]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
Merge branch 'work.uaccess-unaligned' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
58 {
59 struct va_format vaf;
60 va_list args;
61
62 va_start(args, fmt);
63 vaf.fmt = fmt;
64 vaf.va = &args;
65 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
66 va_end(args);
67 }
68
69 static void bdev_write_inode(struct block_device *bdev)
70 {
71 struct inode *inode = bdev->bd_inode;
72 int ret;
73
74 spin_lock(&inode->i_lock);
75 while (inode->i_state & I_DIRTY) {
76 spin_unlock(&inode->i_lock);
77 ret = write_inode_now(inode, true);
78 if (ret) {
79 char name[BDEVNAME_SIZE];
80 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
81 "for block device %s (err=%d).\n",
82 bdevname(bdev, name), ret);
83 }
84 spin_lock(&inode->i_lock);
85 }
86 spin_unlock(&inode->i_lock);
87 }
88
89 /* Kill _all_ buffers and pagecache , dirty or not.. */
90 void kill_bdev(struct block_device *bdev)
91 {
92 struct address_space *mapping = bdev->bd_inode->i_mapping;
93
94 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
95 return;
96
97 invalidate_bh_lrus();
98 truncate_inode_pages(mapping, 0);
99 }
100 EXPORT_SYMBOL(kill_bdev);
101
102 /* Invalidate clean unused buffers and pagecache. */
103 void invalidate_bdev(struct block_device *bdev)
104 {
105 struct address_space *mapping = bdev->bd_inode->i_mapping;
106
107 if (mapping->nrpages) {
108 invalidate_bh_lrus();
109 lru_add_drain_all(); /* make sure all lru add caches are flushed */
110 invalidate_mapping_pages(mapping, 0, -1);
111 }
112 /* 99% of the time, we don't need to flush the cleancache on the bdev.
113 * But, for the strange corners, lets be cautious
114 */
115 cleancache_invalidate_inode(mapping);
116 }
117 EXPORT_SYMBOL(invalidate_bdev);
118
119 int set_blocksize(struct block_device *bdev, int size)
120 {
121 /* Size must be a power of two, and between 512 and PAGE_SIZE */
122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
123 return -EINVAL;
124
125 /* Size cannot be smaller than the size supported by the device */
126 if (size < bdev_logical_block_size(bdev))
127 return -EINVAL;
128
129 /* Don't change the size if it is same as current */
130 if (bdev->bd_block_size != size) {
131 sync_blockdev(bdev);
132 bdev->bd_block_size = size;
133 bdev->bd_inode->i_blkbits = blksize_bits(size);
134 kill_bdev(bdev);
135 }
136 return 0;
137 }
138
139 EXPORT_SYMBOL(set_blocksize);
140
141 int sb_set_blocksize(struct super_block *sb, int size)
142 {
143 if (set_blocksize(sb->s_bdev, size))
144 return 0;
145 /* If we get here, we know size is power of two
146 * and it's value is between 512 and PAGE_SIZE */
147 sb->s_blocksize = size;
148 sb->s_blocksize_bits = blksize_bits(size);
149 return sb->s_blocksize;
150 }
151
152 EXPORT_SYMBOL(sb_set_blocksize);
153
154 int sb_min_blocksize(struct super_block *sb, int size)
155 {
156 int minsize = bdev_logical_block_size(sb->s_bdev);
157 if (size < minsize)
158 size = minsize;
159 return sb_set_blocksize(sb, size);
160 }
161
162 EXPORT_SYMBOL(sb_min_blocksize);
163
164 static int
165 blkdev_get_block(struct inode *inode, sector_t iblock,
166 struct buffer_head *bh, int create)
167 {
168 bh->b_bdev = I_BDEV(inode);
169 bh->b_blocknr = iblock;
170 set_buffer_mapped(bh);
171 return 0;
172 }
173
174 static struct inode *bdev_file_inode(struct file *file)
175 {
176 return file->f_mapping->host;
177 }
178
179 static unsigned int dio_bio_write_op(struct kiocb *iocb)
180 {
181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
182
183 /* avoid the need for a I/O completion work item */
184 if (iocb->ki_flags & IOCB_DSYNC)
185 op |= REQ_FUA;
186 return op;
187 }
188
189 #define DIO_INLINE_BIO_VECS 4
190
191 static void blkdev_bio_end_io_simple(struct bio *bio)
192 {
193 struct task_struct *waiter = bio->bi_private;
194
195 WRITE_ONCE(bio->bi_private, NULL);
196 wake_up_process(waiter);
197 }
198
199 static ssize_t
200 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
201 int nr_pages)
202 {
203 struct file *file = iocb->ki_filp;
204 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
206 loff_t pos = iocb->ki_pos;
207 bool should_dirty = false;
208 struct bio bio;
209 ssize_t ret;
210 blk_qc_t qc;
211 int i;
212
213 if ((pos | iov_iter_alignment(iter)) &
214 (bdev_logical_block_size(bdev) - 1))
215 return -EINVAL;
216
217 if (nr_pages <= DIO_INLINE_BIO_VECS)
218 vecs = inline_vecs;
219 else {
220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
221 if (!vecs)
222 return -ENOMEM;
223 }
224
225 bio_init(&bio, vecs, nr_pages);
226 bio.bi_bdev = bdev;
227 bio.bi_iter.bi_sector = pos >> 9;
228 bio.bi_write_hint = iocb->ki_hint;
229 bio.bi_private = current;
230 bio.bi_end_io = blkdev_bio_end_io_simple;
231
232 ret = bio_iov_iter_get_pages(&bio, iter);
233 if (unlikely(ret))
234 return ret;
235 ret = bio.bi_iter.bi_size;
236
237 if (iov_iter_rw(iter) == READ) {
238 bio.bi_opf = REQ_OP_READ;
239 if (iter_is_iovec(iter))
240 should_dirty = true;
241 } else {
242 bio.bi_opf = dio_bio_write_op(iocb);
243 task_io_account_write(ret);
244 }
245
246 qc = submit_bio(&bio);
247 for (;;) {
248 set_current_state(TASK_UNINTERRUPTIBLE);
249 if (!READ_ONCE(bio.bi_private))
250 break;
251 if (!(iocb->ki_flags & IOCB_HIPRI) ||
252 !blk_mq_poll(bdev_get_queue(bdev), qc))
253 io_schedule();
254 }
255 __set_current_state(TASK_RUNNING);
256
257 bio_for_each_segment_all(bvec, &bio, i) {
258 if (should_dirty && !PageCompound(bvec->bv_page))
259 set_page_dirty_lock(bvec->bv_page);
260 put_page(bvec->bv_page);
261 }
262
263 if (vecs != inline_vecs)
264 kfree(vecs);
265
266 if (unlikely(bio.bi_status))
267 ret = blk_status_to_errno(bio.bi_status);
268
269 bio_uninit(&bio);
270
271 return ret;
272 }
273
274 struct blkdev_dio {
275 union {
276 struct kiocb *iocb;
277 struct task_struct *waiter;
278 };
279 size_t size;
280 atomic_t ref;
281 bool multi_bio : 1;
282 bool should_dirty : 1;
283 bool is_sync : 1;
284 struct bio bio;
285 };
286
287 static struct bio_set *blkdev_dio_pool __read_mostly;
288
289 static void blkdev_bio_end_io(struct bio *bio)
290 {
291 struct blkdev_dio *dio = bio->bi_private;
292 bool should_dirty = dio->should_dirty;
293
294 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
295 if (bio->bi_status && !dio->bio.bi_status)
296 dio->bio.bi_status = bio->bi_status;
297 } else {
298 if (!dio->is_sync) {
299 struct kiocb *iocb = dio->iocb;
300 ssize_t ret;
301
302 if (likely(!dio->bio.bi_status)) {
303 ret = dio->size;
304 iocb->ki_pos += ret;
305 } else {
306 ret = blk_status_to_errno(dio->bio.bi_status);
307 }
308
309 dio->iocb->ki_complete(iocb, ret, 0);
310 bio_put(&dio->bio);
311 } else {
312 struct task_struct *waiter = dio->waiter;
313
314 WRITE_ONCE(dio->waiter, NULL);
315 wake_up_process(waiter);
316 }
317 }
318
319 if (should_dirty) {
320 bio_check_pages_dirty(bio);
321 } else {
322 struct bio_vec *bvec;
323 int i;
324
325 bio_for_each_segment_all(bvec, bio, i)
326 put_page(bvec->bv_page);
327 bio_put(bio);
328 }
329 }
330
331 static ssize_t
332 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
333 {
334 struct file *file = iocb->ki_filp;
335 struct inode *inode = bdev_file_inode(file);
336 struct block_device *bdev = I_BDEV(inode);
337 struct blk_plug plug;
338 struct blkdev_dio *dio;
339 struct bio *bio;
340 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
341 loff_t pos = iocb->ki_pos;
342 blk_qc_t qc = BLK_QC_T_NONE;
343 int ret = 0;
344
345 if ((pos | iov_iter_alignment(iter)) &
346 (bdev_logical_block_size(bdev) - 1))
347 return -EINVAL;
348
349 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
350 bio_get(bio); /* extra ref for the completion handler */
351
352 dio = container_of(bio, struct blkdev_dio, bio);
353 dio->is_sync = is_sync = is_sync_kiocb(iocb);
354 if (dio->is_sync)
355 dio->waiter = current;
356 else
357 dio->iocb = iocb;
358
359 dio->size = 0;
360 dio->multi_bio = false;
361 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
362
363 blk_start_plug(&plug);
364 for (;;) {
365 bio->bi_bdev = bdev;
366 bio->bi_iter.bi_sector = pos >> 9;
367 bio->bi_write_hint = iocb->ki_hint;
368 bio->bi_private = dio;
369 bio->bi_end_io = blkdev_bio_end_io;
370
371 ret = bio_iov_iter_get_pages(bio, iter);
372 if (unlikely(ret)) {
373 bio->bi_status = BLK_STS_IOERR;
374 bio_endio(bio);
375 break;
376 }
377
378 if (is_read) {
379 bio->bi_opf = REQ_OP_READ;
380 if (dio->should_dirty)
381 bio_set_pages_dirty(bio);
382 } else {
383 bio->bi_opf = dio_bio_write_op(iocb);
384 task_io_account_write(bio->bi_iter.bi_size);
385 }
386
387 dio->size += bio->bi_iter.bi_size;
388 pos += bio->bi_iter.bi_size;
389
390 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
391 if (!nr_pages) {
392 qc = submit_bio(bio);
393 break;
394 }
395
396 if (!dio->multi_bio) {
397 dio->multi_bio = true;
398 atomic_set(&dio->ref, 2);
399 } else {
400 atomic_inc(&dio->ref);
401 }
402
403 submit_bio(bio);
404 bio = bio_alloc(GFP_KERNEL, nr_pages);
405 }
406 blk_finish_plug(&plug);
407
408 if (!is_sync)
409 return -EIOCBQUEUED;
410
411 for (;;) {
412 set_current_state(TASK_UNINTERRUPTIBLE);
413 if (!READ_ONCE(dio->waiter))
414 break;
415
416 if (!(iocb->ki_flags & IOCB_HIPRI) ||
417 !blk_mq_poll(bdev_get_queue(bdev), qc))
418 io_schedule();
419 }
420 __set_current_state(TASK_RUNNING);
421
422 if (!ret)
423 ret = blk_status_to_errno(dio->bio.bi_status);
424 if (likely(!ret))
425 ret = dio->size;
426
427 bio_put(&dio->bio);
428 return ret;
429 }
430
431 static ssize_t
432 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
433 {
434 int nr_pages;
435
436 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
437 if (!nr_pages)
438 return 0;
439 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
440 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
441
442 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
443 }
444
445 static __init int blkdev_init(void)
446 {
447 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
448 if (!blkdev_dio_pool)
449 return -ENOMEM;
450 return 0;
451 }
452 module_init(blkdev_init);
453
454 int __sync_blockdev(struct block_device *bdev, int wait)
455 {
456 if (!bdev)
457 return 0;
458 if (!wait)
459 return filemap_flush(bdev->bd_inode->i_mapping);
460 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
461 }
462
463 /*
464 * Write out and wait upon all the dirty data associated with a block
465 * device via its mapping. Does not take the superblock lock.
466 */
467 int sync_blockdev(struct block_device *bdev)
468 {
469 return __sync_blockdev(bdev, 1);
470 }
471 EXPORT_SYMBOL(sync_blockdev);
472
473 /*
474 * Write out and wait upon all dirty data associated with this
475 * device. Filesystem data as well as the underlying block
476 * device. Takes the superblock lock.
477 */
478 int fsync_bdev(struct block_device *bdev)
479 {
480 struct super_block *sb = get_super(bdev);
481 if (sb) {
482 int res = sync_filesystem(sb);
483 drop_super(sb);
484 return res;
485 }
486 return sync_blockdev(bdev);
487 }
488 EXPORT_SYMBOL(fsync_bdev);
489
490 /**
491 * freeze_bdev -- lock a filesystem and force it into a consistent state
492 * @bdev: blockdevice to lock
493 *
494 * If a superblock is found on this device, we take the s_umount semaphore
495 * on it to make sure nobody unmounts until the snapshot creation is done.
496 * The reference counter (bd_fsfreeze_count) guarantees that only the last
497 * unfreeze process can unfreeze the frozen filesystem actually when multiple
498 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
499 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
500 * actually.
501 */
502 struct super_block *freeze_bdev(struct block_device *bdev)
503 {
504 struct super_block *sb;
505 int error = 0;
506
507 mutex_lock(&bdev->bd_fsfreeze_mutex);
508 if (++bdev->bd_fsfreeze_count > 1) {
509 /*
510 * We don't even need to grab a reference - the first call
511 * to freeze_bdev grab an active reference and only the last
512 * thaw_bdev drops it.
513 */
514 sb = get_super(bdev);
515 if (sb)
516 drop_super(sb);
517 mutex_unlock(&bdev->bd_fsfreeze_mutex);
518 return sb;
519 }
520
521 sb = get_active_super(bdev);
522 if (!sb)
523 goto out;
524 if (sb->s_op->freeze_super)
525 error = sb->s_op->freeze_super(sb);
526 else
527 error = freeze_super(sb);
528 if (error) {
529 deactivate_super(sb);
530 bdev->bd_fsfreeze_count--;
531 mutex_unlock(&bdev->bd_fsfreeze_mutex);
532 return ERR_PTR(error);
533 }
534 deactivate_super(sb);
535 out:
536 sync_blockdev(bdev);
537 mutex_unlock(&bdev->bd_fsfreeze_mutex);
538 return sb; /* thaw_bdev releases s->s_umount */
539 }
540 EXPORT_SYMBOL(freeze_bdev);
541
542 /**
543 * thaw_bdev -- unlock filesystem
544 * @bdev: blockdevice to unlock
545 * @sb: associated superblock
546 *
547 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
548 */
549 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
550 {
551 int error = -EINVAL;
552
553 mutex_lock(&bdev->bd_fsfreeze_mutex);
554 if (!bdev->bd_fsfreeze_count)
555 goto out;
556
557 error = 0;
558 if (--bdev->bd_fsfreeze_count > 0)
559 goto out;
560
561 if (!sb)
562 goto out;
563
564 if (sb->s_op->thaw_super)
565 error = sb->s_op->thaw_super(sb);
566 else
567 error = thaw_super(sb);
568 if (error)
569 bdev->bd_fsfreeze_count++;
570 out:
571 mutex_unlock(&bdev->bd_fsfreeze_mutex);
572 return error;
573 }
574 EXPORT_SYMBOL(thaw_bdev);
575
576 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
577 {
578 return block_write_full_page(page, blkdev_get_block, wbc);
579 }
580
581 static int blkdev_readpage(struct file * file, struct page * page)
582 {
583 return block_read_full_page(page, blkdev_get_block);
584 }
585
586 static int blkdev_readpages(struct file *file, struct address_space *mapping,
587 struct list_head *pages, unsigned nr_pages)
588 {
589 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
590 }
591
592 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
593 loff_t pos, unsigned len, unsigned flags,
594 struct page **pagep, void **fsdata)
595 {
596 return block_write_begin(mapping, pos, len, flags, pagep,
597 blkdev_get_block);
598 }
599
600 static int blkdev_write_end(struct file *file, struct address_space *mapping,
601 loff_t pos, unsigned len, unsigned copied,
602 struct page *page, void *fsdata)
603 {
604 int ret;
605 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
606
607 unlock_page(page);
608 put_page(page);
609
610 return ret;
611 }
612
613 /*
614 * private llseek:
615 * for a block special file file_inode(file)->i_size is zero
616 * so we compute the size by hand (just as in block_read/write above)
617 */
618 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
619 {
620 struct inode *bd_inode = bdev_file_inode(file);
621 loff_t retval;
622
623 inode_lock(bd_inode);
624 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
625 inode_unlock(bd_inode);
626 return retval;
627 }
628
629 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
630 {
631 struct inode *bd_inode = bdev_file_inode(filp);
632 struct block_device *bdev = I_BDEV(bd_inode);
633 int error;
634
635 error = file_write_and_wait_range(filp, start, end);
636 if (error)
637 return error;
638
639 /*
640 * There is no need to serialise calls to blkdev_issue_flush with
641 * i_mutex and doing so causes performance issues with concurrent
642 * O_SYNC writers to a block device.
643 */
644 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
645 if (error == -EOPNOTSUPP)
646 error = 0;
647
648 return error;
649 }
650 EXPORT_SYMBOL(blkdev_fsync);
651
652 /**
653 * bdev_read_page() - Start reading a page from a block device
654 * @bdev: The device to read the page from
655 * @sector: The offset on the device to read the page to (need not be aligned)
656 * @page: The page to read
657 *
658 * On entry, the page should be locked. It will be unlocked when the page
659 * has been read. If the block driver implements rw_page synchronously,
660 * that will be true on exit from this function, but it need not be.
661 *
662 * Errors returned by this function are usually "soft", eg out of memory, or
663 * queue full; callers should try a different route to read this page rather
664 * than propagate an error back up the stack.
665 *
666 * Return: negative errno if an error occurs, 0 if submission was successful.
667 */
668 int bdev_read_page(struct block_device *bdev, sector_t sector,
669 struct page *page)
670 {
671 const struct block_device_operations *ops = bdev->bd_disk->fops;
672 int result = -EOPNOTSUPP;
673
674 if (!ops->rw_page || bdev_get_integrity(bdev))
675 return result;
676
677 result = blk_queue_enter(bdev->bd_queue, false);
678 if (result)
679 return result;
680 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
681 blk_queue_exit(bdev->bd_queue);
682 return result;
683 }
684 EXPORT_SYMBOL_GPL(bdev_read_page);
685
686 /**
687 * bdev_write_page() - Start writing a page to a block device
688 * @bdev: The device to write the page to
689 * @sector: The offset on the device to write the page to (need not be aligned)
690 * @page: The page to write
691 * @wbc: The writeback_control for the write
692 *
693 * On entry, the page should be locked and not currently under writeback.
694 * On exit, if the write started successfully, the page will be unlocked and
695 * under writeback. If the write failed already (eg the driver failed to
696 * queue the page to the device), the page will still be locked. If the
697 * caller is a ->writepage implementation, it will need to unlock the page.
698 *
699 * Errors returned by this function are usually "soft", eg out of memory, or
700 * queue full; callers should try a different route to write this page rather
701 * than propagate an error back up the stack.
702 *
703 * Return: negative errno if an error occurs, 0 if submission was successful.
704 */
705 int bdev_write_page(struct block_device *bdev, sector_t sector,
706 struct page *page, struct writeback_control *wbc)
707 {
708 int result;
709 const struct block_device_operations *ops = bdev->bd_disk->fops;
710
711 if (!ops->rw_page || bdev_get_integrity(bdev))
712 return -EOPNOTSUPP;
713 result = blk_queue_enter(bdev->bd_queue, false);
714 if (result)
715 return result;
716
717 set_page_writeback(page);
718 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
719 if (result)
720 end_page_writeback(page);
721 else
722 unlock_page(page);
723 blk_queue_exit(bdev->bd_queue);
724 return result;
725 }
726 EXPORT_SYMBOL_GPL(bdev_write_page);
727
728 /*
729 * pseudo-fs
730 */
731
732 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
733 static struct kmem_cache * bdev_cachep __read_mostly;
734
735 static struct inode *bdev_alloc_inode(struct super_block *sb)
736 {
737 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
738 if (!ei)
739 return NULL;
740 return &ei->vfs_inode;
741 }
742
743 static void bdev_i_callback(struct rcu_head *head)
744 {
745 struct inode *inode = container_of(head, struct inode, i_rcu);
746 struct bdev_inode *bdi = BDEV_I(inode);
747
748 kmem_cache_free(bdev_cachep, bdi);
749 }
750
751 static void bdev_destroy_inode(struct inode *inode)
752 {
753 call_rcu(&inode->i_rcu, bdev_i_callback);
754 }
755
756 static void init_once(void *foo)
757 {
758 struct bdev_inode *ei = (struct bdev_inode *) foo;
759 struct block_device *bdev = &ei->bdev;
760
761 memset(bdev, 0, sizeof(*bdev));
762 mutex_init(&bdev->bd_mutex);
763 INIT_LIST_HEAD(&bdev->bd_list);
764 #ifdef CONFIG_SYSFS
765 INIT_LIST_HEAD(&bdev->bd_holder_disks);
766 #endif
767 bdev->bd_bdi = &noop_backing_dev_info;
768 inode_init_once(&ei->vfs_inode);
769 /* Initialize mutex for freeze. */
770 mutex_init(&bdev->bd_fsfreeze_mutex);
771 }
772
773 static void bdev_evict_inode(struct inode *inode)
774 {
775 struct block_device *bdev = &BDEV_I(inode)->bdev;
776 truncate_inode_pages_final(&inode->i_data);
777 invalidate_inode_buffers(inode); /* is it needed here? */
778 clear_inode(inode);
779 spin_lock(&bdev_lock);
780 list_del_init(&bdev->bd_list);
781 spin_unlock(&bdev_lock);
782 /* Detach inode from wb early as bdi_put() may free bdi->wb */
783 inode_detach_wb(inode);
784 if (bdev->bd_bdi != &noop_backing_dev_info) {
785 bdi_put(bdev->bd_bdi);
786 bdev->bd_bdi = &noop_backing_dev_info;
787 }
788 }
789
790 static const struct super_operations bdev_sops = {
791 .statfs = simple_statfs,
792 .alloc_inode = bdev_alloc_inode,
793 .destroy_inode = bdev_destroy_inode,
794 .drop_inode = generic_delete_inode,
795 .evict_inode = bdev_evict_inode,
796 };
797
798 static struct dentry *bd_mount(struct file_system_type *fs_type,
799 int flags, const char *dev_name, void *data)
800 {
801 struct dentry *dent;
802 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
803 if (!IS_ERR(dent))
804 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
805 return dent;
806 }
807
808 static struct file_system_type bd_type = {
809 .name = "bdev",
810 .mount = bd_mount,
811 .kill_sb = kill_anon_super,
812 };
813
814 struct super_block *blockdev_superblock __read_mostly;
815 EXPORT_SYMBOL_GPL(blockdev_superblock);
816
817 void __init bdev_cache_init(void)
818 {
819 int err;
820 static struct vfsmount *bd_mnt;
821
822 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
823 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
824 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
825 init_once);
826 err = register_filesystem(&bd_type);
827 if (err)
828 panic("Cannot register bdev pseudo-fs");
829 bd_mnt = kern_mount(&bd_type);
830 if (IS_ERR(bd_mnt))
831 panic("Cannot create bdev pseudo-fs");
832 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
833 }
834
835 /*
836 * Most likely _very_ bad one - but then it's hardly critical for small
837 * /dev and can be fixed when somebody will need really large one.
838 * Keep in mind that it will be fed through icache hash function too.
839 */
840 static inline unsigned long hash(dev_t dev)
841 {
842 return MAJOR(dev)+MINOR(dev);
843 }
844
845 static int bdev_test(struct inode *inode, void *data)
846 {
847 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
848 }
849
850 static int bdev_set(struct inode *inode, void *data)
851 {
852 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
853 return 0;
854 }
855
856 static LIST_HEAD(all_bdevs);
857
858 /*
859 * If there is a bdev inode for this device, unhash it so that it gets evicted
860 * as soon as last inode reference is dropped.
861 */
862 void bdev_unhash_inode(dev_t dev)
863 {
864 struct inode *inode;
865
866 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
867 if (inode) {
868 remove_inode_hash(inode);
869 iput(inode);
870 }
871 }
872
873 struct block_device *bdget(dev_t dev)
874 {
875 struct block_device *bdev;
876 struct inode *inode;
877
878 inode = iget5_locked(blockdev_superblock, hash(dev),
879 bdev_test, bdev_set, &dev);
880
881 if (!inode)
882 return NULL;
883
884 bdev = &BDEV_I(inode)->bdev;
885
886 if (inode->i_state & I_NEW) {
887 bdev->bd_contains = NULL;
888 bdev->bd_super = NULL;
889 bdev->bd_inode = inode;
890 bdev->bd_block_size = i_blocksize(inode);
891 bdev->bd_part_count = 0;
892 bdev->bd_invalidated = 0;
893 inode->i_mode = S_IFBLK;
894 inode->i_rdev = dev;
895 inode->i_bdev = bdev;
896 inode->i_data.a_ops = &def_blk_aops;
897 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
898 spin_lock(&bdev_lock);
899 list_add(&bdev->bd_list, &all_bdevs);
900 spin_unlock(&bdev_lock);
901 unlock_new_inode(inode);
902 }
903 return bdev;
904 }
905
906 EXPORT_SYMBOL(bdget);
907
908 /**
909 * bdgrab -- Grab a reference to an already referenced block device
910 * @bdev: Block device to grab a reference to.
911 */
912 struct block_device *bdgrab(struct block_device *bdev)
913 {
914 ihold(bdev->bd_inode);
915 return bdev;
916 }
917 EXPORT_SYMBOL(bdgrab);
918
919 long nr_blockdev_pages(void)
920 {
921 struct block_device *bdev;
922 long ret = 0;
923 spin_lock(&bdev_lock);
924 list_for_each_entry(bdev, &all_bdevs, bd_list) {
925 ret += bdev->bd_inode->i_mapping->nrpages;
926 }
927 spin_unlock(&bdev_lock);
928 return ret;
929 }
930
931 void bdput(struct block_device *bdev)
932 {
933 iput(bdev->bd_inode);
934 }
935
936 EXPORT_SYMBOL(bdput);
937
938 static struct block_device *bd_acquire(struct inode *inode)
939 {
940 struct block_device *bdev;
941
942 spin_lock(&bdev_lock);
943 bdev = inode->i_bdev;
944 if (bdev && !inode_unhashed(bdev->bd_inode)) {
945 bdgrab(bdev);
946 spin_unlock(&bdev_lock);
947 return bdev;
948 }
949 spin_unlock(&bdev_lock);
950
951 /*
952 * i_bdev references block device inode that was already shut down
953 * (corresponding device got removed). Remove the reference and look
954 * up block device inode again just in case new device got
955 * reestablished under the same device number.
956 */
957 if (bdev)
958 bd_forget(inode);
959
960 bdev = bdget(inode->i_rdev);
961 if (bdev) {
962 spin_lock(&bdev_lock);
963 if (!inode->i_bdev) {
964 /*
965 * We take an additional reference to bd_inode,
966 * and it's released in clear_inode() of inode.
967 * So, we can access it via ->i_mapping always
968 * without igrab().
969 */
970 bdgrab(bdev);
971 inode->i_bdev = bdev;
972 inode->i_mapping = bdev->bd_inode->i_mapping;
973 }
974 spin_unlock(&bdev_lock);
975 }
976 return bdev;
977 }
978
979 /* Call when you free inode */
980
981 void bd_forget(struct inode *inode)
982 {
983 struct block_device *bdev = NULL;
984
985 spin_lock(&bdev_lock);
986 if (!sb_is_blkdev_sb(inode->i_sb))
987 bdev = inode->i_bdev;
988 inode->i_bdev = NULL;
989 inode->i_mapping = &inode->i_data;
990 spin_unlock(&bdev_lock);
991
992 if (bdev)
993 bdput(bdev);
994 }
995
996 /**
997 * bd_may_claim - test whether a block device can be claimed
998 * @bdev: block device of interest
999 * @whole: whole block device containing @bdev, may equal @bdev
1000 * @holder: holder trying to claim @bdev
1001 *
1002 * Test whether @bdev can be claimed by @holder.
1003 *
1004 * CONTEXT:
1005 * spin_lock(&bdev_lock).
1006 *
1007 * RETURNS:
1008 * %true if @bdev can be claimed, %false otherwise.
1009 */
1010 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1011 void *holder)
1012 {
1013 if (bdev->bd_holder == holder)
1014 return true; /* already a holder */
1015 else if (bdev->bd_holder != NULL)
1016 return false; /* held by someone else */
1017 else if (whole == bdev)
1018 return true; /* is a whole device which isn't held */
1019
1020 else if (whole->bd_holder == bd_may_claim)
1021 return true; /* is a partition of a device that is being partitioned */
1022 else if (whole->bd_holder != NULL)
1023 return false; /* is a partition of a held device */
1024 else
1025 return true; /* is a partition of an un-held device */
1026 }
1027
1028 /**
1029 * bd_prepare_to_claim - prepare to claim a block device
1030 * @bdev: block device of interest
1031 * @whole: the whole device containing @bdev, may equal @bdev
1032 * @holder: holder trying to claim @bdev
1033 *
1034 * Prepare to claim @bdev. This function fails if @bdev is already
1035 * claimed by another holder and waits if another claiming is in
1036 * progress. This function doesn't actually claim. On successful
1037 * return, the caller has ownership of bd_claiming and bd_holder[s].
1038 *
1039 * CONTEXT:
1040 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1041 * it multiple times.
1042 *
1043 * RETURNS:
1044 * 0 if @bdev can be claimed, -EBUSY otherwise.
1045 */
1046 static int bd_prepare_to_claim(struct block_device *bdev,
1047 struct block_device *whole, void *holder)
1048 {
1049 retry:
1050 /* if someone else claimed, fail */
1051 if (!bd_may_claim(bdev, whole, holder))
1052 return -EBUSY;
1053
1054 /* if claiming is already in progress, wait for it to finish */
1055 if (whole->bd_claiming) {
1056 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1057 DEFINE_WAIT(wait);
1058
1059 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1060 spin_unlock(&bdev_lock);
1061 schedule();
1062 finish_wait(wq, &wait);
1063 spin_lock(&bdev_lock);
1064 goto retry;
1065 }
1066
1067 /* yay, all mine */
1068 return 0;
1069 }
1070
1071 /**
1072 * bd_start_claiming - start claiming a block device
1073 * @bdev: block device of interest
1074 * @holder: holder trying to claim @bdev
1075 *
1076 * @bdev is about to be opened exclusively. Check @bdev can be opened
1077 * exclusively and mark that an exclusive open is in progress. Each
1078 * successful call to this function must be matched with a call to
1079 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1080 * fail).
1081 *
1082 * This function is used to gain exclusive access to the block device
1083 * without actually causing other exclusive open attempts to fail. It
1084 * should be used when the open sequence itself requires exclusive
1085 * access but may subsequently fail.
1086 *
1087 * CONTEXT:
1088 * Might sleep.
1089 *
1090 * RETURNS:
1091 * Pointer to the block device containing @bdev on success, ERR_PTR()
1092 * value on failure.
1093 */
1094 static struct block_device *bd_start_claiming(struct block_device *bdev,
1095 void *holder)
1096 {
1097 struct gendisk *disk;
1098 struct block_device *whole;
1099 int partno, err;
1100
1101 might_sleep();
1102
1103 /*
1104 * @bdev might not have been initialized properly yet, look up
1105 * and grab the outer block device the hard way.
1106 */
1107 disk = get_gendisk(bdev->bd_dev, &partno);
1108 if (!disk)
1109 return ERR_PTR(-ENXIO);
1110
1111 /*
1112 * Normally, @bdev should equal what's returned from bdget_disk()
1113 * if partno is 0; however, some drivers (floppy) use multiple
1114 * bdev's for the same physical device and @bdev may be one of the
1115 * aliases. Keep @bdev if partno is 0. This means claimer
1116 * tracking is broken for those devices but it has always been that
1117 * way.
1118 */
1119 if (partno)
1120 whole = bdget_disk(disk, 0);
1121 else
1122 whole = bdgrab(bdev);
1123
1124 module_put(disk->fops->owner);
1125 put_disk(disk);
1126 if (!whole)
1127 return ERR_PTR(-ENOMEM);
1128
1129 /* prepare to claim, if successful, mark claiming in progress */
1130 spin_lock(&bdev_lock);
1131
1132 err = bd_prepare_to_claim(bdev, whole, holder);
1133 if (err == 0) {
1134 whole->bd_claiming = holder;
1135 spin_unlock(&bdev_lock);
1136 return whole;
1137 } else {
1138 spin_unlock(&bdev_lock);
1139 bdput(whole);
1140 return ERR_PTR(err);
1141 }
1142 }
1143
1144 #ifdef CONFIG_SYSFS
1145 struct bd_holder_disk {
1146 struct list_head list;
1147 struct gendisk *disk;
1148 int refcnt;
1149 };
1150
1151 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1152 struct gendisk *disk)
1153 {
1154 struct bd_holder_disk *holder;
1155
1156 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1157 if (holder->disk == disk)
1158 return holder;
1159 return NULL;
1160 }
1161
1162 static int add_symlink(struct kobject *from, struct kobject *to)
1163 {
1164 return sysfs_create_link(from, to, kobject_name(to));
1165 }
1166
1167 static void del_symlink(struct kobject *from, struct kobject *to)
1168 {
1169 sysfs_remove_link(from, kobject_name(to));
1170 }
1171
1172 /**
1173 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1174 * @bdev: the claimed slave bdev
1175 * @disk: the holding disk
1176 *
1177 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1178 *
1179 * This functions creates the following sysfs symlinks.
1180 *
1181 * - from "slaves" directory of the holder @disk to the claimed @bdev
1182 * - from "holders" directory of the @bdev to the holder @disk
1183 *
1184 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1185 * passed to bd_link_disk_holder(), then:
1186 *
1187 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1188 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1189 *
1190 * The caller must have claimed @bdev before calling this function and
1191 * ensure that both @bdev and @disk are valid during the creation and
1192 * lifetime of these symlinks.
1193 *
1194 * CONTEXT:
1195 * Might sleep.
1196 *
1197 * RETURNS:
1198 * 0 on success, -errno on failure.
1199 */
1200 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1201 {
1202 struct bd_holder_disk *holder;
1203 int ret = 0;
1204
1205 mutex_lock(&bdev->bd_mutex);
1206
1207 WARN_ON_ONCE(!bdev->bd_holder);
1208
1209 /* FIXME: remove the following once add_disk() handles errors */
1210 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1211 goto out_unlock;
1212
1213 holder = bd_find_holder_disk(bdev, disk);
1214 if (holder) {
1215 holder->refcnt++;
1216 goto out_unlock;
1217 }
1218
1219 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1220 if (!holder) {
1221 ret = -ENOMEM;
1222 goto out_unlock;
1223 }
1224
1225 INIT_LIST_HEAD(&holder->list);
1226 holder->disk = disk;
1227 holder->refcnt = 1;
1228
1229 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1230 if (ret)
1231 goto out_free;
1232
1233 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1234 if (ret)
1235 goto out_del;
1236 /*
1237 * bdev could be deleted beneath us which would implicitly destroy
1238 * the holder directory. Hold on to it.
1239 */
1240 kobject_get(bdev->bd_part->holder_dir);
1241
1242 list_add(&holder->list, &bdev->bd_holder_disks);
1243 goto out_unlock;
1244
1245 out_del:
1246 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1247 out_free:
1248 kfree(holder);
1249 out_unlock:
1250 mutex_unlock(&bdev->bd_mutex);
1251 return ret;
1252 }
1253 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1254
1255 /**
1256 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1257 * @bdev: the calimed slave bdev
1258 * @disk: the holding disk
1259 *
1260 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1261 *
1262 * CONTEXT:
1263 * Might sleep.
1264 */
1265 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1266 {
1267 struct bd_holder_disk *holder;
1268
1269 mutex_lock(&bdev->bd_mutex);
1270
1271 holder = bd_find_holder_disk(bdev, disk);
1272
1273 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1274 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1275 del_symlink(bdev->bd_part->holder_dir,
1276 &disk_to_dev(disk)->kobj);
1277 kobject_put(bdev->bd_part->holder_dir);
1278 list_del_init(&holder->list);
1279 kfree(holder);
1280 }
1281
1282 mutex_unlock(&bdev->bd_mutex);
1283 }
1284 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1285 #endif
1286
1287 /**
1288 * flush_disk - invalidates all buffer-cache entries on a disk
1289 *
1290 * @bdev: struct block device to be flushed
1291 * @kill_dirty: flag to guide handling of dirty inodes
1292 *
1293 * Invalidates all buffer-cache entries on a disk. It should be called
1294 * when a disk has been changed -- either by a media change or online
1295 * resize.
1296 */
1297 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1298 {
1299 if (__invalidate_device(bdev, kill_dirty)) {
1300 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1301 "resized disk %s\n",
1302 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1303 }
1304
1305 if (!bdev->bd_disk)
1306 return;
1307 if (disk_part_scan_enabled(bdev->bd_disk))
1308 bdev->bd_invalidated = 1;
1309 }
1310
1311 /**
1312 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1313 * @disk: struct gendisk to check
1314 * @bdev: struct bdev to adjust.
1315 *
1316 * This routine checks to see if the bdev size does not match the disk size
1317 * and adjusts it if it differs.
1318 */
1319 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1320 {
1321 loff_t disk_size, bdev_size;
1322
1323 disk_size = (loff_t)get_capacity(disk) << 9;
1324 bdev_size = i_size_read(bdev->bd_inode);
1325 if (disk_size != bdev_size) {
1326 printk(KERN_INFO
1327 "%s: detected capacity change from %lld to %lld\n",
1328 disk->disk_name, bdev_size, disk_size);
1329 i_size_write(bdev->bd_inode, disk_size);
1330 flush_disk(bdev, false);
1331 }
1332 }
1333 EXPORT_SYMBOL(check_disk_size_change);
1334
1335 /**
1336 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1337 * @disk: struct gendisk to be revalidated
1338 *
1339 * This routine is a wrapper for lower-level driver's revalidate_disk
1340 * call-backs. It is used to do common pre and post operations needed
1341 * for all revalidate_disk operations.
1342 */
1343 int revalidate_disk(struct gendisk *disk)
1344 {
1345 struct block_device *bdev;
1346 int ret = 0;
1347
1348 if (disk->fops->revalidate_disk)
1349 ret = disk->fops->revalidate_disk(disk);
1350 bdev = bdget_disk(disk, 0);
1351 if (!bdev)
1352 return ret;
1353
1354 mutex_lock(&bdev->bd_mutex);
1355 check_disk_size_change(disk, bdev);
1356 bdev->bd_invalidated = 0;
1357 mutex_unlock(&bdev->bd_mutex);
1358 bdput(bdev);
1359 return ret;
1360 }
1361 EXPORT_SYMBOL(revalidate_disk);
1362
1363 /*
1364 * This routine checks whether a removable media has been changed,
1365 * and invalidates all buffer-cache-entries in that case. This
1366 * is a relatively slow routine, so we have to try to minimize using
1367 * it. Thus it is called only upon a 'mount' or 'open'. This
1368 * is the best way of combining speed and utility, I think.
1369 * People changing diskettes in the middle of an operation deserve
1370 * to lose :-)
1371 */
1372 int check_disk_change(struct block_device *bdev)
1373 {
1374 struct gendisk *disk = bdev->bd_disk;
1375 const struct block_device_operations *bdops = disk->fops;
1376 unsigned int events;
1377
1378 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1379 DISK_EVENT_EJECT_REQUEST);
1380 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1381 return 0;
1382
1383 flush_disk(bdev, true);
1384 if (bdops->revalidate_disk)
1385 bdops->revalidate_disk(bdev->bd_disk);
1386 return 1;
1387 }
1388
1389 EXPORT_SYMBOL(check_disk_change);
1390
1391 void bd_set_size(struct block_device *bdev, loff_t size)
1392 {
1393 unsigned bsize = bdev_logical_block_size(bdev);
1394
1395 inode_lock(bdev->bd_inode);
1396 i_size_write(bdev->bd_inode, size);
1397 inode_unlock(bdev->bd_inode);
1398 while (bsize < PAGE_SIZE) {
1399 if (size & bsize)
1400 break;
1401 bsize <<= 1;
1402 }
1403 bdev->bd_block_size = bsize;
1404 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1405 }
1406 EXPORT_SYMBOL(bd_set_size);
1407
1408 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1409
1410 /*
1411 * bd_mutex locking:
1412 *
1413 * mutex_lock(part->bd_mutex)
1414 * mutex_lock_nested(whole->bd_mutex, 1)
1415 */
1416
1417 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1418 {
1419 struct gendisk *disk;
1420 struct module *owner;
1421 int ret;
1422 int partno;
1423 int perm = 0;
1424
1425 if (mode & FMODE_READ)
1426 perm |= MAY_READ;
1427 if (mode & FMODE_WRITE)
1428 perm |= MAY_WRITE;
1429 /*
1430 * hooks: /n/, see "layering violations".
1431 */
1432 if (!for_part) {
1433 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1434 if (ret != 0) {
1435 bdput(bdev);
1436 return ret;
1437 }
1438 }
1439
1440 restart:
1441
1442 ret = -ENXIO;
1443 disk = get_gendisk(bdev->bd_dev, &partno);
1444 if (!disk)
1445 goto out;
1446 owner = disk->fops->owner;
1447
1448 disk_block_events(disk);
1449 mutex_lock_nested(&bdev->bd_mutex, for_part);
1450 if (!bdev->bd_openers) {
1451 bdev->bd_disk = disk;
1452 bdev->bd_queue = disk->queue;
1453 bdev->bd_contains = bdev;
1454
1455 if (!partno) {
1456 ret = -ENXIO;
1457 bdev->bd_part = disk_get_part(disk, partno);
1458 if (!bdev->bd_part)
1459 goto out_clear;
1460
1461 ret = 0;
1462 if (disk->fops->open) {
1463 ret = disk->fops->open(bdev, mode);
1464 if (ret == -ERESTARTSYS) {
1465 /* Lost a race with 'disk' being
1466 * deleted, try again.
1467 * See md.c
1468 */
1469 disk_put_part(bdev->bd_part);
1470 bdev->bd_part = NULL;
1471 bdev->bd_disk = NULL;
1472 bdev->bd_queue = NULL;
1473 mutex_unlock(&bdev->bd_mutex);
1474 disk_unblock_events(disk);
1475 put_disk(disk);
1476 module_put(owner);
1477 goto restart;
1478 }
1479 }
1480
1481 if (!ret)
1482 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1483
1484 /*
1485 * If the device is invalidated, rescan partition
1486 * if open succeeded or failed with -ENOMEDIUM.
1487 * The latter is necessary to prevent ghost
1488 * partitions on a removed medium.
1489 */
1490 if (bdev->bd_invalidated) {
1491 if (!ret)
1492 rescan_partitions(disk, bdev);
1493 else if (ret == -ENOMEDIUM)
1494 invalidate_partitions(disk, bdev);
1495 }
1496
1497 if (ret)
1498 goto out_clear;
1499 } else {
1500 struct block_device *whole;
1501 whole = bdget_disk(disk, 0);
1502 ret = -ENOMEM;
1503 if (!whole)
1504 goto out_clear;
1505 BUG_ON(for_part);
1506 ret = __blkdev_get(whole, mode, 1);
1507 if (ret)
1508 goto out_clear;
1509 bdev->bd_contains = whole;
1510 bdev->bd_part = disk_get_part(disk, partno);
1511 if (!(disk->flags & GENHD_FL_UP) ||
1512 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1513 ret = -ENXIO;
1514 goto out_clear;
1515 }
1516 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1517 }
1518
1519 if (bdev->bd_bdi == &noop_backing_dev_info)
1520 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1521 } else {
1522 if (bdev->bd_contains == bdev) {
1523 ret = 0;
1524 if (bdev->bd_disk->fops->open)
1525 ret = bdev->bd_disk->fops->open(bdev, mode);
1526 /* the same as first opener case, read comment there */
1527 if (bdev->bd_invalidated) {
1528 if (!ret)
1529 rescan_partitions(bdev->bd_disk, bdev);
1530 else if (ret == -ENOMEDIUM)
1531 invalidate_partitions(bdev->bd_disk, bdev);
1532 }
1533 if (ret)
1534 goto out_unlock_bdev;
1535 }
1536 /* only one opener holds refs to the module and disk */
1537 put_disk(disk);
1538 module_put(owner);
1539 }
1540 bdev->bd_openers++;
1541 if (for_part)
1542 bdev->bd_part_count++;
1543 mutex_unlock(&bdev->bd_mutex);
1544 disk_unblock_events(disk);
1545 return 0;
1546
1547 out_clear:
1548 disk_put_part(bdev->bd_part);
1549 bdev->bd_disk = NULL;
1550 bdev->bd_part = NULL;
1551 bdev->bd_queue = NULL;
1552 if (bdev != bdev->bd_contains)
1553 __blkdev_put(bdev->bd_contains, mode, 1);
1554 bdev->bd_contains = NULL;
1555 out_unlock_bdev:
1556 mutex_unlock(&bdev->bd_mutex);
1557 disk_unblock_events(disk);
1558 put_disk(disk);
1559 module_put(owner);
1560 out:
1561 bdput(bdev);
1562
1563 return ret;
1564 }
1565
1566 /**
1567 * blkdev_get - open a block device
1568 * @bdev: block_device to open
1569 * @mode: FMODE_* mask
1570 * @holder: exclusive holder identifier
1571 *
1572 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1573 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1574 * @holder is invalid. Exclusive opens may nest for the same @holder.
1575 *
1576 * On success, the reference count of @bdev is unchanged. On failure,
1577 * @bdev is put.
1578 *
1579 * CONTEXT:
1580 * Might sleep.
1581 *
1582 * RETURNS:
1583 * 0 on success, -errno on failure.
1584 */
1585 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1586 {
1587 struct block_device *whole = NULL;
1588 int res;
1589
1590 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1591
1592 if ((mode & FMODE_EXCL) && holder) {
1593 whole = bd_start_claiming(bdev, holder);
1594 if (IS_ERR(whole)) {
1595 bdput(bdev);
1596 return PTR_ERR(whole);
1597 }
1598 }
1599
1600 res = __blkdev_get(bdev, mode, 0);
1601
1602 if (whole) {
1603 struct gendisk *disk = whole->bd_disk;
1604
1605 /* finish claiming */
1606 mutex_lock(&bdev->bd_mutex);
1607 spin_lock(&bdev_lock);
1608
1609 if (!res) {
1610 BUG_ON(!bd_may_claim(bdev, whole, holder));
1611 /*
1612 * Note that for a whole device bd_holders
1613 * will be incremented twice, and bd_holder
1614 * will be set to bd_may_claim before being
1615 * set to holder
1616 */
1617 whole->bd_holders++;
1618 whole->bd_holder = bd_may_claim;
1619 bdev->bd_holders++;
1620 bdev->bd_holder = holder;
1621 }
1622
1623 /* tell others that we're done */
1624 BUG_ON(whole->bd_claiming != holder);
1625 whole->bd_claiming = NULL;
1626 wake_up_bit(&whole->bd_claiming, 0);
1627
1628 spin_unlock(&bdev_lock);
1629
1630 /*
1631 * Block event polling for write claims if requested. Any
1632 * write holder makes the write_holder state stick until
1633 * all are released. This is good enough and tracking
1634 * individual writeable reference is too fragile given the
1635 * way @mode is used in blkdev_get/put().
1636 */
1637 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1638 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1639 bdev->bd_write_holder = true;
1640 disk_block_events(disk);
1641 }
1642
1643 mutex_unlock(&bdev->bd_mutex);
1644 bdput(whole);
1645 }
1646
1647 return res;
1648 }
1649 EXPORT_SYMBOL(blkdev_get);
1650
1651 /**
1652 * blkdev_get_by_path - open a block device by name
1653 * @path: path to the block device to open
1654 * @mode: FMODE_* mask
1655 * @holder: exclusive holder identifier
1656 *
1657 * Open the blockdevice described by the device file at @path. @mode
1658 * and @holder are identical to blkdev_get().
1659 *
1660 * On success, the returned block_device has reference count of one.
1661 *
1662 * CONTEXT:
1663 * Might sleep.
1664 *
1665 * RETURNS:
1666 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1667 */
1668 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1669 void *holder)
1670 {
1671 struct block_device *bdev;
1672 int err;
1673
1674 bdev = lookup_bdev(path);
1675 if (IS_ERR(bdev))
1676 return bdev;
1677
1678 err = blkdev_get(bdev, mode, holder);
1679 if (err)
1680 return ERR_PTR(err);
1681
1682 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1683 blkdev_put(bdev, mode);
1684 return ERR_PTR(-EACCES);
1685 }
1686
1687 return bdev;
1688 }
1689 EXPORT_SYMBOL(blkdev_get_by_path);
1690
1691 /**
1692 * blkdev_get_by_dev - open a block device by device number
1693 * @dev: device number of block device to open
1694 * @mode: FMODE_* mask
1695 * @holder: exclusive holder identifier
1696 *
1697 * Open the blockdevice described by device number @dev. @mode and
1698 * @holder are identical to blkdev_get().
1699 *
1700 * Use it ONLY if you really do not have anything better - i.e. when
1701 * you are behind a truly sucky interface and all you are given is a
1702 * device number. _Never_ to be used for internal purposes. If you
1703 * ever need it - reconsider your API.
1704 *
1705 * On success, the returned block_device has reference count of one.
1706 *
1707 * CONTEXT:
1708 * Might sleep.
1709 *
1710 * RETURNS:
1711 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1712 */
1713 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1714 {
1715 struct block_device *bdev;
1716 int err;
1717
1718 bdev = bdget(dev);
1719 if (!bdev)
1720 return ERR_PTR(-ENOMEM);
1721
1722 err = blkdev_get(bdev, mode, holder);
1723 if (err)
1724 return ERR_PTR(err);
1725
1726 return bdev;
1727 }
1728 EXPORT_SYMBOL(blkdev_get_by_dev);
1729
1730 static int blkdev_open(struct inode * inode, struct file * filp)
1731 {
1732 struct block_device *bdev;
1733
1734 /*
1735 * Preserve backwards compatibility and allow large file access
1736 * even if userspace doesn't ask for it explicitly. Some mkfs
1737 * binary needs it. We might want to drop this workaround
1738 * during an unstable branch.
1739 */
1740 filp->f_flags |= O_LARGEFILE;
1741
1742 if (filp->f_flags & O_NDELAY)
1743 filp->f_mode |= FMODE_NDELAY;
1744 if (filp->f_flags & O_EXCL)
1745 filp->f_mode |= FMODE_EXCL;
1746 if ((filp->f_flags & O_ACCMODE) == 3)
1747 filp->f_mode |= FMODE_WRITE_IOCTL;
1748
1749 bdev = bd_acquire(inode);
1750 if (bdev == NULL)
1751 return -ENOMEM;
1752
1753 filp->f_mapping = bdev->bd_inode->i_mapping;
1754 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1755
1756 return blkdev_get(bdev, filp->f_mode, filp);
1757 }
1758
1759 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1760 {
1761 struct gendisk *disk = bdev->bd_disk;
1762 struct block_device *victim = NULL;
1763
1764 mutex_lock_nested(&bdev->bd_mutex, for_part);
1765 if (for_part)
1766 bdev->bd_part_count--;
1767
1768 if (!--bdev->bd_openers) {
1769 WARN_ON_ONCE(bdev->bd_holders);
1770 sync_blockdev(bdev);
1771 kill_bdev(bdev);
1772
1773 bdev_write_inode(bdev);
1774 }
1775 if (bdev->bd_contains == bdev) {
1776 if (disk->fops->release)
1777 disk->fops->release(disk, mode);
1778 }
1779 if (!bdev->bd_openers) {
1780 struct module *owner = disk->fops->owner;
1781
1782 disk_put_part(bdev->bd_part);
1783 bdev->bd_part = NULL;
1784 bdev->bd_disk = NULL;
1785 if (bdev != bdev->bd_contains)
1786 victim = bdev->bd_contains;
1787 bdev->bd_contains = NULL;
1788
1789 put_disk(disk);
1790 module_put(owner);
1791 }
1792 mutex_unlock(&bdev->bd_mutex);
1793 bdput(bdev);
1794 if (victim)
1795 __blkdev_put(victim, mode, 1);
1796 }
1797
1798 void blkdev_put(struct block_device *bdev, fmode_t mode)
1799 {
1800 mutex_lock(&bdev->bd_mutex);
1801
1802 if (mode & FMODE_EXCL) {
1803 bool bdev_free;
1804
1805 /*
1806 * Release a claim on the device. The holder fields
1807 * are protected with bdev_lock. bd_mutex is to
1808 * synchronize disk_holder unlinking.
1809 */
1810 spin_lock(&bdev_lock);
1811
1812 WARN_ON_ONCE(--bdev->bd_holders < 0);
1813 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1814
1815 /* bd_contains might point to self, check in a separate step */
1816 if ((bdev_free = !bdev->bd_holders))
1817 bdev->bd_holder = NULL;
1818 if (!bdev->bd_contains->bd_holders)
1819 bdev->bd_contains->bd_holder = NULL;
1820
1821 spin_unlock(&bdev_lock);
1822
1823 /*
1824 * If this was the last claim, remove holder link and
1825 * unblock evpoll if it was a write holder.
1826 */
1827 if (bdev_free && bdev->bd_write_holder) {
1828 disk_unblock_events(bdev->bd_disk);
1829 bdev->bd_write_holder = false;
1830 }
1831 }
1832
1833 /*
1834 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1835 * event. This is to ensure detection of media removal commanded
1836 * from userland - e.g. eject(1).
1837 */
1838 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1839
1840 mutex_unlock(&bdev->bd_mutex);
1841
1842 __blkdev_put(bdev, mode, 0);
1843 }
1844 EXPORT_SYMBOL(blkdev_put);
1845
1846 static int blkdev_close(struct inode * inode, struct file * filp)
1847 {
1848 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1849 blkdev_put(bdev, filp->f_mode);
1850 return 0;
1851 }
1852
1853 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1854 {
1855 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1856 fmode_t mode = file->f_mode;
1857
1858 /*
1859 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1860 * to updated it before every ioctl.
1861 */
1862 if (file->f_flags & O_NDELAY)
1863 mode |= FMODE_NDELAY;
1864 else
1865 mode &= ~FMODE_NDELAY;
1866
1867 return blkdev_ioctl(bdev, mode, cmd, arg);
1868 }
1869
1870 /*
1871 * Write data to the block device. Only intended for the block device itself
1872 * and the raw driver which basically is a fake block device.
1873 *
1874 * Does not take i_mutex for the write and thus is not for general purpose
1875 * use.
1876 */
1877 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1878 {
1879 struct file *file = iocb->ki_filp;
1880 struct inode *bd_inode = bdev_file_inode(file);
1881 loff_t size = i_size_read(bd_inode);
1882 struct blk_plug plug;
1883 ssize_t ret;
1884
1885 if (bdev_read_only(I_BDEV(bd_inode)))
1886 return -EPERM;
1887
1888 if (!iov_iter_count(from))
1889 return 0;
1890
1891 if (iocb->ki_pos >= size)
1892 return -ENOSPC;
1893
1894 iov_iter_truncate(from, size - iocb->ki_pos);
1895
1896 blk_start_plug(&plug);
1897 ret = __generic_file_write_iter(iocb, from);
1898 if (ret > 0)
1899 ret = generic_write_sync(iocb, ret);
1900 blk_finish_plug(&plug);
1901 return ret;
1902 }
1903 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1904
1905 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1906 {
1907 struct file *file = iocb->ki_filp;
1908 struct inode *bd_inode = bdev_file_inode(file);
1909 loff_t size = i_size_read(bd_inode);
1910 loff_t pos = iocb->ki_pos;
1911
1912 if (pos >= size)
1913 return 0;
1914
1915 size -= pos;
1916 iov_iter_truncate(to, size);
1917 return generic_file_read_iter(iocb, to);
1918 }
1919 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1920
1921 /*
1922 * Try to release a page associated with block device when the system
1923 * is under memory pressure.
1924 */
1925 static int blkdev_releasepage(struct page *page, gfp_t wait)
1926 {
1927 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1928
1929 if (super && super->s_op->bdev_try_to_free_page)
1930 return super->s_op->bdev_try_to_free_page(super, page, wait);
1931
1932 return try_to_free_buffers(page);
1933 }
1934
1935 static int blkdev_writepages(struct address_space *mapping,
1936 struct writeback_control *wbc)
1937 {
1938 if (dax_mapping(mapping)) {
1939 struct block_device *bdev = I_BDEV(mapping->host);
1940
1941 return dax_writeback_mapping_range(mapping, bdev, wbc);
1942 }
1943 return generic_writepages(mapping, wbc);
1944 }
1945
1946 static const struct address_space_operations def_blk_aops = {
1947 .readpage = blkdev_readpage,
1948 .readpages = blkdev_readpages,
1949 .writepage = blkdev_writepage,
1950 .write_begin = blkdev_write_begin,
1951 .write_end = blkdev_write_end,
1952 .writepages = blkdev_writepages,
1953 .releasepage = blkdev_releasepage,
1954 .direct_IO = blkdev_direct_IO,
1955 .is_dirty_writeback = buffer_check_dirty_writeback,
1956 };
1957
1958 #define BLKDEV_FALLOC_FL_SUPPORTED \
1959 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1960 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1961
1962 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1963 loff_t len)
1964 {
1965 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1966 struct address_space *mapping;
1967 loff_t end = start + len - 1;
1968 loff_t isize;
1969 int error;
1970
1971 /* Fail if we don't recognize the flags. */
1972 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1973 return -EOPNOTSUPP;
1974
1975 /* Don't go off the end of the device. */
1976 isize = i_size_read(bdev->bd_inode);
1977 if (start >= isize)
1978 return -EINVAL;
1979 if (end >= isize) {
1980 if (mode & FALLOC_FL_KEEP_SIZE) {
1981 len = isize - start;
1982 end = start + len - 1;
1983 } else
1984 return -EINVAL;
1985 }
1986
1987 /*
1988 * Don't allow IO that isn't aligned to logical block size.
1989 */
1990 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1991 return -EINVAL;
1992
1993 /* Invalidate the page cache, including dirty pages. */
1994 mapping = bdev->bd_inode->i_mapping;
1995 truncate_inode_pages_range(mapping, start, end);
1996
1997 switch (mode) {
1998 case FALLOC_FL_ZERO_RANGE:
1999 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2000 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2001 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2002 break;
2003 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2004 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2005 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2006 break;
2007 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2008 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2009 GFP_KERNEL, 0);
2010 break;
2011 default:
2012 return -EOPNOTSUPP;
2013 }
2014 if (error)
2015 return error;
2016
2017 /*
2018 * Invalidate again; if someone wandered in and dirtied a page,
2019 * the caller will be given -EBUSY. The third argument is
2020 * inclusive, so the rounding here is safe.
2021 */
2022 return invalidate_inode_pages2_range(mapping,
2023 start >> PAGE_SHIFT,
2024 end >> PAGE_SHIFT);
2025 }
2026
2027 const struct file_operations def_blk_fops = {
2028 .open = blkdev_open,
2029 .release = blkdev_close,
2030 .llseek = block_llseek,
2031 .read_iter = blkdev_read_iter,
2032 .write_iter = blkdev_write_iter,
2033 .mmap = generic_file_mmap,
2034 .fsync = blkdev_fsync,
2035 .unlocked_ioctl = block_ioctl,
2036 #ifdef CONFIG_COMPAT
2037 .compat_ioctl = compat_blkdev_ioctl,
2038 #endif
2039 .splice_read = generic_file_splice_read,
2040 .splice_write = iter_file_splice_write,
2041 .fallocate = blkdev_fallocate,
2042 };
2043
2044 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2045 {
2046 int res;
2047 mm_segment_t old_fs = get_fs();
2048 set_fs(KERNEL_DS);
2049 res = blkdev_ioctl(bdev, 0, cmd, arg);
2050 set_fs(old_fs);
2051 return res;
2052 }
2053
2054 EXPORT_SYMBOL(ioctl_by_bdev);
2055
2056 /**
2057 * lookup_bdev - lookup a struct block_device by name
2058 * @pathname: special file representing the block device
2059 *
2060 * Get a reference to the blockdevice at @pathname in the current
2061 * namespace if possible and return it. Return ERR_PTR(error)
2062 * otherwise.
2063 */
2064 struct block_device *lookup_bdev(const char *pathname)
2065 {
2066 struct block_device *bdev;
2067 struct inode *inode;
2068 struct path path;
2069 int error;
2070
2071 if (!pathname || !*pathname)
2072 return ERR_PTR(-EINVAL);
2073
2074 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2075 if (error)
2076 return ERR_PTR(error);
2077
2078 inode = d_backing_inode(path.dentry);
2079 error = -ENOTBLK;
2080 if (!S_ISBLK(inode->i_mode))
2081 goto fail;
2082 error = -EACCES;
2083 if (!may_open_dev(&path))
2084 goto fail;
2085 error = -ENOMEM;
2086 bdev = bd_acquire(inode);
2087 if (!bdev)
2088 goto fail;
2089 out:
2090 path_put(&path);
2091 return bdev;
2092 fail:
2093 bdev = ERR_PTR(error);
2094 goto out;
2095 }
2096 EXPORT_SYMBOL(lookup_bdev);
2097
2098 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2099 {
2100 struct super_block *sb = get_super(bdev);
2101 int res = 0;
2102
2103 if (sb) {
2104 /*
2105 * no need to lock the super, get_super holds the
2106 * read mutex so the filesystem cannot go away
2107 * under us (->put_super runs with the write lock
2108 * hold).
2109 */
2110 shrink_dcache_sb(sb);
2111 res = invalidate_inodes(sb, kill_dirty);
2112 drop_super(sb);
2113 }
2114 invalidate_bdev(bdev);
2115 return res;
2116 }
2117 EXPORT_SYMBOL(__invalidate_device);
2118
2119 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2120 {
2121 struct inode *inode, *old_inode = NULL;
2122
2123 spin_lock(&blockdev_superblock->s_inode_list_lock);
2124 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2125 struct address_space *mapping = inode->i_mapping;
2126 struct block_device *bdev;
2127
2128 spin_lock(&inode->i_lock);
2129 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2130 mapping->nrpages == 0) {
2131 spin_unlock(&inode->i_lock);
2132 continue;
2133 }
2134 __iget(inode);
2135 spin_unlock(&inode->i_lock);
2136 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2137 /*
2138 * We hold a reference to 'inode' so it couldn't have been
2139 * removed from s_inodes list while we dropped the
2140 * s_inode_list_lock We cannot iput the inode now as we can
2141 * be holding the last reference and we cannot iput it under
2142 * s_inode_list_lock. So we keep the reference and iput it
2143 * later.
2144 */
2145 iput(old_inode);
2146 old_inode = inode;
2147 bdev = I_BDEV(inode);
2148
2149 mutex_lock(&bdev->bd_mutex);
2150 if (bdev->bd_openers)
2151 func(bdev, arg);
2152 mutex_unlock(&bdev->bd_mutex);
2153
2154 spin_lock(&blockdev_superblock->s_inode_list_lock);
2155 }
2156 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2157 iput(old_inode);
2158 }