]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
58 {
59 struct va_format vaf;
60 va_list args;
61
62 va_start(args, fmt);
63 vaf.fmt = fmt;
64 vaf.va = &args;
65 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
66 va_end(args);
67 }
68
69 static void bdev_write_inode(struct block_device *bdev)
70 {
71 struct inode *inode = bdev->bd_inode;
72 int ret;
73
74 spin_lock(&inode->i_lock);
75 while (inode->i_state & I_DIRTY) {
76 spin_unlock(&inode->i_lock);
77 ret = write_inode_now(inode, true);
78 if (ret) {
79 char name[BDEVNAME_SIZE];
80 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
81 "for block device %s (err=%d).\n",
82 bdevname(bdev, name), ret);
83 }
84 spin_lock(&inode->i_lock);
85 }
86 spin_unlock(&inode->i_lock);
87 }
88
89 /* Kill _all_ buffers and pagecache , dirty or not.. */
90 void kill_bdev(struct block_device *bdev)
91 {
92 struct address_space *mapping = bdev->bd_inode->i_mapping;
93
94 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
95 return;
96
97 invalidate_bh_lrus();
98 truncate_inode_pages(mapping, 0);
99 }
100 EXPORT_SYMBOL(kill_bdev);
101
102 /* Invalidate clean unused buffers and pagecache. */
103 void invalidate_bdev(struct block_device *bdev)
104 {
105 struct address_space *mapping = bdev->bd_inode->i_mapping;
106
107 if (mapping->nrpages) {
108 invalidate_bh_lrus();
109 lru_add_drain_all(); /* make sure all lru add caches are flushed */
110 invalidate_mapping_pages(mapping, 0, -1);
111 }
112 /* 99% of the time, we don't need to flush the cleancache on the bdev.
113 * But, for the strange corners, lets be cautious
114 */
115 cleancache_invalidate_inode(mapping);
116 }
117 EXPORT_SYMBOL(invalidate_bdev);
118
119 int set_blocksize(struct block_device *bdev, int size)
120 {
121 /* Size must be a power of two, and between 512 and PAGE_SIZE */
122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
123 return -EINVAL;
124
125 /* Size cannot be smaller than the size supported by the device */
126 if (size < bdev_logical_block_size(bdev))
127 return -EINVAL;
128
129 /* Don't change the size if it is same as current */
130 if (bdev->bd_block_size != size) {
131 sync_blockdev(bdev);
132 bdev->bd_block_size = size;
133 bdev->bd_inode->i_blkbits = blksize_bits(size);
134 kill_bdev(bdev);
135 }
136 return 0;
137 }
138
139 EXPORT_SYMBOL(set_blocksize);
140
141 int sb_set_blocksize(struct super_block *sb, int size)
142 {
143 if (set_blocksize(sb->s_bdev, size))
144 return 0;
145 /* If we get here, we know size is power of two
146 * and it's value is between 512 and PAGE_SIZE */
147 sb->s_blocksize = size;
148 sb->s_blocksize_bits = blksize_bits(size);
149 return sb->s_blocksize;
150 }
151
152 EXPORT_SYMBOL(sb_set_blocksize);
153
154 int sb_min_blocksize(struct super_block *sb, int size)
155 {
156 int minsize = bdev_logical_block_size(sb->s_bdev);
157 if (size < minsize)
158 size = minsize;
159 return sb_set_blocksize(sb, size);
160 }
161
162 EXPORT_SYMBOL(sb_min_blocksize);
163
164 static int
165 blkdev_get_block(struct inode *inode, sector_t iblock,
166 struct buffer_head *bh, int create)
167 {
168 bh->b_bdev = I_BDEV(inode);
169 bh->b_blocknr = iblock;
170 set_buffer_mapped(bh);
171 return 0;
172 }
173
174 static struct inode *bdev_file_inode(struct file *file)
175 {
176 return file->f_mapping->host;
177 }
178
179 static unsigned int dio_bio_write_op(struct kiocb *iocb)
180 {
181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
182
183 /* avoid the need for a I/O completion work item */
184 if (iocb->ki_flags & IOCB_DSYNC)
185 op |= REQ_FUA;
186 return op;
187 }
188
189 #define DIO_INLINE_BIO_VECS 4
190
191 static void blkdev_bio_end_io_simple(struct bio *bio)
192 {
193 struct task_struct *waiter = bio->bi_private;
194
195 WRITE_ONCE(bio->bi_private, NULL);
196 wake_up_process(waiter);
197 }
198
199 static ssize_t
200 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
201 int nr_pages)
202 {
203 struct file *file = iocb->ki_filp;
204 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
206 loff_t pos = iocb->ki_pos;
207 bool should_dirty = false;
208 struct bio bio;
209 ssize_t ret;
210 blk_qc_t qc;
211 int i;
212
213 if ((pos | iov_iter_alignment(iter)) &
214 (bdev_logical_block_size(bdev) - 1))
215 return -EINVAL;
216
217 if (nr_pages <= DIO_INLINE_BIO_VECS)
218 vecs = inline_vecs;
219 else {
220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
221 if (!vecs)
222 return -ENOMEM;
223 }
224
225 bio_init(&bio, vecs, nr_pages);
226 bio.bi_bdev = bdev;
227 bio.bi_iter.bi_sector = pos >> 9;
228 bio.bi_write_hint = iocb->ki_hint;
229 bio.bi_private = current;
230 bio.bi_end_io = blkdev_bio_end_io_simple;
231
232 ret = bio_iov_iter_get_pages(&bio, iter);
233 if (unlikely(ret))
234 return ret;
235 ret = bio.bi_iter.bi_size;
236
237 if (iov_iter_rw(iter) == READ) {
238 bio.bi_opf = REQ_OP_READ;
239 if (iter_is_iovec(iter))
240 should_dirty = true;
241 } else {
242 bio.bi_opf = dio_bio_write_op(iocb);
243 task_io_account_write(ret);
244 }
245
246 qc = submit_bio(&bio);
247 for (;;) {
248 set_current_state(TASK_UNINTERRUPTIBLE);
249 if (!READ_ONCE(bio.bi_private))
250 break;
251 if (!(iocb->ki_flags & IOCB_HIPRI) ||
252 !blk_mq_poll(bdev_get_queue(bdev), qc))
253 io_schedule();
254 }
255 __set_current_state(TASK_RUNNING);
256
257 bio_for_each_segment_all(bvec, &bio, i) {
258 if (should_dirty && !PageCompound(bvec->bv_page))
259 set_page_dirty_lock(bvec->bv_page);
260 put_page(bvec->bv_page);
261 }
262
263 if (vecs != inline_vecs)
264 kfree(vecs);
265
266 if (unlikely(bio.bi_status))
267 ret = blk_status_to_errno(bio.bi_status);
268
269 bio_uninit(&bio);
270
271 return ret;
272 }
273
274 struct blkdev_dio {
275 union {
276 struct kiocb *iocb;
277 struct task_struct *waiter;
278 };
279 size_t size;
280 atomic_t ref;
281 bool multi_bio : 1;
282 bool should_dirty : 1;
283 bool is_sync : 1;
284 struct bio bio;
285 };
286
287 static struct bio_set *blkdev_dio_pool __read_mostly;
288
289 static void blkdev_bio_end_io(struct bio *bio)
290 {
291 struct blkdev_dio *dio = bio->bi_private;
292 bool should_dirty = dio->should_dirty;
293
294 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
295 if (bio->bi_status && !dio->bio.bi_status)
296 dio->bio.bi_status = bio->bi_status;
297 } else {
298 if (!dio->is_sync) {
299 struct kiocb *iocb = dio->iocb;
300 ssize_t ret;
301
302 if (likely(!dio->bio.bi_status)) {
303 ret = dio->size;
304 iocb->ki_pos += ret;
305 } else {
306 ret = blk_status_to_errno(dio->bio.bi_status);
307 }
308
309 dio->iocb->ki_complete(iocb, ret, 0);
310 bio_put(&dio->bio);
311 } else {
312 struct task_struct *waiter = dio->waiter;
313
314 WRITE_ONCE(dio->waiter, NULL);
315 wake_up_process(waiter);
316 }
317 }
318
319 if (should_dirty) {
320 bio_check_pages_dirty(bio);
321 } else {
322 struct bio_vec *bvec;
323 int i;
324
325 bio_for_each_segment_all(bvec, bio, i)
326 put_page(bvec->bv_page);
327 bio_put(bio);
328 }
329 }
330
331 static ssize_t
332 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
333 {
334 struct file *file = iocb->ki_filp;
335 struct inode *inode = bdev_file_inode(file);
336 struct block_device *bdev = I_BDEV(inode);
337 struct blk_plug plug;
338 struct blkdev_dio *dio;
339 struct bio *bio;
340 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
341 loff_t pos = iocb->ki_pos;
342 blk_qc_t qc = BLK_QC_T_NONE;
343 int ret = 0;
344
345 if ((pos | iov_iter_alignment(iter)) &
346 (bdev_logical_block_size(bdev) - 1))
347 return -EINVAL;
348
349 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
350 bio_get(bio); /* extra ref for the completion handler */
351
352 dio = container_of(bio, struct blkdev_dio, bio);
353 dio->is_sync = is_sync = is_sync_kiocb(iocb);
354 if (dio->is_sync)
355 dio->waiter = current;
356 else
357 dio->iocb = iocb;
358
359 dio->size = 0;
360 dio->multi_bio = false;
361 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
362
363 blk_start_plug(&plug);
364 for (;;) {
365 bio->bi_bdev = bdev;
366 bio->bi_iter.bi_sector = pos >> 9;
367 bio->bi_write_hint = iocb->ki_hint;
368 bio->bi_private = dio;
369 bio->bi_end_io = blkdev_bio_end_io;
370
371 ret = bio_iov_iter_get_pages(bio, iter);
372 if (unlikely(ret)) {
373 bio->bi_status = BLK_STS_IOERR;
374 bio_endio(bio);
375 break;
376 }
377
378 if (is_read) {
379 bio->bi_opf = REQ_OP_READ;
380 if (dio->should_dirty)
381 bio_set_pages_dirty(bio);
382 } else {
383 bio->bi_opf = dio_bio_write_op(iocb);
384 task_io_account_write(bio->bi_iter.bi_size);
385 }
386
387 dio->size += bio->bi_iter.bi_size;
388 pos += bio->bi_iter.bi_size;
389
390 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
391 if (!nr_pages) {
392 qc = submit_bio(bio);
393 break;
394 }
395
396 if (!dio->multi_bio) {
397 dio->multi_bio = true;
398 atomic_set(&dio->ref, 2);
399 } else {
400 atomic_inc(&dio->ref);
401 }
402
403 submit_bio(bio);
404 bio = bio_alloc(GFP_KERNEL, nr_pages);
405 }
406 blk_finish_plug(&plug);
407
408 if (!is_sync)
409 return -EIOCBQUEUED;
410
411 for (;;) {
412 set_current_state(TASK_UNINTERRUPTIBLE);
413 if (!READ_ONCE(dio->waiter))
414 break;
415
416 if (!(iocb->ki_flags & IOCB_HIPRI) ||
417 !blk_mq_poll(bdev_get_queue(bdev), qc))
418 io_schedule();
419 }
420 __set_current_state(TASK_RUNNING);
421
422 if (!ret)
423 ret = blk_status_to_errno(dio->bio.bi_status);
424 if (likely(!ret))
425 ret = dio->size;
426
427 bio_put(&dio->bio);
428 return ret;
429 }
430
431 static ssize_t
432 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
433 {
434 int nr_pages;
435
436 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
437 if (!nr_pages)
438 return 0;
439 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
440 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
441
442 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
443 }
444
445 static __init int blkdev_init(void)
446 {
447 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
448 if (!blkdev_dio_pool)
449 return -ENOMEM;
450 return 0;
451 }
452 module_init(blkdev_init);
453
454 int __sync_blockdev(struct block_device *bdev, int wait)
455 {
456 if (!bdev)
457 return 0;
458 if (!wait)
459 return filemap_flush(bdev->bd_inode->i_mapping);
460 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
461 }
462
463 /*
464 * Write out and wait upon all the dirty data associated with a block
465 * device via its mapping. Does not take the superblock lock.
466 */
467 int sync_blockdev(struct block_device *bdev)
468 {
469 return __sync_blockdev(bdev, 1);
470 }
471 EXPORT_SYMBOL(sync_blockdev);
472
473 /*
474 * Write out and wait upon all dirty data associated with this
475 * device. Filesystem data as well as the underlying block
476 * device. Takes the superblock lock.
477 */
478 int fsync_bdev(struct block_device *bdev)
479 {
480 struct super_block *sb = get_super(bdev);
481 if (sb) {
482 int res = sync_filesystem(sb);
483 drop_super(sb);
484 return res;
485 }
486 return sync_blockdev(bdev);
487 }
488 EXPORT_SYMBOL(fsync_bdev);
489
490 /**
491 * freeze_bdev -- lock a filesystem and force it into a consistent state
492 * @bdev: blockdevice to lock
493 *
494 * If a superblock is found on this device, we take the s_umount semaphore
495 * on it to make sure nobody unmounts until the snapshot creation is done.
496 * The reference counter (bd_fsfreeze_count) guarantees that only the last
497 * unfreeze process can unfreeze the frozen filesystem actually when multiple
498 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
499 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
500 * actually.
501 */
502 struct super_block *freeze_bdev(struct block_device *bdev)
503 {
504 struct super_block *sb;
505 int error = 0;
506
507 mutex_lock(&bdev->bd_fsfreeze_mutex);
508 if (++bdev->bd_fsfreeze_count > 1) {
509 /*
510 * We don't even need to grab a reference - the first call
511 * to freeze_bdev grab an active reference and only the last
512 * thaw_bdev drops it.
513 */
514 sb = get_super(bdev);
515 if (sb)
516 drop_super(sb);
517 mutex_unlock(&bdev->bd_fsfreeze_mutex);
518 return sb;
519 }
520
521 sb = get_active_super(bdev);
522 if (!sb)
523 goto out;
524 if (sb->s_op->freeze_super)
525 error = sb->s_op->freeze_super(sb);
526 else
527 error = freeze_super(sb);
528 if (error) {
529 deactivate_super(sb);
530 bdev->bd_fsfreeze_count--;
531 mutex_unlock(&bdev->bd_fsfreeze_mutex);
532 return ERR_PTR(error);
533 }
534 deactivate_super(sb);
535 out:
536 sync_blockdev(bdev);
537 mutex_unlock(&bdev->bd_fsfreeze_mutex);
538 return sb; /* thaw_bdev releases s->s_umount */
539 }
540 EXPORT_SYMBOL(freeze_bdev);
541
542 /**
543 * thaw_bdev -- unlock filesystem
544 * @bdev: blockdevice to unlock
545 * @sb: associated superblock
546 *
547 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
548 */
549 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
550 {
551 int error = -EINVAL;
552
553 mutex_lock(&bdev->bd_fsfreeze_mutex);
554 if (!bdev->bd_fsfreeze_count)
555 goto out;
556
557 error = 0;
558 if (--bdev->bd_fsfreeze_count > 0)
559 goto out;
560
561 if (!sb)
562 goto out;
563
564 if (sb->s_op->thaw_super)
565 error = sb->s_op->thaw_super(sb);
566 else
567 error = thaw_super(sb);
568 if (error)
569 bdev->bd_fsfreeze_count++;
570 out:
571 mutex_unlock(&bdev->bd_fsfreeze_mutex);
572 return error;
573 }
574 EXPORT_SYMBOL(thaw_bdev);
575
576 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
577 {
578 return block_write_full_page(page, blkdev_get_block, wbc);
579 }
580
581 static int blkdev_readpage(struct file * file, struct page * page)
582 {
583 return block_read_full_page(page, blkdev_get_block);
584 }
585
586 static int blkdev_readpages(struct file *file, struct address_space *mapping,
587 struct list_head *pages, unsigned nr_pages)
588 {
589 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
590 }
591
592 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
593 loff_t pos, unsigned len, unsigned flags,
594 struct page **pagep, void **fsdata)
595 {
596 return block_write_begin(mapping, pos, len, flags, pagep,
597 blkdev_get_block);
598 }
599
600 static int blkdev_write_end(struct file *file, struct address_space *mapping,
601 loff_t pos, unsigned len, unsigned copied,
602 struct page *page, void *fsdata)
603 {
604 int ret;
605 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
606
607 unlock_page(page);
608 put_page(page);
609
610 return ret;
611 }
612
613 /*
614 * private llseek:
615 * for a block special file file_inode(file)->i_size is zero
616 * so we compute the size by hand (just as in block_read/write above)
617 */
618 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
619 {
620 struct inode *bd_inode = bdev_file_inode(file);
621 loff_t retval;
622
623 inode_lock(bd_inode);
624 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
625 inode_unlock(bd_inode);
626 return retval;
627 }
628
629 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
630 {
631 struct inode *bd_inode = bdev_file_inode(filp);
632 struct block_device *bdev = I_BDEV(bd_inode);
633 int error;
634
635 error = file_write_and_wait_range(filp, start, end);
636 if (error)
637 return error;
638
639 /*
640 * There is no need to serialise calls to blkdev_issue_flush with
641 * i_mutex and doing so causes performance issues with concurrent
642 * O_SYNC writers to a block device.
643 */
644 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
645 if (error == -EOPNOTSUPP)
646 error = 0;
647
648 return error;
649 }
650 EXPORT_SYMBOL(blkdev_fsync);
651
652 /**
653 * bdev_read_page() - Start reading a page from a block device
654 * @bdev: The device to read the page from
655 * @sector: The offset on the device to read the page to (need not be aligned)
656 * @page: The page to read
657 *
658 * On entry, the page should be locked. It will be unlocked when the page
659 * has been read. If the block driver implements rw_page synchronously,
660 * that will be true on exit from this function, but it need not be.
661 *
662 * Errors returned by this function are usually "soft", eg out of memory, or
663 * queue full; callers should try a different route to read this page rather
664 * than propagate an error back up the stack.
665 *
666 * Return: negative errno if an error occurs, 0 if submission was successful.
667 */
668 int bdev_read_page(struct block_device *bdev, sector_t sector,
669 struct page *page)
670 {
671 const struct block_device_operations *ops = bdev->bd_disk->fops;
672 int result = -EOPNOTSUPP;
673
674 if (!ops->rw_page || bdev_get_integrity(bdev))
675 return result;
676
677 result = blk_queue_enter(bdev->bd_queue, false);
678 if (result)
679 return result;
680 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
681 blk_queue_exit(bdev->bd_queue);
682 return result;
683 }
684 EXPORT_SYMBOL_GPL(bdev_read_page);
685
686 /**
687 * bdev_write_page() - Start writing a page to a block device
688 * @bdev: The device to write the page to
689 * @sector: The offset on the device to write the page to (need not be aligned)
690 * @page: The page to write
691 * @wbc: The writeback_control for the write
692 *
693 * On entry, the page should be locked and not currently under writeback.
694 * On exit, if the write started successfully, the page will be unlocked and
695 * under writeback. If the write failed already (eg the driver failed to
696 * queue the page to the device), the page will still be locked. If the
697 * caller is a ->writepage implementation, it will need to unlock the page.
698 *
699 * Errors returned by this function are usually "soft", eg out of memory, or
700 * queue full; callers should try a different route to write this page rather
701 * than propagate an error back up the stack.
702 *
703 * Return: negative errno if an error occurs, 0 if submission was successful.
704 */
705 int bdev_write_page(struct block_device *bdev, sector_t sector,
706 struct page *page, struct writeback_control *wbc)
707 {
708 int result;
709 const struct block_device_operations *ops = bdev->bd_disk->fops;
710
711 if (!ops->rw_page || bdev_get_integrity(bdev))
712 return -EOPNOTSUPP;
713 result = blk_queue_enter(bdev->bd_queue, false);
714 if (result)
715 return result;
716
717 set_page_writeback(page);
718 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
719 if (result) {
720 end_page_writeback(page);
721 } else {
722 clean_page_buffers(page);
723 unlock_page(page);
724 }
725 blk_queue_exit(bdev->bd_queue);
726 return result;
727 }
728 EXPORT_SYMBOL_GPL(bdev_write_page);
729
730 /*
731 * pseudo-fs
732 */
733
734 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
735 static struct kmem_cache * bdev_cachep __read_mostly;
736
737 static struct inode *bdev_alloc_inode(struct super_block *sb)
738 {
739 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
740 if (!ei)
741 return NULL;
742 return &ei->vfs_inode;
743 }
744
745 static void bdev_i_callback(struct rcu_head *head)
746 {
747 struct inode *inode = container_of(head, struct inode, i_rcu);
748 struct bdev_inode *bdi = BDEV_I(inode);
749
750 kmem_cache_free(bdev_cachep, bdi);
751 }
752
753 static void bdev_destroy_inode(struct inode *inode)
754 {
755 call_rcu(&inode->i_rcu, bdev_i_callback);
756 }
757
758 static void init_once(void *foo)
759 {
760 struct bdev_inode *ei = (struct bdev_inode *) foo;
761 struct block_device *bdev = &ei->bdev;
762
763 memset(bdev, 0, sizeof(*bdev));
764 mutex_init(&bdev->bd_mutex);
765 INIT_LIST_HEAD(&bdev->bd_list);
766 #ifdef CONFIG_SYSFS
767 INIT_LIST_HEAD(&bdev->bd_holder_disks);
768 #endif
769 bdev->bd_bdi = &noop_backing_dev_info;
770 inode_init_once(&ei->vfs_inode);
771 /* Initialize mutex for freeze. */
772 mutex_init(&bdev->bd_fsfreeze_mutex);
773 }
774
775 static void bdev_evict_inode(struct inode *inode)
776 {
777 struct block_device *bdev = &BDEV_I(inode)->bdev;
778 truncate_inode_pages_final(&inode->i_data);
779 invalidate_inode_buffers(inode); /* is it needed here? */
780 clear_inode(inode);
781 spin_lock(&bdev_lock);
782 list_del_init(&bdev->bd_list);
783 spin_unlock(&bdev_lock);
784 /* Detach inode from wb early as bdi_put() may free bdi->wb */
785 inode_detach_wb(inode);
786 if (bdev->bd_bdi != &noop_backing_dev_info) {
787 bdi_put(bdev->bd_bdi);
788 bdev->bd_bdi = &noop_backing_dev_info;
789 }
790 }
791
792 static const struct super_operations bdev_sops = {
793 .statfs = simple_statfs,
794 .alloc_inode = bdev_alloc_inode,
795 .destroy_inode = bdev_destroy_inode,
796 .drop_inode = generic_delete_inode,
797 .evict_inode = bdev_evict_inode,
798 };
799
800 static struct dentry *bd_mount(struct file_system_type *fs_type,
801 int flags, const char *dev_name, void *data)
802 {
803 struct dentry *dent;
804 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
805 if (!IS_ERR(dent))
806 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
807 return dent;
808 }
809
810 static struct file_system_type bd_type = {
811 .name = "bdev",
812 .mount = bd_mount,
813 .kill_sb = kill_anon_super,
814 };
815
816 struct super_block *blockdev_superblock __read_mostly;
817 EXPORT_SYMBOL_GPL(blockdev_superblock);
818
819 void __init bdev_cache_init(void)
820 {
821 int err;
822 static struct vfsmount *bd_mnt;
823
824 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
825 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
826 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
827 init_once);
828 err = register_filesystem(&bd_type);
829 if (err)
830 panic("Cannot register bdev pseudo-fs");
831 bd_mnt = kern_mount(&bd_type);
832 if (IS_ERR(bd_mnt))
833 panic("Cannot create bdev pseudo-fs");
834 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
835 }
836
837 /*
838 * Most likely _very_ bad one - but then it's hardly critical for small
839 * /dev and can be fixed when somebody will need really large one.
840 * Keep in mind that it will be fed through icache hash function too.
841 */
842 static inline unsigned long hash(dev_t dev)
843 {
844 return MAJOR(dev)+MINOR(dev);
845 }
846
847 static int bdev_test(struct inode *inode, void *data)
848 {
849 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
850 }
851
852 static int bdev_set(struct inode *inode, void *data)
853 {
854 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
855 return 0;
856 }
857
858 static LIST_HEAD(all_bdevs);
859
860 /*
861 * If there is a bdev inode for this device, unhash it so that it gets evicted
862 * as soon as last inode reference is dropped.
863 */
864 void bdev_unhash_inode(dev_t dev)
865 {
866 struct inode *inode;
867
868 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
869 if (inode) {
870 remove_inode_hash(inode);
871 iput(inode);
872 }
873 }
874
875 struct block_device *bdget(dev_t dev)
876 {
877 struct block_device *bdev;
878 struct inode *inode;
879
880 inode = iget5_locked(blockdev_superblock, hash(dev),
881 bdev_test, bdev_set, &dev);
882
883 if (!inode)
884 return NULL;
885
886 bdev = &BDEV_I(inode)->bdev;
887
888 if (inode->i_state & I_NEW) {
889 bdev->bd_contains = NULL;
890 bdev->bd_super = NULL;
891 bdev->bd_inode = inode;
892 bdev->bd_block_size = i_blocksize(inode);
893 bdev->bd_part_count = 0;
894 bdev->bd_invalidated = 0;
895 inode->i_mode = S_IFBLK;
896 inode->i_rdev = dev;
897 inode->i_bdev = bdev;
898 inode->i_data.a_ops = &def_blk_aops;
899 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
900 spin_lock(&bdev_lock);
901 list_add(&bdev->bd_list, &all_bdevs);
902 spin_unlock(&bdev_lock);
903 unlock_new_inode(inode);
904 }
905 return bdev;
906 }
907
908 EXPORT_SYMBOL(bdget);
909
910 /**
911 * bdgrab -- Grab a reference to an already referenced block device
912 * @bdev: Block device to grab a reference to.
913 */
914 struct block_device *bdgrab(struct block_device *bdev)
915 {
916 ihold(bdev->bd_inode);
917 return bdev;
918 }
919 EXPORT_SYMBOL(bdgrab);
920
921 long nr_blockdev_pages(void)
922 {
923 struct block_device *bdev;
924 long ret = 0;
925 spin_lock(&bdev_lock);
926 list_for_each_entry(bdev, &all_bdevs, bd_list) {
927 ret += bdev->bd_inode->i_mapping->nrpages;
928 }
929 spin_unlock(&bdev_lock);
930 return ret;
931 }
932
933 void bdput(struct block_device *bdev)
934 {
935 iput(bdev->bd_inode);
936 }
937
938 EXPORT_SYMBOL(bdput);
939
940 static struct block_device *bd_acquire(struct inode *inode)
941 {
942 struct block_device *bdev;
943
944 spin_lock(&bdev_lock);
945 bdev = inode->i_bdev;
946 if (bdev && !inode_unhashed(bdev->bd_inode)) {
947 bdgrab(bdev);
948 spin_unlock(&bdev_lock);
949 return bdev;
950 }
951 spin_unlock(&bdev_lock);
952
953 /*
954 * i_bdev references block device inode that was already shut down
955 * (corresponding device got removed). Remove the reference and look
956 * up block device inode again just in case new device got
957 * reestablished under the same device number.
958 */
959 if (bdev)
960 bd_forget(inode);
961
962 bdev = bdget(inode->i_rdev);
963 if (bdev) {
964 spin_lock(&bdev_lock);
965 if (!inode->i_bdev) {
966 /*
967 * We take an additional reference to bd_inode,
968 * and it's released in clear_inode() of inode.
969 * So, we can access it via ->i_mapping always
970 * without igrab().
971 */
972 bdgrab(bdev);
973 inode->i_bdev = bdev;
974 inode->i_mapping = bdev->bd_inode->i_mapping;
975 }
976 spin_unlock(&bdev_lock);
977 }
978 return bdev;
979 }
980
981 /* Call when you free inode */
982
983 void bd_forget(struct inode *inode)
984 {
985 struct block_device *bdev = NULL;
986
987 spin_lock(&bdev_lock);
988 if (!sb_is_blkdev_sb(inode->i_sb))
989 bdev = inode->i_bdev;
990 inode->i_bdev = NULL;
991 inode->i_mapping = &inode->i_data;
992 spin_unlock(&bdev_lock);
993
994 if (bdev)
995 bdput(bdev);
996 }
997
998 /**
999 * bd_may_claim - test whether a block device can be claimed
1000 * @bdev: block device of interest
1001 * @whole: whole block device containing @bdev, may equal @bdev
1002 * @holder: holder trying to claim @bdev
1003 *
1004 * Test whether @bdev can be claimed by @holder.
1005 *
1006 * CONTEXT:
1007 * spin_lock(&bdev_lock).
1008 *
1009 * RETURNS:
1010 * %true if @bdev can be claimed, %false otherwise.
1011 */
1012 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1013 void *holder)
1014 {
1015 if (bdev->bd_holder == holder)
1016 return true; /* already a holder */
1017 else if (bdev->bd_holder != NULL)
1018 return false; /* held by someone else */
1019 else if (whole == bdev)
1020 return true; /* is a whole device which isn't held */
1021
1022 else if (whole->bd_holder == bd_may_claim)
1023 return true; /* is a partition of a device that is being partitioned */
1024 else if (whole->bd_holder != NULL)
1025 return false; /* is a partition of a held device */
1026 else
1027 return true; /* is a partition of an un-held device */
1028 }
1029
1030 /**
1031 * bd_prepare_to_claim - prepare to claim a block device
1032 * @bdev: block device of interest
1033 * @whole: the whole device containing @bdev, may equal @bdev
1034 * @holder: holder trying to claim @bdev
1035 *
1036 * Prepare to claim @bdev. This function fails if @bdev is already
1037 * claimed by another holder and waits if another claiming is in
1038 * progress. This function doesn't actually claim. On successful
1039 * return, the caller has ownership of bd_claiming and bd_holder[s].
1040 *
1041 * CONTEXT:
1042 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1043 * it multiple times.
1044 *
1045 * RETURNS:
1046 * 0 if @bdev can be claimed, -EBUSY otherwise.
1047 */
1048 static int bd_prepare_to_claim(struct block_device *bdev,
1049 struct block_device *whole, void *holder)
1050 {
1051 retry:
1052 /* if someone else claimed, fail */
1053 if (!bd_may_claim(bdev, whole, holder))
1054 return -EBUSY;
1055
1056 /* if claiming is already in progress, wait for it to finish */
1057 if (whole->bd_claiming) {
1058 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1059 DEFINE_WAIT(wait);
1060
1061 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1062 spin_unlock(&bdev_lock);
1063 schedule();
1064 finish_wait(wq, &wait);
1065 spin_lock(&bdev_lock);
1066 goto retry;
1067 }
1068
1069 /* yay, all mine */
1070 return 0;
1071 }
1072
1073 /**
1074 * bd_start_claiming - start claiming a block device
1075 * @bdev: block device of interest
1076 * @holder: holder trying to claim @bdev
1077 *
1078 * @bdev is about to be opened exclusively. Check @bdev can be opened
1079 * exclusively and mark that an exclusive open is in progress. Each
1080 * successful call to this function must be matched with a call to
1081 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1082 * fail).
1083 *
1084 * This function is used to gain exclusive access to the block device
1085 * without actually causing other exclusive open attempts to fail. It
1086 * should be used when the open sequence itself requires exclusive
1087 * access but may subsequently fail.
1088 *
1089 * CONTEXT:
1090 * Might sleep.
1091 *
1092 * RETURNS:
1093 * Pointer to the block device containing @bdev on success, ERR_PTR()
1094 * value on failure.
1095 */
1096 static struct block_device *bd_start_claiming(struct block_device *bdev,
1097 void *holder)
1098 {
1099 struct gendisk *disk;
1100 struct block_device *whole;
1101 int partno, err;
1102
1103 might_sleep();
1104
1105 /*
1106 * @bdev might not have been initialized properly yet, look up
1107 * and grab the outer block device the hard way.
1108 */
1109 disk = get_gendisk(bdev->bd_dev, &partno);
1110 if (!disk)
1111 return ERR_PTR(-ENXIO);
1112
1113 /*
1114 * Normally, @bdev should equal what's returned from bdget_disk()
1115 * if partno is 0; however, some drivers (floppy) use multiple
1116 * bdev's for the same physical device and @bdev may be one of the
1117 * aliases. Keep @bdev if partno is 0. This means claimer
1118 * tracking is broken for those devices but it has always been that
1119 * way.
1120 */
1121 if (partno)
1122 whole = bdget_disk(disk, 0);
1123 else
1124 whole = bdgrab(bdev);
1125
1126 module_put(disk->fops->owner);
1127 put_disk(disk);
1128 if (!whole)
1129 return ERR_PTR(-ENOMEM);
1130
1131 /* prepare to claim, if successful, mark claiming in progress */
1132 spin_lock(&bdev_lock);
1133
1134 err = bd_prepare_to_claim(bdev, whole, holder);
1135 if (err == 0) {
1136 whole->bd_claiming = holder;
1137 spin_unlock(&bdev_lock);
1138 return whole;
1139 } else {
1140 spin_unlock(&bdev_lock);
1141 bdput(whole);
1142 return ERR_PTR(err);
1143 }
1144 }
1145
1146 #ifdef CONFIG_SYSFS
1147 struct bd_holder_disk {
1148 struct list_head list;
1149 struct gendisk *disk;
1150 int refcnt;
1151 };
1152
1153 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1154 struct gendisk *disk)
1155 {
1156 struct bd_holder_disk *holder;
1157
1158 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1159 if (holder->disk == disk)
1160 return holder;
1161 return NULL;
1162 }
1163
1164 static int add_symlink(struct kobject *from, struct kobject *to)
1165 {
1166 return sysfs_create_link(from, to, kobject_name(to));
1167 }
1168
1169 static void del_symlink(struct kobject *from, struct kobject *to)
1170 {
1171 sysfs_remove_link(from, kobject_name(to));
1172 }
1173
1174 /**
1175 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1176 * @bdev: the claimed slave bdev
1177 * @disk: the holding disk
1178 *
1179 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1180 *
1181 * This functions creates the following sysfs symlinks.
1182 *
1183 * - from "slaves" directory of the holder @disk to the claimed @bdev
1184 * - from "holders" directory of the @bdev to the holder @disk
1185 *
1186 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1187 * passed to bd_link_disk_holder(), then:
1188 *
1189 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1190 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1191 *
1192 * The caller must have claimed @bdev before calling this function and
1193 * ensure that both @bdev and @disk are valid during the creation and
1194 * lifetime of these symlinks.
1195 *
1196 * CONTEXT:
1197 * Might sleep.
1198 *
1199 * RETURNS:
1200 * 0 on success, -errno on failure.
1201 */
1202 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1203 {
1204 struct bd_holder_disk *holder;
1205 int ret = 0;
1206
1207 mutex_lock(&bdev->bd_mutex);
1208
1209 WARN_ON_ONCE(!bdev->bd_holder);
1210
1211 /* FIXME: remove the following once add_disk() handles errors */
1212 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1213 goto out_unlock;
1214
1215 holder = bd_find_holder_disk(bdev, disk);
1216 if (holder) {
1217 holder->refcnt++;
1218 goto out_unlock;
1219 }
1220
1221 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1222 if (!holder) {
1223 ret = -ENOMEM;
1224 goto out_unlock;
1225 }
1226
1227 INIT_LIST_HEAD(&holder->list);
1228 holder->disk = disk;
1229 holder->refcnt = 1;
1230
1231 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1232 if (ret)
1233 goto out_free;
1234
1235 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1236 if (ret)
1237 goto out_del;
1238 /*
1239 * bdev could be deleted beneath us which would implicitly destroy
1240 * the holder directory. Hold on to it.
1241 */
1242 kobject_get(bdev->bd_part->holder_dir);
1243
1244 list_add(&holder->list, &bdev->bd_holder_disks);
1245 goto out_unlock;
1246
1247 out_del:
1248 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1249 out_free:
1250 kfree(holder);
1251 out_unlock:
1252 mutex_unlock(&bdev->bd_mutex);
1253 return ret;
1254 }
1255 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1256
1257 /**
1258 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1259 * @bdev: the calimed slave bdev
1260 * @disk: the holding disk
1261 *
1262 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1263 *
1264 * CONTEXT:
1265 * Might sleep.
1266 */
1267 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1268 {
1269 struct bd_holder_disk *holder;
1270
1271 mutex_lock(&bdev->bd_mutex);
1272
1273 holder = bd_find_holder_disk(bdev, disk);
1274
1275 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1276 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1277 del_symlink(bdev->bd_part->holder_dir,
1278 &disk_to_dev(disk)->kobj);
1279 kobject_put(bdev->bd_part->holder_dir);
1280 list_del_init(&holder->list);
1281 kfree(holder);
1282 }
1283
1284 mutex_unlock(&bdev->bd_mutex);
1285 }
1286 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1287 #endif
1288
1289 /**
1290 * flush_disk - invalidates all buffer-cache entries on a disk
1291 *
1292 * @bdev: struct block device to be flushed
1293 * @kill_dirty: flag to guide handling of dirty inodes
1294 *
1295 * Invalidates all buffer-cache entries on a disk. It should be called
1296 * when a disk has been changed -- either by a media change or online
1297 * resize.
1298 */
1299 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1300 {
1301 if (__invalidate_device(bdev, kill_dirty)) {
1302 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1303 "resized disk %s\n",
1304 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1305 }
1306
1307 if (!bdev->bd_disk)
1308 return;
1309 if (disk_part_scan_enabled(bdev->bd_disk))
1310 bdev->bd_invalidated = 1;
1311 }
1312
1313 /**
1314 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1315 * @disk: struct gendisk to check
1316 * @bdev: struct bdev to adjust.
1317 *
1318 * This routine checks to see if the bdev size does not match the disk size
1319 * and adjusts it if it differs.
1320 */
1321 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1322 {
1323 loff_t disk_size, bdev_size;
1324
1325 disk_size = (loff_t)get_capacity(disk) << 9;
1326 bdev_size = i_size_read(bdev->bd_inode);
1327 if (disk_size != bdev_size) {
1328 printk(KERN_INFO
1329 "%s: detected capacity change from %lld to %lld\n",
1330 disk->disk_name, bdev_size, disk_size);
1331 i_size_write(bdev->bd_inode, disk_size);
1332 flush_disk(bdev, false);
1333 }
1334 }
1335 EXPORT_SYMBOL(check_disk_size_change);
1336
1337 /**
1338 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1339 * @disk: struct gendisk to be revalidated
1340 *
1341 * This routine is a wrapper for lower-level driver's revalidate_disk
1342 * call-backs. It is used to do common pre and post operations needed
1343 * for all revalidate_disk operations.
1344 */
1345 int revalidate_disk(struct gendisk *disk)
1346 {
1347 struct block_device *bdev;
1348 int ret = 0;
1349
1350 if (disk->fops->revalidate_disk)
1351 ret = disk->fops->revalidate_disk(disk);
1352 bdev = bdget_disk(disk, 0);
1353 if (!bdev)
1354 return ret;
1355
1356 mutex_lock(&bdev->bd_mutex);
1357 check_disk_size_change(disk, bdev);
1358 bdev->bd_invalidated = 0;
1359 mutex_unlock(&bdev->bd_mutex);
1360 bdput(bdev);
1361 return ret;
1362 }
1363 EXPORT_SYMBOL(revalidate_disk);
1364
1365 /*
1366 * This routine checks whether a removable media has been changed,
1367 * and invalidates all buffer-cache-entries in that case. This
1368 * is a relatively slow routine, so we have to try to minimize using
1369 * it. Thus it is called only upon a 'mount' or 'open'. This
1370 * is the best way of combining speed and utility, I think.
1371 * People changing diskettes in the middle of an operation deserve
1372 * to lose :-)
1373 */
1374 int check_disk_change(struct block_device *bdev)
1375 {
1376 struct gendisk *disk = bdev->bd_disk;
1377 const struct block_device_operations *bdops = disk->fops;
1378 unsigned int events;
1379
1380 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1381 DISK_EVENT_EJECT_REQUEST);
1382 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1383 return 0;
1384
1385 flush_disk(bdev, true);
1386 if (bdops->revalidate_disk)
1387 bdops->revalidate_disk(bdev->bd_disk);
1388 return 1;
1389 }
1390
1391 EXPORT_SYMBOL(check_disk_change);
1392
1393 void bd_set_size(struct block_device *bdev, loff_t size)
1394 {
1395 unsigned bsize = bdev_logical_block_size(bdev);
1396
1397 inode_lock(bdev->bd_inode);
1398 i_size_write(bdev->bd_inode, size);
1399 inode_unlock(bdev->bd_inode);
1400 while (bsize < PAGE_SIZE) {
1401 if (size & bsize)
1402 break;
1403 bsize <<= 1;
1404 }
1405 bdev->bd_block_size = bsize;
1406 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1407 }
1408 EXPORT_SYMBOL(bd_set_size);
1409
1410 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1411
1412 /*
1413 * bd_mutex locking:
1414 *
1415 * mutex_lock(part->bd_mutex)
1416 * mutex_lock_nested(whole->bd_mutex, 1)
1417 */
1418
1419 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1420 {
1421 struct gendisk *disk;
1422 struct module *owner;
1423 int ret;
1424 int partno;
1425 int perm = 0;
1426
1427 if (mode & FMODE_READ)
1428 perm |= MAY_READ;
1429 if (mode & FMODE_WRITE)
1430 perm |= MAY_WRITE;
1431 /*
1432 * hooks: /n/, see "layering violations".
1433 */
1434 if (!for_part) {
1435 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1436 if (ret != 0) {
1437 bdput(bdev);
1438 return ret;
1439 }
1440 }
1441
1442 restart:
1443
1444 ret = -ENXIO;
1445 disk = get_gendisk(bdev->bd_dev, &partno);
1446 if (!disk)
1447 goto out;
1448 owner = disk->fops->owner;
1449
1450 disk_block_events(disk);
1451 mutex_lock_nested(&bdev->bd_mutex, for_part);
1452 if (!bdev->bd_openers) {
1453 bdev->bd_disk = disk;
1454 bdev->bd_queue = disk->queue;
1455 bdev->bd_contains = bdev;
1456
1457 if (!partno) {
1458 ret = -ENXIO;
1459 bdev->bd_part = disk_get_part(disk, partno);
1460 if (!bdev->bd_part)
1461 goto out_clear;
1462
1463 ret = 0;
1464 if (disk->fops->open) {
1465 ret = disk->fops->open(bdev, mode);
1466 if (ret == -ERESTARTSYS) {
1467 /* Lost a race with 'disk' being
1468 * deleted, try again.
1469 * See md.c
1470 */
1471 disk_put_part(bdev->bd_part);
1472 bdev->bd_part = NULL;
1473 bdev->bd_disk = NULL;
1474 bdev->bd_queue = NULL;
1475 mutex_unlock(&bdev->bd_mutex);
1476 disk_unblock_events(disk);
1477 put_disk(disk);
1478 module_put(owner);
1479 goto restart;
1480 }
1481 }
1482
1483 if (!ret)
1484 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1485
1486 /*
1487 * If the device is invalidated, rescan partition
1488 * if open succeeded or failed with -ENOMEDIUM.
1489 * The latter is necessary to prevent ghost
1490 * partitions on a removed medium.
1491 */
1492 if (bdev->bd_invalidated) {
1493 if (!ret)
1494 rescan_partitions(disk, bdev);
1495 else if (ret == -ENOMEDIUM)
1496 invalidate_partitions(disk, bdev);
1497 }
1498
1499 if (ret)
1500 goto out_clear;
1501 } else {
1502 struct block_device *whole;
1503 whole = bdget_disk(disk, 0);
1504 ret = -ENOMEM;
1505 if (!whole)
1506 goto out_clear;
1507 BUG_ON(for_part);
1508 ret = __blkdev_get(whole, mode, 1);
1509 if (ret)
1510 goto out_clear;
1511 bdev->bd_contains = whole;
1512 bdev->bd_part = disk_get_part(disk, partno);
1513 if (!(disk->flags & GENHD_FL_UP) ||
1514 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1515 ret = -ENXIO;
1516 goto out_clear;
1517 }
1518 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1519 }
1520
1521 if (bdev->bd_bdi == &noop_backing_dev_info)
1522 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1523 } else {
1524 if (bdev->bd_contains == bdev) {
1525 ret = 0;
1526 if (bdev->bd_disk->fops->open)
1527 ret = bdev->bd_disk->fops->open(bdev, mode);
1528 /* the same as first opener case, read comment there */
1529 if (bdev->bd_invalidated) {
1530 if (!ret)
1531 rescan_partitions(bdev->bd_disk, bdev);
1532 else if (ret == -ENOMEDIUM)
1533 invalidate_partitions(bdev->bd_disk, bdev);
1534 }
1535 if (ret)
1536 goto out_unlock_bdev;
1537 }
1538 /* only one opener holds refs to the module and disk */
1539 put_disk(disk);
1540 module_put(owner);
1541 }
1542 bdev->bd_openers++;
1543 if (for_part)
1544 bdev->bd_part_count++;
1545 mutex_unlock(&bdev->bd_mutex);
1546 disk_unblock_events(disk);
1547 return 0;
1548
1549 out_clear:
1550 disk_put_part(bdev->bd_part);
1551 bdev->bd_disk = NULL;
1552 bdev->bd_part = NULL;
1553 bdev->bd_queue = NULL;
1554 if (bdev != bdev->bd_contains)
1555 __blkdev_put(bdev->bd_contains, mode, 1);
1556 bdev->bd_contains = NULL;
1557 out_unlock_bdev:
1558 mutex_unlock(&bdev->bd_mutex);
1559 disk_unblock_events(disk);
1560 put_disk(disk);
1561 module_put(owner);
1562 out:
1563 bdput(bdev);
1564
1565 return ret;
1566 }
1567
1568 /**
1569 * blkdev_get - open a block device
1570 * @bdev: block_device to open
1571 * @mode: FMODE_* mask
1572 * @holder: exclusive holder identifier
1573 *
1574 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1575 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1576 * @holder is invalid. Exclusive opens may nest for the same @holder.
1577 *
1578 * On success, the reference count of @bdev is unchanged. On failure,
1579 * @bdev is put.
1580 *
1581 * CONTEXT:
1582 * Might sleep.
1583 *
1584 * RETURNS:
1585 * 0 on success, -errno on failure.
1586 */
1587 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1588 {
1589 struct block_device *whole = NULL;
1590 int res;
1591
1592 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1593
1594 if ((mode & FMODE_EXCL) && holder) {
1595 whole = bd_start_claiming(bdev, holder);
1596 if (IS_ERR(whole)) {
1597 bdput(bdev);
1598 return PTR_ERR(whole);
1599 }
1600 }
1601
1602 res = __blkdev_get(bdev, mode, 0);
1603
1604 if (whole) {
1605 struct gendisk *disk = whole->bd_disk;
1606
1607 /* finish claiming */
1608 mutex_lock(&bdev->bd_mutex);
1609 spin_lock(&bdev_lock);
1610
1611 if (!res) {
1612 BUG_ON(!bd_may_claim(bdev, whole, holder));
1613 /*
1614 * Note that for a whole device bd_holders
1615 * will be incremented twice, and bd_holder
1616 * will be set to bd_may_claim before being
1617 * set to holder
1618 */
1619 whole->bd_holders++;
1620 whole->bd_holder = bd_may_claim;
1621 bdev->bd_holders++;
1622 bdev->bd_holder = holder;
1623 }
1624
1625 /* tell others that we're done */
1626 BUG_ON(whole->bd_claiming != holder);
1627 whole->bd_claiming = NULL;
1628 wake_up_bit(&whole->bd_claiming, 0);
1629
1630 spin_unlock(&bdev_lock);
1631
1632 /*
1633 * Block event polling for write claims if requested. Any
1634 * write holder makes the write_holder state stick until
1635 * all are released. This is good enough and tracking
1636 * individual writeable reference is too fragile given the
1637 * way @mode is used in blkdev_get/put().
1638 */
1639 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1640 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1641 bdev->bd_write_holder = true;
1642 disk_block_events(disk);
1643 }
1644
1645 mutex_unlock(&bdev->bd_mutex);
1646 bdput(whole);
1647 }
1648
1649 return res;
1650 }
1651 EXPORT_SYMBOL(blkdev_get);
1652
1653 /**
1654 * blkdev_get_by_path - open a block device by name
1655 * @path: path to the block device to open
1656 * @mode: FMODE_* mask
1657 * @holder: exclusive holder identifier
1658 *
1659 * Open the blockdevice described by the device file at @path. @mode
1660 * and @holder are identical to blkdev_get().
1661 *
1662 * On success, the returned block_device has reference count of one.
1663 *
1664 * CONTEXT:
1665 * Might sleep.
1666 *
1667 * RETURNS:
1668 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1669 */
1670 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1671 void *holder)
1672 {
1673 struct block_device *bdev;
1674 int perm = 0;
1675 int err;
1676
1677 if (mode & FMODE_READ)
1678 perm |= MAY_READ;
1679 if (mode & FMODE_WRITE)
1680 perm |= MAY_WRITE;
1681 bdev = lookup_bdev(path, perm);
1682 if (IS_ERR(bdev))
1683 return bdev;
1684
1685 err = blkdev_get(bdev, mode, holder);
1686 if (err)
1687 return ERR_PTR(err);
1688
1689 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1690 blkdev_put(bdev, mode);
1691 return ERR_PTR(-EACCES);
1692 }
1693
1694 return bdev;
1695 }
1696 EXPORT_SYMBOL(blkdev_get_by_path);
1697
1698 /**
1699 * blkdev_get_by_dev - open a block device by device number
1700 * @dev: device number of block device to open
1701 * @mode: FMODE_* mask
1702 * @holder: exclusive holder identifier
1703 *
1704 * Open the blockdevice described by device number @dev. @mode and
1705 * @holder are identical to blkdev_get().
1706 *
1707 * Use it ONLY if you really do not have anything better - i.e. when
1708 * you are behind a truly sucky interface and all you are given is a
1709 * device number. _Never_ to be used for internal purposes. If you
1710 * ever need it - reconsider your API.
1711 *
1712 * On success, the returned block_device has reference count of one.
1713 *
1714 * CONTEXT:
1715 * Might sleep.
1716 *
1717 * RETURNS:
1718 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1719 */
1720 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1721 {
1722 struct block_device *bdev;
1723 int err;
1724
1725 bdev = bdget(dev);
1726 if (!bdev)
1727 return ERR_PTR(-ENOMEM);
1728
1729 err = blkdev_get(bdev, mode, holder);
1730 if (err)
1731 return ERR_PTR(err);
1732
1733 return bdev;
1734 }
1735 EXPORT_SYMBOL(blkdev_get_by_dev);
1736
1737 static int blkdev_open(struct inode * inode, struct file * filp)
1738 {
1739 struct block_device *bdev;
1740
1741 /*
1742 * Preserve backwards compatibility and allow large file access
1743 * even if userspace doesn't ask for it explicitly. Some mkfs
1744 * binary needs it. We might want to drop this workaround
1745 * during an unstable branch.
1746 */
1747 filp->f_flags |= O_LARGEFILE;
1748
1749 if (filp->f_flags & O_NDELAY)
1750 filp->f_mode |= FMODE_NDELAY;
1751 if (filp->f_flags & O_EXCL)
1752 filp->f_mode |= FMODE_EXCL;
1753 if ((filp->f_flags & O_ACCMODE) == 3)
1754 filp->f_mode |= FMODE_WRITE_IOCTL;
1755
1756 bdev = bd_acquire(inode);
1757 if (bdev == NULL)
1758 return -ENOMEM;
1759
1760 /*
1761 * A negative i_writecount for bdev->bd_inode means that the bdev
1762 * or one of its paritions is mounted in a user namespace. Deny
1763 * writing for non-root in this case, otherwise an unprivileged
1764 * user can attack the kernel by modifying the backing store of a
1765 * mounted filesystem.
1766 */
1767 if ((filp->f_mode & FMODE_WRITE) &&
1768 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN) &&
1769 !atomic_inc_unless_negative(&bdev->bd_inode->i_writecount)) {
1770 bdput(bdev);
1771 return -EBUSY;
1772 }
1773
1774 filp->f_mapping = bdev->bd_inode->i_mapping;
1775 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1776
1777 return blkdev_get(bdev, filp->f_mode, filp);
1778 }
1779
1780 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1781 {
1782 struct gendisk *disk = bdev->bd_disk;
1783 struct block_device *victim = NULL;
1784
1785 mutex_lock_nested(&bdev->bd_mutex, for_part);
1786 if (for_part)
1787 bdev->bd_part_count--;
1788
1789 if (!--bdev->bd_openers) {
1790 WARN_ON_ONCE(bdev->bd_holders);
1791 sync_blockdev(bdev);
1792 kill_bdev(bdev);
1793
1794 bdev_write_inode(bdev);
1795 }
1796 if (bdev->bd_contains == bdev) {
1797 if (disk->fops->release)
1798 disk->fops->release(disk, mode);
1799 }
1800 if (!bdev->bd_openers) {
1801 struct module *owner = disk->fops->owner;
1802
1803 disk_put_part(bdev->bd_part);
1804 bdev->bd_part = NULL;
1805 bdev->bd_disk = NULL;
1806 if (bdev != bdev->bd_contains)
1807 victim = bdev->bd_contains;
1808 bdev->bd_contains = NULL;
1809
1810 put_disk(disk);
1811 module_put(owner);
1812 }
1813 mutex_unlock(&bdev->bd_mutex);
1814 bdput(bdev);
1815 if (victim)
1816 __blkdev_put(victim, mode, 1);
1817 }
1818
1819 void blkdev_put(struct block_device *bdev, fmode_t mode)
1820 {
1821 mutex_lock(&bdev->bd_mutex);
1822
1823 if (mode & FMODE_EXCL) {
1824 bool bdev_free;
1825
1826 /*
1827 * Release a claim on the device. The holder fields
1828 * are protected with bdev_lock. bd_mutex is to
1829 * synchronize disk_holder unlinking.
1830 */
1831 spin_lock(&bdev_lock);
1832
1833 WARN_ON_ONCE(--bdev->bd_holders < 0);
1834 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1835
1836 /* bd_contains might point to self, check in a separate step */
1837 if ((bdev_free = !bdev->bd_holders))
1838 bdev->bd_holder = NULL;
1839 if (!bdev->bd_contains->bd_holders)
1840 bdev->bd_contains->bd_holder = NULL;
1841
1842 spin_unlock(&bdev_lock);
1843
1844 /*
1845 * If this was the last claim, remove holder link and
1846 * unblock evpoll if it was a write holder.
1847 */
1848 if (bdev_free && bdev->bd_write_holder) {
1849 disk_unblock_events(bdev->bd_disk);
1850 bdev->bd_write_holder = false;
1851 }
1852 }
1853
1854 /*
1855 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1856 * event. This is to ensure detection of media removal commanded
1857 * from userland - e.g. eject(1).
1858 */
1859 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1860
1861 mutex_unlock(&bdev->bd_mutex);
1862
1863 __blkdev_put(bdev, mode, 0);
1864 }
1865 EXPORT_SYMBOL(blkdev_put);
1866
1867 static int blkdev_close(struct inode * inode, struct file * filp)
1868 {
1869 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1870 if (filp->f_mode & FMODE_WRITE &&
1871 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN))
1872 atomic_dec(&bdev->bd_inode->i_writecount);
1873 blkdev_put(bdev, filp->f_mode);
1874 return 0;
1875 }
1876
1877 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1878 {
1879 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1880 fmode_t mode = file->f_mode;
1881
1882 /*
1883 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1884 * to updated it before every ioctl.
1885 */
1886 if (file->f_flags & O_NDELAY)
1887 mode |= FMODE_NDELAY;
1888 else
1889 mode &= ~FMODE_NDELAY;
1890
1891 return blkdev_ioctl(bdev, mode, cmd, arg);
1892 }
1893
1894 /*
1895 * Write data to the block device. Only intended for the block device itself
1896 * and the raw driver which basically is a fake block device.
1897 *
1898 * Does not take i_mutex for the write and thus is not for general purpose
1899 * use.
1900 */
1901 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1902 {
1903 struct file *file = iocb->ki_filp;
1904 struct inode *bd_inode = bdev_file_inode(file);
1905 loff_t size = i_size_read(bd_inode);
1906 struct blk_plug plug;
1907 ssize_t ret;
1908
1909 if (bdev_read_only(I_BDEV(bd_inode)))
1910 return -EPERM;
1911
1912 if (!iov_iter_count(from))
1913 return 0;
1914
1915 if (iocb->ki_pos >= size)
1916 return -ENOSPC;
1917
1918 iov_iter_truncate(from, size - iocb->ki_pos);
1919
1920 blk_start_plug(&plug);
1921 ret = __generic_file_write_iter(iocb, from);
1922 if (ret > 0)
1923 ret = generic_write_sync(iocb, ret);
1924 blk_finish_plug(&plug);
1925 return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1928
1929 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1930 {
1931 struct file *file = iocb->ki_filp;
1932 struct inode *bd_inode = bdev_file_inode(file);
1933 loff_t size = i_size_read(bd_inode);
1934 loff_t pos = iocb->ki_pos;
1935
1936 if (pos >= size)
1937 return 0;
1938
1939 size -= pos;
1940 iov_iter_truncate(to, size);
1941 return generic_file_read_iter(iocb, to);
1942 }
1943 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1944
1945 /*
1946 * Try to release a page associated with block device when the system
1947 * is under memory pressure.
1948 */
1949 static int blkdev_releasepage(struct page *page, gfp_t wait)
1950 {
1951 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1952
1953 if (super && super->s_op->bdev_try_to_free_page)
1954 return super->s_op->bdev_try_to_free_page(super, page, wait);
1955
1956 return try_to_free_buffers(page);
1957 }
1958
1959 static int blkdev_writepages(struct address_space *mapping,
1960 struct writeback_control *wbc)
1961 {
1962 if (dax_mapping(mapping)) {
1963 struct block_device *bdev = I_BDEV(mapping->host);
1964
1965 return dax_writeback_mapping_range(mapping, bdev, wbc);
1966 }
1967 return generic_writepages(mapping, wbc);
1968 }
1969
1970 static const struct address_space_operations def_blk_aops = {
1971 .readpage = blkdev_readpage,
1972 .readpages = blkdev_readpages,
1973 .writepage = blkdev_writepage,
1974 .write_begin = blkdev_write_begin,
1975 .write_end = blkdev_write_end,
1976 .writepages = blkdev_writepages,
1977 .releasepage = blkdev_releasepage,
1978 .direct_IO = blkdev_direct_IO,
1979 .is_dirty_writeback = buffer_check_dirty_writeback,
1980 };
1981
1982 #define BLKDEV_FALLOC_FL_SUPPORTED \
1983 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1984 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1985
1986 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1987 loff_t len)
1988 {
1989 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1990 struct address_space *mapping;
1991 loff_t end = start + len - 1;
1992 loff_t isize;
1993 int error;
1994
1995 /* Fail if we don't recognize the flags. */
1996 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1997 return -EOPNOTSUPP;
1998
1999 /* Don't go off the end of the device. */
2000 isize = i_size_read(bdev->bd_inode);
2001 if (start >= isize)
2002 return -EINVAL;
2003 if (end >= isize) {
2004 if (mode & FALLOC_FL_KEEP_SIZE) {
2005 len = isize - start;
2006 end = start + len - 1;
2007 } else
2008 return -EINVAL;
2009 }
2010
2011 /*
2012 * Don't allow IO that isn't aligned to logical block size.
2013 */
2014 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2015 return -EINVAL;
2016
2017 /* Invalidate the page cache, including dirty pages. */
2018 mapping = bdev->bd_inode->i_mapping;
2019 truncate_inode_pages_range(mapping, start, end);
2020
2021 switch (mode) {
2022 case FALLOC_FL_ZERO_RANGE:
2023 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2024 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2025 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2026 break;
2027 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2028 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2029 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2030 break;
2031 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2032 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2033 GFP_KERNEL, 0);
2034 break;
2035 default:
2036 return -EOPNOTSUPP;
2037 }
2038 if (error)
2039 return error;
2040
2041 /*
2042 * Invalidate again; if someone wandered in and dirtied a page,
2043 * the caller will be given -EBUSY. The third argument is
2044 * inclusive, so the rounding here is safe.
2045 */
2046 return invalidate_inode_pages2_range(mapping,
2047 start >> PAGE_SHIFT,
2048 end >> PAGE_SHIFT);
2049 }
2050
2051 const struct file_operations def_blk_fops = {
2052 .open = blkdev_open,
2053 .release = blkdev_close,
2054 .llseek = block_llseek,
2055 .read_iter = blkdev_read_iter,
2056 .write_iter = blkdev_write_iter,
2057 .mmap = generic_file_mmap,
2058 .fsync = blkdev_fsync,
2059 .unlocked_ioctl = block_ioctl,
2060 #ifdef CONFIG_COMPAT
2061 .compat_ioctl = compat_blkdev_ioctl,
2062 #endif
2063 .splice_read = generic_file_splice_read,
2064 .splice_write = iter_file_splice_write,
2065 .fallocate = blkdev_fallocate,
2066 };
2067
2068 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2069 {
2070 int res;
2071 mm_segment_t old_fs = get_fs();
2072 set_fs(KERNEL_DS);
2073 res = blkdev_ioctl(bdev, 0, cmd, arg);
2074 set_fs(old_fs);
2075 return res;
2076 }
2077
2078 EXPORT_SYMBOL(ioctl_by_bdev);
2079
2080 /**
2081 * lookup_bdev - lookup a struct block_device by name
2082 * @pathname: special file representing the block device
2083 * @mask: rights to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
2084 *
2085 * Get a reference to the blockdevice at @pathname in the current
2086 * namespace if possible and return it. Return ERR_PTR(error)
2087 * otherwise. If @mask is non-zero, check for access rights to the
2088 * inode at @pathname.
2089 */
2090 struct block_device *lookup_bdev(const char *pathname, int mask)
2091 {
2092 struct block_device *bdev;
2093 struct inode *inode;
2094 struct path path;
2095 int error;
2096
2097 if (!pathname || !*pathname)
2098 return ERR_PTR(-EINVAL);
2099
2100 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2101 if (error)
2102 return ERR_PTR(error);
2103
2104 inode = d_backing_inode(path.dentry);
2105 if (mask != 0 && !capable(CAP_SYS_ADMIN)) {
2106 error = __inode_permission(inode, mask);
2107 if (error)
2108 goto fail;
2109 }
2110 error = -ENOTBLK;
2111 if (!S_ISBLK(inode->i_mode))
2112 goto fail;
2113 error = -EACCES;
2114 if (!may_open_dev(&path))
2115 goto fail;
2116 error = -ENOMEM;
2117 bdev = bd_acquire(inode);
2118 if (!bdev)
2119 goto fail;
2120 out:
2121 path_put(&path);
2122 return bdev;
2123 fail:
2124 bdev = ERR_PTR(error);
2125 goto out;
2126 }
2127 EXPORT_SYMBOL(lookup_bdev);
2128
2129 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2130 {
2131 struct super_block *sb = get_super(bdev);
2132 int res = 0;
2133
2134 if (sb) {
2135 /*
2136 * no need to lock the super, get_super holds the
2137 * read mutex so the filesystem cannot go away
2138 * under us (->put_super runs with the write lock
2139 * hold).
2140 */
2141 shrink_dcache_sb(sb);
2142 res = invalidate_inodes(sb, kill_dirty);
2143 drop_super(sb);
2144 }
2145 invalidate_bdev(bdev);
2146 return res;
2147 }
2148 EXPORT_SYMBOL(__invalidate_device);
2149
2150 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2151 {
2152 struct inode *inode, *old_inode = NULL;
2153
2154 spin_lock(&blockdev_superblock->s_inode_list_lock);
2155 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2156 struct address_space *mapping = inode->i_mapping;
2157 struct block_device *bdev;
2158
2159 spin_lock(&inode->i_lock);
2160 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2161 mapping->nrpages == 0) {
2162 spin_unlock(&inode->i_lock);
2163 continue;
2164 }
2165 __iget(inode);
2166 spin_unlock(&inode->i_lock);
2167 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2168 /*
2169 * We hold a reference to 'inode' so it couldn't have been
2170 * removed from s_inodes list while we dropped the
2171 * s_inode_list_lock We cannot iput the inode now as we can
2172 * be holding the last reference and we cannot iput it under
2173 * s_inode_list_lock. So we keep the reference and iput it
2174 * later.
2175 */
2176 iput(old_inode);
2177 old_inode = inode;
2178 bdev = I_BDEV(inode);
2179
2180 mutex_lock(&bdev->bd_mutex);
2181 if (bdev->bd_openers)
2182 func(bdev, arg);
2183 mutex_unlock(&bdev->bd_mutex);
2184
2185 spin_lock(&blockdev_superblock->s_inode_list_lock);
2186 }
2187 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2188 iput(old_inode);
2189 }