]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/check-integrity.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / check-integrity.c
1 /*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 /*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
80 *
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
89 */
90
91 #include <linux/sched.h>
92 #include <linux/slab.h>
93 #include <linux/buffer_head.h>
94 #include <linux/mutex.h>
95 #include <linux/genhd.h>
96 #include <linux/blkdev.h>
97 #include <linux/mm.h>
98 #include <linux/string.h>
99 #include "ctree.h"
100 #include "disk-io.h"
101 #include "hash.h"
102 #include "transaction.h"
103 #include "extent_io.h"
104 #include "volumes.h"
105 #include "print-tree.h"
106 #include "locking.h"
107 #include "check-integrity.h"
108 #include "rcu-string.h"
109 #include "compression.h"
110
111 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
112 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
113 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
114 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
115 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
116 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
117 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
118 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
119 * excluding " [...]" */
120 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
121
122 /*
123 * The definition of the bitmask fields for the print_mask.
124 * They are specified with the mount option check_integrity_print_mask.
125 */
126 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
127 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
128 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
129 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
130 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
131 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
132 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
133 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
134 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
135 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
136 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
137 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
138 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
139 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
140
141 struct btrfsic_dev_state;
142 struct btrfsic_state;
143
144 struct btrfsic_block {
145 u32 magic_num; /* only used for debug purposes */
146 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
147 unsigned int is_superblock:1; /* if it is one of the superblocks */
148 unsigned int is_iodone:1; /* if is done by lower subsystem */
149 unsigned int iodone_w_error:1; /* error was indicated to endio */
150 unsigned int never_written:1; /* block was added because it was
151 * referenced, not because it was
152 * written */
153 unsigned int mirror_num; /* large enough to hold
154 * BTRFS_SUPER_MIRROR_MAX */
155 struct btrfsic_dev_state *dev_state;
156 u64 dev_bytenr; /* key, physical byte num on disk */
157 u64 logical_bytenr; /* logical byte num on disk */
158 u64 generation;
159 struct btrfs_disk_key disk_key; /* extra info to print in case of
160 * issues, will not always be correct */
161 struct list_head collision_resolving_node; /* list node */
162 struct list_head all_blocks_node; /* list node */
163
164 /* the following two lists contain block_link items */
165 struct list_head ref_to_list; /* list */
166 struct list_head ref_from_list; /* list */
167 struct btrfsic_block *next_in_same_bio;
168 void *orig_bio_bh_private;
169 union {
170 bio_end_io_t *bio;
171 bh_end_io_t *bh;
172 } orig_bio_bh_end_io;
173 int submit_bio_bh_rw;
174 u64 flush_gen; /* only valid if !never_written */
175 };
176
177 /*
178 * Elements of this type are allocated dynamically and required because
179 * each block object can refer to and can be ref from multiple blocks.
180 * The key to lookup them in the hashtable is the dev_bytenr of
181 * the block ref to plus the one from the block referred from.
182 * The fact that they are searchable via a hashtable and that a
183 * ref_cnt is maintained is not required for the btrfs integrity
184 * check algorithm itself, it is only used to make the output more
185 * beautiful in case that an error is detected (an error is defined
186 * as a write operation to a block while that block is still referenced).
187 */
188 struct btrfsic_block_link {
189 u32 magic_num; /* only used for debug purposes */
190 u32 ref_cnt;
191 struct list_head node_ref_to; /* list node */
192 struct list_head node_ref_from; /* list node */
193 struct list_head collision_resolving_node; /* list node */
194 struct btrfsic_block *block_ref_to;
195 struct btrfsic_block *block_ref_from;
196 u64 parent_generation;
197 };
198
199 struct btrfsic_dev_state {
200 u32 magic_num; /* only used for debug purposes */
201 struct block_device *bdev;
202 struct btrfsic_state *state;
203 struct list_head collision_resolving_node; /* list node */
204 struct btrfsic_block dummy_block_for_bio_bh_flush;
205 u64 last_flush_gen;
206 char name[BDEVNAME_SIZE];
207 };
208
209 struct btrfsic_block_hashtable {
210 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
211 };
212
213 struct btrfsic_block_link_hashtable {
214 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
215 };
216
217 struct btrfsic_dev_state_hashtable {
218 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
219 };
220
221 struct btrfsic_block_data_ctx {
222 u64 start; /* virtual bytenr */
223 u64 dev_bytenr; /* physical bytenr on device */
224 u32 len;
225 struct btrfsic_dev_state *dev;
226 char **datav;
227 struct page **pagev;
228 void *mem_to_free;
229 };
230
231 /* This structure is used to implement recursion without occupying
232 * any stack space, refer to btrfsic_process_metablock() */
233 struct btrfsic_stack_frame {
234 u32 magic;
235 u32 nr;
236 int error;
237 int i;
238 int limit_nesting;
239 int num_copies;
240 int mirror_num;
241 struct btrfsic_block *block;
242 struct btrfsic_block_data_ctx *block_ctx;
243 struct btrfsic_block *next_block;
244 struct btrfsic_block_data_ctx next_block_ctx;
245 struct btrfs_header *hdr;
246 struct btrfsic_stack_frame *prev;
247 };
248
249 /* Some state per mounted filesystem */
250 struct btrfsic_state {
251 u32 print_mask;
252 int include_extent_data;
253 int csum_size;
254 struct list_head all_blocks_list;
255 struct btrfsic_block_hashtable block_hashtable;
256 struct btrfsic_block_link_hashtable block_link_hashtable;
257 struct btrfs_fs_info *fs_info;
258 u64 max_superblock_generation;
259 struct btrfsic_block *latest_superblock;
260 u32 metablock_size;
261 u32 datablock_size;
262 };
263
264 static void btrfsic_block_init(struct btrfsic_block *b);
265 static struct btrfsic_block *btrfsic_block_alloc(void);
266 static void btrfsic_block_free(struct btrfsic_block *b);
267 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
268 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
269 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
270 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
271 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
272 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
273 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
274 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
275 struct btrfsic_block_hashtable *h);
276 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
277 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
278 struct block_device *bdev,
279 u64 dev_bytenr,
280 struct btrfsic_block_hashtable *h);
281 static void btrfsic_block_link_hashtable_init(
282 struct btrfsic_block_link_hashtable *h);
283 static void btrfsic_block_link_hashtable_add(
284 struct btrfsic_block_link *l,
285 struct btrfsic_block_link_hashtable *h);
286 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
287 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
288 struct block_device *bdev_ref_to,
289 u64 dev_bytenr_ref_to,
290 struct block_device *bdev_ref_from,
291 u64 dev_bytenr_ref_from,
292 struct btrfsic_block_link_hashtable *h);
293 static void btrfsic_dev_state_hashtable_init(
294 struct btrfsic_dev_state_hashtable *h);
295 static void btrfsic_dev_state_hashtable_add(
296 struct btrfsic_dev_state *ds,
297 struct btrfsic_dev_state_hashtable *h);
298 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
299 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
300 struct block_device *bdev,
301 struct btrfsic_dev_state_hashtable *h);
302 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
303 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
304 static int btrfsic_process_superblock(struct btrfsic_state *state,
305 struct btrfs_fs_devices *fs_devices);
306 static int btrfsic_process_metablock(struct btrfsic_state *state,
307 struct btrfsic_block *block,
308 struct btrfsic_block_data_ctx *block_ctx,
309 int limit_nesting, int force_iodone_flag);
310 static void btrfsic_read_from_block_data(
311 struct btrfsic_block_data_ctx *block_ctx,
312 void *dst, u32 offset, size_t len);
313 static int btrfsic_create_link_to_next_block(
314 struct btrfsic_state *state,
315 struct btrfsic_block *block,
316 struct btrfsic_block_data_ctx
317 *block_ctx, u64 next_bytenr,
318 int limit_nesting,
319 struct btrfsic_block_data_ctx *next_block_ctx,
320 struct btrfsic_block **next_blockp,
321 int force_iodone_flag,
322 int *num_copiesp, int *mirror_nump,
323 struct btrfs_disk_key *disk_key,
324 u64 parent_generation);
325 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
326 struct btrfsic_block *block,
327 struct btrfsic_block_data_ctx *block_ctx,
328 u32 item_offset, int force_iodone_flag);
329 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
330 struct btrfsic_block_data_ctx *block_ctx_out,
331 int mirror_num);
332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333 static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335 static void btrfsic_dump_database(struct btrfsic_state *state);
336 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 char **datav, unsigned int num_pages);
338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344 static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348 static void btrfsic_bio_end_io(struct bio *bp);
349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356 static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360 static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362 static void btrfsic_dump_tree(const struct btrfsic_state *state);
363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372 static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381 static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
393 u64 dev_bytenr);
394
395 static struct mutex btrfsic_mutex;
396 static int btrfsic_is_initialized;
397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400 static void btrfsic_block_init(struct btrfsic_block *b)
401 {
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
425 }
426
427 static struct btrfsic_block *btrfsic_block_alloc(void)
428 {
429 struct btrfsic_block *b;
430
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
434
435 return b;
436 }
437
438 static void btrfsic_block_free(struct btrfsic_block *b)
439 {
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
442 }
443
444 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445 {
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
453 }
454
455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456 {
457 struct btrfsic_block_link *l;
458
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
462
463 return l;
464 }
465
466 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467 {
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
470 }
471
472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473 {
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483 }
484
485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486 {
487 struct btrfsic_dev_state *ds;
488
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
492
493 return ds;
494 }
495
496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497 {
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
501 }
502
503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504 {
505 int i;
506
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
509 }
510
511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
513 {
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519 list_add(&b->collision_resolving_node, h->table + hashval);
520 }
521
522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523 {
524 list_del(&b->collision_resolving_node);
525 }
526
527 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
531 {
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct btrfsic_block *b;
537
538 list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
539 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
540 return b;
541 }
542
543 return NULL;
544 }
545
546 static void btrfsic_block_link_hashtable_init(
547 struct btrfsic_block_link_hashtable *h)
548 {
549 int i;
550
551 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
552 INIT_LIST_HEAD(h->table + i);
553 }
554
555 static void btrfsic_block_link_hashtable_add(
556 struct btrfsic_block_link *l,
557 struct btrfsic_block_link_hashtable *h)
558 {
559 const unsigned int hashval =
560 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
561 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
562 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
563 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
564 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
565
566 BUG_ON(NULL == l->block_ref_to);
567 BUG_ON(NULL == l->block_ref_from);
568 list_add(&l->collision_resolving_node, h->table + hashval);
569 }
570
571 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
572 {
573 list_del(&l->collision_resolving_node);
574 }
575
576 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
577 struct block_device *bdev_ref_to,
578 u64 dev_bytenr_ref_to,
579 struct block_device *bdev_ref_from,
580 u64 dev_bytenr_ref_from,
581 struct btrfsic_block_link_hashtable *h)
582 {
583 const unsigned int hashval =
584 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
585 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
586 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
587 ((unsigned int)((uintptr_t)bdev_ref_from))) &
588 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
589 struct btrfsic_block_link *l;
590
591 list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
592 BUG_ON(NULL == l->block_ref_to);
593 BUG_ON(NULL == l->block_ref_from);
594 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
595 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
596 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
597 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
598 return l;
599 }
600
601 return NULL;
602 }
603
604 static void btrfsic_dev_state_hashtable_init(
605 struct btrfsic_dev_state_hashtable *h)
606 {
607 int i;
608
609 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
610 INIT_LIST_HEAD(h->table + i);
611 }
612
613 static void btrfsic_dev_state_hashtable_add(
614 struct btrfsic_dev_state *ds,
615 struct btrfsic_dev_state_hashtable *h)
616 {
617 const unsigned int hashval =
618 (((unsigned int)((uintptr_t)ds->bdev)) &
619 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
620
621 list_add(&ds->collision_resolving_node, h->table + hashval);
622 }
623
624 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
625 {
626 list_del(&ds->collision_resolving_node);
627 }
628
629 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
630 struct block_device *bdev,
631 struct btrfsic_dev_state_hashtable *h)
632 {
633 const unsigned int hashval =
634 (((unsigned int)((uintptr_t)bdev)) &
635 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
636 struct btrfsic_dev_state *ds;
637
638 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
639 if (ds->bdev == bdev)
640 return ds;
641 }
642
643 return NULL;
644 }
645
646 static int btrfsic_process_superblock(struct btrfsic_state *state,
647 struct btrfs_fs_devices *fs_devices)
648 {
649 struct btrfs_fs_info *fs_info = state->fs_info;
650 struct btrfs_super_block *selected_super;
651 struct list_head *dev_head = &fs_devices->devices;
652 struct btrfs_device *device;
653 struct btrfsic_dev_state *selected_dev_state = NULL;
654 int ret = 0;
655 int pass;
656
657 BUG_ON(NULL == state);
658 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
659 if (NULL == selected_super) {
660 pr_info("btrfsic: error, kmalloc failed!\n");
661 return -ENOMEM;
662 }
663
664 list_for_each_entry(device, dev_head, dev_list) {
665 int i;
666 struct btrfsic_dev_state *dev_state;
667
668 if (!device->bdev || !device->name)
669 continue;
670
671 dev_state = btrfsic_dev_state_lookup(device->bdev);
672 BUG_ON(NULL == dev_state);
673 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
674 ret = btrfsic_process_superblock_dev_mirror(
675 state, dev_state, device, i,
676 &selected_dev_state, selected_super);
677 if (0 != ret && 0 == i) {
678 kfree(selected_super);
679 return ret;
680 }
681 }
682 }
683
684 if (NULL == state->latest_superblock) {
685 pr_info("btrfsic: no superblock found!\n");
686 kfree(selected_super);
687 return -1;
688 }
689
690 state->csum_size = btrfs_super_csum_size(selected_super);
691
692 for (pass = 0; pass < 3; pass++) {
693 int num_copies;
694 int mirror_num;
695 u64 next_bytenr;
696
697 switch (pass) {
698 case 0:
699 next_bytenr = btrfs_super_root(selected_super);
700 if (state->print_mask &
701 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
702 pr_info("root@%llu\n", next_bytenr);
703 break;
704 case 1:
705 next_bytenr = btrfs_super_chunk_root(selected_super);
706 if (state->print_mask &
707 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
708 pr_info("chunk@%llu\n", next_bytenr);
709 break;
710 case 2:
711 next_bytenr = btrfs_super_log_root(selected_super);
712 if (0 == next_bytenr)
713 continue;
714 if (state->print_mask &
715 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
716 pr_info("log@%llu\n", next_bytenr);
717 break;
718 }
719
720 num_copies = btrfs_num_copies(fs_info, next_bytenr,
721 state->metablock_size);
722 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
723 pr_info("num_copies(log_bytenr=%llu) = %d\n",
724 next_bytenr, num_copies);
725
726 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
727 struct btrfsic_block *next_block;
728 struct btrfsic_block_data_ctx tmp_next_block_ctx;
729 struct btrfsic_block_link *l;
730
731 ret = btrfsic_map_block(state, next_bytenr,
732 state->metablock_size,
733 &tmp_next_block_ctx,
734 mirror_num);
735 if (ret) {
736 pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
737 next_bytenr, mirror_num);
738 kfree(selected_super);
739 return -1;
740 }
741
742 next_block = btrfsic_block_hashtable_lookup(
743 tmp_next_block_ctx.dev->bdev,
744 tmp_next_block_ctx.dev_bytenr,
745 &state->block_hashtable);
746 BUG_ON(NULL == next_block);
747
748 l = btrfsic_block_link_hashtable_lookup(
749 tmp_next_block_ctx.dev->bdev,
750 tmp_next_block_ctx.dev_bytenr,
751 state->latest_superblock->dev_state->
752 bdev,
753 state->latest_superblock->dev_bytenr,
754 &state->block_link_hashtable);
755 BUG_ON(NULL == l);
756
757 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
758 if (ret < (int)PAGE_SIZE) {
759 pr_info("btrfsic: read @logical %llu failed!\n",
760 tmp_next_block_ctx.start);
761 btrfsic_release_block_ctx(&tmp_next_block_ctx);
762 kfree(selected_super);
763 return -1;
764 }
765
766 ret = btrfsic_process_metablock(state,
767 next_block,
768 &tmp_next_block_ctx,
769 BTRFS_MAX_LEVEL + 3, 1);
770 btrfsic_release_block_ctx(&tmp_next_block_ctx);
771 }
772 }
773
774 kfree(selected_super);
775 return ret;
776 }
777
778 static int btrfsic_process_superblock_dev_mirror(
779 struct btrfsic_state *state,
780 struct btrfsic_dev_state *dev_state,
781 struct btrfs_device *device,
782 int superblock_mirror_num,
783 struct btrfsic_dev_state **selected_dev_state,
784 struct btrfs_super_block *selected_super)
785 {
786 struct btrfs_fs_info *fs_info = state->fs_info;
787 struct btrfs_super_block *super_tmp;
788 u64 dev_bytenr;
789 struct buffer_head *bh;
790 struct btrfsic_block *superblock_tmp;
791 int pass;
792 struct block_device *const superblock_bdev = device->bdev;
793
794 /* super block bytenr is always the unmapped device bytenr */
795 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
796 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
797 return -1;
798 bh = __bread(superblock_bdev, dev_bytenr / 4096,
799 BTRFS_SUPER_INFO_SIZE);
800 if (NULL == bh)
801 return -1;
802 super_tmp = (struct btrfs_super_block *)
803 (bh->b_data + (dev_bytenr & 4095));
804
805 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
806 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
807 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
808 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
809 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
810 brelse(bh);
811 return 0;
812 }
813
814 superblock_tmp =
815 btrfsic_block_hashtable_lookup(superblock_bdev,
816 dev_bytenr,
817 &state->block_hashtable);
818 if (NULL == superblock_tmp) {
819 superblock_tmp = btrfsic_block_alloc();
820 if (NULL == superblock_tmp) {
821 pr_info("btrfsic: error, kmalloc failed!\n");
822 brelse(bh);
823 return -1;
824 }
825 /* for superblock, only the dev_bytenr makes sense */
826 superblock_tmp->dev_bytenr = dev_bytenr;
827 superblock_tmp->dev_state = dev_state;
828 superblock_tmp->logical_bytenr = dev_bytenr;
829 superblock_tmp->generation = btrfs_super_generation(super_tmp);
830 superblock_tmp->is_metadata = 1;
831 superblock_tmp->is_superblock = 1;
832 superblock_tmp->is_iodone = 1;
833 superblock_tmp->never_written = 0;
834 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
835 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
836 btrfs_info_in_rcu(fs_info,
837 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
838 superblock_bdev,
839 rcu_str_deref(device->name), dev_bytenr,
840 dev_state->name, dev_bytenr,
841 superblock_mirror_num);
842 list_add(&superblock_tmp->all_blocks_node,
843 &state->all_blocks_list);
844 btrfsic_block_hashtable_add(superblock_tmp,
845 &state->block_hashtable);
846 }
847
848 /* select the one with the highest generation field */
849 if (btrfs_super_generation(super_tmp) >
850 state->max_superblock_generation ||
851 0 == state->max_superblock_generation) {
852 memcpy(selected_super, super_tmp, sizeof(*selected_super));
853 *selected_dev_state = dev_state;
854 state->max_superblock_generation =
855 btrfs_super_generation(super_tmp);
856 state->latest_superblock = superblock_tmp;
857 }
858
859 for (pass = 0; pass < 3; pass++) {
860 u64 next_bytenr;
861 int num_copies;
862 int mirror_num;
863 const char *additional_string = NULL;
864 struct btrfs_disk_key tmp_disk_key;
865
866 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
867 tmp_disk_key.offset = 0;
868 switch (pass) {
869 case 0:
870 btrfs_set_disk_key_objectid(&tmp_disk_key,
871 BTRFS_ROOT_TREE_OBJECTID);
872 additional_string = "initial root ";
873 next_bytenr = btrfs_super_root(super_tmp);
874 break;
875 case 1:
876 btrfs_set_disk_key_objectid(&tmp_disk_key,
877 BTRFS_CHUNK_TREE_OBJECTID);
878 additional_string = "initial chunk ";
879 next_bytenr = btrfs_super_chunk_root(super_tmp);
880 break;
881 case 2:
882 btrfs_set_disk_key_objectid(&tmp_disk_key,
883 BTRFS_TREE_LOG_OBJECTID);
884 additional_string = "initial log ";
885 next_bytenr = btrfs_super_log_root(super_tmp);
886 if (0 == next_bytenr)
887 continue;
888 break;
889 }
890
891 num_copies = btrfs_num_copies(fs_info, next_bytenr,
892 state->metablock_size);
893 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
894 pr_info("num_copies(log_bytenr=%llu) = %d\n",
895 next_bytenr, num_copies);
896 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
897 struct btrfsic_block *next_block;
898 struct btrfsic_block_data_ctx tmp_next_block_ctx;
899 struct btrfsic_block_link *l;
900
901 if (btrfsic_map_block(state, next_bytenr,
902 state->metablock_size,
903 &tmp_next_block_ctx,
904 mirror_num)) {
905 pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
906 next_bytenr, mirror_num);
907 brelse(bh);
908 return -1;
909 }
910
911 next_block = btrfsic_block_lookup_or_add(
912 state, &tmp_next_block_ctx,
913 additional_string, 1, 1, 0,
914 mirror_num, NULL);
915 if (NULL == next_block) {
916 btrfsic_release_block_ctx(&tmp_next_block_ctx);
917 brelse(bh);
918 return -1;
919 }
920
921 next_block->disk_key = tmp_disk_key;
922 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
923 l = btrfsic_block_link_lookup_or_add(
924 state, &tmp_next_block_ctx,
925 next_block, superblock_tmp,
926 BTRFSIC_GENERATION_UNKNOWN);
927 btrfsic_release_block_ctx(&tmp_next_block_ctx);
928 if (NULL == l) {
929 brelse(bh);
930 return -1;
931 }
932 }
933 }
934 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
935 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
936
937 brelse(bh);
938 return 0;
939 }
940
941 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
942 {
943 struct btrfsic_stack_frame *sf;
944
945 sf = kzalloc(sizeof(*sf), GFP_NOFS);
946 if (NULL == sf)
947 pr_info("btrfsic: alloc memory failed!\n");
948 else
949 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
950 return sf;
951 }
952
953 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
954 {
955 BUG_ON(!(NULL == sf ||
956 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
957 kfree(sf);
958 }
959
960 static int btrfsic_process_metablock(
961 struct btrfsic_state *state,
962 struct btrfsic_block *const first_block,
963 struct btrfsic_block_data_ctx *const first_block_ctx,
964 int first_limit_nesting, int force_iodone_flag)
965 {
966 struct btrfsic_stack_frame initial_stack_frame = { 0 };
967 struct btrfsic_stack_frame *sf;
968 struct btrfsic_stack_frame *next_stack;
969 struct btrfs_header *const first_hdr =
970 (struct btrfs_header *)first_block_ctx->datav[0];
971
972 BUG_ON(!first_hdr);
973 sf = &initial_stack_frame;
974 sf->error = 0;
975 sf->i = -1;
976 sf->limit_nesting = first_limit_nesting;
977 sf->block = first_block;
978 sf->block_ctx = first_block_ctx;
979 sf->next_block = NULL;
980 sf->hdr = first_hdr;
981 sf->prev = NULL;
982
983 continue_with_new_stack_frame:
984 sf->block->generation = le64_to_cpu(sf->hdr->generation);
985 if (0 == sf->hdr->level) {
986 struct btrfs_leaf *const leafhdr =
987 (struct btrfs_leaf *)sf->hdr;
988
989 if (-1 == sf->i) {
990 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
991
992 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
993 pr_info("leaf %llu items %d generation %llu owner %llu\n",
994 sf->block_ctx->start, sf->nr,
995 btrfs_stack_header_generation(
996 &leafhdr->header),
997 btrfs_stack_header_owner(
998 &leafhdr->header));
999 }
1000
1001 continue_with_current_leaf_stack_frame:
1002 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1003 sf->i++;
1004 sf->num_copies = 0;
1005 }
1006
1007 if (sf->i < sf->nr) {
1008 struct btrfs_item disk_item;
1009 u32 disk_item_offset =
1010 (uintptr_t)(leafhdr->items + sf->i) -
1011 (uintptr_t)leafhdr;
1012 struct btrfs_disk_key *disk_key;
1013 u8 type;
1014 u32 item_offset;
1015 u32 item_size;
1016
1017 if (disk_item_offset + sizeof(struct btrfs_item) >
1018 sf->block_ctx->len) {
1019 leaf_item_out_of_bounce_error:
1020 pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1021 sf->block_ctx->start,
1022 sf->block_ctx->dev->name);
1023 goto one_stack_frame_backwards;
1024 }
1025 btrfsic_read_from_block_data(sf->block_ctx,
1026 &disk_item,
1027 disk_item_offset,
1028 sizeof(struct btrfs_item));
1029 item_offset = btrfs_stack_item_offset(&disk_item);
1030 item_size = btrfs_stack_item_size(&disk_item);
1031 disk_key = &disk_item.key;
1032 type = btrfs_disk_key_type(disk_key);
1033
1034 if (BTRFS_ROOT_ITEM_KEY == type) {
1035 struct btrfs_root_item root_item;
1036 u32 root_item_offset;
1037 u64 next_bytenr;
1038
1039 root_item_offset = item_offset +
1040 offsetof(struct btrfs_leaf, items);
1041 if (root_item_offset + item_size >
1042 sf->block_ctx->len)
1043 goto leaf_item_out_of_bounce_error;
1044 btrfsic_read_from_block_data(
1045 sf->block_ctx, &root_item,
1046 root_item_offset,
1047 item_size);
1048 next_bytenr = btrfs_root_bytenr(&root_item);
1049
1050 sf->error =
1051 btrfsic_create_link_to_next_block(
1052 state,
1053 sf->block,
1054 sf->block_ctx,
1055 next_bytenr,
1056 sf->limit_nesting,
1057 &sf->next_block_ctx,
1058 &sf->next_block,
1059 force_iodone_flag,
1060 &sf->num_copies,
1061 &sf->mirror_num,
1062 disk_key,
1063 btrfs_root_generation(
1064 &root_item));
1065 if (sf->error)
1066 goto one_stack_frame_backwards;
1067
1068 if (NULL != sf->next_block) {
1069 struct btrfs_header *const next_hdr =
1070 (struct btrfs_header *)
1071 sf->next_block_ctx.datav[0];
1072
1073 next_stack =
1074 btrfsic_stack_frame_alloc();
1075 if (NULL == next_stack) {
1076 sf->error = -1;
1077 btrfsic_release_block_ctx(
1078 &sf->
1079 next_block_ctx);
1080 goto one_stack_frame_backwards;
1081 }
1082
1083 next_stack->i = -1;
1084 next_stack->block = sf->next_block;
1085 next_stack->block_ctx =
1086 &sf->next_block_ctx;
1087 next_stack->next_block = NULL;
1088 next_stack->hdr = next_hdr;
1089 next_stack->limit_nesting =
1090 sf->limit_nesting - 1;
1091 next_stack->prev = sf;
1092 sf = next_stack;
1093 goto continue_with_new_stack_frame;
1094 }
1095 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1096 state->include_extent_data) {
1097 sf->error = btrfsic_handle_extent_data(
1098 state,
1099 sf->block,
1100 sf->block_ctx,
1101 item_offset,
1102 force_iodone_flag);
1103 if (sf->error)
1104 goto one_stack_frame_backwards;
1105 }
1106
1107 goto continue_with_current_leaf_stack_frame;
1108 }
1109 } else {
1110 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1111
1112 if (-1 == sf->i) {
1113 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1114
1115 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1116 pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1117 sf->block_ctx->start,
1118 nodehdr->header.level, sf->nr,
1119 btrfs_stack_header_generation(
1120 &nodehdr->header),
1121 btrfs_stack_header_owner(
1122 &nodehdr->header));
1123 }
1124
1125 continue_with_current_node_stack_frame:
1126 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1127 sf->i++;
1128 sf->num_copies = 0;
1129 }
1130
1131 if (sf->i < sf->nr) {
1132 struct btrfs_key_ptr key_ptr;
1133 u32 key_ptr_offset;
1134 u64 next_bytenr;
1135
1136 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1137 (uintptr_t)nodehdr;
1138 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1139 sf->block_ctx->len) {
1140 pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1141 sf->block_ctx->start,
1142 sf->block_ctx->dev->name);
1143 goto one_stack_frame_backwards;
1144 }
1145 btrfsic_read_from_block_data(
1146 sf->block_ctx, &key_ptr, key_ptr_offset,
1147 sizeof(struct btrfs_key_ptr));
1148 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1149
1150 sf->error = btrfsic_create_link_to_next_block(
1151 state,
1152 sf->block,
1153 sf->block_ctx,
1154 next_bytenr,
1155 sf->limit_nesting,
1156 &sf->next_block_ctx,
1157 &sf->next_block,
1158 force_iodone_flag,
1159 &sf->num_copies,
1160 &sf->mirror_num,
1161 &key_ptr.key,
1162 btrfs_stack_key_generation(&key_ptr));
1163 if (sf->error)
1164 goto one_stack_frame_backwards;
1165
1166 if (NULL != sf->next_block) {
1167 struct btrfs_header *const next_hdr =
1168 (struct btrfs_header *)
1169 sf->next_block_ctx.datav[0];
1170
1171 next_stack = btrfsic_stack_frame_alloc();
1172 if (NULL == next_stack) {
1173 sf->error = -1;
1174 goto one_stack_frame_backwards;
1175 }
1176
1177 next_stack->i = -1;
1178 next_stack->block = sf->next_block;
1179 next_stack->block_ctx = &sf->next_block_ctx;
1180 next_stack->next_block = NULL;
1181 next_stack->hdr = next_hdr;
1182 next_stack->limit_nesting =
1183 sf->limit_nesting - 1;
1184 next_stack->prev = sf;
1185 sf = next_stack;
1186 goto continue_with_new_stack_frame;
1187 }
1188
1189 goto continue_with_current_node_stack_frame;
1190 }
1191 }
1192
1193 one_stack_frame_backwards:
1194 if (NULL != sf->prev) {
1195 struct btrfsic_stack_frame *const prev = sf->prev;
1196
1197 /* the one for the initial block is freed in the caller */
1198 btrfsic_release_block_ctx(sf->block_ctx);
1199
1200 if (sf->error) {
1201 prev->error = sf->error;
1202 btrfsic_stack_frame_free(sf);
1203 sf = prev;
1204 goto one_stack_frame_backwards;
1205 }
1206
1207 btrfsic_stack_frame_free(sf);
1208 sf = prev;
1209 goto continue_with_new_stack_frame;
1210 } else {
1211 BUG_ON(&initial_stack_frame != sf);
1212 }
1213
1214 return sf->error;
1215 }
1216
1217 static void btrfsic_read_from_block_data(
1218 struct btrfsic_block_data_ctx *block_ctx,
1219 void *dstv, u32 offset, size_t len)
1220 {
1221 size_t cur;
1222 size_t offset_in_page;
1223 char *kaddr;
1224 char *dst = (char *)dstv;
1225 size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1);
1226 unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1227
1228 WARN_ON(offset + len > block_ctx->len);
1229 offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1);
1230
1231 while (len > 0) {
1232 cur = min(len, ((size_t)PAGE_SIZE - offset_in_page));
1233 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1234 kaddr = block_ctx->datav[i];
1235 memcpy(dst, kaddr + offset_in_page, cur);
1236
1237 dst += cur;
1238 len -= cur;
1239 offset_in_page = 0;
1240 i++;
1241 }
1242 }
1243
1244 static int btrfsic_create_link_to_next_block(
1245 struct btrfsic_state *state,
1246 struct btrfsic_block *block,
1247 struct btrfsic_block_data_ctx *block_ctx,
1248 u64 next_bytenr,
1249 int limit_nesting,
1250 struct btrfsic_block_data_ctx *next_block_ctx,
1251 struct btrfsic_block **next_blockp,
1252 int force_iodone_flag,
1253 int *num_copiesp, int *mirror_nump,
1254 struct btrfs_disk_key *disk_key,
1255 u64 parent_generation)
1256 {
1257 struct btrfs_fs_info *fs_info = state->fs_info;
1258 struct btrfsic_block *next_block = NULL;
1259 int ret;
1260 struct btrfsic_block_link *l;
1261 int did_alloc_block_link;
1262 int block_was_created;
1263
1264 *next_blockp = NULL;
1265 if (0 == *num_copiesp) {
1266 *num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1267 state->metablock_size);
1268 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1269 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1270 next_bytenr, *num_copiesp);
1271 *mirror_nump = 1;
1272 }
1273
1274 if (*mirror_nump > *num_copiesp)
1275 return 0;
1276
1277 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1278 pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1279 *mirror_nump);
1280 ret = btrfsic_map_block(state, next_bytenr,
1281 state->metablock_size,
1282 next_block_ctx, *mirror_nump);
1283 if (ret) {
1284 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1285 next_bytenr, *mirror_nump);
1286 btrfsic_release_block_ctx(next_block_ctx);
1287 *next_blockp = NULL;
1288 return -1;
1289 }
1290
1291 next_block = btrfsic_block_lookup_or_add(state,
1292 next_block_ctx, "referenced ",
1293 1, force_iodone_flag,
1294 !force_iodone_flag,
1295 *mirror_nump,
1296 &block_was_created);
1297 if (NULL == next_block) {
1298 btrfsic_release_block_ctx(next_block_ctx);
1299 *next_blockp = NULL;
1300 return -1;
1301 }
1302 if (block_was_created) {
1303 l = NULL;
1304 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1305 } else {
1306 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1307 if (next_block->logical_bytenr != next_bytenr &&
1308 !(!next_block->is_metadata &&
1309 0 == next_block->logical_bytenr))
1310 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1311 next_bytenr, next_block_ctx->dev->name,
1312 next_block_ctx->dev_bytenr, *mirror_nump,
1313 btrfsic_get_block_type(state,
1314 next_block),
1315 next_block->logical_bytenr);
1316 else
1317 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1318 next_bytenr, next_block_ctx->dev->name,
1319 next_block_ctx->dev_bytenr, *mirror_nump,
1320 btrfsic_get_block_type(state,
1321 next_block));
1322 }
1323 next_block->logical_bytenr = next_bytenr;
1324
1325 next_block->mirror_num = *mirror_nump;
1326 l = btrfsic_block_link_hashtable_lookup(
1327 next_block_ctx->dev->bdev,
1328 next_block_ctx->dev_bytenr,
1329 block_ctx->dev->bdev,
1330 block_ctx->dev_bytenr,
1331 &state->block_link_hashtable);
1332 }
1333
1334 next_block->disk_key = *disk_key;
1335 if (NULL == l) {
1336 l = btrfsic_block_link_alloc();
1337 if (NULL == l) {
1338 pr_info("btrfsic: error, kmalloc failed!\n");
1339 btrfsic_release_block_ctx(next_block_ctx);
1340 *next_blockp = NULL;
1341 return -1;
1342 }
1343
1344 did_alloc_block_link = 1;
1345 l->block_ref_to = next_block;
1346 l->block_ref_from = block;
1347 l->ref_cnt = 1;
1348 l->parent_generation = parent_generation;
1349
1350 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1351 btrfsic_print_add_link(state, l);
1352
1353 list_add(&l->node_ref_to, &block->ref_to_list);
1354 list_add(&l->node_ref_from, &next_block->ref_from_list);
1355
1356 btrfsic_block_link_hashtable_add(l,
1357 &state->block_link_hashtable);
1358 } else {
1359 did_alloc_block_link = 0;
1360 if (0 == limit_nesting) {
1361 l->ref_cnt++;
1362 l->parent_generation = parent_generation;
1363 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1364 btrfsic_print_add_link(state, l);
1365 }
1366 }
1367
1368 if (limit_nesting > 0 && did_alloc_block_link) {
1369 ret = btrfsic_read_block(state, next_block_ctx);
1370 if (ret < (int)next_block_ctx->len) {
1371 pr_info("btrfsic: read block @logical %llu failed!\n",
1372 next_bytenr);
1373 btrfsic_release_block_ctx(next_block_ctx);
1374 *next_blockp = NULL;
1375 return -1;
1376 }
1377
1378 *next_blockp = next_block;
1379 } else {
1380 *next_blockp = NULL;
1381 }
1382 (*mirror_nump)++;
1383
1384 return 0;
1385 }
1386
1387 static int btrfsic_handle_extent_data(
1388 struct btrfsic_state *state,
1389 struct btrfsic_block *block,
1390 struct btrfsic_block_data_ctx *block_ctx,
1391 u32 item_offset, int force_iodone_flag)
1392 {
1393 struct btrfs_fs_info *fs_info = state->fs_info;
1394 struct btrfs_file_extent_item file_extent_item;
1395 u64 file_extent_item_offset;
1396 u64 next_bytenr;
1397 u64 num_bytes;
1398 u64 generation;
1399 struct btrfsic_block_link *l;
1400 int ret;
1401
1402 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1403 item_offset;
1404 if (file_extent_item_offset +
1405 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1406 block_ctx->len) {
1407 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1408 block_ctx->start, block_ctx->dev->name);
1409 return -1;
1410 }
1411
1412 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1413 file_extent_item_offset,
1414 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1415 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1416 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1417 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1418 pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1419 file_extent_item.type,
1420 btrfs_stack_file_extent_disk_bytenr(
1421 &file_extent_item));
1422 return 0;
1423 }
1424
1425 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1426 block_ctx->len) {
1427 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1428 block_ctx->start, block_ctx->dev->name);
1429 return -1;
1430 }
1431 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1432 file_extent_item_offset,
1433 sizeof(struct btrfs_file_extent_item));
1434 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1435 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1436 BTRFS_COMPRESS_NONE) {
1437 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1438 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1439 } else {
1440 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1441 }
1442 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1443
1444 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1445 pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1446 file_extent_item.type,
1447 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1448 btrfs_stack_file_extent_offset(&file_extent_item),
1449 num_bytes);
1450 while (num_bytes > 0) {
1451 u32 chunk_len;
1452 int num_copies;
1453 int mirror_num;
1454
1455 if (num_bytes > state->datablock_size)
1456 chunk_len = state->datablock_size;
1457 else
1458 chunk_len = num_bytes;
1459
1460 num_copies = btrfs_num_copies(fs_info, next_bytenr,
1461 state->datablock_size);
1462 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1463 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1464 next_bytenr, num_copies);
1465 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1466 struct btrfsic_block_data_ctx next_block_ctx;
1467 struct btrfsic_block *next_block;
1468 int block_was_created;
1469
1470 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1471 pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1472 mirror_num);
1473 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1474 pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1475 next_bytenr, chunk_len);
1476 ret = btrfsic_map_block(state, next_bytenr,
1477 chunk_len, &next_block_ctx,
1478 mirror_num);
1479 if (ret) {
1480 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1481 next_bytenr, mirror_num);
1482 return -1;
1483 }
1484
1485 next_block = btrfsic_block_lookup_or_add(
1486 state,
1487 &next_block_ctx,
1488 "referenced ",
1489 0,
1490 force_iodone_flag,
1491 !force_iodone_flag,
1492 mirror_num,
1493 &block_was_created);
1494 if (NULL == next_block) {
1495 pr_info("btrfsic: error, kmalloc failed!\n");
1496 btrfsic_release_block_ctx(&next_block_ctx);
1497 return -1;
1498 }
1499 if (!block_was_created) {
1500 if ((state->print_mask &
1501 BTRFSIC_PRINT_MASK_VERBOSE) &&
1502 next_block->logical_bytenr != next_bytenr &&
1503 !(!next_block->is_metadata &&
1504 0 == next_block->logical_bytenr)) {
1505 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1506 next_bytenr,
1507 next_block_ctx.dev->name,
1508 next_block_ctx.dev_bytenr,
1509 mirror_num,
1510 next_block->logical_bytenr);
1511 }
1512 next_block->logical_bytenr = next_bytenr;
1513 next_block->mirror_num = mirror_num;
1514 }
1515
1516 l = btrfsic_block_link_lookup_or_add(state,
1517 &next_block_ctx,
1518 next_block, block,
1519 generation);
1520 btrfsic_release_block_ctx(&next_block_ctx);
1521 if (NULL == l)
1522 return -1;
1523 }
1524
1525 next_bytenr += chunk_len;
1526 num_bytes -= chunk_len;
1527 }
1528
1529 return 0;
1530 }
1531
1532 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1533 struct btrfsic_block_data_ctx *block_ctx_out,
1534 int mirror_num)
1535 {
1536 struct btrfs_fs_info *fs_info = state->fs_info;
1537 int ret;
1538 u64 length;
1539 struct btrfs_bio *multi = NULL;
1540 struct btrfs_device *device;
1541
1542 length = len;
1543 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1544 bytenr, &length, &multi, mirror_num);
1545
1546 if (ret) {
1547 block_ctx_out->start = 0;
1548 block_ctx_out->dev_bytenr = 0;
1549 block_ctx_out->len = 0;
1550 block_ctx_out->dev = NULL;
1551 block_ctx_out->datav = NULL;
1552 block_ctx_out->pagev = NULL;
1553 block_ctx_out->mem_to_free = NULL;
1554
1555 return ret;
1556 }
1557
1558 device = multi->stripes[0].dev;
1559 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1560 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1561 block_ctx_out->start = bytenr;
1562 block_ctx_out->len = len;
1563 block_ctx_out->datav = NULL;
1564 block_ctx_out->pagev = NULL;
1565 block_ctx_out->mem_to_free = NULL;
1566
1567 kfree(multi);
1568 if (NULL == block_ctx_out->dev) {
1569 ret = -ENXIO;
1570 pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1571 }
1572
1573 return ret;
1574 }
1575
1576 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1577 {
1578 if (block_ctx->mem_to_free) {
1579 unsigned int num_pages;
1580
1581 BUG_ON(!block_ctx->datav);
1582 BUG_ON(!block_ctx->pagev);
1583 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1584 PAGE_SHIFT;
1585 while (num_pages > 0) {
1586 num_pages--;
1587 if (block_ctx->datav[num_pages]) {
1588 kunmap(block_ctx->pagev[num_pages]);
1589 block_ctx->datav[num_pages] = NULL;
1590 }
1591 if (block_ctx->pagev[num_pages]) {
1592 __free_page(block_ctx->pagev[num_pages]);
1593 block_ctx->pagev[num_pages] = NULL;
1594 }
1595 }
1596
1597 kfree(block_ctx->mem_to_free);
1598 block_ctx->mem_to_free = NULL;
1599 block_ctx->pagev = NULL;
1600 block_ctx->datav = NULL;
1601 }
1602 }
1603
1604 static int btrfsic_read_block(struct btrfsic_state *state,
1605 struct btrfsic_block_data_ctx *block_ctx)
1606 {
1607 unsigned int num_pages;
1608 unsigned int i;
1609 u64 dev_bytenr;
1610 int ret;
1611
1612 BUG_ON(block_ctx->datav);
1613 BUG_ON(block_ctx->pagev);
1614 BUG_ON(block_ctx->mem_to_free);
1615 if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) {
1616 pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1617 block_ctx->dev_bytenr);
1618 return -1;
1619 }
1620
1621 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1622 PAGE_SHIFT;
1623 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1624 sizeof(*block_ctx->pagev)) *
1625 num_pages, GFP_NOFS);
1626 if (!block_ctx->mem_to_free)
1627 return -ENOMEM;
1628 block_ctx->datav = block_ctx->mem_to_free;
1629 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1630 for (i = 0; i < num_pages; i++) {
1631 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1632 if (!block_ctx->pagev[i])
1633 return -1;
1634 }
1635
1636 dev_bytenr = block_ctx->dev_bytenr;
1637 for (i = 0; i < num_pages;) {
1638 struct bio *bio;
1639 unsigned int j;
1640
1641 bio = btrfs_io_bio_alloc(num_pages - i);
1642 bio->bi_bdev = block_ctx->dev->bdev;
1643 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1644 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1645
1646 for (j = i; j < num_pages; j++) {
1647 ret = bio_add_page(bio, block_ctx->pagev[j],
1648 PAGE_SIZE, 0);
1649 if (PAGE_SIZE != ret)
1650 break;
1651 }
1652 if (j == i) {
1653 pr_info("btrfsic: error, failed to add a single page!\n");
1654 return -1;
1655 }
1656 if (submit_bio_wait(bio)) {
1657 pr_info("btrfsic: read error at logical %llu dev %s!\n",
1658 block_ctx->start, block_ctx->dev->name);
1659 bio_put(bio);
1660 return -1;
1661 }
1662 bio_put(bio);
1663 dev_bytenr += (j - i) * PAGE_SIZE;
1664 i = j;
1665 }
1666 for (i = 0; i < num_pages; i++)
1667 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1668
1669 return block_ctx->len;
1670 }
1671
1672 static void btrfsic_dump_database(struct btrfsic_state *state)
1673 {
1674 const struct btrfsic_block *b_all;
1675
1676 BUG_ON(NULL == state);
1677
1678 pr_info("all_blocks_list:\n");
1679 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1680 const struct btrfsic_block_link *l;
1681
1682 pr_info("%c-block @%llu (%s/%llu/%d)\n",
1683 btrfsic_get_block_type(state, b_all),
1684 b_all->logical_bytenr, b_all->dev_state->name,
1685 b_all->dev_bytenr, b_all->mirror_num);
1686
1687 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1688 pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1689 btrfsic_get_block_type(state, b_all),
1690 b_all->logical_bytenr, b_all->dev_state->name,
1691 b_all->dev_bytenr, b_all->mirror_num,
1692 l->ref_cnt,
1693 btrfsic_get_block_type(state, l->block_ref_to),
1694 l->block_ref_to->logical_bytenr,
1695 l->block_ref_to->dev_state->name,
1696 l->block_ref_to->dev_bytenr,
1697 l->block_ref_to->mirror_num);
1698 }
1699
1700 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1701 pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1702 btrfsic_get_block_type(state, b_all),
1703 b_all->logical_bytenr, b_all->dev_state->name,
1704 b_all->dev_bytenr, b_all->mirror_num,
1705 l->ref_cnt,
1706 btrfsic_get_block_type(state, l->block_ref_from),
1707 l->block_ref_from->logical_bytenr,
1708 l->block_ref_from->dev_state->name,
1709 l->block_ref_from->dev_bytenr,
1710 l->block_ref_from->mirror_num);
1711 }
1712
1713 pr_info("\n");
1714 }
1715 }
1716
1717 /*
1718 * Test whether the disk block contains a tree block (leaf or node)
1719 * (note that this test fails for the super block)
1720 */
1721 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1722 char **datav, unsigned int num_pages)
1723 {
1724 struct btrfs_fs_info *fs_info = state->fs_info;
1725 struct btrfs_header *h;
1726 u8 csum[BTRFS_CSUM_SIZE];
1727 u32 crc = ~(u32)0;
1728 unsigned int i;
1729
1730 if (num_pages * PAGE_SIZE < state->metablock_size)
1731 return 1; /* not metadata */
1732 num_pages = state->metablock_size >> PAGE_SHIFT;
1733 h = (struct btrfs_header *)datav[0];
1734
1735 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1736 return 1;
1737
1738 for (i = 0; i < num_pages; i++) {
1739 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1740 size_t sublen = i ? PAGE_SIZE :
1741 (PAGE_SIZE - BTRFS_CSUM_SIZE);
1742
1743 crc = btrfs_crc32c(crc, data, sublen);
1744 }
1745 btrfs_csum_final(crc, csum);
1746 if (memcmp(csum, h->csum, state->csum_size))
1747 return 1;
1748
1749 return 0; /* is metadata */
1750 }
1751
1752 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1753 u64 dev_bytenr, char **mapped_datav,
1754 unsigned int num_pages,
1755 struct bio *bio, int *bio_is_patched,
1756 struct buffer_head *bh,
1757 int submit_bio_bh_rw)
1758 {
1759 int is_metadata;
1760 struct btrfsic_block *block;
1761 struct btrfsic_block_data_ctx block_ctx;
1762 int ret;
1763 struct btrfsic_state *state = dev_state->state;
1764 struct block_device *bdev = dev_state->bdev;
1765 unsigned int processed_len;
1766
1767 if (NULL != bio_is_patched)
1768 *bio_is_patched = 0;
1769
1770 again:
1771 if (num_pages == 0)
1772 return;
1773
1774 processed_len = 0;
1775 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1776 num_pages));
1777
1778 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1779 &state->block_hashtable);
1780 if (NULL != block) {
1781 u64 bytenr = 0;
1782 struct btrfsic_block_link *l, *tmp;
1783
1784 if (block->is_superblock) {
1785 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1786 mapped_datav[0]);
1787 if (num_pages * PAGE_SIZE <
1788 BTRFS_SUPER_INFO_SIZE) {
1789 pr_info("btrfsic: cannot work with too short bios!\n");
1790 return;
1791 }
1792 is_metadata = 1;
1793 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1));
1794 processed_len = BTRFS_SUPER_INFO_SIZE;
1795 if (state->print_mask &
1796 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1797 pr_info("[before new superblock is written]:\n");
1798 btrfsic_dump_tree_sub(state, block, 0);
1799 }
1800 }
1801 if (is_metadata) {
1802 if (!block->is_superblock) {
1803 if (num_pages * PAGE_SIZE <
1804 state->metablock_size) {
1805 pr_info("btrfsic: cannot work with too short bios!\n");
1806 return;
1807 }
1808 processed_len = state->metablock_size;
1809 bytenr = btrfs_stack_header_bytenr(
1810 (struct btrfs_header *)
1811 mapped_datav[0]);
1812 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1813 dev_state,
1814 dev_bytenr);
1815 }
1816 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1817 if (block->logical_bytenr != bytenr &&
1818 !(!block->is_metadata &&
1819 block->logical_bytenr == 0))
1820 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1821 bytenr, dev_state->name,
1822 dev_bytenr,
1823 block->mirror_num,
1824 btrfsic_get_block_type(state,
1825 block),
1826 block->logical_bytenr);
1827 else
1828 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1829 bytenr, dev_state->name,
1830 dev_bytenr, block->mirror_num,
1831 btrfsic_get_block_type(state,
1832 block));
1833 }
1834 block->logical_bytenr = bytenr;
1835 } else {
1836 if (num_pages * PAGE_SIZE <
1837 state->datablock_size) {
1838 pr_info("btrfsic: cannot work with too short bios!\n");
1839 return;
1840 }
1841 processed_len = state->datablock_size;
1842 bytenr = block->logical_bytenr;
1843 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1844 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1845 bytenr, dev_state->name, dev_bytenr,
1846 block->mirror_num,
1847 btrfsic_get_block_type(state, block));
1848 }
1849
1850 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1851 pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1852 list_empty(&block->ref_to_list) ? ' ' : '!',
1853 list_empty(&block->ref_from_list) ? ' ' : '!');
1854 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1855 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1856 btrfsic_get_block_type(state, block), bytenr,
1857 dev_state->name, dev_bytenr, block->mirror_num,
1858 block->generation,
1859 btrfs_disk_key_objectid(&block->disk_key),
1860 block->disk_key.type,
1861 btrfs_disk_key_offset(&block->disk_key),
1862 btrfs_stack_header_generation(
1863 (struct btrfs_header *) mapped_datav[0]),
1864 state->max_superblock_generation);
1865 btrfsic_dump_tree(state);
1866 }
1867
1868 if (!block->is_iodone && !block->never_written) {
1869 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1870 btrfsic_get_block_type(state, block), bytenr,
1871 dev_state->name, dev_bytenr, block->mirror_num,
1872 block->generation,
1873 btrfs_stack_header_generation(
1874 (struct btrfs_header *)
1875 mapped_datav[0]));
1876 /* it would not be safe to go on */
1877 btrfsic_dump_tree(state);
1878 goto continue_loop;
1879 }
1880
1881 /*
1882 * Clear all references of this block. Do not free
1883 * the block itself even if is not referenced anymore
1884 * because it still carries valuable information
1885 * like whether it was ever written and IO completed.
1886 */
1887 list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1888 node_ref_to) {
1889 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1890 btrfsic_print_rem_link(state, l);
1891 l->ref_cnt--;
1892 if (0 == l->ref_cnt) {
1893 list_del(&l->node_ref_to);
1894 list_del(&l->node_ref_from);
1895 btrfsic_block_link_hashtable_remove(l);
1896 btrfsic_block_link_free(l);
1897 }
1898 }
1899
1900 block_ctx.dev = dev_state;
1901 block_ctx.dev_bytenr = dev_bytenr;
1902 block_ctx.start = bytenr;
1903 block_ctx.len = processed_len;
1904 block_ctx.pagev = NULL;
1905 block_ctx.mem_to_free = NULL;
1906 block_ctx.datav = mapped_datav;
1907
1908 if (is_metadata || state->include_extent_data) {
1909 block->never_written = 0;
1910 block->iodone_w_error = 0;
1911 if (NULL != bio) {
1912 block->is_iodone = 0;
1913 BUG_ON(NULL == bio_is_patched);
1914 if (!*bio_is_patched) {
1915 block->orig_bio_bh_private =
1916 bio->bi_private;
1917 block->orig_bio_bh_end_io.bio =
1918 bio->bi_end_io;
1919 block->next_in_same_bio = NULL;
1920 bio->bi_private = block;
1921 bio->bi_end_io = btrfsic_bio_end_io;
1922 *bio_is_patched = 1;
1923 } else {
1924 struct btrfsic_block *chained_block =
1925 (struct btrfsic_block *)
1926 bio->bi_private;
1927
1928 BUG_ON(NULL == chained_block);
1929 block->orig_bio_bh_private =
1930 chained_block->orig_bio_bh_private;
1931 block->orig_bio_bh_end_io.bio =
1932 chained_block->orig_bio_bh_end_io.
1933 bio;
1934 block->next_in_same_bio = chained_block;
1935 bio->bi_private = block;
1936 }
1937 } else if (NULL != bh) {
1938 block->is_iodone = 0;
1939 block->orig_bio_bh_private = bh->b_private;
1940 block->orig_bio_bh_end_io.bh = bh->b_end_io;
1941 block->next_in_same_bio = NULL;
1942 bh->b_private = block;
1943 bh->b_end_io = btrfsic_bh_end_io;
1944 } else {
1945 block->is_iodone = 1;
1946 block->orig_bio_bh_private = NULL;
1947 block->orig_bio_bh_end_io.bio = NULL;
1948 block->next_in_same_bio = NULL;
1949 }
1950 }
1951
1952 block->flush_gen = dev_state->last_flush_gen + 1;
1953 block->submit_bio_bh_rw = submit_bio_bh_rw;
1954 if (is_metadata) {
1955 block->logical_bytenr = bytenr;
1956 block->is_metadata = 1;
1957 if (block->is_superblock) {
1958 BUG_ON(PAGE_SIZE !=
1959 BTRFS_SUPER_INFO_SIZE);
1960 ret = btrfsic_process_written_superblock(
1961 state,
1962 block,
1963 (struct btrfs_super_block *)
1964 mapped_datav[0]);
1965 if (state->print_mask &
1966 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1967 pr_info("[after new superblock is written]:\n");
1968 btrfsic_dump_tree_sub(state, block, 0);
1969 }
1970 } else {
1971 block->mirror_num = 0; /* unknown */
1972 ret = btrfsic_process_metablock(
1973 state,
1974 block,
1975 &block_ctx,
1976 0, 0);
1977 }
1978 if (ret)
1979 pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1980 dev_bytenr);
1981 } else {
1982 block->is_metadata = 0;
1983 block->mirror_num = 0; /* unknown */
1984 block->generation = BTRFSIC_GENERATION_UNKNOWN;
1985 if (!state->include_extent_data
1986 && list_empty(&block->ref_from_list)) {
1987 /*
1988 * disk block is overwritten with extent
1989 * data (not meta data) and we are configured
1990 * to not include extent data: take the
1991 * chance and free the block's memory
1992 */
1993 btrfsic_block_hashtable_remove(block);
1994 list_del(&block->all_blocks_node);
1995 btrfsic_block_free(block);
1996 }
1997 }
1998 btrfsic_release_block_ctx(&block_ctx);
1999 } else {
2000 /* block has not been found in hash table */
2001 u64 bytenr;
2002
2003 if (!is_metadata) {
2004 processed_len = state->datablock_size;
2005 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2006 pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
2007 dev_state->name, dev_bytenr);
2008 if (!state->include_extent_data) {
2009 /* ignore that written D block */
2010 goto continue_loop;
2011 }
2012
2013 /* this is getting ugly for the
2014 * include_extent_data case... */
2015 bytenr = 0; /* unknown */
2016 } else {
2017 processed_len = state->metablock_size;
2018 bytenr = btrfs_stack_header_bytenr(
2019 (struct btrfs_header *)
2020 mapped_datav[0]);
2021 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2022 dev_bytenr);
2023 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2024 pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
2025 bytenr, dev_state->name, dev_bytenr);
2026 }
2027
2028 block_ctx.dev = dev_state;
2029 block_ctx.dev_bytenr = dev_bytenr;
2030 block_ctx.start = bytenr;
2031 block_ctx.len = processed_len;
2032 block_ctx.pagev = NULL;
2033 block_ctx.mem_to_free = NULL;
2034 block_ctx.datav = mapped_datav;
2035
2036 block = btrfsic_block_alloc();
2037 if (NULL == block) {
2038 pr_info("btrfsic: error, kmalloc failed!\n");
2039 btrfsic_release_block_ctx(&block_ctx);
2040 goto continue_loop;
2041 }
2042 block->dev_state = dev_state;
2043 block->dev_bytenr = dev_bytenr;
2044 block->logical_bytenr = bytenr;
2045 block->is_metadata = is_metadata;
2046 block->never_written = 0;
2047 block->iodone_w_error = 0;
2048 block->mirror_num = 0; /* unknown */
2049 block->flush_gen = dev_state->last_flush_gen + 1;
2050 block->submit_bio_bh_rw = submit_bio_bh_rw;
2051 if (NULL != bio) {
2052 block->is_iodone = 0;
2053 BUG_ON(NULL == bio_is_patched);
2054 if (!*bio_is_patched) {
2055 block->orig_bio_bh_private = bio->bi_private;
2056 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2057 block->next_in_same_bio = NULL;
2058 bio->bi_private = block;
2059 bio->bi_end_io = btrfsic_bio_end_io;
2060 *bio_is_patched = 1;
2061 } else {
2062 struct btrfsic_block *chained_block =
2063 (struct btrfsic_block *)
2064 bio->bi_private;
2065
2066 BUG_ON(NULL == chained_block);
2067 block->orig_bio_bh_private =
2068 chained_block->orig_bio_bh_private;
2069 block->orig_bio_bh_end_io.bio =
2070 chained_block->orig_bio_bh_end_io.bio;
2071 block->next_in_same_bio = chained_block;
2072 bio->bi_private = block;
2073 }
2074 } else if (NULL != bh) {
2075 block->is_iodone = 0;
2076 block->orig_bio_bh_private = bh->b_private;
2077 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2078 block->next_in_same_bio = NULL;
2079 bh->b_private = block;
2080 bh->b_end_io = btrfsic_bh_end_io;
2081 } else {
2082 block->is_iodone = 1;
2083 block->orig_bio_bh_private = NULL;
2084 block->orig_bio_bh_end_io.bio = NULL;
2085 block->next_in_same_bio = NULL;
2086 }
2087 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2088 pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2089 is_metadata ? 'M' : 'D',
2090 block->logical_bytenr, block->dev_state->name,
2091 block->dev_bytenr, block->mirror_num);
2092 list_add(&block->all_blocks_node, &state->all_blocks_list);
2093 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2094
2095 if (is_metadata) {
2096 ret = btrfsic_process_metablock(state, block,
2097 &block_ctx, 0, 0);
2098 if (ret)
2099 pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2100 dev_bytenr);
2101 }
2102 btrfsic_release_block_ctx(&block_ctx);
2103 }
2104
2105 continue_loop:
2106 BUG_ON(!processed_len);
2107 dev_bytenr += processed_len;
2108 mapped_datav += processed_len >> PAGE_SHIFT;
2109 num_pages -= processed_len >> PAGE_SHIFT;
2110 goto again;
2111 }
2112
2113 static void btrfsic_bio_end_io(struct bio *bp)
2114 {
2115 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2116 int iodone_w_error;
2117
2118 /* mutex is not held! This is not save if IO is not yet completed
2119 * on umount */
2120 iodone_w_error = 0;
2121 if (bp->bi_status)
2122 iodone_w_error = 1;
2123
2124 BUG_ON(NULL == block);
2125 bp->bi_private = block->orig_bio_bh_private;
2126 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2127
2128 do {
2129 struct btrfsic_block *next_block;
2130 struct btrfsic_dev_state *const dev_state = block->dev_state;
2131
2132 if ((dev_state->state->print_mask &
2133 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2134 pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2135 bp->bi_status,
2136 btrfsic_get_block_type(dev_state->state, block),
2137 block->logical_bytenr, dev_state->name,
2138 block->dev_bytenr, block->mirror_num);
2139 next_block = block->next_in_same_bio;
2140 block->iodone_w_error = iodone_w_error;
2141 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2142 dev_state->last_flush_gen++;
2143 if ((dev_state->state->print_mask &
2144 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2145 pr_info("bio_end_io() new %s flush_gen=%llu\n",
2146 dev_state->name,
2147 dev_state->last_flush_gen);
2148 }
2149 if (block->submit_bio_bh_rw & REQ_FUA)
2150 block->flush_gen = 0; /* FUA completed means block is
2151 * on disk */
2152 block->is_iodone = 1; /* for FLUSH, this releases the block */
2153 block = next_block;
2154 } while (NULL != block);
2155
2156 bp->bi_end_io(bp);
2157 }
2158
2159 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2160 {
2161 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2162 int iodone_w_error = !uptodate;
2163 struct btrfsic_dev_state *dev_state;
2164
2165 BUG_ON(NULL == block);
2166 dev_state = block->dev_state;
2167 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2168 pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2169 iodone_w_error,
2170 btrfsic_get_block_type(dev_state->state, block),
2171 block->logical_bytenr, block->dev_state->name,
2172 block->dev_bytenr, block->mirror_num);
2173
2174 block->iodone_w_error = iodone_w_error;
2175 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2176 dev_state->last_flush_gen++;
2177 if ((dev_state->state->print_mask &
2178 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2179 pr_info("bh_end_io() new %s flush_gen=%llu\n",
2180 dev_state->name, dev_state->last_flush_gen);
2181 }
2182 if (block->submit_bio_bh_rw & REQ_FUA)
2183 block->flush_gen = 0; /* FUA completed means block is on disk */
2184
2185 bh->b_private = block->orig_bio_bh_private;
2186 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2187 block->is_iodone = 1; /* for FLUSH, this releases the block */
2188 bh->b_end_io(bh, uptodate);
2189 }
2190
2191 static int btrfsic_process_written_superblock(
2192 struct btrfsic_state *state,
2193 struct btrfsic_block *const superblock,
2194 struct btrfs_super_block *const super_hdr)
2195 {
2196 struct btrfs_fs_info *fs_info = state->fs_info;
2197 int pass;
2198
2199 superblock->generation = btrfs_super_generation(super_hdr);
2200 if (!(superblock->generation > state->max_superblock_generation ||
2201 0 == state->max_superblock_generation)) {
2202 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2203 pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2204 superblock->logical_bytenr,
2205 superblock->dev_state->name,
2206 superblock->dev_bytenr, superblock->mirror_num,
2207 btrfs_super_generation(super_hdr),
2208 state->max_superblock_generation);
2209 } else {
2210 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2211 pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2212 superblock->logical_bytenr,
2213 superblock->dev_state->name,
2214 superblock->dev_bytenr, superblock->mirror_num,
2215 btrfs_super_generation(super_hdr),
2216 state->max_superblock_generation);
2217
2218 state->max_superblock_generation =
2219 btrfs_super_generation(super_hdr);
2220 state->latest_superblock = superblock;
2221 }
2222
2223 for (pass = 0; pass < 3; pass++) {
2224 int ret;
2225 u64 next_bytenr;
2226 struct btrfsic_block *next_block;
2227 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2228 struct btrfsic_block_link *l;
2229 int num_copies;
2230 int mirror_num;
2231 const char *additional_string = NULL;
2232 struct btrfs_disk_key tmp_disk_key = {0};
2233
2234 btrfs_set_disk_key_objectid(&tmp_disk_key,
2235 BTRFS_ROOT_ITEM_KEY);
2236 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2237
2238 switch (pass) {
2239 case 0:
2240 btrfs_set_disk_key_objectid(&tmp_disk_key,
2241 BTRFS_ROOT_TREE_OBJECTID);
2242 additional_string = "root ";
2243 next_bytenr = btrfs_super_root(super_hdr);
2244 if (state->print_mask &
2245 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2246 pr_info("root@%llu\n", next_bytenr);
2247 break;
2248 case 1:
2249 btrfs_set_disk_key_objectid(&tmp_disk_key,
2250 BTRFS_CHUNK_TREE_OBJECTID);
2251 additional_string = "chunk ";
2252 next_bytenr = btrfs_super_chunk_root(super_hdr);
2253 if (state->print_mask &
2254 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2255 pr_info("chunk@%llu\n", next_bytenr);
2256 break;
2257 case 2:
2258 btrfs_set_disk_key_objectid(&tmp_disk_key,
2259 BTRFS_TREE_LOG_OBJECTID);
2260 additional_string = "log ";
2261 next_bytenr = btrfs_super_log_root(super_hdr);
2262 if (0 == next_bytenr)
2263 continue;
2264 if (state->print_mask &
2265 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2266 pr_info("log@%llu\n", next_bytenr);
2267 break;
2268 }
2269
2270 num_copies = btrfs_num_copies(fs_info, next_bytenr,
2271 BTRFS_SUPER_INFO_SIZE);
2272 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2273 pr_info("num_copies(log_bytenr=%llu) = %d\n",
2274 next_bytenr, num_copies);
2275 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2276 int was_created;
2277
2278 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2279 pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2280 ret = btrfsic_map_block(state, next_bytenr,
2281 BTRFS_SUPER_INFO_SIZE,
2282 &tmp_next_block_ctx,
2283 mirror_num);
2284 if (ret) {
2285 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2286 next_bytenr, mirror_num);
2287 return -1;
2288 }
2289
2290 next_block = btrfsic_block_lookup_or_add(
2291 state,
2292 &tmp_next_block_ctx,
2293 additional_string,
2294 1, 0, 1,
2295 mirror_num,
2296 &was_created);
2297 if (NULL == next_block) {
2298 pr_info("btrfsic: error, kmalloc failed!\n");
2299 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2300 return -1;
2301 }
2302
2303 next_block->disk_key = tmp_disk_key;
2304 if (was_created)
2305 next_block->generation =
2306 BTRFSIC_GENERATION_UNKNOWN;
2307 l = btrfsic_block_link_lookup_or_add(
2308 state,
2309 &tmp_next_block_ctx,
2310 next_block,
2311 superblock,
2312 BTRFSIC_GENERATION_UNKNOWN);
2313 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2314 if (NULL == l)
2315 return -1;
2316 }
2317 }
2318
2319 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2320 btrfsic_dump_tree(state);
2321
2322 return 0;
2323 }
2324
2325 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2326 struct btrfsic_block *const block,
2327 int recursion_level)
2328 {
2329 const struct btrfsic_block_link *l;
2330 int ret = 0;
2331
2332 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2333 /*
2334 * Note that this situation can happen and does not
2335 * indicate an error in regular cases. It happens
2336 * when disk blocks are freed and later reused.
2337 * The check-integrity module is not aware of any
2338 * block free operations, it just recognizes block
2339 * write operations. Therefore it keeps the linkage
2340 * information for a block until a block is
2341 * rewritten. This can temporarily cause incorrect
2342 * and even circular linkage informations. This
2343 * causes no harm unless such blocks are referenced
2344 * by the most recent super block.
2345 */
2346 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2347 pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2348
2349 return ret;
2350 }
2351
2352 /*
2353 * This algorithm is recursive because the amount of used stack
2354 * space is very small and the max recursion depth is limited.
2355 */
2356 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2357 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2358 pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2359 recursion_level,
2360 btrfsic_get_block_type(state, block),
2361 block->logical_bytenr, block->dev_state->name,
2362 block->dev_bytenr, block->mirror_num,
2363 l->ref_cnt,
2364 btrfsic_get_block_type(state, l->block_ref_to),
2365 l->block_ref_to->logical_bytenr,
2366 l->block_ref_to->dev_state->name,
2367 l->block_ref_to->dev_bytenr,
2368 l->block_ref_to->mirror_num);
2369 if (l->block_ref_to->never_written) {
2370 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2371 btrfsic_get_block_type(state, l->block_ref_to),
2372 l->block_ref_to->logical_bytenr,
2373 l->block_ref_to->dev_state->name,
2374 l->block_ref_to->dev_bytenr,
2375 l->block_ref_to->mirror_num);
2376 ret = -1;
2377 } else if (!l->block_ref_to->is_iodone) {
2378 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2379 btrfsic_get_block_type(state, l->block_ref_to),
2380 l->block_ref_to->logical_bytenr,
2381 l->block_ref_to->dev_state->name,
2382 l->block_ref_to->dev_bytenr,
2383 l->block_ref_to->mirror_num);
2384 ret = -1;
2385 } else if (l->block_ref_to->iodone_w_error) {
2386 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2387 btrfsic_get_block_type(state, l->block_ref_to),
2388 l->block_ref_to->logical_bytenr,
2389 l->block_ref_to->dev_state->name,
2390 l->block_ref_to->dev_bytenr,
2391 l->block_ref_to->mirror_num);
2392 ret = -1;
2393 } else if (l->parent_generation !=
2394 l->block_ref_to->generation &&
2395 BTRFSIC_GENERATION_UNKNOWN !=
2396 l->parent_generation &&
2397 BTRFSIC_GENERATION_UNKNOWN !=
2398 l->block_ref_to->generation) {
2399 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2400 btrfsic_get_block_type(state, l->block_ref_to),
2401 l->block_ref_to->logical_bytenr,
2402 l->block_ref_to->dev_state->name,
2403 l->block_ref_to->dev_bytenr,
2404 l->block_ref_to->mirror_num,
2405 l->block_ref_to->generation,
2406 l->parent_generation);
2407 ret = -1;
2408 } else if (l->block_ref_to->flush_gen >
2409 l->block_ref_to->dev_state->last_flush_gen) {
2410 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2411 btrfsic_get_block_type(state, l->block_ref_to),
2412 l->block_ref_to->logical_bytenr,
2413 l->block_ref_to->dev_state->name,
2414 l->block_ref_to->dev_bytenr,
2415 l->block_ref_to->mirror_num, block->flush_gen,
2416 l->block_ref_to->dev_state->last_flush_gen);
2417 ret = -1;
2418 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2419 l->block_ref_to,
2420 recursion_level +
2421 1)) {
2422 ret = -1;
2423 }
2424 }
2425
2426 return ret;
2427 }
2428
2429 static int btrfsic_is_block_ref_by_superblock(
2430 const struct btrfsic_state *state,
2431 const struct btrfsic_block *block,
2432 int recursion_level)
2433 {
2434 const struct btrfsic_block_link *l;
2435
2436 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2437 /* refer to comment at "abort cyclic linkage (case 1)" */
2438 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2439 pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2440
2441 return 0;
2442 }
2443
2444 /*
2445 * This algorithm is recursive because the amount of used stack space
2446 * is very small and the max recursion depth is limited.
2447 */
2448 list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2449 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2450 pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2451 recursion_level,
2452 btrfsic_get_block_type(state, block),
2453 block->logical_bytenr, block->dev_state->name,
2454 block->dev_bytenr, block->mirror_num,
2455 l->ref_cnt,
2456 btrfsic_get_block_type(state, l->block_ref_from),
2457 l->block_ref_from->logical_bytenr,
2458 l->block_ref_from->dev_state->name,
2459 l->block_ref_from->dev_bytenr,
2460 l->block_ref_from->mirror_num);
2461 if (l->block_ref_from->is_superblock &&
2462 state->latest_superblock->dev_bytenr ==
2463 l->block_ref_from->dev_bytenr &&
2464 state->latest_superblock->dev_state->bdev ==
2465 l->block_ref_from->dev_state->bdev)
2466 return 1;
2467 else if (btrfsic_is_block_ref_by_superblock(state,
2468 l->block_ref_from,
2469 recursion_level +
2470 1))
2471 return 1;
2472 }
2473
2474 return 0;
2475 }
2476
2477 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2478 const struct btrfsic_block_link *l)
2479 {
2480 pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2481 l->ref_cnt,
2482 btrfsic_get_block_type(state, l->block_ref_from),
2483 l->block_ref_from->logical_bytenr,
2484 l->block_ref_from->dev_state->name,
2485 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2486 btrfsic_get_block_type(state, l->block_ref_to),
2487 l->block_ref_to->logical_bytenr,
2488 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2489 l->block_ref_to->mirror_num);
2490 }
2491
2492 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2493 const struct btrfsic_block_link *l)
2494 {
2495 pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2496 l->ref_cnt,
2497 btrfsic_get_block_type(state, l->block_ref_from),
2498 l->block_ref_from->logical_bytenr,
2499 l->block_ref_from->dev_state->name,
2500 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2501 btrfsic_get_block_type(state, l->block_ref_to),
2502 l->block_ref_to->logical_bytenr,
2503 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2504 l->block_ref_to->mirror_num);
2505 }
2506
2507 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2508 const struct btrfsic_block *block)
2509 {
2510 if (block->is_superblock &&
2511 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2512 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2513 return 'S';
2514 else if (block->is_superblock)
2515 return 's';
2516 else if (block->is_metadata)
2517 return 'M';
2518 else
2519 return 'D';
2520 }
2521
2522 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2523 {
2524 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2525 }
2526
2527 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2528 const struct btrfsic_block *block,
2529 int indent_level)
2530 {
2531 const struct btrfsic_block_link *l;
2532 int indent_add;
2533 static char buf[80];
2534 int cursor_position;
2535
2536 /*
2537 * Should better fill an on-stack buffer with a complete line and
2538 * dump it at once when it is time to print a newline character.
2539 */
2540
2541 /*
2542 * This algorithm is recursive because the amount of used stack space
2543 * is very small and the max recursion depth is limited.
2544 */
2545 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2546 btrfsic_get_block_type(state, block),
2547 block->logical_bytenr, block->dev_state->name,
2548 block->dev_bytenr, block->mirror_num);
2549 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2550 printk("[...]\n");
2551 return;
2552 }
2553 printk(buf);
2554 indent_level += indent_add;
2555 if (list_empty(&block->ref_to_list)) {
2556 printk("\n");
2557 return;
2558 }
2559 if (block->mirror_num > 1 &&
2560 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2561 printk(" [...]\n");
2562 return;
2563 }
2564
2565 cursor_position = indent_level;
2566 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2567 while (cursor_position < indent_level) {
2568 printk(" ");
2569 cursor_position++;
2570 }
2571 if (l->ref_cnt > 1)
2572 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2573 else
2574 indent_add = sprintf(buf, " --> ");
2575 if (indent_level + indent_add >
2576 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2577 printk("[...]\n");
2578 cursor_position = 0;
2579 continue;
2580 }
2581
2582 printk(buf);
2583
2584 btrfsic_dump_tree_sub(state, l->block_ref_to,
2585 indent_level + indent_add);
2586 cursor_position = 0;
2587 }
2588 }
2589
2590 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2591 struct btrfsic_state *state,
2592 struct btrfsic_block_data_ctx *next_block_ctx,
2593 struct btrfsic_block *next_block,
2594 struct btrfsic_block *from_block,
2595 u64 parent_generation)
2596 {
2597 struct btrfsic_block_link *l;
2598
2599 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2600 next_block_ctx->dev_bytenr,
2601 from_block->dev_state->bdev,
2602 from_block->dev_bytenr,
2603 &state->block_link_hashtable);
2604 if (NULL == l) {
2605 l = btrfsic_block_link_alloc();
2606 if (NULL == l) {
2607 pr_info("btrfsic: error, kmalloc failed!\n");
2608 return NULL;
2609 }
2610
2611 l->block_ref_to = next_block;
2612 l->block_ref_from = from_block;
2613 l->ref_cnt = 1;
2614 l->parent_generation = parent_generation;
2615
2616 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2617 btrfsic_print_add_link(state, l);
2618
2619 list_add(&l->node_ref_to, &from_block->ref_to_list);
2620 list_add(&l->node_ref_from, &next_block->ref_from_list);
2621
2622 btrfsic_block_link_hashtable_add(l,
2623 &state->block_link_hashtable);
2624 } else {
2625 l->ref_cnt++;
2626 l->parent_generation = parent_generation;
2627 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2628 btrfsic_print_add_link(state, l);
2629 }
2630
2631 return l;
2632 }
2633
2634 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2635 struct btrfsic_state *state,
2636 struct btrfsic_block_data_ctx *block_ctx,
2637 const char *additional_string,
2638 int is_metadata,
2639 int is_iodone,
2640 int never_written,
2641 int mirror_num,
2642 int *was_created)
2643 {
2644 struct btrfsic_block *block;
2645
2646 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2647 block_ctx->dev_bytenr,
2648 &state->block_hashtable);
2649 if (NULL == block) {
2650 struct btrfsic_dev_state *dev_state;
2651
2652 block = btrfsic_block_alloc();
2653 if (NULL == block) {
2654 pr_info("btrfsic: error, kmalloc failed!\n");
2655 return NULL;
2656 }
2657 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2658 if (NULL == dev_state) {
2659 pr_info("btrfsic: error, lookup dev_state failed!\n");
2660 btrfsic_block_free(block);
2661 return NULL;
2662 }
2663 block->dev_state = dev_state;
2664 block->dev_bytenr = block_ctx->dev_bytenr;
2665 block->logical_bytenr = block_ctx->start;
2666 block->is_metadata = is_metadata;
2667 block->is_iodone = is_iodone;
2668 block->never_written = never_written;
2669 block->mirror_num = mirror_num;
2670 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2671 pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2672 additional_string,
2673 btrfsic_get_block_type(state, block),
2674 block->logical_bytenr, dev_state->name,
2675 block->dev_bytenr, mirror_num);
2676 list_add(&block->all_blocks_node, &state->all_blocks_list);
2677 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2678 if (NULL != was_created)
2679 *was_created = 1;
2680 } else {
2681 if (NULL != was_created)
2682 *was_created = 0;
2683 }
2684
2685 return block;
2686 }
2687
2688 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2689 u64 bytenr,
2690 struct btrfsic_dev_state *dev_state,
2691 u64 dev_bytenr)
2692 {
2693 struct btrfs_fs_info *fs_info = state->fs_info;
2694 struct btrfsic_block_data_ctx block_ctx;
2695 int num_copies;
2696 int mirror_num;
2697 int match = 0;
2698 int ret;
2699
2700 num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2701
2702 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2703 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2704 &block_ctx, mirror_num);
2705 if (ret) {
2706 pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2707 bytenr, mirror_num);
2708 continue;
2709 }
2710
2711 if (dev_state->bdev == block_ctx.dev->bdev &&
2712 dev_bytenr == block_ctx.dev_bytenr) {
2713 match++;
2714 btrfsic_release_block_ctx(&block_ctx);
2715 break;
2716 }
2717 btrfsic_release_block_ctx(&block_ctx);
2718 }
2719
2720 if (WARN_ON(!match)) {
2721 pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2722 bytenr, dev_state->name, dev_bytenr);
2723 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2724 ret = btrfsic_map_block(state, bytenr,
2725 state->metablock_size,
2726 &block_ctx, mirror_num);
2727 if (ret)
2728 continue;
2729
2730 pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2731 bytenr, block_ctx.dev->name,
2732 block_ctx.dev_bytenr, mirror_num);
2733 }
2734 }
2735 }
2736
2737 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2738 struct block_device *bdev)
2739 {
2740 return btrfsic_dev_state_hashtable_lookup(bdev,
2741 &btrfsic_dev_state_hashtable);
2742 }
2743
2744 int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2745 {
2746 struct btrfsic_dev_state *dev_state;
2747
2748 if (!btrfsic_is_initialized)
2749 return submit_bh(op, op_flags, bh);
2750
2751 mutex_lock(&btrfsic_mutex);
2752 /* since btrfsic_submit_bh() might also be called before
2753 * btrfsic_mount(), this might return NULL */
2754 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2755
2756 /* Only called to write the superblock (incl. FLUSH/FUA) */
2757 if (NULL != dev_state &&
2758 (op == REQ_OP_WRITE) && bh->b_size > 0) {
2759 u64 dev_bytenr;
2760
2761 dev_bytenr = 4096 * bh->b_blocknr;
2762 if (dev_state->state->print_mask &
2763 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2764 pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
2765 op, op_flags, (unsigned long long)bh->b_blocknr,
2766 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2767 btrfsic_process_written_block(dev_state, dev_bytenr,
2768 &bh->b_data, 1, NULL,
2769 NULL, bh, op_flags);
2770 } else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) {
2771 if (dev_state->state->print_mask &
2772 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2773 pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
2774 op, op_flags, bh->b_bdev);
2775 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2776 if ((dev_state->state->print_mask &
2777 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2778 BTRFSIC_PRINT_MASK_VERBOSE)))
2779 pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n",
2780 dev_state->name);
2781 } else {
2782 struct btrfsic_block *const block =
2783 &dev_state->dummy_block_for_bio_bh_flush;
2784
2785 block->is_iodone = 0;
2786 block->never_written = 0;
2787 block->iodone_w_error = 0;
2788 block->flush_gen = dev_state->last_flush_gen + 1;
2789 block->submit_bio_bh_rw = op_flags;
2790 block->orig_bio_bh_private = bh->b_private;
2791 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2792 block->next_in_same_bio = NULL;
2793 bh->b_private = block;
2794 bh->b_end_io = btrfsic_bh_end_io;
2795 }
2796 }
2797 mutex_unlock(&btrfsic_mutex);
2798 return submit_bh(op, op_flags, bh);
2799 }
2800
2801 static void __btrfsic_submit_bio(struct bio *bio)
2802 {
2803 struct btrfsic_dev_state *dev_state;
2804
2805 if (!btrfsic_is_initialized)
2806 return;
2807
2808 mutex_lock(&btrfsic_mutex);
2809 /* since btrfsic_submit_bio() is also called before
2810 * btrfsic_mount(), this might return NULL */
2811 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2812 if (NULL != dev_state &&
2813 (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2814 unsigned int i = 0;
2815 u64 dev_bytenr;
2816 u64 cur_bytenr;
2817 struct bio_vec bvec;
2818 struct bvec_iter iter;
2819 int bio_is_patched;
2820 char **mapped_datav;
2821 unsigned int segs = bio_segments(bio);
2822
2823 dev_bytenr = 512 * bio->bi_iter.bi_sector;
2824 bio_is_patched = 0;
2825 if (dev_state->state->print_mask &
2826 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2827 pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2828 bio_op(bio), bio->bi_opf, segs,
2829 (unsigned long long)bio->bi_iter.bi_sector,
2830 dev_bytenr, bio->bi_bdev);
2831
2832 mapped_datav = kmalloc_array(segs,
2833 sizeof(*mapped_datav), GFP_NOFS);
2834 if (!mapped_datav)
2835 goto leave;
2836 cur_bytenr = dev_bytenr;
2837
2838 bio_for_each_segment(bvec, bio, iter) {
2839 BUG_ON(bvec.bv_len != PAGE_SIZE);
2840 mapped_datav[i] = kmap(bvec.bv_page);
2841 i++;
2842
2843 if (dev_state->state->print_mask &
2844 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2845 pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2846 i, cur_bytenr, bvec.bv_len, bvec.bv_offset);
2847 cur_bytenr += bvec.bv_len;
2848 }
2849 btrfsic_process_written_block(dev_state, dev_bytenr,
2850 mapped_datav, segs,
2851 bio, &bio_is_patched,
2852 NULL, bio->bi_opf);
2853 bio_for_each_segment(bvec, bio, iter)
2854 kunmap(bvec.bv_page);
2855 kfree(mapped_datav);
2856 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2857 if (dev_state->state->print_mask &
2858 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2859 pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
2860 bio_op(bio), bio->bi_opf, bio->bi_bdev);
2861 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2862 if ((dev_state->state->print_mask &
2863 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2864 BTRFSIC_PRINT_MASK_VERBOSE)))
2865 pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2866 dev_state->name);
2867 } else {
2868 struct btrfsic_block *const block =
2869 &dev_state->dummy_block_for_bio_bh_flush;
2870
2871 block->is_iodone = 0;
2872 block->never_written = 0;
2873 block->iodone_w_error = 0;
2874 block->flush_gen = dev_state->last_flush_gen + 1;
2875 block->submit_bio_bh_rw = bio->bi_opf;
2876 block->orig_bio_bh_private = bio->bi_private;
2877 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2878 block->next_in_same_bio = NULL;
2879 bio->bi_private = block;
2880 bio->bi_end_io = btrfsic_bio_end_io;
2881 }
2882 }
2883 leave:
2884 mutex_unlock(&btrfsic_mutex);
2885 }
2886
2887 void btrfsic_submit_bio(struct bio *bio)
2888 {
2889 __btrfsic_submit_bio(bio);
2890 submit_bio(bio);
2891 }
2892
2893 int btrfsic_submit_bio_wait(struct bio *bio)
2894 {
2895 __btrfsic_submit_bio(bio);
2896 return submit_bio_wait(bio);
2897 }
2898
2899 int btrfsic_mount(struct btrfs_fs_info *fs_info,
2900 struct btrfs_fs_devices *fs_devices,
2901 int including_extent_data, u32 print_mask)
2902 {
2903 int ret;
2904 struct btrfsic_state *state;
2905 struct list_head *dev_head = &fs_devices->devices;
2906 struct btrfs_device *device;
2907
2908 if (fs_info->nodesize & ((u64)PAGE_SIZE - 1)) {
2909 pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2910 fs_info->nodesize, PAGE_SIZE);
2911 return -1;
2912 }
2913 if (fs_info->sectorsize & ((u64)PAGE_SIZE - 1)) {
2914 pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2915 fs_info->sectorsize, PAGE_SIZE);
2916 return -1;
2917 }
2918 state = kvzalloc(sizeof(*state), GFP_KERNEL);
2919 if (!state) {
2920 pr_info("btrfs check-integrity: allocation failed!\n");
2921 return -1;
2922 }
2923
2924 if (!btrfsic_is_initialized) {
2925 mutex_init(&btrfsic_mutex);
2926 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2927 btrfsic_is_initialized = 1;
2928 }
2929 mutex_lock(&btrfsic_mutex);
2930 state->fs_info = fs_info;
2931 state->print_mask = print_mask;
2932 state->include_extent_data = including_extent_data;
2933 state->csum_size = 0;
2934 state->metablock_size = fs_info->nodesize;
2935 state->datablock_size = fs_info->sectorsize;
2936 INIT_LIST_HEAD(&state->all_blocks_list);
2937 btrfsic_block_hashtable_init(&state->block_hashtable);
2938 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2939 state->max_superblock_generation = 0;
2940 state->latest_superblock = NULL;
2941
2942 list_for_each_entry(device, dev_head, dev_list) {
2943 struct btrfsic_dev_state *ds;
2944 const char *p;
2945
2946 if (!device->bdev || !device->name)
2947 continue;
2948
2949 ds = btrfsic_dev_state_alloc();
2950 if (NULL == ds) {
2951 pr_info("btrfs check-integrity: kmalloc() failed!\n");
2952 mutex_unlock(&btrfsic_mutex);
2953 return -1;
2954 }
2955 ds->bdev = device->bdev;
2956 ds->state = state;
2957 bdevname(ds->bdev, ds->name);
2958 ds->name[BDEVNAME_SIZE - 1] = '\0';
2959 p = kbasename(ds->name);
2960 strlcpy(ds->name, p, sizeof(ds->name));
2961 btrfsic_dev_state_hashtable_add(ds,
2962 &btrfsic_dev_state_hashtable);
2963 }
2964
2965 ret = btrfsic_process_superblock(state, fs_devices);
2966 if (0 != ret) {
2967 mutex_unlock(&btrfsic_mutex);
2968 btrfsic_unmount(fs_devices);
2969 return ret;
2970 }
2971
2972 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2973 btrfsic_dump_database(state);
2974 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2975 btrfsic_dump_tree(state);
2976
2977 mutex_unlock(&btrfsic_mutex);
2978 return 0;
2979 }
2980
2981 void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2982 {
2983 struct btrfsic_block *b_all, *tmp_all;
2984 struct btrfsic_state *state;
2985 struct list_head *dev_head = &fs_devices->devices;
2986 struct btrfs_device *device;
2987
2988 if (!btrfsic_is_initialized)
2989 return;
2990
2991 mutex_lock(&btrfsic_mutex);
2992
2993 state = NULL;
2994 list_for_each_entry(device, dev_head, dev_list) {
2995 struct btrfsic_dev_state *ds;
2996
2997 if (!device->bdev || !device->name)
2998 continue;
2999
3000 ds = btrfsic_dev_state_hashtable_lookup(
3001 device->bdev,
3002 &btrfsic_dev_state_hashtable);
3003 if (NULL != ds) {
3004 state = ds->state;
3005 btrfsic_dev_state_hashtable_remove(ds);
3006 btrfsic_dev_state_free(ds);
3007 }
3008 }
3009
3010 if (NULL == state) {
3011 pr_info("btrfsic: error, cannot find state information on umount!\n");
3012 mutex_unlock(&btrfsic_mutex);
3013 return;
3014 }
3015
3016 /*
3017 * Don't care about keeping the lists' state up to date,
3018 * just free all memory that was allocated dynamically.
3019 * Free the blocks and the block_links.
3020 */
3021 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3022 all_blocks_node) {
3023 struct btrfsic_block_link *l, *tmp;
3024
3025 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3026 node_ref_to) {
3027 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3028 btrfsic_print_rem_link(state, l);
3029
3030 l->ref_cnt--;
3031 if (0 == l->ref_cnt)
3032 btrfsic_block_link_free(l);
3033 }
3034
3035 if (b_all->is_iodone || b_all->never_written)
3036 btrfsic_block_free(b_all);
3037 else
3038 pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
3039 btrfsic_get_block_type(state, b_all),
3040 b_all->logical_bytenr, b_all->dev_state->name,
3041 b_all->dev_bytenr, b_all->mirror_num);
3042 }
3043
3044 mutex_unlock(&btrfsic_mutex);
3045
3046 kvfree(state);
3047 }