]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/afs/rxrpc.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / afs / rxrpc.c
1 /* Maintain an RxRPC server socket to do AFS communications through
2 *
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include <rxrpc/packet.h>
18 #include "internal.h"
19 #include "afs_cm.h"
20
21 struct socket *afs_socket; /* my RxRPC socket */
22 static struct workqueue_struct *afs_async_calls;
23 static struct afs_call *afs_spare_incoming_call;
24 atomic_t afs_outstanding_calls;
25
26 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
27 static int afs_wait_for_call_to_complete(struct afs_call *);
28 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
29 static void afs_process_async_call(struct work_struct *);
30 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
31 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
32 static int afs_deliver_cm_op_id(struct afs_call *);
33
34 /* asynchronous incoming call initial processing */
35 static const struct afs_call_type afs_RXCMxxxx = {
36 .name = "CB.xxxx",
37 .deliver = afs_deliver_cm_op_id,
38 .abort_to_error = afs_abort_to_error,
39 };
40
41 static void afs_charge_preallocation(struct work_struct *);
42
43 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
44
45 static int afs_wait_atomic_t(atomic_t *p)
46 {
47 schedule();
48 return 0;
49 }
50
51 /*
52 * open an RxRPC socket and bind it to be a server for callback notifications
53 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
54 */
55 int afs_open_socket(void)
56 {
57 struct sockaddr_rxrpc srx;
58 struct socket *socket;
59 int ret;
60
61 _enter("");
62
63 ret = -ENOMEM;
64 afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
65 if (!afs_async_calls)
66 goto error_0;
67
68 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
69 if (ret < 0)
70 goto error_1;
71
72 socket->sk->sk_allocation = GFP_NOFS;
73
74 /* bind the callback manager's address to make this a server socket */
75 srx.srx_family = AF_RXRPC;
76 srx.srx_service = CM_SERVICE;
77 srx.transport_type = SOCK_DGRAM;
78 srx.transport_len = sizeof(srx.transport.sin);
79 srx.transport.sin.sin_family = AF_INET;
80 srx.transport.sin.sin_port = htons(AFS_CM_PORT);
81 memset(&srx.transport.sin.sin_addr, 0,
82 sizeof(srx.transport.sin.sin_addr));
83
84 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
85 if (ret < 0)
86 goto error_2;
87
88 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
89 afs_rx_discard_new_call);
90
91 ret = kernel_listen(socket, INT_MAX);
92 if (ret < 0)
93 goto error_2;
94
95 afs_socket = socket;
96 afs_charge_preallocation(NULL);
97 _leave(" = 0");
98 return 0;
99
100 error_2:
101 sock_release(socket);
102 error_1:
103 destroy_workqueue(afs_async_calls);
104 error_0:
105 _leave(" = %d", ret);
106 return ret;
107 }
108
109 /*
110 * close the RxRPC socket AFS was using
111 */
112 void afs_close_socket(void)
113 {
114 _enter("");
115
116 kernel_listen(afs_socket, 0);
117 flush_workqueue(afs_async_calls);
118
119 if (afs_spare_incoming_call) {
120 afs_put_call(afs_spare_incoming_call);
121 afs_spare_incoming_call = NULL;
122 }
123
124 _debug("outstanding %u", atomic_read(&afs_outstanding_calls));
125 wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
126 TASK_UNINTERRUPTIBLE);
127 _debug("no outstanding calls");
128
129 kernel_sock_shutdown(afs_socket, SHUT_RDWR);
130 flush_workqueue(afs_async_calls);
131 sock_release(afs_socket);
132
133 _debug("dework");
134 destroy_workqueue(afs_async_calls);
135 _leave("");
136 }
137
138 /*
139 * Allocate a call.
140 */
141 static struct afs_call *afs_alloc_call(const struct afs_call_type *type,
142 gfp_t gfp)
143 {
144 struct afs_call *call;
145 int o;
146
147 call = kzalloc(sizeof(*call), gfp);
148 if (!call)
149 return NULL;
150
151 call->type = type;
152 atomic_set(&call->usage, 1);
153 INIT_WORK(&call->async_work, afs_process_async_call);
154 init_waitqueue_head(&call->waitq);
155
156 o = atomic_inc_return(&afs_outstanding_calls);
157 trace_afs_call(call, afs_call_trace_alloc, 1, o,
158 __builtin_return_address(0));
159 return call;
160 }
161
162 /*
163 * Dispose of a reference on a call.
164 */
165 void afs_put_call(struct afs_call *call)
166 {
167 int n = atomic_dec_return(&call->usage);
168 int o = atomic_read(&afs_outstanding_calls);
169
170 trace_afs_call(call, afs_call_trace_put, n + 1, o,
171 __builtin_return_address(0));
172
173 ASSERTCMP(n, >=, 0);
174 if (n == 0) {
175 ASSERT(!work_pending(&call->async_work));
176 ASSERT(call->type->name != NULL);
177
178 if (call->rxcall) {
179 rxrpc_kernel_end_call(afs_socket, call->rxcall);
180 call->rxcall = NULL;
181 }
182 if (call->type->destructor)
183 call->type->destructor(call);
184
185 kfree(call->request);
186 kfree(call);
187
188 o = atomic_dec_return(&afs_outstanding_calls);
189 trace_afs_call(call, afs_call_trace_free, 0, o,
190 __builtin_return_address(0));
191 if (o == 0)
192 wake_up_atomic_t(&afs_outstanding_calls);
193 }
194 }
195
196 /*
197 * Queue the call for actual work. Returns 0 unconditionally for convenience.
198 */
199 int afs_queue_call_work(struct afs_call *call)
200 {
201 int u = atomic_inc_return(&call->usage);
202
203 trace_afs_call(call, afs_call_trace_work, u,
204 atomic_read(&afs_outstanding_calls),
205 __builtin_return_address(0));
206
207 INIT_WORK(&call->work, call->type->work);
208
209 if (!queue_work(afs_wq, &call->work))
210 afs_put_call(call);
211 return 0;
212 }
213
214 /*
215 * allocate a call with flat request and reply buffers
216 */
217 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
218 size_t request_size, size_t reply_max)
219 {
220 struct afs_call *call;
221
222 call = afs_alloc_call(type, GFP_NOFS);
223 if (!call)
224 goto nomem_call;
225
226 if (request_size) {
227 call->request_size = request_size;
228 call->request = kmalloc(request_size, GFP_NOFS);
229 if (!call->request)
230 goto nomem_free;
231 }
232
233 if (reply_max) {
234 call->reply_max = reply_max;
235 call->buffer = kmalloc(reply_max, GFP_NOFS);
236 if (!call->buffer)
237 goto nomem_free;
238 }
239
240 init_waitqueue_head(&call->waitq);
241 return call;
242
243 nomem_free:
244 afs_put_call(call);
245 nomem_call:
246 return NULL;
247 }
248
249 /*
250 * clean up a call with flat buffer
251 */
252 void afs_flat_call_destructor(struct afs_call *call)
253 {
254 _enter("");
255
256 kfree(call->request);
257 call->request = NULL;
258 kfree(call->buffer);
259 call->buffer = NULL;
260 }
261
262 #define AFS_BVEC_MAX 8
263
264 /*
265 * Load the given bvec with the next few pages.
266 */
267 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
268 struct bio_vec *bv, pgoff_t first, pgoff_t last,
269 unsigned offset)
270 {
271 struct page *pages[AFS_BVEC_MAX];
272 unsigned int nr, n, i, to, bytes = 0;
273
274 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
275 n = find_get_pages_contig(call->mapping, first, nr, pages);
276 ASSERTCMP(n, ==, nr);
277
278 msg->msg_flags |= MSG_MORE;
279 for (i = 0; i < nr; i++) {
280 to = PAGE_SIZE;
281 if (first + i >= last) {
282 to = call->last_to;
283 msg->msg_flags &= ~MSG_MORE;
284 }
285 bv[i].bv_page = pages[i];
286 bv[i].bv_len = to - offset;
287 bv[i].bv_offset = offset;
288 bytes += to - offset;
289 offset = 0;
290 }
291
292 iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
293 }
294
295 /*
296 * attach the data from a bunch of pages on an inode to a call
297 */
298 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
299 {
300 struct bio_vec bv[AFS_BVEC_MAX];
301 unsigned int bytes, nr, loop, offset;
302 pgoff_t first = call->first, last = call->last;
303 int ret;
304
305 offset = call->first_offset;
306 call->first_offset = 0;
307
308 do {
309 afs_load_bvec(call, msg, bv, first, last, offset);
310 offset = 0;
311 bytes = msg->msg_iter.count;
312 nr = msg->msg_iter.nr_segs;
313
314 /* Have to change the state *before* sending the last
315 * packet as RxRPC might give us the reply before it
316 * returns from sending the request.
317 */
318 if (first + nr - 1 >= last)
319 call->state = AFS_CALL_AWAIT_REPLY;
320 ret = rxrpc_kernel_send_data(afs_socket, call->rxcall,
321 msg, bytes);
322 for (loop = 0; loop < nr; loop++)
323 put_page(bv[loop].bv_page);
324 if (ret < 0)
325 break;
326
327 first += nr;
328 } while (first <= last);
329
330 return ret;
331 }
332
333 /*
334 * initiate a call
335 */
336 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
337 bool async)
338 {
339 struct sockaddr_rxrpc srx;
340 struct rxrpc_call *rxcall;
341 struct msghdr msg;
342 struct kvec iov[1];
343 size_t offset;
344 s64 tx_total_len;
345 u32 abort_code;
346 int ret;
347
348 _enter("%x,{%d},", addr->s_addr, ntohs(call->port));
349
350 ASSERT(call->type != NULL);
351 ASSERT(call->type->name != NULL);
352
353 _debug("____MAKE %p{%s,%x} [%d]____",
354 call, call->type->name, key_serial(call->key),
355 atomic_read(&afs_outstanding_calls));
356
357 call->async = async;
358
359 memset(&srx, 0, sizeof(srx));
360 srx.srx_family = AF_RXRPC;
361 srx.srx_service = call->service_id;
362 srx.transport_type = SOCK_DGRAM;
363 srx.transport_len = sizeof(srx.transport.sin);
364 srx.transport.sin.sin_family = AF_INET;
365 srx.transport.sin.sin_port = call->port;
366 memcpy(&srx.transport.sin.sin_addr, addr, 4);
367
368 /* Work out the length we're going to transmit. This is awkward for
369 * calls such as FS.StoreData where there's an extra injection of data
370 * after the initial fixed part.
371 */
372 tx_total_len = call->request_size;
373 if (call->send_pages) {
374 tx_total_len += call->last_to - call->first_offset;
375 tx_total_len += (call->last - call->first) * PAGE_SIZE;
376 }
377
378 /* create a call */
379 rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
380 (unsigned long)call,
381 tx_total_len, gfp,
382 (async ?
383 afs_wake_up_async_call :
384 afs_wake_up_call_waiter));
385 call->key = NULL;
386 if (IS_ERR(rxcall)) {
387 ret = PTR_ERR(rxcall);
388 goto error_kill_call;
389 }
390
391 call->rxcall = rxcall;
392
393 /* send the request */
394 iov[0].iov_base = call->request;
395 iov[0].iov_len = call->request_size;
396
397 msg.msg_name = NULL;
398 msg.msg_namelen = 0;
399 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
400 call->request_size);
401 msg.msg_control = NULL;
402 msg.msg_controllen = 0;
403 msg.msg_flags = (call->send_pages ? MSG_MORE : 0);
404
405 /* We have to change the state *before* sending the last packet as
406 * rxrpc might give us the reply before it returns from sending the
407 * request. Further, if the send fails, we may already have been given
408 * a notification and may have collected it.
409 */
410 if (!call->send_pages)
411 call->state = AFS_CALL_AWAIT_REPLY;
412 ret = rxrpc_kernel_send_data(afs_socket, rxcall,
413 &msg, call->request_size);
414 if (ret < 0)
415 goto error_do_abort;
416
417 if (call->send_pages) {
418 ret = afs_send_pages(call, &msg);
419 if (ret < 0)
420 goto error_do_abort;
421 }
422
423 /* at this point, an async call may no longer exist as it may have
424 * already completed */
425 if (call->async)
426 return -EINPROGRESS;
427
428 return afs_wait_for_call_to_complete(call);
429
430 error_do_abort:
431 call->state = AFS_CALL_COMPLETE;
432 if (ret != -ECONNABORTED) {
433 rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT,
434 ret, "KSD");
435 } else {
436 abort_code = 0;
437 offset = 0;
438 rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset,
439 false, &abort_code);
440 ret = call->type->abort_to_error(abort_code);
441 }
442 error_kill_call:
443 afs_put_call(call);
444 _leave(" = %d", ret);
445 return ret;
446 }
447
448 /*
449 * deliver messages to a call
450 */
451 static void afs_deliver_to_call(struct afs_call *call)
452 {
453 u32 abort_code;
454 int ret;
455
456 _enter("%s", call->type->name);
457
458 while (call->state == AFS_CALL_AWAIT_REPLY ||
459 call->state == AFS_CALL_AWAIT_OP_ID ||
460 call->state == AFS_CALL_AWAIT_REQUEST ||
461 call->state == AFS_CALL_AWAIT_ACK
462 ) {
463 if (call->state == AFS_CALL_AWAIT_ACK) {
464 size_t offset = 0;
465 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
466 NULL, 0, &offset, false,
467 &call->abort_code);
468 trace_afs_recv_data(call, 0, offset, false, ret);
469
470 if (ret == -EINPROGRESS || ret == -EAGAIN)
471 return;
472 if (ret == 1 || ret < 0) {
473 call->state = AFS_CALL_COMPLETE;
474 goto done;
475 }
476 return;
477 }
478
479 ret = call->type->deliver(call);
480 switch (ret) {
481 case 0:
482 if (call->state == AFS_CALL_AWAIT_REPLY)
483 call->state = AFS_CALL_COMPLETE;
484 goto done;
485 case -EINPROGRESS:
486 case -EAGAIN:
487 goto out;
488 case -ECONNABORTED:
489 goto call_complete;
490 case -ENOTCONN:
491 abort_code = RX_CALL_DEAD;
492 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
493 abort_code, ret, "KNC");
494 goto save_error;
495 case -ENOTSUPP:
496 abort_code = RXGEN_OPCODE;
497 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
498 abort_code, ret, "KIV");
499 goto save_error;
500 case -ENODATA:
501 case -EBADMSG:
502 case -EMSGSIZE:
503 default:
504 abort_code = RXGEN_CC_UNMARSHAL;
505 if (call->state != AFS_CALL_AWAIT_REPLY)
506 abort_code = RXGEN_SS_UNMARSHAL;
507 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
508 abort_code, -EBADMSG, "KUM");
509 goto save_error;
510 }
511 }
512
513 done:
514 if (call->state == AFS_CALL_COMPLETE && call->incoming)
515 afs_put_call(call);
516 out:
517 _leave("");
518 return;
519
520 save_error:
521 call->error = ret;
522 call_complete:
523 call->state = AFS_CALL_COMPLETE;
524 goto done;
525 }
526
527 /*
528 * wait synchronously for a call to complete
529 */
530 static int afs_wait_for_call_to_complete(struct afs_call *call)
531 {
532 int ret;
533
534 DECLARE_WAITQUEUE(myself, current);
535
536 _enter("");
537
538 add_wait_queue(&call->waitq, &myself);
539 for (;;) {
540 set_current_state(TASK_INTERRUPTIBLE);
541
542 /* deliver any messages that are in the queue */
543 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
544 call->need_attention = false;
545 __set_current_state(TASK_RUNNING);
546 afs_deliver_to_call(call);
547 continue;
548 }
549
550 if (call->state == AFS_CALL_COMPLETE ||
551 signal_pending(current))
552 break;
553 schedule();
554 }
555
556 remove_wait_queue(&call->waitq, &myself);
557 __set_current_state(TASK_RUNNING);
558
559 /* Kill off the call if it's still live. */
560 if (call->state < AFS_CALL_COMPLETE) {
561 _debug("call interrupted");
562 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
563 RX_USER_ABORT, -EINTR, "KWI");
564 }
565
566 ret = call->error;
567 _debug("call complete");
568 afs_put_call(call);
569 _leave(" = %d", ret);
570 return ret;
571 }
572
573 /*
574 * wake up a waiting call
575 */
576 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
577 unsigned long call_user_ID)
578 {
579 struct afs_call *call = (struct afs_call *)call_user_ID;
580
581 call->need_attention = true;
582 wake_up(&call->waitq);
583 }
584
585 /*
586 * wake up an asynchronous call
587 */
588 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
589 unsigned long call_user_ID)
590 {
591 struct afs_call *call = (struct afs_call *)call_user_ID;
592 int u;
593
594 trace_afs_notify_call(rxcall, call);
595 call->need_attention = true;
596
597 u = __atomic_add_unless(&call->usage, 1, 0);
598 if (u != 0) {
599 trace_afs_call(call, afs_call_trace_wake, u,
600 atomic_read(&afs_outstanding_calls),
601 __builtin_return_address(0));
602
603 if (!queue_work(afs_async_calls, &call->async_work))
604 afs_put_call(call);
605 }
606 }
607
608 /*
609 * Delete an asynchronous call. The work item carries a ref to the call struct
610 * that we need to release.
611 */
612 static void afs_delete_async_call(struct work_struct *work)
613 {
614 struct afs_call *call = container_of(work, struct afs_call, async_work);
615
616 _enter("");
617
618 afs_put_call(call);
619
620 _leave("");
621 }
622
623 /*
624 * Perform I/O processing on an asynchronous call. The work item carries a ref
625 * to the call struct that we either need to release or to pass on.
626 */
627 static void afs_process_async_call(struct work_struct *work)
628 {
629 struct afs_call *call = container_of(work, struct afs_call, async_work);
630
631 _enter("");
632
633 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
634 call->need_attention = false;
635 afs_deliver_to_call(call);
636 }
637
638 if (call->state == AFS_CALL_COMPLETE) {
639 call->reply = NULL;
640
641 /* We have two refs to release - one from the alloc and one
642 * queued with the work item - and we can't just deallocate the
643 * call because the work item may be queued again.
644 */
645 call->async_work.func = afs_delete_async_call;
646 if (!queue_work(afs_async_calls, &call->async_work))
647 afs_put_call(call);
648 }
649
650 afs_put_call(call);
651 _leave("");
652 }
653
654 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
655 {
656 struct afs_call *call = (struct afs_call *)user_call_ID;
657
658 call->rxcall = rxcall;
659 }
660
661 /*
662 * Charge the incoming call preallocation.
663 */
664 static void afs_charge_preallocation(struct work_struct *work)
665 {
666 struct afs_call *call = afs_spare_incoming_call;
667
668 for (;;) {
669 if (!call) {
670 call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL);
671 if (!call)
672 break;
673
674 call->async = true;
675 call->state = AFS_CALL_AWAIT_OP_ID;
676 init_waitqueue_head(&call->waitq);
677 }
678
679 if (rxrpc_kernel_charge_accept(afs_socket,
680 afs_wake_up_async_call,
681 afs_rx_attach,
682 (unsigned long)call,
683 GFP_KERNEL) < 0)
684 break;
685 call = NULL;
686 }
687 afs_spare_incoming_call = call;
688 }
689
690 /*
691 * Discard a preallocated call when a socket is shut down.
692 */
693 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
694 unsigned long user_call_ID)
695 {
696 struct afs_call *call = (struct afs_call *)user_call_ID;
697
698 call->rxcall = NULL;
699 afs_put_call(call);
700 }
701
702 /*
703 * Notification of an incoming call.
704 */
705 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
706 unsigned long user_call_ID)
707 {
708 queue_work(afs_wq, &afs_charge_preallocation_work);
709 }
710
711 /*
712 * Grab the operation ID from an incoming cache manager call. The socket
713 * buffer is discarded on error or if we don't yet have sufficient data.
714 */
715 static int afs_deliver_cm_op_id(struct afs_call *call)
716 {
717 int ret;
718
719 _enter("{%zu}", call->offset);
720
721 ASSERTCMP(call->offset, <, 4);
722
723 /* the operation ID forms the first four bytes of the request data */
724 ret = afs_extract_data(call, &call->tmp, 4, true);
725 if (ret < 0)
726 return ret;
727
728 call->operation_ID = ntohl(call->tmp);
729 call->state = AFS_CALL_AWAIT_REQUEST;
730 call->offset = 0;
731
732 /* ask the cache manager to route the call (it'll change the call type
733 * if successful) */
734 if (!afs_cm_incoming_call(call))
735 return -ENOTSUPP;
736
737 trace_afs_cb_call(call);
738
739 /* pass responsibility for the remainer of this message off to the
740 * cache manager op */
741 return call->type->deliver(call);
742 }
743
744 /*
745 * send an empty reply
746 */
747 void afs_send_empty_reply(struct afs_call *call)
748 {
749 struct msghdr msg;
750
751 _enter("");
752
753 rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, 0);
754
755 msg.msg_name = NULL;
756 msg.msg_namelen = 0;
757 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
758 msg.msg_control = NULL;
759 msg.msg_controllen = 0;
760 msg.msg_flags = 0;
761
762 call->state = AFS_CALL_AWAIT_ACK;
763 switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) {
764 case 0:
765 _leave(" [replied]");
766 return;
767
768 case -ENOMEM:
769 _debug("oom");
770 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
771 RX_USER_ABORT, -ENOMEM, "KOO");
772 default:
773 _leave(" [error]");
774 return;
775 }
776 }
777
778 /*
779 * send a simple reply
780 */
781 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
782 {
783 struct msghdr msg;
784 struct kvec iov[1];
785 int n;
786
787 _enter("");
788
789 rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, len);
790
791 iov[0].iov_base = (void *) buf;
792 iov[0].iov_len = len;
793 msg.msg_name = NULL;
794 msg.msg_namelen = 0;
795 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
796 msg.msg_control = NULL;
797 msg.msg_controllen = 0;
798 msg.msg_flags = 0;
799
800 call->state = AFS_CALL_AWAIT_ACK;
801 n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len);
802 if (n >= 0) {
803 /* Success */
804 _leave(" [replied]");
805 return;
806 }
807
808 if (n == -ENOMEM) {
809 _debug("oom");
810 rxrpc_kernel_abort_call(afs_socket, call->rxcall,
811 RX_USER_ABORT, -ENOMEM, "KOO");
812 }
813 _leave(" [error]");
814 }
815
816 /*
817 * Extract a piece of data from the received data socket buffers.
818 */
819 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
820 bool want_more)
821 {
822 int ret;
823
824 _enter("{%s,%zu},,%zu,%d",
825 call->type->name, call->offset, count, want_more);
826
827 ASSERTCMP(call->offset, <=, count);
828
829 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
830 buf, count, &call->offset,
831 want_more, &call->abort_code);
832 trace_afs_recv_data(call, count, call->offset, want_more, ret);
833 if (ret == 0 || ret == -EAGAIN)
834 return ret;
835
836 if (ret == 1) {
837 switch (call->state) {
838 case AFS_CALL_AWAIT_REPLY:
839 call->state = AFS_CALL_COMPLETE;
840 break;
841 case AFS_CALL_AWAIT_REQUEST:
842 call->state = AFS_CALL_REPLYING;
843 break;
844 default:
845 break;
846 }
847 return 0;
848 }
849
850 if (ret == -ECONNABORTED)
851 call->error = call->type->abort_to_error(call->abort_code);
852 else
853 call->error = ret;
854 call->state = AFS_CALL_COMPLETE;
855 return ret;
856 }