]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/compression.c
block: switch bios to blk_status_t
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / compression.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44
45 struct compressed_bio {
46 /* number of bios pending for this compressed extent */
47 refcount_t pending_bios;
48
49 /* the pages with the compressed data on them */
50 struct page **compressed_pages;
51
52 /* inode that owns this data */
53 struct inode *inode;
54
55 /* starting offset in the inode for our pages */
56 u64 start;
57
58 /* number of bytes in the inode we're working on */
59 unsigned long len;
60
61 /* number of bytes on disk */
62 unsigned long compressed_len;
63
64 /* the compression algorithm for this bio */
65 int compress_type;
66
67 /* number of compressed pages in the array */
68 unsigned long nr_pages;
69
70 /* IO errors */
71 int errors;
72 int mirror_num;
73
74 /* for reads, this is the bio we are copying the data into */
75 struct bio *orig_bio;
76
77 /*
78 * the start of a variable length array of checksums only
79 * used by reads
80 */
81 u32 sums;
82 };
83
84 static int btrfs_decompress_bio(int type, struct page **pages_in,
85 u64 disk_start, struct bio *orig_bio,
86 size_t srclen);
87
88 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
89 unsigned long disk_size)
90 {
91 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
92
93 return sizeof(struct compressed_bio) +
94 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
95 }
96
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 u64 first_byte, gfp_t gfp_flags)
99 {
100 return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
101 }
102
103 static int check_compressed_csum(struct btrfs_inode *inode,
104 struct compressed_bio *cb,
105 u64 disk_start)
106 {
107 int ret;
108 struct page *page;
109 unsigned long i;
110 char *kaddr;
111 u32 csum;
112 u32 *cb_sum = &cb->sums;
113
114 if (inode->flags & BTRFS_INODE_NODATASUM)
115 return 0;
116
117 for (i = 0; i < cb->nr_pages; i++) {
118 page = cb->compressed_pages[i];
119 csum = ~(u32)0;
120
121 kaddr = kmap_atomic(page);
122 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
123 btrfs_csum_final(csum, (u8 *)&csum);
124 kunmap_atomic(kaddr);
125
126 if (csum != *cb_sum) {
127 btrfs_print_data_csum_error(inode, disk_start, csum,
128 *cb_sum, cb->mirror_num);
129 ret = -EIO;
130 goto fail;
131 }
132 cb_sum++;
133
134 }
135 ret = 0;
136 fail:
137 return ret;
138 }
139
140 /* when we finish reading compressed pages from the disk, we
141 * decompress them and then run the bio end_io routines on the
142 * decompressed pages (in the inode address space).
143 *
144 * This allows the checksumming and other IO error handling routines
145 * to work normally
146 *
147 * The compressed pages are freed here, and it must be run
148 * in process context
149 */
150 static void end_compressed_bio_read(struct bio *bio)
151 {
152 struct compressed_bio *cb = bio->bi_private;
153 struct inode *inode;
154 struct page *page;
155 unsigned long index;
156 int ret;
157
158 if (bio->bi_status)
159 cb->errors = 1;
160
161 /* if there are more bios still pending for this compressed
162 * extent, just exit
163 */
164 if (!refcount_dec_and_test(&cb->pending_bios))
165 goto out;
166
167 inode = cb->inode;
168 ret = check_compressed_csum(BTRFS_I(inode), cb,
169 (u64)bio->bi_iter.bi_sector << 9);
170 if (ret)
171 goto csum_failed;
172
173 /* ok, we're the last bio for this extent, lets start
174 * the decompression.
175 */
176 ret = btrfs_decompress_bio(cb->compress_type,
177 cb->compressed_pages,
178 cb->start,
179 cb->orig_bio,
180 cb->compressed_len);
181 csum_failed:
182 if (ret)
183 cb->errors = 1;
184
185 /* release the compressed pages */
186 index = 0;
187 for (index = 0; index < cb->nr_pages; index++) {
188 page = cb->compressed_pages[index];
189 page->mapping = NULL;
190 put_page(page);
191 }
192
193 /* do io completion on the original bio */
194 if (cb->errors) {
195 bio_io_error(cb->orig_bio);
196 } else {
197 int i;
198 struct bio_vec *bvec;
199
200 /*
201 * we have verified the checksum already, set page
202 * checked so the end_io handlers know about it
203 */
204 bio_for_each_segment_all(bvec, cb->orig_bio, i)
205 SetPageChecked(bvec->bv_page);
206
207 bio_endio(cb->orig_bio);
208 }
209
210 /* finally free the cb struct */
211 kfree(cb->compressed_pages);
212 kfree(cb);
213 out:
214 bio_put(bio);
215 }
216
217 /*
218 * Clear the writeback bits on all of the file
219 * pages for a compressed write
220 */
221 static noinline void end_compressed_writeback(struct inode *inode,
222 const struct compressed_bio *cb)
223 {
224 unsigned long index = cb->start >> PAGE_SHIFT;
225 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
226 struct page *pages[16];
227 unsigned long nr_pages = end_index - index + 1;
228 int i;
229 int ret;
230
231 if (cb->errors)
232 mapping_set_error(inode->i_mapping, -EIO);
233
234 while (nr_pages > 0) {
235 ret = find_get_pages_contig(inode->i_mapping, index,
236 min_t(unsigned long,
237 nr_pages, ARRAY_SIZE(pages)), pages);
238 if (ret == 0) {
239 nr_pages -= 1;
240 index += 1;
241 continue;
242 }
243 for (i = 0; i < ret; i++) {
244 if (cb->errors)
245 SetPageError(pages[i]);
246 end_page_writeback(pages[i]);
247 put_page(pages[i]);
248 }
249 nr_pages -= ret;
250 index += ret;
251 }
252 /* the inode may be gone now */
253 }
254
255 /*
256 * do the cleanup once all the compressed pages hit the disk.
257 * This will clear writeback on the file pages and free the compressed
258 * pages.
259 *
260 * This also calls the writeback end hooks for the file pages so that
261 * metadata and checksums can be updated in the file.
262 */
263 static void end_compressed_bio_write(struct bio *bio)
264 {
265 struct extent_io_tree *tree;
266 struct compressed_bio *cb = bio->bi_private;
267 struct inode *inode;
268 struct page *page;
269 unsigned long index;
270
271 if (bio->bi_status)
272 cb->errors = 1;
273
274 /* if there are more bios still pending for this compressed
275 * extent, just exit
276 */
277 if (!refcount_dec_and_test(&cb->pending_bios))
278 goto out;
279
280 /* ok, we're the last bio for this extent, step one is to
281 * call back into the FS and do all the end_io operations
282 */
283 inode = cb->inode;
284 tree = &BTRFS_I(inode)->io_tree;
285 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
286 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
287 cb->start,
288 cb->start + cb->len - 1,
289 NULL,
290 bio->bi_status ? 0 : 1);
291 cb->compressed_pages[0]->mapping = NULL;
292
293 end_compressed_writeback(inode, cb);
294 /* note, our inode could be gone now */
295
296 /*
297 * release the compressed pages, these came from alloc_page and
298 * are not attached to the inode at all
299 */
300 index = 0;
301 for (index = 0; index < cb->nr_pages; index++) {
302 page = cb->compressed_pages[index];
303 page->mapping = NULL;
304 put_page(page);
305 }
306
307 /* finally free the cb struct */
308 kfree(cb->compressed_pages);
309 kfree(cb);
310 out:
311 bio_put(bio);
312 }
313
314 /*
315 * worker function to build and submit bios for previously compressed pages.
316 * The corresponding pages in the inode should be marked for writeback
317 * and the compressed pages should have a reference on them for dropping
318 * when the IO is complete.
319 *
320 * This also checksums the file bytes and gets things ready for
321 * the end io hooks.
322 */
323 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
324 unsigned long len, u64 disk_start,
325 unsigned long compressed_len,
326 struct page **compressed_pages,
327 unsigned long nr_pages)
328 {
329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
330 struct bio *bio = NULL;
331 struct compressed_bio *cb;
332 unsigned long bytes_left;
333 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
334 int pg_index = 0;
335 struct page *page;
336 u64 first_byte = disk_start;
337 struct block_device *bdev;
338 blk_status_t ret;
339 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
340
341 WARN_ON(start & ((u64)PAGE_SIZE - 1));
342 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
343 if (!cb)
344 return BLK_STS_RESOURCE;
345 refcount_set(&cb->pending_bios, 0);
346 cb->errors = 0;
347 cb->inode = inode;
348 cb->start = start;
349 cb->len = len;
350 cb->mirror_num = 0;
351 cb->compressed_pages = compressed_pages;
352 cb->compressed_len = compressed_len;
353 cb->orig_bio = NULL;
354 cb->nr_pages = nr_pages;
355
356 bdev = fs_info->fs_devices->latest_bdev;
357
358 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
359 if (!bio) {
360 kfree(cb);
361 return BLK_STS_RESOURCE;
362 }
363 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
364 bio->bi_private = cb;
365 bio->bi_end_io = end_compressed_bio_write;
366 refcount_set(&cb->pending_bios, 1);
367
368 /* create and submit bios for the compressed pages */
369 bytes_left = compressed_len;
370 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
371 int submit = 0;
372
373 page = compressed_pages[pg_index];
374 page->mapping = inode->i_mapping;
375 if (bio->bi_iter.bi_size)
376 submit = io_tree->ops->merge_bio_hook(page, 0,
377 PAGE_SIZE,
378 bio, 0);
379
380 page->mapping = NULL;
381 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
382 PAGE_SIZE) {
383 bio_get(bio);
384
385 /*
386 * inc the count before we submit the bio so
387 * we know the end IO handler won't happen before
388 * we inc the count. Otherwise, the cb might get
389 * freed before we're done setting it up
390 */
391 refcount_inc(&cb->pending_bios);
392 ret = btrfs_bio_wq_end_io(fs_info, bio,
393 BTRFS_WQ_ENDIO_DATA);
394 BUG_ON(ret); /* -ENOMEM */
395
396 if (!skip_sum) {
397 ret = btrfs_csum_one_bio(inode, bio, start, 1);
398 BUG_ON(ret); /* -ENOMEM */
399 }
400
401 ret = btrfs_map_bio(fs_info, bio, 0, 1);
402 if (ret) {
403 bio->bi_status = ret;
404 bio_endio(bio);
405 }
406
407 bio_put(bio);
408
409 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
410 BUG_ON(!bio);
411 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
412 bio->bi_private = cb;
413 bio->bi_end_io = end_compressed_bio_write;
414 bio_add_page(bio, page, PAGE_SIZE, 0);
415 }
416 if (bytes_left < PAGE_SIZE) {
417 btrfs_info(fs_info,
418 "bytes left %lu compress len %lu nr %lu",
419 bytes_left, cb->compressed_len, cb->nr_pages);
420 }
421 bytes_left -= PAGE_SIZE;
422 first_byte += PAGE_SIZE;
423 cond_resched();
424 }
425 bio_get(bio);
426
427 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
428 BUG_ON(ret); /* -ENOMEM */
429
430 if (!skip_sum) {
431 ret = btrfs_csum_one_bio(inode, bio, start, 1);
432 BUG_ON(ret); /* -ENOMEM */
433 }
434
435 ret = btrfs_map_bio(fs_info, bio, 0, 1);
436 if (ret) {
437 bio->bi_status = ret;
438 bio_endio(bio);
439 }
440
441 bio_put(bio);
442 return 0;
443 }
444
445 static u64 bio_end_offset(struct bio *bio)
446 {
447 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
448
449 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
450 }
451
452 static noinline int add_ra_bio_pages(struct inode *inode,
453 u64 compressed_end,
454 struct compressed_bio *cb)
455 {
456 unsigned long end_index;
457 unsigned long pg_index;
458 u64 last_offset;
459 u64 isize = i_size_read(inode);
460 int ret;
461 struct page *page;
462 unsigned long nr_pages = 0;
463 struct extent_map *em;
464 struct address_space *mapping = inode->i_mapping;
465 struct extent_map_tree *em_tree;
466 struct extent_io_tree *tree;
467 u64 end;
468 int misses = 0;
469
470 last_offset = bio_end_offset(cb->orig_bio);
471 em_tree = &BTRFS_I(inode)->extent_tree;
472 tree = &BTRFS_I(inode)->io_tree;
473
474 if (isize == 0)
475 return 0;
476
477 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
478
479 while (last_offset < compressed_end) {
480 pg_index = last_offset >> PAGE_SHIFT;
481
482 if (pg_index > end_index)
483 break;
484
485 rcu_read_lock();
486 page = radix_tree_lookup(&mapping->page_tree, pg_index);
487 rcu_read_unlock();
488 if (page && !radix_tree_exceptional_entry(page)) {
489 misses++;
490 if (misses > 4)
491 break;
492 goto next;
493 }
494
495 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
496 ~__GFP_FS));
497 if (!page)
498 break;
499
500 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
501 put_page(page);
502 goto next;
503 }
504
505 end = last_offset + PAGE_SIZE - 1;
506 /*
507 * at this point, we have a locked page in the page cache
508 * for these bytes in the file. But, we have to make
509 * sure they map to this compressed extent on disk.
510 */
511 set_page_extent_mapped(page);
512 lock_extent(tree, last_offset, end);
513 read_lock(&em_tree->lock);
514 em = lookup_extent_mapping(em_tree, last_offset,
515 PAGE_SIZE);
516 read_unlock(&em_tree->lock);
517
518 if (!em || last_offset < em->start ||
519 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
520 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
521 free_extent_map(em);
522 unlock_extent(tree, last_offset, end);
523 unlock_page(page);
524 put_page(page);
525 break;
526 }
527 free_extent_map(em);
528
529 if (page->index == end_index) {
530 char *userpage;
531 size_t zero_offset = isize & (PAGE_SIZE - 1);
532
533 if (zero_offset) {
534 int zeros;
535 zeros = PAGE_SIZE - zero_offset;
536 userpage = kmap_atomic(page);
537 memset(userpage + zero_offset, 0, zeros);
538 flush_dcache_page(page);
539 kunmap_atomic(userpage);
540 }
541 }
542
543 ret = bio_add_page(cb->orig_bio, page,
544 PAGE_SIZE, 0);
545
546 if (ret == PAGE_SIZE) {
547 nr_pages++;
548 put_page(page);
549 } else {
550 unlock_extent(tree, last_offset, end);
551 unlock_page(page);
552 put_page(page);
553 break;
554 }
555 next:
556 last_offset += PAGE_SIZE;
557 }
558 return 0;
559 }
560
561 /*
562 * for a compressed read, the bio we get passed has all the inode pages
563 * in it. We don't actually do IO on those pages but allocate new ones
564 * to hold the compressed pages on disk.
565 *
566 * bio->bi_iter.bi_sector points to the compressed extent on disk
567 * bio->bi_io_vec points to all of the inode pages
568 *
569 * After the compressed pages are read, we copy the bytes into the
570 * bio we were passed and then call the bio end_io calls
571 */
572 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
573 int mirror_num, unsigned long bio_flags)
574 {
575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
576 struct extent_io_tree *tree;
577 struct extent_map_tree *em_tree;
578 struct compressed_bio *cb;
579 unsigned long compressed_len;
580 unsigned long nr_pages;
581 unsigned long pg_index;
582 struct page *page;
583 struct block_device *bdev;
584 struct bio *comp_bio;
585 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
586 u64 em_len;
587 u64 em_start;
588 struct extent_map *em;
589 blk_status_t ret = BLK_STS_RESOURCE;
590 int faili = 0;
591 u32 *sums;
592
593 tree = &BTRFS_I(inode)->io_tree;
594 em_tree = &BTRFS_I(inode)->extent_tree;
595
596 /* we need the actual starting offset of this extent in the file */
597 read_lock(&em_tree->lock);
598 em = lookup_extent_mapping(em_tree,
599 page_offset(bio->bi_io_vec->bv_page),
600 PAGE_SIZE);
601 read_unlock(&em_tree->lock);
602 if (!em)
603 return BLK_STS_IOERR;
604
605 compressed_len = em->block_len;
606 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
607 if (!cb)
608 goto out;
609
610 refcount_set(&cb->pending_bios, 0);
611 cb->errors = 0;
612 cb->inode = inode;
613 cb->mirror_num = mirror_num;
614 sums = &cb->sums;
615
616 cb->start = em->orig_start;
617 em_len = em->len;
618 em_start = em->start;
619
620 free_extent_map(em);
621 em = NULL;
622
623 cb->len = bio->bi_iter.bi_size;
624 cb->compressed_len = compressed_len;
625 cb->compress_type = extent_compress_type(bio_flags);
626 cb->orig_bio = bio;
627
628 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
629 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
630 GFP_NOFS);
631 if (!cb->compressed_pages)
632 goto fail1;
633
634 bdev = fs_info->fs_devices->latest_bdev;
635
636 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
637 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
638 __GFP_HIGHMEM);
639 if (!cb->compressed_pages[pg_index]) {
640 faili = pg_index - 1;
641 ret = -ENOMEM;
642 goto fail2;
643 }
644 }
645 faili = nr_pages - 1;
646 cb->nr_pages = nr_pages;
647
648 add_ra_bio_pages(inode, em_start + em_len, cb);
649
650 /* include any pages we added in add_ra-bio_pages */
651 cb->len = bio->bi_iter.bi_size;
652
653 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
654 if (!comp_bio)
655 goto fail2;
656 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
657 comp_bio->bi_private = cb;
658 comp_bio->bi_end_io = end_compressed_bio_read;
659 refcount_set(&cb->pending_bios, 1);
660
661 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
662 int submit = 0;
663
664 page = cb->compressed_pages[pg_index];
665 page->mapping = inode->i_mapping;
666 page->index = em_start >> PAGE_SHIFT;
667
668 if (comp_bio->bi_iter.bi_size)
669 submit = tree->ops->merge_bio_hook(page, 0,
670 PAGE_SIZE,
671 comp_bio, 0);
672
673 page->mapping = NULL;
674 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
675 PAGE_SIZE) {
676 bio_get(comp_bio);
677
678 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
679 BTRFS_WQ_ENDIO_DATA);
680 BUG_ON(ret); /* -ENOMEM */
681
682 /*
683 * inc the count before we submit the bio so
684 * we know the end IO handler won't happen before
685 * we inc the count. Otherwise, the cb might get
686 * freed before we're done setting it up
687 */
688 refcount_inc(&cb->pending_bios);
689
690 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
691 ret = btrfs_lookup_bio_sums(inode, comp_bio,
692 sums);
693 BUG_ON(ret); /* -ENOMEM */
694 }
695 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
696 fs_info->sectorsize);
697
698 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
699 if (ret) {
700 comp_bio->bi_status = ret;
701 bio_endio(comp_bio);
702 }
703
704 bio_put(comp_bio);
705
706 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
707 GFP_NOFS);
708 BUG_ON(!comp_bio);
709 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
710 comp_bio->bi_private = cb;
711 comp_bio->bi_end_io = end_compressed_bio_read;
712
713 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
714 }
715 cur_disk_byte += PAGE_SIZE;
716 }
717 bio_get(comp_bio);
718
719 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
720 BUG_ON(ret); /* -ENOMEM */
721
722 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
723 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
724 BUG_ON(ret); /* -ENOMEM */
725 }
726
727 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
728 if (ret) {
729 comp_bio->bi_status = ret;
730 bio_endio(comp_bio);
731 }
732
733 bio_put(comp_bio);
734 return 0;
735
736 fail2:
737 while (faili >= 0) {
738 __free_page(cb->compressed_pages[faili]);
739 faili--;
740 }
741
742 kfree(cb->compressed_pages);
743 fail1:
744 kfree(cb);
745 out:
746 free_extent_map(em);
747 return ret;
748 }
749
750 static struct {
751 struct list_head idle_ws;
752 spinlock_t ws_lock;
753 /* Number of free workspaces */
754 int free_ws;
755 /* Total number of allocated workspaces */
756 atomic_t total_ws;
757 /* Waiters for a free workspace */
758 wait_queue_head_t ws_wait;
759 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
760
761 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
762 &btrfs_zlib_compress,
763 &btrfs_lzo_compress,
764 };
765
766 void __init btrfs_init_compress(void)
767 {
768 int i;
769
770 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
771 struct list_head *workspace;
772
773 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
774 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
775 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
776 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
777
778 /*
779 * Preallocate one workspace for each compression type so
780 * we can guarantee forward progress in the worst case
781 */
782 workspace = btrfs_compress_op[i]->alloc_workspace();
783 if (IS_ERR(workspace)) {
784 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
785 } else {
786 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
787 btrfs_comp_ws[i].free_ws = 1;
788 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
789 }
790 }
791 }
792
793 /*
794 * This finds an available workspace or allocates a new one.
795 * If it's not possible to allocate a new one, waits until there's one.
796 * Preallocation makes a forward progress guarantees and we do not return
797 * errors.
798 */
799 static struct list_head *find_workspace(int type)
800 {
801 struct list_head *workspace;
802 int cpus = num_online_cpus();
803 int idx = type - 1;
804
805 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
806 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
807 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
808 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
809 int *free_ws = &btrfs_comp_ws[idx].free_ws;
810 again:
811 spin_lock(ws_lock);
812 if (!list_empty(idle_ws)) {
813 workspace = idle_ws->next;
814 list_del(workspace);
815 (*free_ws)--;
816 spin_unlock(ws_lock);
817 return workspace;
818
819 }
820 if (atomic_read(total_ws) > cpus) {
821 DEFINE_WAIT(wait);
822
823 spin_unlock(ws_lock);
824 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
825 if (atomic_read(total_ws) > cpus && !*free_ws)
826 schedule();
827 finish_wait(ws_wait, &wait);
828 goto again;
829 }
830 atomic_inc(total_ws);
831 spin_unlock(ws_lock);
832
833 workspace = btrfs_compress_op[idx]->alloc_workspace();
834 if (IS_ERR(workspace)) {
835 atomic_dec(total_ws);
836 wake_up(ws_wait);
837
838 /*
839 * Do not return the error but go back to waiting. There's a
840 * workspace preallocated for each type and the compression
841 * time is bounded so we get to a workspace eventually. This
842 * makes our caller's life easier.
843 *
844 * To prevent silent and low-probability deadlocks (when the
845 * initial preallocation fails), check if there are any
846 * workspaces at all.
847 */
848 if (atomic_read(total_ws) == 0) {
849 static DEFINE_RATELIMIT_STATE(_rs,
850 /* once per minute */ 60 * HZ,
851 /* no burst */ 1);
852
853 if (__ratelimit(&_rs)) {
854 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
855 }
856 }
857 goto again;
858 }
859 return workspace;
860 }
861
862 /*
863 * put a workspace struct back on the list or free it if we have enough
864 * idle ones sitting around
865 */
866 static void free_workspace(int type, struct list_head *workspace)
867 {
868 int idx = type - 1;
869 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
870 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
871 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
872 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
873 int *free_ws = &btrfs_comp_ws[idx].free_ws;
874
875 spin_lock(ws_lock);
876 if (*free_ws < num_online_cpus()) {
877 list_add(workspace, idle_ws);
878 (*free_ws)++;
879 spin_unlock(ws_lock);
880 goto wake;
881 }
882 spin_unlock(ws_lock);
883
884 btrfs_compress_op[idx]->free_workspace(workspace);
885 atomic_dec(total_ws);
886 wake:
887 /*
888 * Make sure counter is updated before we wake up waiters.
889 */
890 smp_mb();
891 if (waitqueue_active(ws_wait))
892 wake_up(ws_wait);
893 }
894
895 /*
896 * cleanup function for module exit
897 */
898 static void free_workspaces(void)
899 {
900 struct list_head *workspace;
901 int i;
902
903 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
904 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
905 workspace = btrfs_comp_ws[i].idle_ws.next;
906 list_del(workspace);
907 btrfs_compress_op[i]->free_workspace(workspace);
908 atomic_dec(&btrfs_comp_ws[i].total_ws);
909 }
910 }
911 }
912
913 /*
914 * Given an address space and start and length, compress the bytes into @pages
915 * that are allocated on demand.
916 *
917 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
918 * and returns number of actually allocated pages
919 *
920 * @total_in is used to return the number of bytes actually read. It
921 * may be smaller than the input length if we had to exit early because we
922 * ran out of room in the pages array or because we cross the
923 * max_out threshold.
924 *
925 * @total_out is an in/out parameter, must be set to the input length and will
926 * be also used to return the total number of compressed bytes
927 *
928 * @max_out tells us the max number of bytes that we're allowed to
929 * stuff into pages
930 */
931 int btrfs_compress_pages(int type, struct address_space *mapping,
932 u64 start, struct page **pages,
933 unsigned long *out_pages,
934 unsigned long *total_in,
935 unsigned long *total_out)
936 {
937 struct list_head *workspace;
938 int ret;
939
940 workspace = find_workspace(type);
941
942 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
943 start, pages,
944 out_pages,
945 total_in, total_out);
946 free_workspace(type, workspace);
947 return ret;
948 }
949
950 /*
951 * pages_in is an array of pages with compressed data.
952 *
953 * disk_start is the starting logical offset of this array in the file
954 *
955 * orig_bio contains the pages from the file that we want to decompress into
956 *
957 * srclen is the number of bytes in pages_in
958 *
959 * The basic idea is that we have a bio that was created by readpages.
960 * The pages in the bio are for the uncompressed data, and they may not
961 * be contiguous. They all correspond to the range of bytes covered by
962 * the compressed extent.
963 */
964 static int btrfs_decompress_bio(int type, struct page **pages_in,
965 u64 disk_start, struct bio *orig_bio,
966 size_t srclen)
967 {
968 struct list_head *workspace;
969 int ret;
970
971 workspace = find_workspace(type);
972
973 ret = btrfs_compress_op[type-1]->decompress_bio(workspace, pages_in,
974 disk_start, orig_bio,
975 srclen);
976 free_workspace(type, workspace);
977 return ret;
978 }
979
980 /*
981 * a less complex decompression routine. Our compressed data fits in a
982 * single page, and we want to read a single page out of it.
983 * start_byte tells us the offset into the compressed data we're interested in
984 */
985 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
986 unsigned long start_byte, size_t srclen, size_t destlen)
987 {
988 struct list_head *workspace;
989 int ret;
990
991 workspace = find_workspace(type);
992
993 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
994 dest_page, start_byte,
995 srclen, destlen);
996
997 free_workspace(type, workspace);
998 return ret;
999 }
1000
1001 void btrfs_exit_compress(void)
1002 {
1003 free_workspaces();
1004 }
1005
1006 /*
1007 * Copy uncompressed data from working buffer to pages.
1008 *
1009 * buf_start is the byte offset we're of the start of our workspace buffer.
1010 *
1011 * total_out is the last byte of the buffer
1012 */
1013 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1014 unsigned long total_out, u64 disk_start,
1015 struct bio *bio)
1016 {
1017 unsigned long buf_offset;
1018 unsigned long current_buf_start;
1019 unsigned long start_byte;
1020 unsigned long prev_start_byte;
1021 unsigned long working_bytes = total_out - buf_start;
1022 unsigned long bytes;
1023 char *kaddr;
1024 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1025
1026 /*
1027 * start byte is the first byte of the page we're currently
1028 * copying into relative to the start of the compressed data.
1029 */
1030 start_byte = page_offset(bvec.bv_page) - disk_start;
1031
1032 /* we haven't yet hit data corresponding to this page */
1033 if (total_out <= start_byte)
1034 return 1;
1035
1036 /*
1037 * the start of the data we care about is offset into
1038 * the middle of our working buffer
1039 */
1040 if (total_out > start_byte && buf_start < start_byte) {
1041 buf_offset = start_byte - buf_start;
1042 working_bytes -= buf_offset;
1043 } else {
1044 buf_offset = 0;
1045 }
1046 current_buf_start = buf_start;
1047
1048 /* copy bytes from the working buffer into the pages */
1049 while (working_bytes > 0) {
1050 bytes = min_t(unsigned long, bvec.bv_len,
1051 PAGE_SIZE - buf_offset);
1052 bytes = min(bytes, working_bytes);
1053
1054 kaddr = kmap_atomic(bvec.bv_page);
1055 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1056 kunmap_atomic(kaddr);
1057 flush_dcache_page(bvec.bv_page);
1058
1059 buf_offset += bytes;
1060 working_bytes -= bytes;
1061 current_buf_start += bytes;
1062
1063 /* check if we need to pick another page */
1064 bio_advance(bio, bytes);
1065 if (!bio->bi_iter.bi_size)
1066 return 0;
1067 bvec = bio_iter_iovec(bio, bio->bi_iter);
1068 prev_start_byte = start_byte;
1069 start_byte = page_offset(bvec.bv_page) - disk_start;
1070
1071 /*
1072 * We need to make sure we're only adjusting
1073 * our offset into compression working buffer when
1074 * we're switching pages. Otherwise we can incorrectly
1075 * keep copying when we were actually done.
1076 */
1077 if (start_byte != prev_start_byte) {
1078 /*
1079 * make sure our new page is covered by this
1080 * working buffer
1081 */
1082 if (total_out <= start_byte)
1083 return 1;
1084
1085 /*
1086 * the next page in the biovec might not be adjacent
1087 * to the last page, but it might still be found
1088 * inside this working buffer. bump our offset pointer
1089 */
1090 if (total_out > start_byte &&
1091 current_buf_start < start_byte) {
1092 buf_offset = start_byte - buf_start;
1093 working_bytes = total_out - start_byte;
1094 current_buf_start = buf_start + buf_offset;
1095 }
1096 }
1097 }
1098
1099 return 1;
1100 }