(&sdkp->device->ioerr_cnt, 0);
3367
3368 if (!sdp->request_queue->rq_timeout) {
3369 if (sdp->type != TYPE_MOD)
3370 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3371 else
3372 blk_queue_rq_timeout(sdp->request_queue,
3373 SD_MOD_TIMEOUT);
3374 }
3375
3376 device_initialize(&sdkp->dev);
3377 sdkp->dev.parent = dev;
3378 sdkp->dev.class = &sd_disk_class;
3379 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3380
3381 error = device_add(&sdkp->dev);
3382 if (error)
3383 goto out_free_index;
3384
3385 get_device(dev);
3386 dev_set_drvdata(dev, sdkp);
3387
3388 get_device(&sdkp->dev); /* prevent release before async_schedule */
3389 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3390
3391 return 0;
3392
3393 out_free_index:
3394 spin_lock(&sd_index_lock);
3395 ida_remove(&sd_index_ida, index);
3396 spin_unlock(&sd_index_lock);
3397 out_put:
3398 put_disk(gd);
3399 out_free:
3400 kfree(sdkp);
3401 out:
3402 scsi_autopm_put_device(sdp);
3403 return error;
3404 }
3405
3406 /**
3407 * sd_remove - called whenever a scsi disk (previously recognized by
3408 * sd_probe) is detached from the system. It is called (potentially
3409 * multiple times) during sd module unload.
3410 * @dev: pointer to device object
3411 *
3412 * Note: this function is invoked from the scsi mid-level.
3413 * This function potentially frees up a device name (e.g. /dev/sdc)
3414 * that could be re-used by a subsequent sd_probe().
3415 * This function is not called when the built-in sd driver is "exit-ed".
3416 **/
3417 static int sd_remove(struct device *dev)
3418 {
3419 struct scsi_disk *sdkp;
3420 dev_t devt;
3421
3422 sdkp = dev_get_drvdata(dev);
3423 devt = disk_devt(sdkp->disk);
3424 scsi_autopm_get_device(sdkp->device);
3425
3426 async_synchronize_full_domain(&scsi_sd_pm_domain);
3427 async_synchronize_full_domain(&scsi_sd_probe_domain);
3428 device_del(&sdkp->dev);
3429 del_gendisk(sdkp->disk);
3430 sd_shutdown(dev);
3431
3432 sd_zbc_remove(sdkp);
3433
3434 free_opal_dev(sdkp->opal_dev);
3435
3436 blk_register_region(devt, SD_MINORS, NULL,
3437 sd_default_probe, NULL, NULL);
3438
3439 mutex_lock(&sd_ref_mutex);
3440 dev_set_drvdata(dev, NULL);
3441 put_device(&sdkp->dev);
3442 mutex_unlock(&sd_ref_mutex);
3443
3444 return 0;
3445 }
3446
3447 /**
3448 * scsi_disk_release - Called to free the scsi_disk structure
3449 * @dev: pointer to embedded class device
3450 *
3451 * sd_ref_mutex must be held entering this routine. Because it is
3452 * called on last put, you should always use the scsi_disk_get()
3453 * scsi_disk_put() helpers which manipulate the semaphore directly
3454 * and never do a direct put_device.
3455 **/
3456 static void scsi_disk_release(struct device *dev)
3457 {
3458 struct scsi_disk *sdkp = to_scsi_disk(dev);
3459 struct gendisk *disk = sdkp->disk;
3460
3461 spin_lock(&sd_index_lock);
3462 ida_remove(&sd_index_ida, sdkp->index);
3463 spin_unlock(&sd_index_lock);
3464
3465 disk->private_data = NULL;
3466 put_disk(disk);
3467 put_device(&sdkp->device->sdev_gendev);
3468
3469 kfree(sdkp);
3470 }
3471
3472 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3473 {
3474 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3475 struct scsi_sense_hdr sshdr;
3476 struct scsi_device *sdp = sdkp->device;
3477 int res;
3478
3479 if (start)
3480 cmd[4] |= 1; /* START */
3481
3482 if (sdp->start_stop_pwr_cond)
3483 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3484
3485 if (!scsi_device_online(sdp))
3486 return -ENODEV;
3487
3488 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3489 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3490 if (res) {
3491 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3492 if (driver_byte(res) & DRIVER_SENSE)
3493 sd_print_sense_hdr(sdkp, &sshdr);
3494 if (scsi_sense_valid(&sshdr) &&
3495 /* 0x3a is medium not present */
3496 sshdr.asc == 0x3a)
3497 res = 0;
3498 }
3499
3500 /* SCSI error codes must not go to the generic layer */
3501 if (res)
3502 return -EIO;
3503
3504 return 0;
3505 }
3506
3507 /*
3508 * Send a SYNCHRONIZE CACHE instruction down to the device through
3509 * the normal SCSI command structure. Wait for the command to
3510 * complete.
3511 */
3512 static void sd_shutdown(struct device *dev)
3513 {
3514 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3515
3516 if (!sdkp)
3517 return; /* this can happen */
3518
3519 if (pm_runtime_suspended(dev))
3520 return;
3521
3522 if (sdkp->WCE && sdkp->media_present) {
3523 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3524 sd_sync_cache(sdkp, NULL);
3525 }
3526
3527 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3528 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3529 sd_start_stop_device(sdkp, 0);
3530 }
3531 }
3532
3533 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3534 {
3535 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3536 struct scsi_sense_hdr sshdr;
3537 int ret = 0;
3538
3539 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3540 return 0;
3541
3542 if (sdkp->WCE && sdkp->media_present) {
3543 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3544 ret = sd_sync_cache(sdkp, &sshdr);
3545
3546 if (ret) {
3547 /* ignore OFFLINE device */
3548 if (ret == -ENODEV)
3549 return 0;
3550
3551 if (!scsi_sense_valid(&sshdr) ||
3552 sshdr.sense_key != ILLEGAL_REQUEST)
3553 return ret;
3554
3555 /*
3556 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3557 * doesn't support sync. There's not much to do and
3558 * suspend shouldn't fail.
3559 */
3560 ret = 0;
3561 }
3562 }
3563
3564 if (sdkp->device->manage_start_stop) {
3565 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3566 /* an error is not worth aborting a system sleep */
3567 ret = sd_start_stop_device(sdkp, 0);
3568 if (ignore_stop_errors)
3569 ret = 0;
3570 }
3571
3572 return ret;
3573 }
3574
3575 static int sd_suspend_system(struct device *dev)
3576 {
3577 return sd_suspend_common(dev, true);
3578 }
3579
3580 static int sd_suspend_runtime(struct device *dev)
3581 {
3582 return sd_suspend_common(dev, false);
3583 }
3584
3585 static int sd_resume(struct device *dev)
3586 {
3587 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3588 int ret;
3589
3590 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3591 return 0;
3592
3593 if (!sdkp->device->manage_start_stop)
3594 return 0;
3595
3596 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3597 ret = sd_start_stop_device(sdkp, 1);
3598 if (!ret)
3599 opal_unlock_from_suspend(sdkp->opal_dev);
3600 return ret;
3601 }
3602
3603 /**
3604 * init_sd - entry point for this driver (both when built in or when
3605 * a module).
3606 *
3607 * Note: this function registers this driver with the scsi mid-level.
3608 **/
3609 static int __init init_sd(void)
3610 {
3611 int majors = 0, i, err;
3612
3613 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3614
3615 for (i = 0; i < SD_MAJORS; i++) {
3616 if (register_blkdev(sd_major(i), "sd") != 0)
3617 continue;
3618 majors++;
3619 blk_register_region(sd_major(i), SD_MINORS, NULL,
3620 sd_default_probe, NULL, NULL);
3621 }
3622
3623 if (!majors)
3624 return -ENODEV;
3625
3626 err = class_register(&sd_disk_class);
3627 if (err)
3628 goto err_out;
3629
3630 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3631 0, 0, NULL);
3632 if (!sd_cdb_cache) {
3633 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3634 err = -ENOMEM;
3635 goto err_out_class;
3636 }
3637
3638 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3639 if (!sd_cdb_pool) {
3640 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3641 err = -ENOMEM;
3642 goto err_out_cache;
3643 }
3644
3645 err = scsi_register_driver(&sd_template.gendrv);
3646 if (err)
3647 goto err_out_driver;
3648
3649 return 0;
3650
3651 err_out_driver:
3652 mempool_destroy(sd_cdb_pool);
3653
3654 err_out_cache:
3655 kmem_cache_destroy(sd_cdb_cache);
3656
3657 err_out_class:
3658 class_unregister(&sd_disk_class);
3659 err_out:
3660 for (i = 0; i < SD_MAJORS; i++)
3661 unregister_blkdev(sd_major(i), "sd");
3662 return err;
3663 }
3664
3665 /**
3666 * exit_sd - exit point for this driver (when it is a module).
3667 *
3668 * Note: this function unregisters this driver from the scsi mid-level.
3669 **/
3670 static void __exit exit_sd(void)
3671 {
3672 int i;
3673
3674 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3675
3676 scsi_unregister_driver(&sd_template.gendrv);
3677 mempool_destroy(sd_cdb_pool);
3678 kmem_cache_destroy(sd_cdb_cache);
3679
3680 class_unregister(&sd_disk_class);
3681
3682 for (i = 0; i < SD_MAJORS; i++) {
3683 blk_unregister_region(sd_major(i), SD_MINORS);
3684 unregister_blkdev(sd_major(i), "sd");
3685 }
3686 }
3687
3688 module_init(init_sd);
3689 module_exit(exit_sd);
3690
3691 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3692 struct scsi_sense_hdr *sshdr)
3693 {
3694 scsi_print_sense_hdr(sdkp->device,
3695 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3696 }
3697
3698 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3699 int result)
3700 {
3701 const char *hb_string = scsi_hostbyte_string(result);
3702 const char *db_string = scsi_driverbyte_string(result);
3703
3704 if (hb_string || db_string)
3705 sd_printk(KERN_INFO, sdkp,
3706 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3707 hb_string ? hb_string : "invalid",
3708 db_string ? db_string : "invalid");
3709 else
3710 sd_printk(KERN_INFO, sdkp,
3711 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3712 msg, host_byte(result), driver_byte(result));
3713 }
3714