]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/send.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / send.c
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
38
39 /*
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
45 */
46 struct fs_path {
47 union {
48 struct {
49 char *start;
50 char *end;
51
52 char *buf;
53 unsigned short buf_len:15;
54 unsigned short reversed:1;
55 char inline_buf[];
56 };
57 /*
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
61 */
62 char pad[256];
63 };
64 };
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67
68
69 /* reused for each extent */
70 struct clone_root {
71 struct btrfs_root *root;
72 u64 ino;
73 u64 offset;
74
75 u64 found_refs;
76 };
77
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80
81 struct send_ctx {
82 struct file *send_filp;
83 loff_t send_off;
84 char *send_buf;
85 u32 send_size;
86 u32 send_max_size;
87 u64 total_send_size;
88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
90
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
110 u64 cur_inode_size;
111 u64 cur_inode_mode;
112 u64 cur_inode_rdev;
113 u64 cur_inode_last_extent;
114
115 u64 send_progress;
116
117 struct list_head new_refs;
118 struct list_head deleted_refs;
119
120 struct radix_tree_root name_cache;
121 struct list_head name_cache_list;
122 int name_cache_size;
123
124 struct file_ra_state ra;
125
126 char *read_buf;
127
128 /*
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
138 *
139 * Tree state when the first send was performed:
140 *
141 * .
142 * |-- a (ino 257)
143 * |-- b (ino 258)
144 * |
145 * |
146 * |-- c (ino 259)
147 * | |-- d (ino 260)
148 * |
149 * |-- c2 (ino 261)
150 *
151 * Tree state when the second (incremental) send is performed:
152 *
153 * .
154 * |-- a (ino 257)
155 * |-- b (ino 258)
156 * |-- c2 (ino 261)
157 * |-- d2 (ino 260)
158 * |-- cc (ino 259)
159 *
160 * The sequence of steps that lead to the second state was:
161 *
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
164 *
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
167 *
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
170 */
171
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves;
174
175 /*
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
179 */
180 struct rb_root waiting_dir_moves;
181
182 /*
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
187 *
188 * Parent snapshot:
189 *
190 * . (ino 256)
191 * |-- a/ (ino 257)
192 * |-- b/ (ino 258)
193 * |-- c/ (ino 259)
194 * | |-- x/ (ino 260)
195 * |
196 * |-- y/ (ino 261)
197 *
198 * Send snapshot:
199 *
200 * . (ino 256)
201 * |-- a/ (ino 257)
202 * |-- b/ (ino 258)
203 * |-- YY/ (ino 261)
204 * |-- x/ (ino 260)
205 *
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
208 * mv /a/b/y /a/b/YY
209 * mv /a/b/c/x /a/b/YY
210 * rmdir /a/b/c
211 *
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
218 *
219 * Indexed by the inode number of the directory to be deleted.
220 */
221 struct rb_root orphan_dirs;
222 };
223
224 struct pending_dir_move {
225 struct rb_node node;
226 struct list_head list;
227 u64 parent_ino;
228 u64 ino;
229 u64 gen;
230 struct list_head update_refs;
231 };
232
233 struct waiting_dir_move {
234 struct rb_node node;
235 u64 ino;
236 /*
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
240 */
241 u64 rmdir_ino;
242 bool orphanized;
243 };
244
245 struct orphan_dir_info {
246 struct rb_node node;
247 u64 ino;
248 u64 gen;
249 };
250
251 struct name_cache_entry {
252 struct list_head list;
253 /*
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
259 * generations.
260 */
261 struct list_head radix_list;
262 u64 ino;
263 u64 gen;
264 u64 parent_ino;
265 u64 parent_gen;
266 int ret;
267 int need_later_update;
268 int name_len;
269 char name[];
270 };
271
272 static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 enum btrfs_compare_tree_result result,
274 const char *what)
275 {
276 const char *result_string;
277
278 switch (result) {
279 case BTRFS_COMPARE_TREE_NEW:
280 result_string = "new";
281 break;
282 case BTRFS_COMPARE_TREE_DELETED:
283 result_string = "deleted";
284 break;
285 case BTRFS_COMPARE_TREE_CHANGED:
286 result_string = "updated";
287 break;
288 case BTRFS_COMPARE_TREE_SAME:
289 ASSERT(0);
290 result_string = "unchanged";
291 break;
292 default:
293 ASSERT(0);
294 result_string = "unexpected";
295 }
296
297 btrfs_err(sctx->send_root->fs_info,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string, what, sctx->cmp_key->objectid,
300 sctx->send_root->root_key.objectid,
301 (sctx->parent_root ?
302 sctx->parent_root->root_key.objectid : 0));
303 }
304
305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
306
307 static struct waiting_dir_move *
308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
309
310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
311
312 static int need_send_hole(struct send_ctx *sctx)
313 {
314 return (sctx->parent_root && !sctx->cur_inode_new &&
315 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 S_ISREG(sctx->cur_inode_mode));
317 }
318
319 static void fs_path_reset(struct fs_path *p)
320 {
321 if (p->reversed) {
322 p->start = p->buf + p->buf_len - 1;
323 p->end = p->start;
324 *p->start = 0;
325 } else {
326 p->start = p->buf;
327 p->end = p->start;
328 *p->start = 0;
329 }
330 }
331
332 static struct fs_path *fs_path_alloc(void)
333 {
334 struct fs_path *p;
335
336 p = kmalloc(sizeof(*p), GFP_KERNEL);
337 if (!p)
338 return NULL;
339 p->reversed = 0;
340 p->buf = p->inline_buf;
341 p->buf_len = FS_PATH_INLINE_SIZE;
342 fs_path_reset(p);
343 return p;
344 }
345
346 static struct fs_path *fs_path_alloc_reversed(void)
347 {
348 struct fs_path *p;
349
350 p = fs_path_alloc();
351 if (!p)
352 return NULL;
353 p->reversed = 1;
354 fs_path_reset(p);
355 return p;
356 }
357
358 static void fs_path_free(struct fs_path *p)
359 {
360 if (!p)
361 return;
362 if (p->buf != p->inline_buf)
363 kfree(p->buf);
364 kfree(p);
365 }
366
367 static int fs_path_len(struct fs_path *p)
368 {
369 return p->end - p->start;
370 }
371
372 static int fs_path_ensure_buf(struct fs_path *p, int len)
373 {
374 char *tmp_buf;
375 int path_len;
376 int old_buf_len;
377
378 len++;
379
380 if (p->buf_len >= len)
381 return 0;
382
383 if (len > PATH_MAX) {
384 WARN_ON(1);
385 return -ENOMEM;
386 }
387
388 path_len = p->end - p->start;
389 old_buf_len = p->buf_len;
390
391 /*
392 * First time the inline_buf does not suffice
393 */
394 if (p->buf == p->inline_buf) {
395 tmp_buf = kmalloc(len, GFP_KERNEL);
396 if (tmp_buf)
397 memcpy(tmp_buf, p->buf, old_buf_len);
398 } else {
399 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
400 }
401 if (!tmp_buf)
402 return -ENOMEM;
403 p->buf = tmp_buf;
404 /*
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
407 */
408 p->buf_len = ksize(p->buf);
409
410 if (p->reversed) {
411 tmp_buf = p->buf + old_buf_len - path_len - 1;
412 p->end = p->buf + p->buf_len - 1;
413 p->start = p->end - path_len;
414 memmove(p->start, tmp_buf, path_len + 1);
415 } else {
416 p->start = p->buf;
417 p->end = p->start + path_len;
418 }
419 return 0;
420 }
421
422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
423 char **prepared)
424 {
425 int ret;
426 int new_len;
427
428 new_len = p->end - p->start + name_len;
429 if (p->start != p->end)
430 new_len++;
431 ret = fs_path_ensure_buf(p, new_len);
432 if (ret < 0)
433 goto out;
434
435 if (p->reversed) {
436 if (p->start != p->end)
437 *--p->start = '/';
438 p->start -= name_len;
439 *prepared = p->start;
440 } else {
441 if (p->start != p->end)
442 *p->end++ = '/';
443 *prepared = p->end;
444 p->end += name_len;
445 *p->end = 0;
446 }
447
448 out:
449 return ret;
450 }
451
452 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
453 {
454 int ret;
455 char *prepared;
456
457 ret = fs_path_prepare_for_add(p, name_len, &prepared);
458 if (ret < 0)
459 goto out;
460 memcpy(prepared, name, name_len);
461
462 out:
463 return ret;
464 }
465
466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
467 {
468 int ret;
469 char *prepared;
470
471 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
472 if (ret < 0)
473 goto out;
474 memcpy(prepared, p2->start, p2->end - p2->start);
475
476 out:
477 return ret;
478 }
479
480 static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 struct extent_buffer *eb,
482 unsigned long off, int len)
483 {
484 int ret;
485 char *prepared;
486
487 ret = fs_path_prepare_for_add(p, len, &prepared);
488 if (ret < 0)
489 goto out;
490
491 read_extent_buffer(eb, prepared, off, len);
492
493 out:
494 return ret;
495 }
496
497 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
498 {
499 int ret;
500
501 p->reversed = from->reversed;
502 fs_path_reset(p);
503
504 ret = fs_path_add_path(p, from);
505
506 return ret;
507 }
508
509
510 static void fs_path_unreverse(struct fs_path *p)
511 {
512 char *tmp;
513 int len;
514
515 if (!p->reversed)
516 return;
517
518 tmp = p->start;
519 len = p->end - p->start;
520 p->start = p->buf;
521 p->end = p->start + len;
522 memmove(p->start, tmp, len + 1);
523 p->reversed = 0;
524 }
525
526 static struct btrfs_path *alloc_path_for_send(void)
527 {
528 struct btrfs_path *path;
529
530 path = btrfs_alloc_path();
531 if (!path)
532 return NULL;
533 path->search_commit_root = 1;
534 path->skip_locking = 1;
535 path->need_commit_sem = 1;
536 return path;
537 }
538
539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
540 {
541 int ret;
542 mm_segment_t old_fs;
543 u32 pos = 0;
544
545 old_fs = get_fs();
546 set_fs(KERNEL_DS);
547
548 while (pos < len) {
549 ret = vfs_write(filp, (__force const char __user *)buf + pos,
550 len - pos, off);
551 /* TODO handle that correctly */
552 /*if (ret == -ERESTARTSYS) {
553 continue;
554 }*/
555 if (ret < 0)
556 goto out;
557 if (ret == 0) {
558 ret = -EIO;
559 goto out;
560 }
561 pos += ret;
562 }
563
564 ret = 0;
565
566 out:
567 set_fs(old_fs);
568 return ret;
569 }
570
571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572 {
573 struct btrfs_tlv_header *hdr;
574 int total_len = sizeof(*hdr) + len;
575 int left = sctx->send_max_size - sctx->send_size;
576
577 if (unlikely(left < total_len))
578 return -EOVERFLOW;
579
580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 hdr->tlv_type = cpu_to_le16(attr);
582 hdr->tlv_len = cpu_to_le16(len);
583 memcpy(hdr + 1, data, len);
584 sctx->send_size += total_len;
585
586 return 0;
587 }
588
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
592 { \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
595 }
596
597 TLV_PUT_DEFINE_INT(64)
598
599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 const char *str, int len)
601 {
602 if (len == -1)
603 len = strlen(str);
604 return tlv_put(sctx, attr, str, len);
605 }
606
607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 const u8 *uuid)
609 {
610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611 }
612
613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 struct extent_buffer *eb,
615 struct btrfs_timespec *ts)
616 {
617 struct btrfs_timespec bts;
618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 return tlv_put(sctx, attr, &bts, sizeof(bts));
620 }
621
622
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
624 do { \
625 ret = tlv_put(sctx, attrtype, attrlen, data); \
626 if (ret < 0) \
627 goto tlv_put_failure; \
628 } while (0)
629
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 do { \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
633 if (ret < 0) \
634 goto tlv_put_failure; \
635 } while (0)
636
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 do { \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
644 if (ret < 0) \
645 goto tlv_put_failure; \
646 } while (0)
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
648 do { \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
651 if (ret < 0) \
652 goto tlv_put_failure; \
653 } while(0)
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 do { \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 if (ret < 0) \
658 goto tlv_put_failure; \
659 } while (0)
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 do { \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 if (ret < 0) \
664 goto tlv_put_failure; \
665 } while (0)
666
667 static int send_header(struct send_ctx *sctx)
668 {
669 struct btrfs_stream_header hdr;
670
671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673
674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 &sctx->send_off);
676 }
677
678 /*
679 * For each command/item we want to send to userspace, we call this function.
680 */
681 static int begin_cmd(struct send_ctx *sctx, int cmd)
682 {
683 struct btrfs_cmd_header *hdr;
684
685 if (WARN_ON(!sctx->send_buf))
686 return -EINVAL;
687
688 BUG_ON(sctx->send_size);
689
690 sctx->send_size += sizeof(*hdr);
691 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 hdr->cmd = cpu_to_le16(cmd);
693
694 return 0;
695 }
696
697 static int send_cmd(struct send_ctx *sctx)
698 {
699 int ret;
700 struct btrfs_cmd_header *hdr;
701 u32 crc;
702
703 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
705 hdr->crc = 0;
706
707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 hdr->crc = cpu_to_le32(crc);
709
710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 &sctx->send_off);
712
713 sctx->total_send_size += sctx->send_size;
714 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
715 sctx->send_size = 0;
716
717 return ret;
718 }
719
720 /*
721 * Sends a move instruction to user space
722 */
723 static int send_rename(struct send_ctx *sctx,
724 struct fs_path *from, struct fs_path *to)
725 {
726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 int ret;
728
729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730
731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 if (ret < 0)
733 goto out;
734
735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737
738 ret = send_cmd(sctx);
739
740 tlv_put_failure:
741 out:
742 return ret;
743 }
744
745 /*
746 * Sends a link instruction to user space
747 */
748 static int send_link(struct send_ctx *sctx,
749 struct fs_path *path, struct fs_path *lnk)
750 {
751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 int ret;
753
754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755
756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 if (ret < 0)
758 goto out;
759
760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762
763 ret = send_cmd(sctx);
764
765 tlv_put_failure:
766 out:
767 return ret;
768 }
769
770 /*
771 * Sends an unlink instruction to user space
772 */
773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774 {
775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 int ret;
777
778 btrfs_debug(fs_info, "send_unlink %s", path->start);
779
780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 if (ret < 0)
782 goto out;
783
784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785
786 ret = send_cmd(sctx);
787
788 tlv_put_failure:
789 out:
790 return ret;
791 }
792
793 /*
794 * Sends a rmdir instruction to user space
795 */
796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797 {
798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 int ret;
800
801 btrfs_debug(fs_info, "send_rmdir %s", path->start);
802
803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 if (ret < 0)
805 goto out;
806
807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808
809 ret = send_cmd(sctx);
810
811 tlv_put_failure:
812 out:
813 return ret;
814 }
815
816 /*
817 * Helper function to retrieve some fields from an inode item.
818 */
819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 u64 *gid, u64 *rdev)
822 {
823 int ret;
824 struct btrfs_inode_item *ii;
825 struct btrfs_key key;
826
827 key.objectid = ino;
828 key.type = BTRFS_INODE_ITEM_KEY;
829 key.offset = 0;
830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 if (ret) {
832 if (ret > 0)
833 ret = -ENOENT;
834 return ret;
835 }
836
837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 struct btrfs_inode_item);
839 if (size)
840 *size = btrfs_inode_size(path->nodes[0], ii);
841 if (gen)
842 *gen = btrfs_inode_generation(path->nodes[0], ii);
843 if (mode)
844 *mode = btrfs_inode_mode(path->nodes[0], ii);
845 if (uid)
846 *uid = btrfs_inode_uid(path->nodes[0], ii);
847 if (gid)
848 *gid = btrfs_inode_gid(path->nodes[0], ii);
849 if (rdev)
850 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
851
852 return ret;
853 }
854
855 static int get_inode_info(struct btrfs_root *root,
856 u64 ino, u64 *size, u64 *gen,
857 u64 *mode, u64 *uid, u64 *gid,
858 u64 *rdev)
859 {
860 struct btrfs_path *path;
861 int ret;
862
863 path = alloc_path_for_send();
864 if (!path)
865 return -ENOMEM;
866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 rdev);
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 struct fs_path *p,
874 void *ctx);
875
876 /*
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
881 *
882 * path must point to the INODE_REF or INODE_EXTREF when called.
883 */
884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 struct btrfs_key *found_key, int resolve,
886 iterate_inode_ref_t iterate, void *ctx)
887 {
888 struct extent_buffer *eb = path->nodes[0];
889 struct btrfs_item *item;
890 struct btrfs_inode_ref *iref;
891 struct btrfs_inode_extref *extref;
892 struct btrfs_path *tmp_path;
893 struct fs_path *p;
894 u32 cur = 0;
895 u32 total;
896 int slot = path->slots[0];
897 u32 name_len;
898 char *start;
899 int ret = 0;
900 int num = 0;
901 int index;
902 u64 dir;
903 unsigned long name_off;
904 unsigned long elem_size;
905 unsigned long ptr;
906
907 p = fs_path_alloc_reversed();
908 if (!p)
909 return -ENOMEM;
910
911 tmp_path = alloc_path_for_send();
912 if (!tmp_path) {
913 fs_path_free(p);
914 return -ENOMEM;
915 }
916
917
918 if (found_key->type == BTRFS_INODE_REF_KEY) {
919 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 struct btrfs_inode_ref);
921 item = btrfs_item_nr(slot);
922 total = btrfs_item_size(eb, item);
923 elem_size = sizeof(*iref);
924 } else {
925 ptr = btrfs_item_ptr_offset(eb, slot);
926 total = btrfs_item_size_nr(eb, slot);
927 elem_size = sizeof(*extref);
928 }
929
930 while (cur < total) {
931 fs_path_reset(p);
932
933 if (found_key->type == BTRFS_INODE_REF_KEY) {
934 iref = (struct btrfs_inode_ref *)(ptr + cur);
935 name_len = btrfs_inode_ref_name_len(eb, iref);
936 name_off = (unsigned long)(iref + 1);
937 index = btrfs_inode_ref_index(eb, iref);
938 dir = found_key->offset;
939 } else {
940 extref = (struct btrfs_inode_extref *)(ptr + cur);
941 name_len = btrfs_inode_extref_name_len(eb, extref);
942 name_off = (unsigned long)&extref->name;
943 index = btrfs_inode_extref_index(eb, extref);
944 dir = btrfs_inode_extref_parent(eb, extref);
945 }
946
947 if (resolve) {
948 start = btrfs_ref_to_path(root, tmp_path, name_len,
949 name_off, eb, dir,
950 p->buf, p->buf_len);
951 if (IS_ERR(start)) {
952 ret = PTR_ERR(start);
953 goto out;
954 }
955 if (start < p->buf) {
956 /* overflow , try again with larger buffer */
957 ret = fs_path_ensure_buf(p,
958 p->buf_len + p->buf - start);
959 if (ret < 0)
960 goto out;
961 start = btrfs_ref_to_path(root, tmp_path,
962 name_len, name_off,
963 eb, dir,
964 p->buf, p->buf_len);
965 if (IS_ERR(start)) {
966 ret = PTR_ERR(start);
967 goto out;
968 }
969 BUG_ON(start < p->buf);
970 }
971 p->start = start;
972 } else {
973 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 name_len);
975 if (ret < 0)
976 goto out;
977 }
978
979 cur += elem_size + name_len;
980 ret = iterate(num, dir, index, p, ctx);
981 if (ret)
982 goto out;
983 num++;
984 }
985
986 out:
987 btrfs_free_path(tmp_path);
988 fs_path_free(p);
989 return ret;
990 }
991
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 const char *name, int name_len,
994 const char *data, int data_len,
995 u8 type, void *ctx);
996
997 /*
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1001 *
1002 * path must point to the dir item when called.
1003 */
1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 struct btrfs_key *found_key,
1006 iterate_dir_item_t iterate, void *ctx)
1007 {
1008 int ret = 0;
1009 struct extent_buffer *eb;
1010 struct btrfs_item *item;
1011 struct btrfs_dir_item *di;
1012 struct btrfs_key di_key;
1013 char *buf = NULL;
1014 int buf_len;
1015 u32 name_len;
1016 u32 data_len;
1017 u32 cur;
1018 u32 len;
1019 u32 total;
1020 int slot;
1021 int num;
1022 u8 type;
1023
1024 /*
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1028 * values are small.
1029 */
1030 buf_len = PATH_MAX;
1031 buf = kmalloc(buf_len, GFP_KERNEL);
1032 if (!buf) {
1033 ret = -ENOMEM;
1034 goto out;
1035 }
1036
1037 eb = path->nodes[0];
1038 slot = path->slots[0];
1039 item = btrfs_item_nr(slot);
1040 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1041 cur = 0;
1042 len = 0;
1043 total = btrfs_item_size(eb, item);
1044
1045 num = 0;
1046 while (cur < total) {
1047 name_len = btrfs_dir_name_len(eb, di);
1048 data_len = btrfs_dir_data_len(eb, di);
1049 type = btrfs_dir_type(eb, di);
1050 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1051
1052 if (type == BTRFS_FT_XATTR) {
1053 if (name_len > XATTR_NAME_MAX) {
1054 ret = -ENAMETOOLONG;
1055 goto out;
1056 }
1057 if (name_len + data_len >
1058 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1059 ret = -E2BIG;
1060 goto out;
1061 }
1062 } else {
1063 /*
1064 * Path too long
1065 */
1066 if (name_len + data_len > PATH_MAX) {
1067 ret = -ENAMETOOLONG;
1068 goto out;
1069 }
1070 }
1071
1072 ret = btrfs_is_name_len_valid(eb, path->slots[0],
1073 (unsigned long)(di + 1), name_len + data_len);
1074 if (!ret) {
1075 ret = -EIO;
1076 goto out;
1077 }
1078 if (name_len + data_len > buf_len) {
1079 buf_len = name_len + data_len;
1080 if (is_vmalloc_addr(buf)) {
1081 vfree(buf);
1082 buf = NULL;
1083 } else {
1084 char *tmp = krealloc(buf, buf_len,
1085 GFP_KERNEL | __GFP_NOWARN);
1086
1087 if (!tmp)
1088 kfree(buf);
1089 buf = tmp;
1090 }
1091 if (!buf) {
1092 buf = kvmalloc(buf_len, GFP_KERNEL);
1093 if (!buf) {
1094 ret = -ENOMEM;
1095 goto out;
1096 }
1097 }
1098 }
1099
1100 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1101 name_len + data_len);
1102
1103 len = sizeof(*di) + name_len + data_len;
1104 di = (struct btrfs_dir_item *)((char *)di + len);
1105 cur += len;
1106
1107 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1108 data_len, type, ctx);
1109 if (ret < 0)
1110 goto out;
1111 if (ret) {
1112 ret = 0;
1113 goto out;
1114 }
1115
1116 num++;
1117 }
1118
1119 out:
1120 kvfree(buf);
1121 return ret;
1122 }
1123
1124 static int __copy_first_ref(int num, u64 dir, int index,
1125 struct fs_path *p, void *ctx)
1126 {
1127 int ret;
1128 struct fs_path *pt = ctx;
1129
1130 ret = fs_path_copy(pt, p);
1131 if (ret < 0)
1132 return ret;
1133
1134 /* we want the first only */
1135 return 1;
1136 }
1137
1138 /*
1139 * Retrieve the first path of an inode. If an inode has more then one
1140 * ref/hardlink, this is ignored.
1141 */
1142 static int get_inode_path(struct btrfs_root *root,
1143 u64 ino, struct fs_path *path)
1144 {
1145 int ret;
1146 struct btrfs_key key, found_key;
1147 struct btrfs_path *p;
1148
1149 p = alloc_path_for_send();
1150 if (!p)
1151 return -ENOMEM;
1152
1153 fs_path_reset(path);
1154
1155 key.objectid = ino;
1156 key.type = BTRFS_INODE_REF_KEY;
1157 key.offset = 0;
1158
1159 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1160 if (ret < 0)
1161 goto out;
1162 if (ret) {
1163 ret = 1;
1164 goto out;
1165 }
1166 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1167 if (found_key.objectid != ino ||
1168 (found_key.type != BTRFS_INODE_REF_KEY &&
1169 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1170 ret = -ENOENT;
1171 goto out;
1172 }
1173
1174 ret = iterate_inode_ref(root, p, &found_key, 1,
1175 __copy_first_ref, path);
1176 if (ret < 0)
1177 goto out;
1178 ret = 0;
1179
1180 out:
1181 btrfs_free_path(p);
1182 return ret;
1183 }
1184
1185 struct backref_ctx {
1186 struct send_ctx *sctx;
1187
1188 struct btrfs_path *path;
1189 /* number of total found references */
1190 u64 found;
1191
1192 /*
1193 * used for clones found in send_root. clones found behind cur_objectid
1194 * and cur_offset are not considered as allowed clones.
1195 */
1196 u64 cur_objectid;
1197 u64 cur_offset;
1198
1199 /* may be truncated in case it's the last extent in a file */
1200 u64 extent_len;
1201
1202 /* data offset in the file extent item */
1203 u64 data_offset;
1204
1205 /* Just to check for bugs in backref resolving */
1206 int found_itself;
1207 };
1208
1209 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1210 {
1211 u64 root = (u64)(uintptr_t)key;
1212 struct clone_root *cr = (struct clone_root *)elt;
1213
1214 if (root < cr->root->objectid)
1215 return -1;
1216 if (root > cr->root->objectid)
1217 return 1;
1218 return 0;
1219 }
1220
1221 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1222 {
1223 struct clone_root *cr1 = (struct clone_root *)e1;
1224 struct clone_root *cr2 = (struct clone_root *)e2;
1225
1226 if (cr1->root->objectid < cr2->root->objectid)
1227 return -1;
1228 if (cr1->root->objectid > cr2->root->objectid)
1229 return 1;
1230 return 0;
1231 }
1232
1233 /*
1234 * Called for every backref that is found for the current extent.
1235 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1236 */
1237 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1238 {
1239 struct backref_ctx *bctx = ctx_;
1240 struct clone_root *found;
1241 int ret;
1242 u64 i_size;
1243
1244 /* First check if the root is in the list of accepted clone sources */
1245 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1246 bctx->sctx->clone_roots_cnt,
1247 sizeof(struct clone_root),
1248 __clone_root_cmp_bsearch);
1249 if (!found)
1250 return 0;
1251
1252 if (found->root == bctx->sctx->send_root &&
1253 ino == bctx->cur_objectid &&
1254 offset == bctx->cur_offset) {
1255 bctx->found_itself = 1;
1256 }
1257
1258 /*
1259 * There are inodes that have extents that lie behind its i_size. Don't
1260 * accept clones from these extents.
1261 */
1262 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1263 NULL, NULL, NULL);
1264 btrfs_release_path(bctx->path);
1265 if (ret < 0)
1266 return ret;
1267
1268 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1269 return 0;
1270
1271 /*
1272 * Make sure we don't consider clones from send_root that are
1273 * behind the current inode/offset.
1274 */
1275 if (found->root == bctx->sctx->send_root) {
1276 /*
1277 * TODO for the moment we don't accept clones from the inode
1278 * that is currently send. We may change this when
1279 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1280 * file.
1281 */
1282 if (ino >= bctx->cur_objectid)
1283 return 0;
1284 #if 0
1285 if (ino > bctx->cur_objectid)
1286 return 0;
1287 if (offset + bctx->extent_len > bctx->cur_offset)
1288 return 0;
1289 #endif
1290 }
1291
1292 bctx->found++;
1293 found->found_refs++;
1294 if (ino < found->ino) {
1295 found->ino = ino;
1296 found->offset = offset;
1297 } else if (found->ino == ino) {
1298 /*
1299 * same extent found more then once in the same file.
1300 */
1301 if (found->offset > offset + bctx->extent_len)
1302 found->offset = offset;
1303 }
1304
1305 return 0;
1306 }
1307
1308 /*
1309 * Given an inode, offset and extent item, it finds a good clone for a clone
1310 * instruction. Returns -ENOENT when none could be found. The function makes
1311 * sure that the returned clone is usable at the point where sending is at the
1312 * moment. This means, that no clones are accepted which lie behind the current
1313 * inode+offset.
1314 *
1315 * path must point to the extent item when called.
1316 */
1317 static int find_extent_clone(struct send_ctx *sctx,
1318 struct btrfs_path *path,
1319 u64 ino, u64 data_offset,
1320 u64 ino_size,
1321 struct clone_root **found)
1322 {
1323 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1324 int ret;
1325 int extent_type;
1326 u64 logical;
1327 u64 disk_byte;
1328 u64 num_bytes;
1329 u64 extent_item_pos;
1330 u64 flags = 0;
1331 struct btrfs_file_extent_item *fi;
1332 struct extent_buffer *eb = path->nodes[0];
1333 struct backref_ctx *backref_ctx = NULL;
1334 struct clone_root *cur_clone_root;
1335 struct btrfs_key found_key;
1336 struct btrfs_path *tmp_path;
1337 int compressed;
1338 u32 i;
1339
1340 tmp_path = alloc_path_for_send();
1341 if (!tmp_path)
1342 return -ENOMEM;
1343
1344 /* We only use this path under the commit sem */
1345 tmp_path->need_commit_sem = 0;
1346
1347 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1348 if (!backref_ctx) {
1349 ret = -ENOMEM;
1350 goto out;
1351 }
1352
1353 backref_ctx->path = tmp_path;
1354
1355 if (data_offset >= ino_size) {
1356 /*
1357 * There may be extents that lie behind the file's size.
1358 * I at least had this in combination with snapshotting while
1359 * writing large files.
1360 */
1361 ret = 0;
1362 goto out;
1363 }
1364
1365 fi = btrfs_item_ptr(eb, path->slots[0],
1366 struct btrfs_file_extent_item);
1367 extent_type = btrfs_file_extent_type(eb, fi);
1368 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1369 ret = -ENOENT;
1370 goto out;
1371 }
1372 compressed = btrfs_file_extent_compression(eb, fi);
1373
1374 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1375 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1376 if (disk_byte == 0) {
1377 ret = -ENOENT;
1378 goto out;
1379 }
1380 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1381
1382 down_read(&fs_info->commit_root_sem);
1383 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1384 &found_key, &flags);
1385 up_read(&fs_info->commit_root_sem);
1386 btrfs_release_path(tmp_path);
1387
1388 if (ret < 0)
1389 goto out;
1390 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1391 ret = -EIO;
1392 goto out;
1393 }
1394
1395 /*
1396 * Setup the clone roots.
1397 */
1398 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1399 cur_clone_root = sctx->clone_roots + i;
1400 cur_clone_root->ino = (u64)-1;
1401 cur_clone_root->offset = 0;
1402 cur_clone_root->found_refs = 0;
1403 }
1404
1405 backref_ctx->sctx = sctx;
1406 backref_ctx->found = 0;
1407 backref_ctx->cur_objectid = ino;
1408 backref_ctx->cur_offset = data_offset;
1409 backref_ctx->found_itself = 0;
1410 backref_ctx->extent_len = num_bytes;
1411 /*
1412 * For non-compressed extents iterate_extent_inodes() gives us extent
1413 * offsets that already take into account the data offset, but not for
1414 * compressed extents, since the offset is logical and not relative to
1415 * the physical extent locations. We must take this into account to
1416 * avoid sending clone offsets that go beyond the source file's size,
1417 * which would result in the clone ioctl failing with -EINVAL on the
1418 * receiving end.
1419 */
1420 if (compressed == BTRFS_COMPRESS_NONE)
1421 backref_ctx->data_offset = 0;
1422 else
1423 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1424
1425 /*
1426 * The last extent of a file may be too large due to page alignment.
1427 * We need to adjust extent_len in this case so that the checks in
1428 * __iterate_backrefs work.
1429 */
1430 if (data_offset + num_bytes >= ino_size)
1431 backref_ctx->extent_len = ino_size - data_offset;
1432
1433 /*
1434 * Now collect all backrefs.
1435 */
1436 if (compressed == BTRFS_COMPRESS_NONE)
1437 extent_item_pos = logical - found_key.objectid;
1438 else
1439 extent_item_pos = 0;
1440 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1441 extent_item_pos, 1, __iterate_backrefs,
1442 backref_ctx);
1443
1444 if (ret < 0)
1445 goto out;
1446
1447 if (!backref_ctx->found_itself) {
1448 /* found a bug in backref code? */
1449 ret = -EIO;
1450 btrfs_err(fs_info,
1451 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1452 ino, data_offset, disk_byte, found_key.objectid);
1453 goto out;
1454 }
1455
1456 btrfs_debug(fs_info,
1457 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1458 data_offset, ino, num_bytes, logical);
1459
1460 if (!backref_ctx->found)
1461 btrfs_debug(fs_info, "no clones found");
1462
1463 cur_clone_root = NULL;
1464 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1465 if (sctx->clone_roots[i].found_refs) {
1466 if (!cur_clone_root)
1467 cur_clone_root = sctx->clone_roots + i;
1468 else if (sctx->clone_roots[i].root == sctx->send_root)
1469 /* prefer clones from send_root over others */
1470 cur_clone_root = sctx->clone_roots + i;
1471 }
1472
1473 }
1474
1475 if (cur_clone_root) {
1476 *found = cur_clone_root;
1477 ret = 0;
1478 } else {
1479 ret = -ENOENT;
1480 }
1481
1482 out:
1483 btrfs_free_path(tmp_path);
1484 kfree(backref_ctx);
1485 return ret;
1486 }
1487
1488 static int read_symlink(struct btrfs_root *root,
1489 u64 ino,
1490 struct fs_path *dest)
1491 {
1492 int ret;
1493 struct btrfs_path *path;
1494 struct btrfs_key key;
1495 struct btrfs_file_extent_item *ei;
1496 u8 type;
1497 u8 compression;
1498 unsigned long off;
1499 int len;
1500
1501 path = alloc_path_for_send();
1502 if (!path)
1503 return -ENOMEM;
1504
1505 key.objectid = ino;
1506 key.type = BTRFS_EXTENT_DATA_KEY;
1507 key.offset = 0;
1508 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1509 if (ret < 0)
1510 goto out;
1511 if (ret) {
1512 /*
1513 * An empty symlink inode. Can happen in rare error paths when
1514 * creating a symlink (transaction committed before the inode
1515 * eviction handler removed the symlink inode items and a crash
1516 * happened in between or the subvol was snapshoted in between).
1517 * Print an informative message to dmesg/syslog so that the user
1518 * can delete the symlink.
1519 */
1520 btrfs_err(root->fs_info,
1521 "Found empty symlink inode %llu at root %llu",
1522 ino, root->root_key.objectid);
1523 ret = -EIO;
1524 goto out;
1525 }
1526
1527 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1528 struct btrfs_file_extent_item);
1529 type = btrfs_file_extent_type(path->nodes[0], ei);
1530 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1531 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1532 BUG_ON(compression);
1533
1534 off = btrfs_file_extent_inline_start(ei);
1535 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1536
1537 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1538
1539 out:
1540 btrfs_free_path(path);
1541 return ret;
1542 }
1543
1544 /*
1545 * Helper function to generate a file name that is unique in the root of
1546 * send_root and parent_root. This is used to generate names for orphan inodes.
1547 */
1548 static int gen_unique_name(struct send_ctx *sctx,
1549 u64 ino, u64 gen,
1550 struct fs_path *dest)
1551 {
1552 int ret = 0;
1553 struct btrfs_path *path;
1554 struct btrfs_dir_item *di;
1555 char tmp[64];
1556 int len;
1557 u64 idx = 0;
1558
1559 path = alloc_path_for_send();
1560 if (!path)
1561 return -ENOMEM;
1562
1563 while (1) {
1564 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1565 ino, gen, idx);
1566 ASSERT(len < sizeof(tmp));
1567
1568 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1569 path, BTRFS_FIRST_FREE_OBJECTID,
1570 tmp, strlen(tmp), 0);
1571 btrfs_release_path(path);
1572 if (IS_ERR(di)) {
1573 ret = PTR_ERR(di);
1574 goto out;
1575 }
1576 if (di) {
1577 /* not unique, try again */
1578 idx++;
1579 continue;
1580 }
1581
1582 if (!sctx->parent_root) {
1583 /* unique */
1584 ret = 0;
1585 break;
1586 }
1587
1588 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1589 path, BTRFS_FIRST_FREE_OBJECTID,
1590 tmp, strlen(tmp), 0);
1591 btrfs_release_path(path);
1592 if (IS_ERR(di)) {
1593 ret = PTR_ERR(di);
1594 goto out;
1595 }
1596 if (di) {
1597 /* not unique, try again */
1598 idx++;
1599 continue;
1600 }
1601 /* unique */
1602 break;
1603 }
1604
1605 ret = fs_path_add(dest, tmp, strlen(tmp));
1606
1607 out:
1608 btrfs_free_path(path);
1609 return ret;
1610 }
1611
1612 enum inode_state {
1613 inode_state_no_change,
1614 inode_state_will_create,
1615 inode_state_did_create,
1616 inode_state_will_delete,
1617 inode_state_did_delete,
1618 };
1619
1620 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1621 {
1622 int ret;
1623 int left_ret;
1624 int right_ret;
1625 u64 left_gen;
1626 u64 right_gen;
1627
1628 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1629 NULL, NULL);
1630 if (ret < 0 && ret != -ENOENT)
1631 goto out;
1632 left_ret = ret;
1633
1634 if (!sctx->parent_root) {
1635 right_ret = -ENOENT;
1636 } else {
1637 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1638 NULL, NULL, NULL, NULL);
1639 if (ret < 0 && ret != -ENOENT)
1640 goto out;
1641 right_ret = ret;
1642 }
1643
1644 if (!left_ret && !right_ret) {
1645 if (left_gen == gen && right_gen == gen) {
1646 ret = inode_state_no_change;
1647 } else if (left_gen == gen) {
1648 if (ino < sctx->send_progress)
1649 ret = inode_state_did_create;
1650 else
1651 ret = inode_state_will_create;
1652 } else if (right_gen == gen) {
1653 if (ino < sctx->send_progress)
1654 ret = inode_state_did_delete;
1655 else
1656 ret = inode_state_will_delete;
1657 } else {
1658 ret = -ENOENT;
1659 }
1660 } else if (!left_ret) {
1661 if (left_gen == gen) {
1662 if (ino < sctx->send_progress)
1663 ret = inode_state_did_create;
1664 else
1665 ret = inode_state_will_create;
1666 } else {
1667 ret = -ENOENT;
1668 }
1669 } else if (!right_ret) {
1670 if (right_gen == gen) {
1671 if (ino < sctx->send_progress)
1672 ret = inode_state_did_delete;
1673 else
1674 ret = inode_state_will_delete;
1675 } else {
1676 ret = -ENOENT;
1677 }
1678 } else {
1679 ret = -ENOENT;
1680 }
1681
1682 out:
1683 return ret;
1684 }
1685
1686 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1687 {
1688 int ret;
1689
1690 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1691 return 1;
1692
1693 ret = get_cur_inode_state(sctx, ino, gen);
1694 if (ret < 0)
1695 goto out;
1696
1697 if (ret == inode_state_no_change ||
1698 ret == inode_state_did_create ||
1699 ret == inode_state_will_delete)
1700 ret = 1;
1701 else
1702 ret = 0;
1703
1704 out:
1705 return ret;
1706 }
1707
1708 /*
1709 * Helper function to lookup a dir item in a dir.
1710 */
1711 static int lookup_dir_item_inode(struct btrfs_root *root,
1712 u64 dir, const char *name, int name_len,
1713 u64 *found_inode,
1714 u8 *found_type)
1715 {
1716 int ret = 0;
1717 struct btrfs_dir_item *di;
1718 struct btrfs_key key;
1719 struct btrfs_path *path;
1720
1721 path = alloc_path_for_send();
1722 if (!path)
1723 return -ENOMEM;
1724
1725 di = btrfs_lookup_dir_item(NULL, root, path,
1726 dir, name, name_len, 0);
1727 if (!di) {
1728 ret = -ENOENT;
1729 goto out;
1730 }
1731 if (IS_ERR(di)) {
1732 ret = PTR_ERR(di);
1733 goto out;
1734 }
1735 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1736 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1737 ret = -ENOENT;
1738 goto out;
1739 }
1740 *found_inode = key.objectid;
1741 *found_type = btrfs_dir_type(path->nodes[0], di);
1742
1743 out:
1744 btrfs_free_path(path);
1745 return ret;
1746 }
1747
1748 /*
1749 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1750 * generation of the parent dir and the name of the dir entry.
1751 */
1752 static int get_first_ref(struct btrfs_root *root, u64 ino,
1753 u64 *dir, u64 *dir_gen, struct fs_path *name)
1754 {
1755 int ret;
1756 struct btrfs_key key;
1757 struct btrfs_key found_key;
1758 struct btrfs_path *path;
1759 int len;
1760 u64 parent_dir;
1761
1762 path = alloc_path_for_send();
1763 if (!path)
1764 return -ENOMEM;
1765
1766 key.objectid = ino;
1767 key.type = BTRFS_INODE_REF_KEY;
1768 key.offset = 0;
1769
1770 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1771 if (ret < 0)
1772 goto out;
1773 if (!ret)
1774 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1775 path->slots[0]);
1776 if (ret || found_key.objectid != ino ||
1777 (found_key.type != BTRFS_INODE_REF_KEY &&
1778 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1779 ret = -ENOENT;
1780 goto out;
1781 }
1782
1783 if (found_key.type == BTRFS_INODE_REF_KEY) {
1784 struct btrfs_inode_ref *iref;
1785 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 struct btrfs_inode_ref);
1787 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1788 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1789 (unsigned long)(iref + 1),
1790 len);
1791 parent_dir = found_key.offset;
1792 } else {
1793 struct btrfs_inode_extref *extref;
1794 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1795 struct btrfs_inode_extref);
1796 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1797 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1798 (unsigned long)&extref->name, len);
1799 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1800 }
1801 if (ret < 0)
1802 goto out;
1803 btrfs_release_path(path);
1804
1805 if (dir_gen) {
1806 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1807 NULL, NULL, NULL);
1808 if (ret < 0)
1809 goto out;
1810 }
1811
1812 *dir = parent_dir;
1813
1814 out:
1815 btrfs_free_path(path);
1816 return ret;
1817 }
1818
1819 static int is_first_ref(struct btrfs_root *root,
1820 u64 ino, u64 dir,
1821 const char *name, int name_len)
1822 {
1823 int ret;
1824 struct fs_path *tmp_name;
1825 u64 tmp_dir;
1826
1827 tmp_name = fs_path_alloc();
1828 if (!tmp_name)
1829 return -ENOMEM;
1830
1831 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1832 if (ret < 0)
1833 goto out;
1834
1835 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1836 ret = 0;
1837 goto out;
1838 }
1839
1840 ret = !memcmp(tmp_name->start, name, name_len);
1841
1842 out:
1843 fs_path_free(tmp_name);
1844 return ret;
1845 }
1846
1847 /*
1848 * Used by process_recorded_refs to determine if a new ref would overwrite an
1849 * already existing ref. In case it detects an overwrite, it returns the
1850 * inode/gen in who_ino/who_gen.
1851 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1852 * to make sure later references to the overwritten inode are possible.
1853 * Orphanizing is however only required for the first ref of an inode.
1854 * process_recorded_refs does an additional is_first_ref check to see if
1855 * orphanizing is really required.
1856 */
1857 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1858 const char *name, int name_len,
1859 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1860 {
1861 int ret = 0;
1862 u64 gen;
1863 u64 other_inode = 0;
1864 u8 other_type = 0;
1865
1866 if (!sctx->parent_root)
1867 goto out;
1868
1869 ret = is_inode_existent(sctx, dir, dir_gen);
1870 if (ret <= 0)
1871 goto out;
1872
1873 /*
1874 * If we have a parent root we need to verify that the parent dir was
1875 * not deleted and then re-created, if it was then we have no overwrite
1876 * and we can just unlink this entry.
1877 */
1878 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1879 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1880 NULL, NULL, NULL);
1881 if (ret < 0 && ret != -ENOENT)
1882 goto out;
1883 if (ret) {
1884 ret = 0;
1885 goto out;
1886 }
1887 if (gen != dir_gen)
1888 goto out;
1889 }
1890
1891 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1892 &other_inode, &other_type);
1893 if (ret < 0 && ret != -ENOENT)
1894 goto out;
1895 if (ret) {
1896 ret = 0;
1897 goto out;
1898 }
1899
1900 /*
1901 * Check if the overwritten ref was already processed. If yes, the ref
1902 * was already unlinked/moved, so we can safely assume that we will not
1903 * overwrite anything at this point in time.
1904 */
1905 if (other_inode > sctx->send_progress ||
1906 is_waiting_for_move(sctx, other_inode)) {
1907 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1908 who_gen, who_mode, NULL, NULL, NULL);
1909 if (ret < 0)
1910 goto out;
1911
1912 ret = 1;
1913 *who_ino = other_inode;
1914 } else {
1915 ret = 0;
1916 }
1917
1918 out:
1919 return ret;
1920 }
1921
1922 /*
1923 * Checks if the ref was overwritten by an already processed inode. This is
1924 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1925 * thus the orphan name needs be used.
1926 * process_recorded_refs also uses it to avoid unlinking of refs that were
1927 * overwritten.
1928 */
1929 static int did_overwrite_ref(struct send_ctx *sctx,
1930 u64 dir, u64 dir_gen,
1931 u64 ino, u64 ino_gen,
1932 const char *name, int name_len)
1933 {
1934 int ret = 0;
1935 u64 gen;
1936 u64 ow_inode;
1937 u8 other_type;
1938
1939 if (!sctx->parent_root)
1940 goto out;
1941
1942 ret = is_inode_existent(sctx, dir, dir_gen);
1943 if (ret <= 0)
1944 goto out;
1945
1946 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1947 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1948 NULL, NULL, NULL);
1949 if (ret < 0 && ret != -ENOENT)
1950 goto out;
1951 if (ret) {
1952 ret = 0;
1953 goto out;
1954 }
1955 if (gen != dir_gen)
1956 goto out;
1957 }
1958
1959 /* check if the ref was overwritten by another ref */
1960 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1961 &ow_inode, &other_type);
1962 if (ret < 0 && ret != -ENOENT)
1963 goto out;
1964 if (ret) {
1965 /* was never and will never be overwritten */
1966 ret = 0;
1967 goto out;
1968 }
1969
1970 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1971 NULL, NULL);
1972 if (ret < 0)
1973 goto out;
1974
1975 if (ow_inode == ino && gen == ino_gen) {
1976 ret = 0;
1977 goto out;
1978 }
1979
1980 /*
1981 * We know that it is or will be overwritten. Check this now.
1982 * The current inode being processed might have been the one that caused
1983 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1984 * the current inode being processed.
1985 */
1986 if ((ow_inode < sctx->send_progress) ||
1987 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1988 gen == sctx->cur_inode_gen))
1989 ret = 1;
1990 else
1991 ret = 0;
1992
1993 out:
1994 return ret;
1995 }
1996
1997 /*
1998 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1999 * that got overwritten. This is used by process_recorded_refs to determine
2000 * if it has to use the path as returned by get_cur_path or the orphan name.
2001 */
2002 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2003 {
2004 int ret = 0;
2005 struct fs_path *name = NULL;
2006 u64 dir;
2007 u64 dir_gen;
2008
2009 if (!sctx->parent_root)
2010 goto out;
2011
2012 name = fs_path_alloc();
2013 if (!name)
2014 return -ENOMEM;
2015
2016 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2017 if (ret < 0)
2018 goto out;
2019
2020 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2021 name->start, fs_path_len(name));
2022
2023 out:
2024 fs_path_free(name);
2025 return ret;
2026 }
2027
2028 /*
2029 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2030 * so we need to do some special handling in case we have clashes. This function
2031 * takes care of this with the help of name_cache_entry::radix_list.
2032 * In case of error, nce is kfreed.
2033 */
2034 static int name_cache_insert(struct send_ctx *sctx,
2035 struct name_cache_entry *nce)
2036 {
2037 int ret = 0;
2038 struct list_head *nce_head;
2039
2040 nce_head = radix_tree_lookup(&sctx->name_cache,
2041 (unsigned long)nce->ino);
2042 if (!nce_head) {
2043 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2044 if (!nce_head) {
2045 kfree(nce);
2046 return -ENOMEM;
2047 }
2048 INIT_LIST_HEAD(nce_head);
2049
2050 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2051 if (ret < 0) {
2052 kfree(nce_head);
2053 kfree(nce);
2054 return ret;
2055 }
2056 }
2057 list_add_tail(&nce->radix_list, nce_head);
2058 list_add_tail(&nce->list, &sctx->name_cache_list);
2059 sctx->name_cache_size++;
2060
2061 return ret;
2062 }
2063
2064 static void name_cache_delete(struct send_ctx *sctx,
2065 struct name_cache_entry *nce)
2066 {
2067 struct list_head *nce_head;
2068
2069 nce_head = radix_tree_lookup(&sctx->name_cache,
2070 (unsigned long)nce->ino);
2071 if (!nce_head) {
2072 btrfs_err(sctx->send_root->fs_info,
2073 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2074 nce->ino, sctx->name_cache_size);
2075 }
2076
2077 list_del(&nce->radix_list);
2078 list_del(&nce->list);
2079 sctx->name_cache_size--;
2080
2081 /*
2082 * We may not get to the final release of nce_head if the lookup fails
2083 */
2084 if (nce_head && list_empty(nce_head)) {
2085 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2086 kfree(nce_head);
2087 }
2088 }
2089
2090 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2091 u64 ino, u64 gen)
2092 {
2093 struct list_head *nce_head;
2094 struct name_cache_entry *cur;
2095
2096 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2097 if (!nce_head)
2098 return NULL;
2099
2100 list_for_each_entry(cur, nce_head, radix_list) {
2101 if (cur->ino == ino && cur->gen == gen)
2102 return cur;
2103 }
2104 return NULL;
2105 }
2106
2107 /*
2108 * Removes the entry from the list and adds it back to the end. This marks the
2109 * entry as recently used so that name_cache_clean_unused does not remove it.
2110 */
2111 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2112 {
2113 list_del(&nce->list);
2114 list_add_tail(&nce->list, &sctx->name_cache_list);
2115 }
2116
2117 /*
2118 * Remove some entries from the beginning of name_cache_list.
2119 */
2120 static void name_cache_clean_unused(struct send_ctx *sctx)
2121 {
2122 struct name_cache_entry *nce;
2123
2124 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2125 return;
2126
2127 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2128 nce = list_entry(sctx->name_cache_list.next,
2129 struct name_cache_entry, list);
2130 name_cache_delete(sctx, nce);
2131 kfree(nce);
2132 }
2133 }
2134
2135 static void name_cache_free(struct send_ctx *sctx)
2136 {
2137 struct name_cache_entry *nce;
2138
2139 while (!list_empty(&sctx->name_cache_list)) {
2140 nce = list_entry(sctx->name_cache_list.next,
2141 struct name_cache_entry, list);
2142 name_cache_delete(sctx, nce);
2143 kfree(nce);
2144 }
2145 }
2146
2147 /*
2148 * Used by get_cur_path for each ref up to the root.
2149 * Returns 0 if it succeeded.
2150 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2151 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2152 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2153 * Returns <0 in case of error.
2154 */
2155 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2156 u64 ino, u64 gen,
2157 u64 *parent_ino,
2158 u64 *parent_gen,
2159 struct fs_path *dest)
2160 {
2161 int ret;
2162 int nce_ret;
2163 struct name_cache_entry *nce = NULL;
2164
2165 /*
2166 * First check if we already did a call to this function with the same
2167 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2168 * return the cached result.
2169 */
2170 nce = name_cache_search(sctx, ino, gen);
2171 if (nce) {
2172 if (ino < sctx->send_progress && nce->need_later_update) {
2173 name_cache_delete(sctx, nce);
2174 kfree(nce);
2175 nce = NULL;
2176 } else {
2177 name_cache_used(sctx, nce);
2178 *parent_ino = nce->parent_ino;
2179 *parent_gen = nce->parent_gen;
2180 ret = fs_path_add(dest, nce->name, nce->name_len);
2181 if (ret < 0)
2182 goto out;
2183 ret = nce->ret;
2184 goto out;
2185 }
2186 }
2187
2188 /*
2189 * If the inode is not existent yet, add the orphan name and return 1.
2190 * This should only happen for the parent dir that we determine in
2191 * __record_new_ref
2192 */
2193 ret = is_inode_existent(sctx, ino, gen);
2194 if (ret < 0)
2195 goto out;
2196
2197 if (!ret) {
2198 ret = gen_unique_name(sctx, ino, gen, dest);
2199 if (ret < 0)
2200 goto out;
2201 ret = 1;
2202 goto out_cache;
2203 }
2204
2205 /*
2206 * Depending on whether the inode was already processed or not, use
2207 * send_root or parent_root for ref lookup.
2208 */
2209 if (ino < sctx->send_progress)
2210 ret = get_first_ref(sctx->send_root, ino,
2211 parent_ino, parent_gen, dest);
2212 else
2213 ret = get_first_ref(sctx->parent_root, ino,
2214 parent_ino, parent_gen, dest);
2215 if (ret < 0)
2216 goto out;
2217
2218 /*
2219 * Check if the ref was overwritten by an inode's ref that was processed
2220 * earlier. If yes, treat as orphan and return 1.
2221 */
2222 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2223 dest->start, dest->end - dest->start);
2224 if (ret < 0)
2225 goto out;
2226 if (ret) {
2227 fs_path_reset(dest);
2228 ret = gen_unique_name(sctx, ino, gen, dest);
2229 if (ret < 0)
2230 goto out;
2231 ret = 1;
2232 }
2233
2234 out_cache:
2235 /*
2236 * Store the result of the lookup in the name cache.
2237 */
2238 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2239 if (!nce) {
2240 ret = -ENOMEM;
2241 goto out;
2242 }
2243
2244 nce->ino = ino;
2245 nce->gen = gen;
2246 nce->parent_ino = *parent_ino;
2247 nce->parent_gen = *parent_gen;
2248 nce->name_len = fs_path_len(dest);
2249 nce->ret = ret;
2250 strcpy(nce->name, dest->start);
2251
2252 if (ino < sctx->send_progress)
2253 nce->need_later_update = 0;
2254 else
2255 nce->need_later_update = 1;
2256
2257 nce_ret = name_cache_insert(sctx, nce);
2258 if (nce_ret < 0)
2259 ret = nce_ret;
2260 name_cache_clean_unused(sctx);
2261
2262 out:
2263 return ret;
2264 }
2265
2266 /*
2267 * Magic happens here. This function returns the first ref to an inode as it
2268 * would look like while receiving the stream at this point in time.
2269 * We walk the path up to the root. For every inode in between, we check if it
2270 * was already processed/sent. If yes, we continue with the parent as found
2271 * in send_root. If not, we continue with the parent as found in parent_root.
2272 * If we encounter an inode that was deleted at this point in time, we use the
2273 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2274 * that were not created yet and overwritten inodes/refs.
2275 *
2276 * When do we have have orphan inodes:
2277 * 1. When an inode is freshly created and thus no valid refs are available yet
2278 * 2. When a directory lost all it's refs (deleted) but still has dir items
2279 * inside which were not processed yet (pending for move/delete). If anyone
2280 * tried to get the path to the dir items, it would get a path inside that
2281 * orphan directory.
2282 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2283 * of an unprocessed inode. If in that case the first ref would be
2284 * overwritten, the overwritten inode gets "orphanized". Later when we
2285 * process this overwritten inode, it is restored at a new place by moving
2286 * the orphan inode.
2287 *
2288 * sctx->send_progress tells this function at which point in time receiving
2289 * would be.
2290 */
2291 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2292 struct fs_path *dest)
2293 {
2294 int ret = 0;
2295 struct fs_path *name = NULL;
2296 u64 parent_inode = 0;
2297 u64 parent_gen = 0;
2298 int stop = 0;
2299
2300 name = fs_path_alloc();
2301 if (!name) {
2302 ret = -ENOMEM;
2303 goto out;
2304 }
2305
2306 dest->reversed = 1;
2307 fs_path_reset(dest);
2308
2309 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2310 struct waiting_dir_move *wdm;
2311
2312 fs_path_reset(name);
2313
2314 if (is_waiting_for_rm(sctx, ino)) {
2315 ret = gen_unique_name(sctx, ino, gen, name);
2316 if (ret < 0)
2317 goto out;
2318 ret = fs_path_add_path(dest, name);
2319 break;
2320 }
2321
2322 wdm = get_waiting_dir_move(sctx, ino);
2323 if (wdm && wdm->orphanized) {
2324 ret = gen_unique_name(sctx, ino, gen, name);
2325 stop = 1;
2326 } else if (wdm) {
2327 ret = get_first_ref(sctx->parent_root, ino,
2328 &parent_inode, &parent_gen, name);
2329 } else {
2330 ret = __get_cur_name_and_parent(sctx, ino, gen,
2331 &parent_inode,
2332 &parent_gen, name);
2333 if (ret)
2334 stop = 1;
2335 }
2336
2337 if (ret < 0)
2338 goto out;
2339
2340 ret = fs_path_add_path(dest, name);
2341 if (ret < 0)
2342 goto out;
2343
2344 ino = parent_inode;
2345 gen = parent_gen;
2346 }
2347
2348 out:
2349 fs_path_free(name);
2350 if (!ret)
2351 fs_path_unreverse(dest);
2352 return ret;
2353 }
2354
2355 /*
2356 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2357 */
2358 static int send_subvol_begin(struct send_ctx *sctx)
2359 {
2360 int ret;
2361 struct btrfs_root *send_root = sctx->send_root;
2362 struct btrfs_root *parent_root = sctx->parent_root;
2363 struct btrfs_path *path;
2364 struct btrfs_key key;
2365 struct btrfs_root_ref *ref;
2366 struct extent_buffer *leaf;
2367 char *name = NULL;
2368 int namelen;
2369
2370 path = btrfs_alloc_path();
2371 if (!path)
2372 return -ENOMEM;
2373
2374 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2375 if (!name) {
2376 btrfs_free_path(path);
2377 return -ENOMEM;
2378 }
2379
2380 key.objectid = send_root->objectid;
2381 key.type = BTRFS_ROOT_BACKREF_KEY;
2382 key.offset = 0;
2383
2384 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2385 &key, path, 1, 0);
2386 if (ret < 0)
2387 goto out;
2388 if (ret) {
2389 ret = -ENOENT;
2390 goto out;
2391 }
2392
2393 leaf = path->nodes[0];
2394 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2395 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2396 key.objectid != send_root->objectid) {
2397 ret = -ENOENT;
2398 goto out;
2399 }
2400 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2401 namelen = btrfs_root_ref_name_len(leaf, ref);
2402 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2403 btrfs_release_path(path);
2404
2405 if (parent_root) {
2406 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2407 if (ret < 0)
2408 goto out;
2409 } else {
2410 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2411 if (ret < 0)
2412 goto out;
2413 }
2414
2415 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2416
2417 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2418 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2419 sctx->send_root->root_item.received_uuid);
2420 else
2421 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2422 sctx->send_root->root_item.uuid);
2423
2424 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2425 le64_to_cpu(sctx->send_root->root_item.ctransid));
2426 if (parent_root) {
2427 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2428 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2429 parent_root->root_item.received_uuid);
2430 else
2431 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2432 parent_root->root_item.uuid);
2433 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2434 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2435 }
2436
2437 ret = send_cmd(sctx);
2438
2439 tlv_put_failure:
2440 out:
2441 btrfs_free_path(path);
2442 kfree(name);
2443 return ret;
2444 }
2445
2446 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2447 {
2448 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2449 int ret = 0;
2450 struct fs_path *p;
2451
2452 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2453
2454 p = fs_path_alloc();
2455 if (!p)
2456 return -ENOMEM;
2457
2458 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2459 if (ret < 0)
2460 goto out;
2461
2462 ret = get_cur_path(sctx, ino, gen, p);
2463 if (ret < 0)
2464 goto out;
2465 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2466 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2467
2468 ret = send_cmd(sctx);
2469
2470 tlv_put_failure:
2471 out:
2472 fs_path_free(p);
2473 return ret;
2474 }
2475
2476 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2477 {
2478 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2479 int ret = 0;
2480 struct fs_path *p;
2481
2482 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2483
2484 p = fs_path_alloc();
2485 if (!p)
2486 return -ENOMEM;
2487
2488 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2489 if (ret < 0)
2490 goto out;
2491
2492 ret = get_cur_path(sctx, ino, gen, p);
2493 if (ret < 0)
2494 goto out;
2495 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2496 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2497
2498 ret = send_cmd(sctx);
2499
2500 tlv_put_failure:
2501 out:
2502 fs_path_free(p);
2503 return ret;
2504 }
2505
2506 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2507 {
2508 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2509 int ret = 0;
2510 struct fs_path *p;
2511
2512 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2513 ino, uid, gid);
2514
2515 p = fs_path_alloc();
2516 if (!p)
2517 return -ENOMEM;
2518
2519 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2520 if (ret < 0)
2521 goto out;
2522
2523 ret = get_cur_path(sctx, ino, gen, p);
2524 if (ret < 0)
2525 goto out;
2526 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2527 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2528 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2529
2530 ret = send_cmd(sctx);
2531
2532 tlv_put_failure:
2533 out:
2534 fs_path_free(p);
2535 return ret;
2536 }
2537
2538 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2539 {
2540 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2541 int ret = 0;
2542 struct fs_path *p = NULL;
2543 struct btrfs_inode_item *ii;
2544 struct btrfs_path *path = NULL;
2545 struct extent_buffer *eb;
2546 struct btrfs_key key;
2547 int slot;
2548
2549 btrfs_debug(fs_info, "send_utimes %llu", ino);
2550
2551 p = fs_path_alloc();
2552 if (!p)
2553 return -ENOMEM;
2554
2555 path = alloc_path_for_send();
2556 if (!path) {
2557 ret = -ENOMEM;
2558 goto out;
2559 }
2560
2561 key.objectid = ino;
2562 key.type = BTRFS_INODE_ITEM_KEY;
2563 key.offset = 0;
2564 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2565 if (ret > 0)
2566 ret = -ENOENT;
2567 if (ret < 0)
2568 goto out;
2569
2570 eb = path->nodes[0];
2571 slot = path->slots[0];
2572 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2573
2574 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2575 if (ret < 0)
2576 goto out;
2577
2578 ret = get_cur_path(sctx, ino, gen, p);
2579 if (ret < 0)
2580 goto out;
2581 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2582 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2583 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2584 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2585 /* TODO Add otime support when the otime patches get into upstream */
2586
2587 ret = send_cmd(sctx);
2588
2589 tlv_put_failure:
2590 out:
2591 fs_path_free(p);
2592 btrfs_free_path(path);
2593 return ret;
2594 }
2595
2596 /*
2597 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2598 * a valid path yet because we did not process the refs yet. So, the inode
2599 * is created as orphan.
2600 */
2601 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2602 {
2603 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2604 int ret = 0;
2605 struct fs_path *p;
2606 int cmd;
2607 u64 gen;
2608 u64 mode;
2609 u64 rdev;
2610
2611 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2612
2613 p = fs_path_alloc();
2614 if (!p)
2615 return -ENOMEM;
2616
2617 if (ino != sctx->cur_ino) {
2618 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2619 NULL, NULL, &rdev);
2620 if (ret < 0)
2621 goto out;
2622 } else {
2623 gen = sctx->cur_inode_gen;
2624 mode = sctx->cur_inode_mode;
2625 rdev = sctx->cur_inode_rdev;
2626 }
2627
2628 if (S_ISREG(mode)) {
2629 cmd = BTRFS_SEND_C_MKFILE;
2630 } else if (S_ISDIR(mode)) {
2631 cmd = BTRFS_SEND_C_MKDIR;
2632 } else if (S_ISLNK(mode)) {
2633 cmd = BTRFS_SEND_C_SYMLINK;
2634 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2635 cmd = BTRFS_SEND_C_MKNOD;
2636 } else if (S_ISFIFO(mode)) {
2637 cmd = BTRFS_SEND_C_MKFIFO;
2638 } else if (S_ISSOCK(mode)) {
2639 cmd = BTRFS_SEND_C_MKSOCK;
2640 } else {
2641 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2642 (int)(mode & S_IFMT));
2643 ret = -ENOTSUPP;
2644 goto out;
2645 }
2646
2647 ret = begin_cmd(sctx, cmd);
2648 if (ret < 0)
2649 goto out;
2650
2651 ret = gen_unique_name(sctx, ino, gen, p);
2652 if (ret < 0)
2653 goto out;
2654
2655 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2656 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2657
2658 if (S_ISLNK(mode)) {
2659 fs_path_reset(p);
2660 ret = read_symlink(sctx->send_root, ino, p);
2661 if (ret < 0)
2662 goto out;
2663 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2664 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2665 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2666 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2667 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2668 }
2669
2670 ret = send_cmd(sctx);
2671 if (ret < 0)
2672 goto out;
2673
2674
2675 tlv_put_failure:
2676 out:
2677 fs_path_free(p);
2678 return ret;
2679 }
2680
2681 /*
2682 * We need some special handling for inodes that get processed before the parent
2683 * directory got created. See process_recorded_refs for details.
2684 * This function does the check if we already created the dir out of order.
2685 */
2686 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2687 {
2688 int ret = 0;
2689 struct btrfs_path *path = NULL;
2690 struct btrfs_key key;
2691 struct btrfs_key found_key;
2692 struct btrfs_key di_key;
2693 struct extent_buffer *eb;
2694 struct btrfs_dir_item *di;
2695 int slot;
2696
2697 path = alloc_path_for_send();
2698 if (!path) {
2699 ret = -ENOMEM;
2700 goto out;
2701 }
2702
2703 key.objectid = dir;
2704 key.type = BTRFS_DIR_INDEX_KEY;
2705 key.offset = 0;
2706 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2707 if (ret < 0)
2708 goto out;
2709
2710 while (1) {
2711 eb = path->nodes[0];
2712 slot = path->slots[0];
2713 if (slot >= btrfs_header_nritems(eb)) {
2714 ret = btrfs_next_leaf(sctx->send_root, path);
2715 if (ret < 0) {
2716 goto out;
2717 } else if (ret > 0) {
2718 ret = 0;
2719 break;
2720 }
2721 continue;
2722 }
2723
2724 btrfs_item_key_to_cpu(eb, &found_key, slot);
2725 if (found_key.objectid != key.objectid ||
2726 found_key.type != key.type) {
2727 ret = 0;
2728 goto out;
2729 }
2730
2731 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2732 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2733
2734 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2735 di_key.objectid < sctx->send_progress) {
2736 ret = 1;
2737 goto out;
2738 }
2739
2740 path->slots[0]++;
2741 }
2742
2743 out:
2744 btrfs_free_path(path);
2745 return ret;
2746 }
2747
2748 /*
2749 * Only creates the inode if it is:
2750 * 1. Not a directory
2751 * 2. Or a directory which was not created already due to out of order
2752 * directories. See did_create_dir and process_recorded_refs for details.
2753 */
2754 static int send_create_inode_if_needed(struct send_ctx *sctx)
2755 {
2756 int ret;
2757
2758 if (S_ISDIR(sctx->cur_inode_mode)) {
2759 ret = did_create_dir(sctx, sctx->cur_ino);
2760 if (ret < 0)
2761 goto out;
2762 if (ret) {
2763 ret = 0;
2764 goto out;
2765 }
2766 }
2767
2768 ret = send_create_inode(sctx, sctx->cur_ino);
2769 if (ret < 0)
2770 goto out;
2771
2772 out:
2773 return ret;
2774 }
2775
2776 struct recorded_ref {
2777 struct list_head list;
2778 char *name;
2779 struct fs_path *full_path;
2780 u64 dir;
2781 u64 dir_gen;
2782 int name_len;
2783 };
2784
2785 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2786 {
2787 ref->full_path = path;
2788 ref->name = (char *)kbasename(ref->full_path->start);
2789 ref->name_len = ref->full_path->end - ref->name;
2790 }
2791
2792 /*
2793 * We need to process new refs before deleted refs, but compare_tree gives us
2794 * everything mixed. So we first record all refs and later process them.
2795 * This function is a helper to record one ref.
2796 */
2797 static int __record_ref(struct list_head *head, u64 dir,
2798 u64 dir_gen, struct fs_path *path)
2799 {
2800 struct recorded_ref *ref;
2801
2802 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2803 if (!ref)
2804 return -ENOMEM;
2805
2806 ref->dir = dir;
2807 ref->dir_gen = dir_gen;
2808 set_ref_path(ref, path);
2809 list_add_tail(&ref->list, head);
2810 return 0;
2811 }
2812
2813 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2814 {
2815 struct recorded_ref *new;
2816
2817 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2818 if (!new)
2819 return -ENOMEM;
2820
2821 new->dir = ref->dir;
2822 new->dir_gen = ref->dir_gen;
2823 new->full_path = NULL;
2824 INIT_LIST_HEAD(&new->list);
2825 list_add_tail(&new->list, list);
2826 return 0;
2827 }
2828
2829 static void __free_recorded_refs(struct list_head *head)
2830 {
2831 struct recorded_ref *cur;
2832
2833 while (!list_empty(head)) {
2834 cur = list_entry(head->next, struct recorded_ref, list);
2835 fs_path_free(cur->full_path);
2836 list_del(&cur->list);
2837 kfree(cur);
2838 }
2839 }
2840
2841 static void free_recorded_refs(struct send_ctx *sctx)
2842 {
2843 __free_recorded_refs(&sctx->new_refs);
2844 __free_recorded_refs(&sctx->deleted_refs);
2845 }
2846
2847 /*
2848 * Renames/moves a file/dir to its orphan name. Used when the first
2849 * ref of an unprocessed inode gets overwritten and for all non empty
2850 * directories.
2851 */
2852 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2853 struct fs_path *path)
2854 {
2855 int ret;
2856 struct fs_path *orphan;
2857
2858 orphan = fs_path_alloc();
2859 if (!orphan)
2860 return -ENOMEM;
2861
2862 ret = gen_unique_name(sctx, ino, gen, orphan);
2863 if (ret < 0)
2864 goto out;
2865
2866 ret = send_rename(sctx, path, orphan);
2867
2868 out:
2869 fs_path_free(orphan);
2870 return ret;
2871 }
2872
2873 static struct orphan_dir_info *
2874 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2875 {
2876 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2877 struct rb_node *parent = NULL;
2878 struct orphan_dir_info *entry, *odi;
2879
2880 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2881 if (!odi)
2882 return ERR_PTR(-ENOMEM);
2883 odi->ino = dir_ino;
2884 odi->gen = 0;
2885
2886 while (*p) {
2887 parent = *p;
2888 entry = rb_entry(parent, struct orphan_dir_info, node);
2889 if (dir_ino < entry->ino) {
2890 p = &(*p)->rb_left;
2891 } else if (dir_ino > entry->ino) {
2892 p = &(*p)->rb_right;
2893 } else {
2894 kfree(odi);
2895 return entry;
2896 }
2897 }
2898
2899 rb_link_node(&odi->node, parent, p);
2900 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2901 return odi;
2902 }
2903
2904 static struct orphan_dir_info *
2905 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2906 {
2907 struct rb_node *n = sctx->orphan_dirs.rb_node;
2908 struct orphan_dir_info *entry;
2909
2910 while (n) {
2911 entry = rb_entry(n, struct orphan_dir_info, node);
2912 if (dir_ino < entry->ino)
2913 n = n->rb_left;
2914 else if (dir_ino > entry->ino)
2915 n = n->rb_right;
2916 else
2917 return entry;
2918 }
2919 return NULL;
2920 }
2921
2922 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2923 {
2924 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2925
2926 return odi != NULL;
2927 }
2928
2929 static void free_orphan_dir_info(struct send_ctx *sctx,
2930 struct orphan_dir_info *odi)
2931 {
2932 if (!odi)
2933 return;
2934 rb_erase(&odi->node, &sctx->orphan_dirs);
2935 kfree(odi);
2936 }
2937
2938 /*
2939 * Returns 1 if a directory can be removed at this point in time.
2940 * We check this by iterating all dir items and checking if the inode behind
2941 * the dir item was already processed.
2942 */
2943 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2944 u64 send_progress)
2945 {
2946 int ret = 0;
2947 struct btrfs_root *root = sctx->parent_root;
2948 struct btrfs_path *path;
2949 struct btrfs_key key;
2950 struct btrfs_key found_key;
2951 struct btrfs_key loc;
2952 struct btrfs_dir_item *di;
2953
2954 /*
2955 * Don't try to rmdir the top/root subvolume dir.
2956 */
2957 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2958 return 0;
2959
2960 path = alloc_path_for_send();
2961 if (!path)
2962 return -ENOMEM;
2963
2964 key.objectid = dir;
2965 key.type = BTRFS_DIR_INDEX_KEY;
2966 key.offset = 0;
2967 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2968 if (ret < 0)
2969 goto out;
2970
2971 while (1) {
2972 struct waiting_dir_move *dm;
2973
2974 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2975 ret = btrfs_next_leaf(root, path);
2976 if (ret < 0)
2977 goto out;
2978 else if (ret > 0)
2979 break;
2980 continue;
2981 }
2982 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2983 path->slots[0]);
2984 if (found_key.objectid != key.objectid ||
2985 found_key.type != key.type)
2986 break;
2987
2988 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2989 struct btrfs_dir_item);
2990 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2991
2992 dm = get_waiting_dir_move(sctx, loc.objectid);
2993 if (dm) {
2994 struct orphan_dir_info *odi;
2995
2996 odi = add_orphan_dir_info(sctx, dir);
2997 if (IS_ERR(odi)) {
2998 ret = PTR_ERR(odi);
2999 goto out;
3000 }
3001 odi->gen = dir_gen;
3002 dm->rmdir_ino = dir;
3003 ret = 0;
3004 goto out;
3005 }
3006
3007 if (loc.objectid > send_progress) {
3008 struct orphan_dir_info *odi;
3009
3010 odi = get_orphan_dir_info(sctx, dir);
3011 free_orphan_dir_info(sctx, odi);
3012 ret = 0;
3013 goto out;
3014 }
3015
3016 path->slots[0]++;
3017 }
3018
3019 ret = 1;
3020
3021 out:
3022 btrfs_free_path(path);
3023 return ret;
3024 }
3025
3026 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3027 {
3028 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3029
3030 return entry != NULL;
3031 }
3032
3033 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3034 {
3035 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3036 struct rb_node *parent = NULL;
3037 struct waiting_dir_move *entry, *dm;
3038
3039 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3040 if (!dm)
3041 return -ENOMEM;
3042 dm->ino = ino;
3043 dm->rmdir_ino = 0;
3044 dm->orphanized = orphanized;
3045
3046 while (*p) {
3047 parent = *p;
3048 entry = rb_entry(parent, struct waiting_dir_move, node);
3049 if (ino < entry->ino) {
3050 p = &(*p)->rb_left;
3051 } else if (ino > entry->ino) {
3052 p = &(*p)->rb_right;
3053 } else {
3054 kfree(dm);
3055 return -EEXIST;
3056 }
3057 }
3058
3059 rb_link_node(&dm->node, parent, p);
3060 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3061 return 0;
3062 }
3063
3064 static struct waiting_dir_move *
3065 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3066 {
3067 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3068 struct waiting_dir_move *entry;
3069
3070 while (n) {
3071 entry = rb_entry(n, struct waiting_dir_move, node);
3072 if (ino < entry->ino)
3073 n = n->rb_left;
3074 else if (ino > entry->ino)
3075 n = n->rb_right;
3076 else
3077 return entry;
3078 }
3079 return NULL;
3080 }
3081
3082 static void free_waiting_dir_move(struct send_ctx *sctx,
3083 struct waiting_dir_move *dm)
3084 {
3085 if (!dm)
3086 return;
3087 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3088 kfree(dm);
3089 }
3090
3091 static int add_pending_dir_move(struct send_ctx *sctx,
3092 u64 ino,
3093 u64 ino_gen,
3094 u64 parent_ino,
3095 struct list_head *new_refs,
3096 struct list_head *deleted_refs,
3097 const bool is_orphan)
3098 {
3099 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3100 struct rb_node *parent = NULL;
3101 struct pending_dir_move *entry = NULL, *pm;
3102 struct recorded_ref *cur;
3103 int exists = 0;
3104 int ret;
3105
3106 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3107 if (!pm)
3108 return -ENOMEM;
3109 pm->parent_ino = parent_ino;
3110 pm->ino = ino;
3111 pm->gen = ino_gen;
3112 INIT_LIST_HEAD(&pm->list);
3113 INIT_LIST_HEAD(&pm->update_refs);
3114 RB_CLEAR_NODE(&pm->node);
3115
3116 while (*p) {
3117 parent = *p;
3118 entry = rb_entry(parent, struct pending_dir_move, node);
3119 if (parent_ino < entry->parent_ino) {
3120 p = &(*p)->rb_left;
3121 } else if (parent_ino > entry->parent_ino) {
3122 p = &(*p)->rb_right;
3123 } else {
3124 exists = 1;
3125 break;
3126 }
3127 }
3128
3129 list_for_each_entry(cur, deleted_refs, list) {
3130 ret = dup_ref(cur, &pm->update_refs);
3131 if (ret < 0)
3132 goto out;
3133 }
3134 list_for_each_entry(cur, new_refs, list) {
3135 ret = dup_ref(cur, &pm->update_refs);
3136 if (ret < 0)
3137 goto out;
3138 }
3139
3140 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3141 if (ret)
3142 goto out;
3143
3144 if (exists) {
3145 list_add_tail(&pm->list, &entry->list);
3146 } else {
3147 rb_link_node(&pm->node, parent, p);
3148 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3149 }
3150 ret = 0;
3151 out:
3152 if (ret) {
3153 __free_recorded_refs(&pm->update_refs);
3154 kfree(pm);
3155 }
3156 return ret;
3157 }
3158
3159 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3160 u64 parent_ino)
3161 {
3162 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3163 struct pending_dir_move *entry;
3164
3165 while (n) {
3166 entry = rb_entry(n, struct pending_dir_move, node);
3167 if (parent_ino < entry->parent_ino)
3168 n = n->rb_left;
3169 else if (parent_ino > entry->parent_ino)
3170 n = n->rb_right;
3171 else
3172 return entry;
3173 }
3174 return NULL;
3175 }
3176
3177 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3178 u64 ino, u64 gen, u64 *ancestor_ino)
3179 {
3180 int ret = 0;
3181 u64 parent_inode = 0;
3182 u64 parent_gen = 0;
3183 u64 start_ino = ino;
3184
3185 *ancestor_ino = 0;
3186 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3187 fs_path_reset(name);
3188
3189 if (is_waiting_for_rm(sctx, ino))
3190 break;
3191 if (is_waiting_for_move(sctx, ino)) {
3192 if (*ancestor_ino == 0)
3193 *ancestor_ino = ino;
3194 ret = get_first_ref(sctx->parent_root, ino,
3195 &parent_inode, &parent_gen, name);
3196 } else {
3197 ret = __get_cur_name_and_parent(sctx, ino, gen,
3198 &parent_inode,
3199 &parent_gen, name);
3200 if (ret > 0) {
3201 ret = 0;
3202 break;
3203 }
3204 }
3205 if (ret < 0)
3206 break;
3207 if (parent_inode == start_ino) {
3208 ret = 1;
3209 if (*ancestor_ino == 0)
3210 *ancestor_ino = ino;
3211 break;
3212 }
3213 ino = parent_inode;
3214 gen = parent_gen;
3215 }
3216 return ret;
3217 }
3218
3219 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3220 {
3221 struct fs_path *from_path = NULL;
3222 struct fs_path *to_path = NULL;
3223 struct fs_path *name = NULL;
3224 u64 orig_progress = sctx->send_progress;
3225 struct recorded_ref *cur;
3226 u64 parent_ino, parent_gen;
3227 struct waiting_dir_move *dm = NULL;
3228 u64 rmdir_ino = 0;
3229 u64 ancestor;
3230 bool is_orphan;
3231 int ret;
3232
3233 name = fs_path_alloc();
3234 from_path = fs_path_alloc();
3235 if (!name || !from_path) {
3236 ret = -ENOMEM;
3237 goto out;
3238 }
3239
3240 dm = get_waiting_dir_move(sctx, pm->ino);
3241 ASSERT(dm);
3242 rmdir_ino = dm->rmdir_ino;
3243 is_orphan = dm->orphanized;
3244 free_waiting_dir_move(sctx, dm);
3245
3246 if (is_orphan) {
3247 ret = gen_unique_name(sctx, pm->ino,
3248 pm->gen, from_path);
3249 } else {
3250 ret = get_first_ref(sctx->parent_root, pm->ino,
3251 &parent_ino, &parent_gen, name);
3252 if (ret < 0)
3253 goto out;
3254 ret = get_cur_path(sctx, parent_ino, parent_gen,
3255 from_path);
3256 if (ret < 0)
3257 goto out;
3258 ret = fs_path_add_path(from_path, name);
3259 }
3260 if (ret < 0)
3261 goto out;
3262
3263 sctx->send_progress = sctx->cur_ino + 1;
3264 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3265 if (ret < 0)
3266 goto out;
3267 if (ret) {
3268 LIST_HEAD(deleted_refs);
3269 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3270 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3271 &pm->update_refs, &deleted_refs,
3272 is_orphan);
3273 if (ret < 0)
3274 goto out;
3275 if (rmdir_ino) {
3276 dm = get_waiting_dir_move(sctx, pm->ino);
3277 ASSERT(dm);
3278 dm->rmdir_ino = rmdir_ino;
3279 }
3280 goto out;
3281 }
3282 fs_path_reset(name);
3283 to_path = name;
3284 name = NULL;
3285 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3286 if (ret < 0)
3287 goto out;
3288
3289 ret = send_rename(sctx, from_path, to_path);
3290 if (ret < 0)
3291 goto out;
3292
3293 if (rmdir_ino) {
3294 struct orphan_dir_info *odi;
3295
3296 odi = get_orphan_dir_info(sctx, rmdir_ino);
3297 if (!odi) {
3298 /* already deleted */
3299 goto finish;
3300 }
3301 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3302 if (ret < 0)
3303 goto out;
3304 if (!ret)
3305 goto finish;
3306
3307 name = fs_path_alloc();
3308 if (!name) {
3309 ret = -ENOMEM;
3310 goto out;
3311 }
3312 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3313 if (ret < 0)
3314 goto out;
3315 ret = send_rmdir(sctx, name);
3316 if (ret < 0)
3317 goto out;
3318 free_orphan_dir_info(sctx, odi);
3319 }
3320
3321 finish:
3322 ret = send_utimes(sctx, pm->ino, pm->gen);
3323 if (ret < 0)
3324 goto out;
3325
3326 /*
3327 * After rename/move, need to update the utimes of both new parent(s)
3328 * and old parent(s).
3329 */
3330 list_for_each_entry(cur, &pm->update_refs, list) {
3331 /*
3332 * The parent inode might have been deleted in the send snapshot
3333 */
3334 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3335 NULL, NULL, NULL, NULL, NULL);
3336 if (ret == -ENOENT) {
3337 ret = 0;
3338 continue;
3339 }
3340 if (ret < 0)
3341 goto out;
3342
3343 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3344 if (ret < 0)
3345 goto out;
3346 }
3347
3348 out:
3349 fs_path_free(name);
3350 fs_path_free(from_path);
3351 fs_path_free(to_path);
3352 sctx->send_progress = orig_progress;
3353
3354 return ret;
3355 }
3356
3357 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3358 {
3359 if (!list_empty(&m->list))
3360 list_del(&m->list);
3361 if (!RB_EMPTY_NODE(&m->node))
3362 rb_erase(&m->node, &sctx->pending_dir_moves);
3363 __free_recorded_refs(&m->update_refs);
3364 kfree(m);
3365 }
3366
3367 static void tail_append_pending_moves(struct pending_dir_move *moves,
3368 struct list_head *stack)
3369 {
3370 if (list_empty(&moves->list)) {
3371 list_add_tail(&moves->list, stack);
3372 } else {
3373 LIST_HEAD(list);
3374 list_splice_init(&moves->list, &list);
3375 list_add_tail(&moves->list, stack);
3376 list_splice_tail(&list, stack);
3377 }
3378 }
3379
3380 static int apply_children_dir_moves(struct send_ctx *sctx)
3381 {
3382 struct pending_dir_move *pm;
3383 struct list_head stack;
3384 u64 parent_ino = sctx->cur_ino;
3385 int ret = 0;
3386
3387 pm = get_pending_dir_moves(sctx, parent_ino);
3388 if (!pm)
3389 return 0;
3390
3391 INIT_LIST_HEAD(&stack);
3392 tail_append_pending_moves(pm, &stack);
3393
3394 while (!list_empty(&stack)) {
3395 pm = list_first_entry(&stack, struct pending_dir_move, list);
3396 parent_ino = pm->ino;
3397 ret = apply_dir_move(sctx, pm);
3398 free_pending_move(sctx, pm);
3399 if (ret)
3400 goto out;
3401 pm = get_pending_dir_moves(sctx, parent_ino);
3402 if (pm)
3403 tail_append_pending_moves(pm, &stack);
3404 }
3405 return 0;
3406
3407 out:
3408 while (!list_empty(&stack)) {
3409 pm = list_first_entry(&stack, struct pending_dir_move, list);
3410 free_pending_move(sctx, pm);
3411 }
3412 return ret;
3413 }
3414
3415 /*
3416 * We might need to delay a directory rename even when no ancestor directory
3417 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3418 * renamed. This happens when we rename a directory to the old name (the name
3419 * in the parent root) of some other unrelated directory that got its rename
3420 * delayed due to some ancestor with higher number that got renamed.
3421 *
3422 * Example:
3423 *
3424 * Parent snapshot:
3425 * . (ino 256)
3426 * |---- a/ (ino 257)
3427 * | |---- file (ino 260)
3428 * |
3429 * |---- b/ (ino 258)
3430 * |---- c/ (ino 259)
3431 *
3432 * Send snapshot:
3433 * . (ino 256)
3434 * |---- a/ (ino 258)
3435 * |---- x/ (ino 259)
3436 * |---- y/ (ino 257)
3437 * |----- file (ino 260)
3438 *
3439 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3440 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3441 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3442 * must issue is:
3443 *
3444 * 1 - rename 259 from 'c' to 'x'
3445 * 2 - rename 257 from 'a' to 'x/y'
3446 * 3 - rename 258 from 'b' to 'a'
3447 *
3448 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3449 * be done right away and < 0 on error.
3450 */
3451 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3452 struct recorded_ref *parent_ref,
3453 const bool is_orphan)
3454 {
3455 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3456 struct btrfs_path *path;
3457 struct btrfs_key key;
3458 struct btrfs_key di_key;
3459 struct btrfs_dir_item *di;
3460 u64 left_gen;
3461 u64 right_gen;
3462 int ret = 0;
3463 struct waiting_dir_move *wdm;
3464
3465 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3466 return 0;
3467
3468 path = alloc_path_for_send();
3469 if (!path)
3470 return -ENOMEM;
3471
3472 key.objectid = parent_ref->dir;
3473 key.type = BTRFS_DIR_ITEM_KEY;
3474 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3475
3476 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3477 if (ret < 0) {
3478 goto out;
3479 } else if (ret > 0) {
3480 ret = 0;
3481 goto out;
3482 }
3483
3484 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3485 parent_ref->name_len);
3486 if (!di) {
3487 ret = 0;
3488 goto out;
3489 }
3490 /*
3491 * di_key.objectid has the number of the inode that has a dentry in the
3492 * parent directory with the same name that sctx->cur_ino is being
3493 * renamed to. We need to check if that inode is in the send root as
3494 * well and if it is currently marked as an inode with a pending rename,
3495 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3496 * that it happens after that other inode is renamed.
3497 */
3498 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3499 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3500 ret = 0;
3501 goto out;
3502 }
3503
3504 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3505 &left_gen, NULL, NULL, NULL, NULL);
3506 if (ret < 0)
3507 goto out;
3508 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3509 &right_gen, NULL, NULL, NULL, NULL);
3510 if (ret < 0) {
3511 if (ret == -ENOENT)
3512 ret = 0;
3513 goto out;
3514 }
3515
3516 /* Different inode, no need to delay the rename of sctx->cur_ino */
3517 if (right_gen != left_gen) {
3518 ret = 0;
3519 goto out;
3520 }
3521
3522 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3523 if (wdm && !wdm->orphanized) {
3524 ret = add_pending_dir_move(sctx,
3525 sctx->cur_ino,
3526 sctx->cur_inode_gen,
3527 di_key.objectid,
3528 &sctx->new_refs,
3529 &sctx->deleted_refs,
3530 is_orphan);
3531 if (!ret)
3532 ret = 1;
3533 }
3534 out:
3535 btrfs_free_path(path);
3536 return ret;
3537 }
3538
3539 /*
3540 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3541 * Return 1 if true, 0 if false and < 0 on error.
3542 */
3543 static int is_ancestor(struct btrfs_root *root,
3544 const u64 ino1,
3545 const u64 ino1_gen,
3546 const u64 ino2,
3547 struct fs_path *fs_path)
3548 {
3549 u64 ino = ino2;
3550 bool free_path = false;
3551 int ret = 0;
3552
3553 if (!fs_path) {
3554 fs_path = fs_path_alloc();
3555 if (!fs_path)
3556 return -ENOMEM;
3557 free_path = true;
3558 }
3559
3560 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3561 u64 parent;
3562 u64 parent_gen;
3563
3564 fs_path_reset(fs_path);
3565 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3566 if (ret < 0) {
3567 if (ret == -ENOENT && ino == ino2)
3568 ret = 0;
3569 goto out;
3570 }
3571 if (parent == ino1) {
3572 ret = parent_gen == ino1_gen ? 1 : 0;
3573 goto out;
3574 }
3575 ino = parent;
3576 }
3577 out:
3578 if (free_path)
3579 fs_path_free(fs_path);
3580 return ret;
3581 }
3582
3583 static int wait_for_parent_move(struct send_ctx *sctx,
3584 struct recorded_ref *parent_ref,
3585 const bool is_orphan)
3586 {
3587 int ret = 0;
3588 u64 ino = parent_ref->dir;
3589 u64 ino_gen = parent_ref->dir_gen;
3590 u64 parent_ino_before, parent_ino_after;
3591 struct fs_path *path_before = NULL;
3592 struct fs_path *path_after = NULL;
3593 int len1, len2;
3594
3595 path_after = fs_path_alloc();
3596 path_before = fs_path_alloc();
3597 if (!path_after || !path_before) {
3598 ret = -ENOMEM;
3599 goto out;
3600 }
3601
3602 /*
3603 * Our current directory inode may not yet be renamed/moved because some
3604 * ancestor (immediate or not) has to be renamed/moved first. So find if
3605 * such ancestor exists and make sure our own rename/move happens after
3606 * that ancestor is processed to avoid path build infinite loops (done
3607 * at get_cur_path()).
3608 */
3609 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3610 u64 parent_ino_after_gen;
3611
3612 if (is_waiting_for_move(sctx, ino)) {
3613 /*
3614 * If the current inode is an ancestor of ino in the
3615 * parent root, we need to delay the rename of the
3616 * current inode, otherwise don't delayed the rename
3617 * because we can end up with a circular dependency
3618 * of renames, resulting in some directories never
3619 * getting the respective rename operations issued in
3620 * the send stream or getting into infinite path build
3621 * loops.
3622 */
3623 ret = is_ancestor(sctx->parent_root,
3624 sctx->cur_ino, sctx->cur_inode_gen,
3625 ino, path_before);
3626 if (ret)
3627 break;
3628 }
3629
3630 fs_path_reset(path_before);
3631 fs_path_reset(path_after);
3632
3633 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3634 &parent_ino_after_gen, path_after);
3635 if (ret < 0)
3636 goto out;
3637 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3638 NULL, path_before);
3639 if (ret < 0 && ret != -ENOENT) {
3640 goto out;
3641 } else if (ret == -ENOENT) {
3642 ret = 0;
3643 break;
3644 }
3645
3646 len1 = fs_path_len(path_before);
3647 len2 = fs_path_len(path_after);
3648 if (ino > sctx->cur_ino &&
3649 (parent_ino_before != parent_ino_after || len1 != len2 ||
3650 memcmp(path_before->start, path_after->start, len1))) {
3651 u64 parent_ino_gen;
3652
3653 ret = get_inode_info(sctx->parent_root, ino, NULL,
3654 &parent_ino_gen, NULL, NULL, NULL,
3655 NULL);
3656 if (ret < 0)
3657 goto out;
3658 if (ino_gen == parent_ino_gen) {
3659 ret = 1;
3660 break;
3661 }
3662 }
3663 ino = parent_ino_after;
3664 ino_gen = parent_ino_after_gen;
3665 }
3666
3667 out:
3668 fs_path_free(path_before);
3669 fs_path_free(path_after);
3670
3671 if (ret == 1) {
3672 ret = add_pending_dir_move(sctx,
3673 sctx->cur_ino,
3674 sctx->cur_inode_gen,
3675 ino,
3676 &sctx->new_refs,
3677 &sctx->deleted_refs,
3678 is_orphan);
3679 if (!ret)
3680 ret = 1;
3681 }
3682
3683 return ret;
3684 }
3685
3686 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3687 {
3688 int ret;
3689 struct fs_path *new_path;
3690
3691 /*
3692 * Our reference's name member points to its full_path member string, so
3693 * we use here a new path.
3694 */
3695 new_path = fs_path_alloc();
3696 if (!new_path)
3697 return -ENOMEM;
3698
3699 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3700 if (ret < 0) {
3701 fs_path_free(new_path);
3702 return ret;
3703 }
3704 ret = fs_path_add(new_path, ref->name, ref->name_len);
3705 if (ret < 0) {
3706 fs_path_free(new_path);
3707 return ret;
3708 }
3709
3710 fs_path_free(ref->full_path);
3711 set_ref_path(ref, new_path);
3712
3713 return 0;
3714 }
3715
3716 /*
3717 * This does all the move/link/unlink/rmdir magic.
3718 */
3719 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3720 {
3721 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3722 int ret = 0;
3723 struct recorded_ref *cur;
3724 struct recorded_ref *cur2;
3725 struct list_head check_dirs;
3726 struct fs_path *valid_path = NULL;
3727 u64 ow_inode = 0;
3728 u64 ow_gen;
3729 u64 ow_mode;
3730 int did_overwrite = 0;
3731 int is_orphan = 0;
3732 u64 last_dir_ino_rm = 0;
3733 bool can_rename = true;
3734 bool orphanized_dir = false;
3735 bool orphanized_ancestor = false;
3736
3737 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3738
3739 /*
3740 * This should never happen as the root dir always has the same ref
3741 * which is always '..'
3742 */
3743 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3744 INIT_LIST_HEAD(&check_dirs);
3745
3746 valid_path = fs_path_alloc();
3747 if (!valid_path) {
3748 ret = -ENOMEM;
3749 goto out;
3750 }
3751
3752 /*
3753 * First, check if the first ref of the current inode was overwritten
3754 * before. If yes, we know that the current inode was already orphanized
3755 * and thus use the orphan name. If not, we can use get_cur_path to
3756 * get the path of the first ref as it would like while receiving at
3757 * this point in time.
3758 * New inodes are always orphan at the beginning, so force to use the
3759 * orphan name in this case.
3760 * The first ref is stored in valid_path and will be updated if it
3761 * gets moved around.
3762 */
3763 if (!sctx->cur_inode_new) {
3764 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3765 sctx->cur_inode_gen);
3766 if (ret < 0)
3767 goto out;
3768 if (ret)
3769 did_overwrite = 1;
3770 }
3771 if (sctx->cur_inode_new || did_overwrite) {
3772 ret = gen_unique_name(sctx, sctx->cur_ino,
3773 sctx->cur_inode_gen, valid_path);
3774 if (ret < 0)
3775 goto out;
3776 is_orphan = 1;
3777 } else {
3778 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3779 valid_path);
3780 if (ret < 0)
3781 goto out;
3782 }
3783
3784 list_for_each_entry(cur, &sctx->new_refs, list) {
3785 /*
3786 * We may have refs where the parent directory does not exist
3787 * yet. This happens if the parent directories inum is higher
3788 * the the current inum. To handle this case, we create the
3789 * parent directory out of order. But we need to check if this
3790 * did already happen before due to other refs in the same dir.
3791 */
3792 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3793 if (ret < 0)
3794 goto out;
3795 if (ret == inode_state_will_create) {
3796 ret = 0;
3797 /*
3798 * First check if any of the current inodes refs did
3799 * already create the dir.
3800 */
3801 list_for_each_entry(cur2, &sctx->new_refs, list) {
3802 if (cur == cur2)
3803 break;
3804 if (cur2->dir == cur->dir) {
3805 ret = 1;
3806 break;
3807 }
3808 }
3809
3810 /*
3811 * If that did not happen, check if a previous inode
3812 * did already create the dir.
3813 */
3814 if (!ret)
3815 ret = did_create_dir(sctx, cur->dir);
3816 if (ret < 0)
3817 goto out;
3818 if (!ret) {
3819 ret = send_create_inode(sctx, cur->dir);
3820 if (ret < 0)
3821 goto out;
3822 }
3823 }
3824
3825 /*
3826 * Check if this new ref would overwrite the first ref of
3827 * another unprocessed inode. If yes, orphanize the
3828 * overwritten inode. If we find an overwritten ref that is
3829 * not the first ref, simply unlink it.
3830 */
3831 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3832 cur->name, cur->name_len,
3833 &ow_inode, &ow_gen, &ow_mode);
3834 if (ret < 0)
3835 goto out;
3836 if (ret) {
3837 ret = is_first_ref(sctx->parent_root,
3838 ow_inode, cur->dir, cur->name,
3839 cur->name_len);
3840 if (ret < 0)
3841 goto out;
3842 if (ret) {
3843 struct name_cache_entry *nce;
3844 struct waiting_dir_move *wdm;
3845
3846 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3847 cur->full_path);
3848 if (ret < 0)
3849 goto out;
3850 if (S_ISDIR(ow_mode))
3851 orphanized_dir = true;
3852
3853 /*
3854 * If ow_inode has its rename operation delayed
3855 * make sure that its orphanized name is used in
3856 * the source path when performing its rename
3857 * operation.
3858 */
3859 if (is_waiting_for_move(sctx, ow_inode)) {
3860 wdm = get_waiting_dir_move(sctx,
3861 ow_inode);
3862 ASSERT(wdm);
3863 wdm->orphanized = true;
3864 }
3865
3866 /*
3867 * Make sure we clear our orphanized inode's
3868 * name from the name cache. This is because the
3869 * inode ow_inode might be an ancestor of some
3870 * other inode that will be orphanized as well
3871 * later and has an inode number greater than
3872 * sctx->send_progress. We need to prevent
3873 * future name lookups from using the old name
3874 * and get instead the orphan name.
3875 */
3876 nce = name_cache_search(sctx, ow_inode, ow_gen);
3877 if (nce) {
3878 name_cache_delete(sctx, nce);
3879 kfree(nce);
3880 }
3881
3882 /*
3883 * ow_inode might currently be an ancestor of
3884 * cur_ino, therefore compute valid_path (the
3885 * current path of cur_ino) again because it
3886 * might contain the pre-orphanization name of
3887 * ow_inode, which is no longer valid.
3888 */
3889 ret = is_ancestor(sctx->parent_root,
3890 ow_inode, ow_gen,
3891 sctx->cur_ino, NULL);
3892 if (ret > 0) {
3893 orphanized_ancestor = true;
3894 fs_path_reset(valid_path);
3895 ret = get_cur_path(sctx, sctx->cur_ino,
3896 sctx->cur_inode_gen,
3897 valid_path);
3898 }
3899 if (ret < 0)
3900 goto out;
3901 } else {
3902 ret = send_unlink(sctx, cur->full_path);
3903 if (ret < 0)
3904 goto out;
3905 }
3906 }
3907
3908 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3909 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3910 if (ret < 0)
3911 goto out;
3912 if (ret == 1) {
3913 can_rename = false;
3914 *pending_move = 1;
3915 }
3916 }
3917
3918 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3919 can_rename) {
3920 ret = wait_for_parent_move(sctx, cur, is_orphan);
3921 if (ret < 0)
3922 goto out;
3923 if (ret == 1) {
3924 can_rename = false;
3925 *pending_move = 1;
3926 }
3927 }
3928
3929 /*
3930 * link/move the ref to the new place. If we have an orphan
3931 * inode, move it and update valid_path. If not, link or move
3932 * it depending on the inode mode.
3933 */
3934 if (is_orphan && can_rename) {
3935 ret = send_rename(sctx, valid_path, cur->full_path);
3936 if (ret < 0)
3937 goto out;
3938 is_orphan = 0;
3939 ret = fs_path_copy(valid_path, cur->full_path);
3940 if (ret < 0)
3941 goto out;
3942 } else if (can_rename) {
3943 if (S_ISDIR(sctx->cur_inode_mode)) {
3944 /*
3945 * Dirs can't be linked, so move it. For moved
3946 * dirs, we always have one new and one deleted
3947 * ref. The deleted ref is ignored later.
3948 */
3949 ret = send_rename(sctx, valid_path,
3950 cur->full_path);
3951 if (!ret)
3952 ret = fs_path_copy(valid_path,
3953 cur->full_path);
3954 if (ret < 0)
3955 goto out;
3956 } else {
3957 /*
3958 * We might have previously orphanized an inode
3959 * which is an ancestor of our current inode,
3960 * so our reference's full path, which was
3961 * computed before any such orphanizations, must
3962 * be updated.
3963 */
3964 if (orphanized_dir) {
3965 ret = update_ref_path(sctx, cur);
3966 if (ret < 0)
3967 goto out;
3968 }
3969 ret = send_link(sctx, cur->full_path,
3970 valid_path);
3971 if (ret < 0)
3972 goto out;
3973 }
3974 }
3975 ret = dup_ref(cur, &check_dirs);
3976 if (ret < 0)
3977 goto out;
3978 }
3979
3980 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3981 /*
3982 * Check if we can already rmdir the directory. If not,
3983 * orphanize it. For every dir item inside that gets deleted
3984 * later, we do this check again and rmdir it then if possible.
3985 * See the use of check_dirs for more details.
3986 */
3987 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3988 sctx->cur_ino);
3989 if (ret < 0)
3990 goto out;
3991 if (ret) {
3992 ret = send_rmdir(sctx, valid_path);
3993 if (ret < 0)
3994 goto out;
3995 } else if (!is_orphan) {
3996 ret = orphanize_inode(sctx, sctx->cur_ino,
3997 sctx->cur_inode_gen, valid_path);
3998 if (ret < 0)
3999 goto out;
4000 is_orphan = 1;
4001 }
4002
4003 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4004 ret = dup_ref(cur, &check_dirs);
4005 if (ret < 0)
4006 goto out;
4007 }
4008 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4009 !list_empty(&sctx->deleted_refs)) {
4010 /*
4011 * We have a moved dir. Add the old parent to check_dirs
4012 */
4013 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4014 list);
4015 ret = dup_ref(cur, &check_dirs);
4016 if (ret < 0)
4017 goto out;
4018 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4019 /*
4020 * We have a non dir inode. Go through all deleted refs and
4021 * unlink them if they were not already overwritten by other
4022 * inodes.
4023 */
4024 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4025 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4026 sctx->cur_ino, sctx->cur_inode_gen,
4027 cur->name, cur->name_len);
4028 if (ret < 0)
4029 goto out;
4030 if (!ret) {
4031 /*
4032 * If we orphanized any ancestor before, we need
4033 * to recompute the full path for deleted names,
4034 * since any such path was computed before we
4035 * processed any references and orphanized any
4036 * ancestor inode.
4037 */
4038 if (orphanized_ancestor) {
4039 ret = update_ref_path(sctx, cur);
4040 if (ret < 0)
4041 goto out;
4042 }
4043 ret = send_unlink(sctx, cur->full_path);
4044 if (ret < 0)
4045 goto out;
4046 }
4047 ret = dup_ref(cur, &check_dirs);
4048 if (ret < 0)
4049 goto out;
4050 }
4051 /*
4052 * If the inode is still orphan, unlink the orphan. This may
4053 * happen when a previous inode did overwrite the first ref
4054 * of this inode and no new refs were added for the current
4055 * inode. Unlinking does not mean that the inode is deleted in
4056 * all cases. There may still be links to this inode in other
4057 * places.
4058 */
4059 if (is_orphan) {
4060 ret = send_unlink(sctx, valid_path);
4061 if (ret < 0)
4062 goto out;
4063 }
4064 }
4065
4066 /*
4067 * We did collect all parent dirs where cur_inode was once located. We
4068 * now go through all these dirs and check if they are pending for
4069 * deletion and if it's finally possible to perform the rmdir now.
4070 * We also update the inode stats of the parent dirs here.
4071 */
4072 list_for_each_entry(cur, &check_dirs, list) {
4073 /*
4074 * In case we had refs into dirs that were not processed yet,
4075 * we don't need to do the utime and rmdir logic for these dirs.
4076 * The dir will be processed later.
4077 */
4078 if (cur->dir > sctx->cur_ino)
4079 continue;
4080
4081 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4082 if (ret < 0)
4083 goto out;
4084
4085 if (ret == inode_state_did_create ||
4086 ret == inode_state_no_change) {
4087 /* TODO delayed utimes */
4088 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4089 if (ret < 0)
4090 goto out;
4091 } else if (ret == inode_state_did_delete &&
4092 cur->dir != last_dir_ino_rm) {
4093 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4094 sctx->cur_ino);
4095 if (ret < 0)
4096 goto out;
4097 if (ret) {
4098 ret = get_cur_path(sctx, cur->dir,
4099 cur->dir_gen, valid_path);
4100 if (ret < 0)
4101 goto out;
4102 ret = send_rmdir(sctx, valid_path);
4103 if (ret < 0)
4104 goto out;
4105 last_dir_ino_rm = cur->dir;
4106 }
4107 }
4108 }
4109
4110 ret = 0;
4111
4112 out:
4113 __free_recorded_refs(&check_dirs);
4114 free_recorded_refs(sctx);
4115 fs_path_free(valid_path);
4116 return ret;
4117 }
4118
4119 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4120 struct fs_path *name, void *ctx, struct list_head *refs)
4121 {
4122 int ret = 0;
4123 struct send_ctx *sctx = ctx;
4124 struct fs_path *p;
4125 u64 gen;
4126
4127 p = fs_path_alloc();
4128 if (!p)
4129 return -ENOMEM;
4130
4131 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4132 NULL, NULL);
4133 if (ret < 0)
4134 goto out;
4135
4136 ret = get_cur_path(sctx, dir, gen, p);
4137 if (ret < 0)
4138 goto out;
4139 ret = fs_path_add_path(p, name);
4140 if (ret < 0)
4141 goto out;
4142
4143 ret = __record_ref(refs, dir, gen, p);
4144
4145 out:
4146 if (ret)
4147 fs_path_free(p);
4148 return ret;
4149 }
4150
4151 static int __record_new_ref(int num, u64 dir, int index,
4152 struct fs_path *name,
4153 void *ctx)
4154 {
4155 struct send_ctx *sctx = ctx;
4156 return record_ref(sctx->send_root, num, dir, index, name,
4157 ctx, &sctx->new_refs);
4158 }
4159
4160
4161 static int __record_deleted_ref(int num, u64 dir, int index,
4162 struct fs_path *name,
4163 void *ctx)
4164 {
4165 struct send_ctx *sctx = ctx;
4166 return record_ref(sctx->parent_root, num, dir, index, name,
4167 ctx, &sctx->deleted_refs);
4168 }
4169
4170 static int record_new_ref(struct send_ctx *sctx)
4171 {
4172 int ret;
4173
4174 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4175 sctx->cmp_key, 0, __record_new_ref, sctx);
4176 if (ret < 0)
4177 goto out;
4178 ret = 0;
4179
4180 out:
4181 return ret;
4182 }
4183
4184 static int record_deleted_ref(struct send_ctx *sctx)
4185 {
4186 int ret;
4187
4188 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4189 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4190 if (ret < 0)
4191 goto out;
4192 ret = 0;
4193
4194 out:
4195 return ret;
4196 }
4197
4198 struct find_ref_ctx {
4199 u64 dir;
4200 u64 dir_gen;
4201 struct btrfs_root *root;
4202 struct fs_path *name;
4203 int found_idx;
4204 };
4205
4206 static int __find_iref(int num, u64 dir, int index,
4207 struct fs_path *name,
4208 void *ctx_)
4209 {
4210 struct find_ref_ctx *ctx = ctx_;
4211 u64 dir_gen;
4212 int ret;
4213
4214 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4215 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4216 /*
4217 * To avoid doing extra lookups we'll only do this if everything
4218 * else matches.
4219 */
4220 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4221 NULL, NULL, NULL);
4222 if (ret)
4223 return ret;
4224 if (dir_gen != ctx->dir_gen)
4225 return 0;
4226 ctx->found_idx = num;
4227 return 1;
4228 }
4229 return 0;
4230 }
4231
4232 static int find_iref(struct btrfs_root *root,
4233 struct btrfs_path *path,
4234 struct btrfs_key *key,
4235 u64 dir, u64 dir_gen, struct fs_path *name)
4236 {
4237 int ret;
4238 struct find_ref_ctx ctx;
4239
4240 ctx.dir = dir;
4241 ctx.name = name;
4242 ctx.dir_gen = dir_gen;
4243 ctx.found_idx = -1;
4244 ctx.root = root;
4245
4246 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4247 if (ret < 0)
4248 return ret;
4249
4250 if (ctx.found_idx == -1)
4251 return -ENOENT;
4252
4253 return ctx.found_idx;
4254 }
4255
4256 static int __record_changed_new_ref(int num, u64 dir, int index,
4257 struct fs_path *name,
4258 void *ctx)
4259 {
4260 u64 dir_gen;
4261 int ret;
4262 struct send_ctx *sctx = ctx;
4263
4264 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4265 NULL, NULL, NULL);
4266 if (ret)
4267 return ret;
4268
4269 ret = find_iref(sctx->parent_root, sctx->right_path,
4270 sctx->cmp_key, dir, dir_gen, name);
4271 if (ret == -ENOENT)
4272 ret = __record_new_ref(num, dir, index, name, sctx);
4273 else if (ret > 0)
4274 ret = 0;
4275
4276 return ret;
4277 }
4278
4279 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4280 struct fs_path *name,
4281 void *ctx)
4282 {
4283 u64 dir_gen;
4284 int ret;
4285 struct send_ctx *sctx = ctx;
4286
4287 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4288 NULL, NULL, NULL);
4289 if (ret)
4290 return ret;
4291
4292 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4293 dir, dir_gen, name);
4294 if (ret == -ENOENT)
4295 ret = __record_deleted_ref(num, dir, index, name, sctx);
4296 else if (ret > 0)
4297 ret = 0;
4298
4299 return ret;
4300 }
4301
4302 static int record_changed_ref(struct send_ctx *sctx)
4303 {
4304 int ret = 0;
4305
4306 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4307 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4308 if (ret < 0)
4309 goto out;
4310 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4311 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4312 if (ret < 0)
4313 goto out;
4314 ret = 0;
4315
4316 out:
4317 return ret;
4318 }
4319
4320 /*
4321 * Record and process all refs at once. Needed when an inode changes the
4322 * generation number, which means that it was deleted and recreated.
4323 */
4324 static int process_all_refs(struct send_ctx *sctx,
4325 enum btrfs_compare_tree_result cmd)
4326 {
4327 int ret;
4328 struct btrfs_root *root;
4329 struct btrfs_path *path;
4330 struct btrfs_key key;
4331 struct btrfs_key found_key;
4332 struct extent_buffer *eb;
4333 int slot;
4334 iterate_inode_ref_t cb;
4335 int pending_move = 0;
4336
4337 path = alloc_path_for_send();
4338 if (!path)
4339 return -ENOMEM;
4340
4341 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4342 root = sctx->send_root;
4343 cb = __record_new_ref;
4344 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4345 root = sctx->parent_root;
4346 cb = __record_deleted_ref;
4347 } else {
4348 btrfs_err(sctx->send_root->fs_info,
4349 "Wrong command %d in process_all_refs", cmd);
4350 ret = -EINVAL;
4351 goto out;
4352 }
4353
4354 key.objectid = sctx->cmp_key->objectid;
4355 key.type = BTRFS_INODE_REF_KEY;
4356 key.offset = 0;
4357 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4358 if (ret < 0)
4359 goto out;
4360
4361 while (1) {
4362 eb = path->nodes[0];
4363 slot = path->slots[0];
4364 if (slot >= btrfs_header_nritems(eb)) {
4365 ret = btrfs_next_leaf(root, path);
4366 if (ret < 0)
4367 goto out;
4368 else if (ret > 0)
4369 break;
4370 continue;
4371 }
4372
4373 btrfs_item_key_to_cpu(eb, &found_key, slot);
4374
4375 if (found_key.objectid != key.objectid ||
4376 (found_key.type != BTRFS_INODE_REF_KEY &&
4377 found_key.type != BTRFS_INODE_EXTREF_KEY))
4378 break;
4379
4380 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4381 if (ret < 0)
4382 goto out;
4383
4384 path->slots[0]++;
4385 }
4386 btrfs_release_path(path);
4387
4388 /*
4389 * We don't actually care about pending_move as we are simply
4390 * re-creating this inode and will be rename'ing it into place once we
4391 * rename the parent directory.
4392 */
4393 ret = process_recorded_refs(sctx, &pending_move);
4394 out:
4395 btrfs_free_path(path);
4396 return ret;
4397 }
4398
4399 static int send_set_xattr(struct send_ctx *sctx,
4400 struct fs_path *path,
4401 const char *name, int name_len,
4402 const char *data, int data_len)
4403 {
4404 int ret = 0;
4405
4406 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4407 if (ret < 0)
4408 goto out;
4409
4410 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4411 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4412 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4413
4414 ret = send_cmd(sctx);
4415
4416 tlv_put_failure:
4417 out:
4418 return ret;
4419 }
4420
4421 static int send_remove_xattr(struct send_ctx *sctx,
4422 struct fs_path *path,
4423 const char *name, int name_len)
4424 {
4425 int ret = 0;
4426
4427 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4428 if (ret < 0)
4429 goto out;
4430
4431 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4432 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4433
4434 ret = send_cmd(sctx);
4435
4436 tlv_put_failure:
4437 out:
4438 return ret;
4439 }
4440
4441 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4442 const char *name, int name_len,
4443 const char *data, int data_len,
4444 u8 type, void *ctx)
4445 {
4446 int ret;
4447 struct send_ctx *sctx = ctx;
4448 struct fs_path *p;
4449 struct posix_acl_xattr_header dummy_acl;
4450
4451 p = fs_path_alloc();
4452 if (!p)
4453 return -ENOMEM;
4454
4455 /*
4456 * This hack is needed because empty acls are stored as zero byte
4457 * data in xattrs. Problem with that is, that receiving these zero byte
4458 * acls will fail later. To fix this, we send a dummy acl list that
4459 * only contains the version number and no entries.
4460 */
4461 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4462 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4463 if (data_len == 0) {
4464 dummy_acl.a_version =
4465 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4466 data = (char *)&dummy_acl;
4467 data_len = sizeof(dummy_acl);
4468 }
4469 }
4470
4471 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4472 if (ret < 0)
4473 goto out;
4474
4475 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4476
4477 out:
4478 fs_path_free(p);
4479 return ret;
4480 }
4481
4482 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4483 const char *name, int name_len,
4484 const char *data, int data_len,
4485 u8 type, void *ctx)
4486 {
4487 int ret;
4488 struct send_ctx *sctx = ctx;
4489 struct fs_path *p;
4490
4491 p = fs_path_alloc();
4492 if (!p)
4493 return -ENOMEM;
4494
4495 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4496 if (ret < 0)
4497 goto out;
4498
4499 ret = send_remove_xattr(sctx, p, name, name_len);
4500
4501 out:
4502 fs_path_free(p);
4503 return ret;
4504 }
4505
4506 static int process_new_xattr(struct send_ctx *sctx)
4507 {
4508 int ret = 0;
4509
4510 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4511 sctx->cmp_key, __process_new_xattr, sctx);
4512
4513 return ret;
4514 }
4515
4516 static int process_deleted_xattr(struct send_ctx *sctx)
4517 {
4518 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4519 sctx->cmp_key, __process_deleted_xattr, sctx);
4520 }
4521
4522 struct find_xattr_ctx {
4523 const char *name;
4524 int name_len;
4525 int found_idx;
4526 char *found_data;
4527 int found_data_len;
4528 };
4529
4530 static int __find_xattr(int num, struct btrfs_key *di_key,
4531 const char *name, int name_len,
4532 const char *data, int data_len,
4533 u8 type, void *vctx)
4534 {
4535 struct find_xattr_ctx *ctx = vctx;
4536
4537 if (name_len == ctx->name_len &&
4538 strncmp(name, ctx->name, name_len) == 0) {
4539 ctx->found_idx = num;
4540 ctx->found_data_len = data_len;
4541 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4542 if (!ctx->found_data)
4543 return -ENOMEM;
4544 return 1;
4545 }
4546 return 0;
4547 }
4548
4549 static int find_xattr(struct btrfs_root *root,
4550 struct btrfs_path *path,
4551 struct btrfs_key *key,
4552 const char *name, int name_len,
4553 char **data, int *data_len)
4554 {
4555 int ret;
4556 struct find_xattr_ctx ctx;
4557
4558 ctx.name = name;
4559 ctx.name_len = name_len;
4560 ctx.found_idx = -1;
4561 ctx.found_data = NULL;
4562 ctx.found_data_len = 0;
4563
4564 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4565 if (ret < 0)
4566 return ret;
4567
4568 if (ctx.found_idx == -1)
4569 return -ENOENT;
4570 if (data) {
4571 *data = ctx.found_data;
4572 *data_len = ctx.found_data_len;
4573 } else {
4574 kfree(ctx.found_data);
4575 }
4576 return ctx.found_idx;
4577 }
4578
4579
4580 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4581 const char *name, int name_len,
4582 const char *data, int data_len,
4583 u8 type, void *ctx)
4584 {
4585 int ret;
4586 struct send_ctx *sctx = ctx;
4587 char *found_data = NULL;
4588 int found_data_len = 0;
4589
4590 ret = find_xattr(sctx->parent_root, sctx->right_path,
4591 sctx->cmp_key, name, name_len, &found_data,
4592 &found_data_len);
4593 if (ret == -ENOENT) {
4594 ret = __process_new_xattr(num, di_key, name, name_len, data,
4595 data_len, type, ctx);
4596 } else if (ret >= 0) {
4597 if (data_len != found_data_len ||
4598 memcmp(data, found_data, data_len)) {
4599 ret = __process_new_xattr(num, di_key, name, name_len,
4600 data, data_len, type, ctx);
4601 } else {
4602 ret = 0;
4603 }
4604 }
4605
4606 kfree(found_data);
4607 return ret;
4608 }
4609
4610 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4611 const char *name, int name_len,
4612 const char *data, int data_len,
4613 u8 type, void *ctx)
4614 {
4615 int ret;
4616 struct send_ctx *sctx = ctx;
4617
4618 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4619 name, name_len, NULL, NULL);
4620 if (ret == -ENOENT)
4621 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4622 data_len, type, ctx);
4623 else if (ret >= 0)
4624 ret = 0;
4625
4626 return ret;
4627 }
4628
4629 static int process_changed_xattr(struct send_ctx *sctx)
4630 {
4631 int ret = 0;
4632
4633 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4634 sctx->cmp_key, __process_changed_new_xattr, sctx);
4635 if (ret < 0)
4636 goto out;
4637 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4638 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4639
4640 out:
4641 return ret;
4642 }
4643
4644 static int process_all_new_xattrs(struct send_ctx *sctx)
4645 {
4646 int ret;
4647 struct btrfs_root *root;
4648 struct btrfs_path *path;
4649 struct btrfs_key key;
4650 struct btrfs_key found_key;
4651 struct extent_buffer *eb;
4652 int slot;
4653
4654 path = alloc_path_for_send();
4655 if (!path)
4656 return -ENOMEM;
4657
4658 root = sctx->send_root;
4659
4660 key.objectid = sctx->cmp_key->objectid;
4661 key.type = BTRFS_XATTR_ITEM_KEY;
4662 key.offset = 0;
4663 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4664 if (ret < 0)
4665 goto out;
4666
4667 while (1) {
4668 eb = path->nodes[0];
4669 slot = path->slots[0];
4670 if (slot >= btrfs_header_nritems(eb)) {
4671 ret = btrfs_next_leaf(root, path);
4672 if (ret < 0) {
4673 goto out;
4674 } else if (ret > 0) {
4675 ret = 0;
4676 break;
4677 }
4678 continue;
4679 }
4680
4681 btrfs_item_key_to_cpu(eb, &found_key, slot);
4682 if (found_key.objectid != key.objectid ||
4683 found_key.type != key.type) {
4684 ret = 0;
4685 goto out;
4686 }
4687
4688 ret = iterate_dir_item(root, path, &found_key,
4689 __process_new_xattr, sctx);
4690 if (ret < 0)
4691 goto out;
4692
4693 path->slots[0]++;
4694 }
4695
4696 out:
4697 btrfs_free_path(path);
4698 return ret;
4699 }
4700
4701 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4702 {
4703 struct btrfs_root *root = sctx->send_root;
4704 struct btrfs_fs_info *fs_info = root->fs_info;
4705 struct inode *inode;
4706 struct page *page;
4707 char *addr;
4708 struct btrfs_key key;
4709 pgoff_t index = offset >> PAGE_SHIFT;
4710 pgoff_t last_index;
4711 unsigned pg_offset = offset & ~PAGE_MASK;
4712 ssize_t ret = 0;
4713
4714 key.objectid = sctx->cur_ino;
4715 key.type = BTRFS_INODE_ITEM_KEY;
4716 key.offset = 0;
4717
4718 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4719 if (IS_ERR(inode))
4720 return PTR_ERR(inode);
4721
4722 if (offset + len > i_size_read(inode)) {
4723 if (offset > i_size_read(inode))
4724 len = 0;
4725 else
4726 len = offset - i_size_read(inode);
4727 }
4728 if (len == 0)
4729 goto out;
4730
4731 last_index = (offset + len - 1) >> PAGE_SHIFT;
4732
4733 /* initial readahead */
4734 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4735 file_ra_state_init(&sctx->ra, inode->i_mapping);
4736 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4737 last_index - index + 1);
4738
4739 while (index <= last_index) {
4740 unsigned cur_len = min_t(unsigned, len,
4741 PAGE_SIZE - pg_offset);
4742 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4743 if (!page) {
4744 ret = -ENOMEM;
4745 break;
4746 }
4747
4748 if (!PageUptodate(page)) {
4749 btrfs_readpage(NULL, page);
4750 lock_page(page);
4751 if (!PageUptodate(page)) {
4752 unlock_page(page);
4753 put_page(page);
4754 ret = -EIO;
4755 break;
4756 }
4757 }
4758
4759 addr = kmap(page);
4760 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4761 kunmap(page);
4762 unlock_page(page);
4763 put_page(page);
4764 index++;
4765 pg_offset = 0;
4766 len -= cur_len;
4767 ret += cur_len;
4768 }
4769 out:
4770 iput(inode);
4771 return ret;
4772 }
4773
4774 /*
4775 * Read some bytes from the current inode/file and send a write command to
4776 * user space.
4777 */
4778 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4779 {
4780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4781 int ret = 0;
4782 struct fs_path *p;
4783 ssize_t num_read = 0;
4784
4785 p = fs_path_alloc();
4786 if (!p)
4787 return -ENOMEM;
4788
4789 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4790
4791 num_read = fill_read_buf(sctx, offset, len);
4792 if (num_read <= 0) {
4793 if (num_read < 0)
4794 ret = num_read;
4795 goto out;
4796 }
4797
4798 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4799 if (ret < 0)
4800 goto out;
4801
4802 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4803 if (ret < 0)
4804 goto out;
4805
4806 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4807 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4808 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4809
4810 ret = send_cmd(sctx);
4811
4812 tlv_put_failure:
4813 out:
4814 fs_path_free(p);
4815 if (ret < 0)
4816 return ret;
4817 return num_read;
4818 }
4819
4820 /*
4821 * Send a clone command to user space.
4822 */
4823 static int send_clone(struct send_ctx *sctx,
4824 u64 offset, u32 len,
4825 struct clone_root *clone_root)
4826 {
4827 int ret = 0;
4828 struct fs_path *p;
4829 u64 gen;
4830
4831 btrfs_debug(sctx->send_root->fs_info,
4832 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4833 offset, len, clone_root->root->objectid, clone_root->ino,
4834 clone_root->offset);
4835
4836 p = fs_path_alloc();
4837 if (!p)
4838 return -ENOMEM;
4839
4840 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4841 if (ret < 0)
4842 goto out;
4843
4844 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4845 if (ret < 0)
4846 goto out;
4847
4848 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4849 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4850 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4851
4852 if (clone_root->root == sctx->send_root) {
4853 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4854 &gen, NULL, NULL, NULL, NULL);
4855 if (ret < 0)
4856 goto out;
4857 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4858 } else {
4859 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4860 }
4861 if (ret < 0)
4862 goto out;
4863
4864 /*
4865 * If the parent we're using has a received_uuid set then use that as
4866 * our clone source as that is what we will look for when doing a
4867 * receive.
4868 *
4869 * This covers the case that we create a snapshot off of a received
4870 * subvolume and then use that as the parent and try to receive on a
4871 * different host.
4872 */
4873 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4874 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4875 clone_root->root->root_item.received_uuid);
4876 else
4877 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4878 clone_root->root->root_item.uuid);
4879 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4880 le64_to_cpu(clone_root->root->root_item.ctransid));
4881 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4882 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4883 clone_root->offset);
4884
4885 ret = send_cmd(sctx);
4886
4887 tlv_put_failure:
4888 out:
4889 fs_path_free(p);
4890 return ret;
4891 }
4892
4893 /*
4894 * Send an update extent command to user space.
4895 */
4896 static int send_update_extent(struct send_ctx *sctx,
4897 u64 offset, u32 len)
4898 {
4899 int ret = 0;
4900 struct fs_path *p;
4901
4902 p = fs_path_alloc();
4903 if (!p)
4904 return -ENOMEM;
4905
4906 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4907 if (ret < 0)
4908 goto out;
4909
4910 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4911 if (ret < 0)
4912 goto out;
4913
4914 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4915 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4916 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4917
4918 ret = send_cmd(sctx);
4919
4920 tlv_put_failure:
4921 out:
4922 fs_path_free(p);
4923 return ret;
4924 }
4925
4926 static int send_hole(struct send_ctx *sctx, u64 end)
4927 {
4928 struct fs_path *p = NULL;
4929 u64 offset = sctx->cur_inode_last_extent;
4930 u64 len;
4931 int ret = 0;
4932
4933 p = fs_path_alloc();
4934 if (!p)
4935 return -ENOMEM;
4936 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4937 if (ret < 0)
4938 goto tlv_put_failure;
4939 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4940 while (offset < end) {
4941 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4942
4943 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4944 if (ret < 0)
4945 break;
4946 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4947 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4948 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4949 ret = send_cmd(sctx);
4950 if (ret < 0)
4951 break;
4952 offset += len;
4953 }
4954 tlv_put_failure:
4955 fs_path_free(p);
4956 return ret;
4957 }
4958
4959 static int send_extent_data(struct send_ctx *sctx,
4960 const u64 offset,
4961 const u64 len)
4962 {
4963 u64 sent = 0;
4964
4965 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4966 return send_update_extent(sctx, offset, len);
4967
4968 while (sent < len) {
4969 u64 size = len - sent;
4970 int ret;
4971
4972 if (size > BTRFS_SEND_READ_SIZE)
4973 size = BTRFS_SEND_READ_SIZE;
4974 ret = send_write(sctx, offset + sent, size);
4975 if (ret < 0)
4976 return ret;
4977 if (!ret)
4978 break;
4979 sent += ret;
4980 }
4981 return 0;
4982 }
4983
4984 static int clone_range(struct send_ctx *sctx,
4985 struct clone_root *clone_root,
4986 const u64 disk_byte,
4987 u64 data_offset,
4988 u64 offset,
4989 u64 len)
4990 {
4991 struct btrfs_path *path;
4992 struct btrfs_key key;
4993 int ret;
4994
4995 path = alloc_path_for_send();
4996 if (!path)
4997 return -ENOMEM;
4998
4999 /*
5000 * We can't send a clone operation for the entire range if we find
5001 * extent items in the respective range in the source file that
5002 * refer to different extents or if we find holes.
5003 * So check for that and do a mix of clone and regular write/copy
5004 * operations if needed.
5005 *
5006 * Example:
5007 *
5008 * mkfs.btrfs -f /dev/sda
5009 * mount /dev/sda /mnt
5010 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5011 * cp --reflink=always /mnt/foo /mnt/bar
5012 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5013 * btrfs subvolume snapshot -r /mnt /mnt/snap
5014 *
5015 * If when we send the snapshot and we are processing file bar (which
5016 * has a higher inode number than foo) we blindly send a clone operation
5017 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5018 * a file bar that matches the content of file foo - iow, doesn't match
5019 * the content from bar in the original filesystem.
5020 */
5021 key.objectid = clone_root->ino;
5022 key.type = BTRFS_EXTENT_DATA_KEY;
5023 key.offset = clone_root->offset;
5024 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5025 if (ret < 0)
5026 goto out;
5027 if (ret > 0 && path->slots[0] > 0) {
5028 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5029 if (key.objectid == clone_root->ino &&
5030 key.type == BTRFS_EXTENT_DATA_KEY)
5031 path->slots[0]--;
5032 }
5033
5034 while (true) {
5035 struct extent_buffer *leaf = path->nodes[0];
5036 int slot = path->slots[0];
5037 struct btrfs_file_extent_item *ei;
5038 u8 type;
5039 u64 ext_len;
5040 u64 clone_len;
5041
5042 if (slot >= btrfs_header_nritems(leaf)) {
5043 ret = btrfs_next_leaf(clone_root->root, path);
5044 if (ret < 0)
5045 goto out;
5046 else if (ret > 0)
5047 break;
5048 continue;
5049 }
5050
5051 btrfs_item_key_to_cpu(leaf, &key, slot);
5052
5053 /*
5054 * We might have an implicit trailing hole (NO_HOLES feature
5055 * enabled). We deal with it after leaving this loop.
5056 */
5057 if (key.objectid != clone_root->ino ||
5058 key.type != BTRFS_EXTENT_DATA_KEY)
5059 break;
5060
5061 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5062 type = btrfs_file_extent_type(leaf, ei);
5063 if (type == BTRFS_FILE_EXTENT_INLINE) {
5064 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5065 ext_len = PAGE_ALIGN(ext_len);
5066 } else {
5067 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5068 }
5069
5070 if (key.offset + ext_len <= clone_root->offset)
5071 goto next;
5072
5073 if (key.offset > clone_root->offset) {
5074 /* Implicit hole, NO_HOLES feature enabled. */
5075 u64 hole_len = key.offset - clone_root->offset;
5076
5077 if (hole_len > len)
5078 hole_len = len;
5079 ret = send_extent_data(sctx, offset, hole_len);
5080 if (ret < 0)
5081 goto out;
5082
5083 len -= hole_len;
5084 if (len == 0)
5085 break;
5086 offset += hole_len;
5087 clone_root->offset += hole_len;
5088 data_offset += hole_len;
5089 }
5090
5091 if (key.offset >= clone_root->offset + len)
5092 break;
5093
5094 clone_len = min_t(u64, ext_len, len);
5095
5096 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5097 btrfs_file_extent_offset(leaf, ei) == data_offset)
5098 ret = send_clone(sctx, offset, clone_len, clone_root);
5099 else
5100 ret = send_extent_data(sctx, offset, clone_len);
5101
5102 if (ret < 0)
5103 goto out;
5104
5105 len -= clone_len;
5106 if (len == 0)
5107 break;
5108 offset += clone_len;
5109 clone_root->offset += clone_len;
5110 data_offset += clone_len;
5111 next:
5112 path->slots[0]++;
5113 }
5114
5115 if (len > 0)
5116 ret = send_extent_data(sctx, offset, len);
5117 else
5118 ret = 0;
5119 out:
5120 btrfs_free_path(path);
5121 return ret;
5122 }
5123
5124 static int send_write_or_clone(struct send_ctx *sctx,
5125 struct btrfs_path *path,
5126 struct btrfs_key *key,
5127 struct clone_root *clone_root)
5128 {
5129 int ret = 0;
5130 struct btrfs_file_extent_item *ei;
5131 u64 offset = key->offset;
5132 u64 len;
5133 u8 type;
5134 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5135
5136 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5137 struct btrfs_file_extent_item);
5138 type = btrfs_file_extent_type(path->nodes[0], ei);
5139 if (type == BTRFS_FILE_EXTENT_INLINE) {
5140 len = btrfs_file_extent_inline_len(path->nodes[0],
5141 path->slots[0], ei);
5142 /*
5143 * it is possible the inline item won't cover the whole page,
5144 * but there may be items after this page. Make
5145 * sure to send the whole thing
5146 */
5147 len = PAGE_ALIGN(len);
5148 } else {
5149 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5150 }
5151
5152 if (offset + len > sctx->cur_inode_size)
5153 len = sctx->cur_inode_size - offset;
5154 if (len == 0) {
5155 ret = 0;
5156 goto out;
5157 }
5158
5159 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5160 u64 disk_byte;
5161 u64 data_offset;
5162
5163 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5164 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5165 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5166 offset, len);
5167 } else {
5168 ret = send_extent_data(sctx, offset, len);
5169 }
5170 out:
5171 return ret;
5172 }
5173
5174 static int is_extent_unchanged(struct send_ctx *sctx,
5175 struct btrfs_path *left_path,
5176 struct btrfs_key *ekey)
5177 {
5178 int ret = 0;
5179 struct btrfs_key key;
5180 struct btrfs_path *path = NULL;
5181 struct extent_buffer *eb;
5182 int slot;
5183 struct btrfs_key found_key;
5184 struct btrfs_file_extent_item *ei;
5185 u64 left_disknr;
5186 u64 right_disknr;
5187 u64 left_offset;
5188 u64 right_offset;
5189 u64 left_offset_fixed;
5190 u64 left_len;
5191 u64 right_len;
5192 u64 left_gen;
5193 u64 right_gen;
5194 u8 left_type;
5195 u8 right_type;
5196
5197 path = alloc_path_for_send();
5198 if (!path)
5199 return -ENOMEM;
5200
5201 eb = left_path->nodes[0];
5202 slot = left_path->slots[0];
5203 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5204 left_type = btrfs_file_extent_type(eb, ei);
5205
5206 if (left_type != BTRFS_FILE_EXTENT_REG) {
5207 ret = 0;
5208 goto out;
5209 }
5210 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5211 left_len = btrfs_file_extent_num_bytes(eb, ei);
5212 left_offset = btrfs_file_extent_offset(eb, ei);
5213 left_gen = btrfs_file_extent_generation(eb, ei);
5214
5215 /*
5216 * Following comments will refer to these graphics. L is the left
5217 * extents which we are checking at the moment. 1-8 are the right
5218 * extents that we iterate.
5219 *
5220 * |-----L-----|
5221 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5222 *
5223 * |-----L-----|
5224 * |--1--|-2b-|...(same as above)
5225 *
5226 * Alternative situation. Happens on files where extents got split.
5227 * |-----L-----|
5228 * |-----------7-----------|-6-|
5229 *
5230 * Alternative situation. Happens on files which got larger.
5231 * |-----L-----|
5232 * |-8-|
5233 * Nothing follows after 8.
5234 */
5235
5236 key.objectid = ekey->objectid;
5237 key.type = BTRFS_EXTENT_DATA_KEY;
5238 key.offset = ekey->offset;
5239 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5240 if (ret < 0)
5241 goto out;
5242 if (ret) {
5243 ret = 0;
5244 goto out;
5245 }
5246
5247 /*
5248 * Handle special case where the right side has no extents at all.
5249 */
5250 eb = path->nodes[0];
5251 slot = path->slots[0];
5252 btrfs_item_key_to_cpu(eb, &found_key, slot);
5253 if (found_key.objectid != key.objectid ||
5254 found_key.type != key.type) {
5255 /* If we're a hole then just pretend nothing changed */
5256 ret = (left_disknr) ? 0 : 1;
5257 goto out;
5258 }
5259
5260 /*
5261 * We're now on 2a, 2b or 7.
5262 */
5263 key = found_key;
5264 while (key.offset < ekey->offset + left_len) {
5265 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5266 right_type = btrfs_file_extent_type(eb, ei);
5267 if (right_type != BTRFS_FILE_EXTENT_REG &&
5268 right_type != BTRFS_FILE_EXTENT_INLINE) {
5269 ret = 0;
5270 goto out;
5271 }
5272
5273 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5274 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5275 right_len = PAGE_ALIGN(right_len);
5276 } else {
5277 right_len = btrfs_file_extent_num_bytes(eb, ei);
5278 }
5279
5280 /*
5281 * Are we at extent 8? If yes, we know the extent is changed.
5282 * This may only happen on the first iteration.
5283 */
5284 if (found_key.offset + right_len <= ekey->offset) {
5285 /* If we're a hole just pretend nothing changed */
5286 ret = (left_disknr) ? 0 : 1;
5287 goto out;
5288 }
5289
5290 /*
5291 * We just wanted to see if when we have an inline extent, what
5292 * follows it is a regular extent (wanted to check the above
5293 * condition for inline extents too). This should normally not
5294 * happen but it's possible for example when we have an inline
5295 * compressed extent representing data with a size matching
5296 * the page size (currently the same as sector size).
5297 */
5298 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5299 ret = 0;
5300 goto out;
5301 }
5302
5303 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5304 right_offset = btrfs_file_extent_offset(eb, ei);
5305 right_gen = btrfs_file_extent_generation(eb, ei);
5306
5307 left_offset_fixed = left_offset;
5308 if (key.offset < ekey->offset) {
5309 /* Fix the right offset for 2a and 7. */
5310 right_offset += ekey->offset - key.offset;
5311 } else {
5312 /* Fix the left offset for all behind 2a and 2b */
5313 left_offset_fixed += key.offset - ekey->offset;
5314 }
5315
5316 /*
5317 * Check if we have the same extent.
5318 */
5319 if (left_disknr != right_disknr ||
5320 left_offset_fixed != right_offset ||
5321 left_gen != right_gen) {
5322 ret = 0;
5323 goto out;
5324 }
5325
5326 /*
5327 * Go to the next extent.
5328 */
5329 ret = btrfs_next_item(sctx->parent_root, path);
5330 if (ret < 0)
5331 goto out;
5332 if (!ret) {
5333 eb = path->nodes[0];
5334 slot = path->slots[0];
5335 btrfs_item_key_to_cpu(eb, &found_key, slot);
5336 }
5337 if (ret || found_key.objectid != key.objectid ||
5338 found_key.type != key.type) {
5339 key.offset += right_len;
5340 break;
5341 }
5342 if (found_key.offset != key.offset + right_len) {
5343 ret = 0;
5344 goto out;
5345 }
5346 key = found_key;
5347 }
5348
5349 /*
5350 * We're now behind the left extent (treat as unchanged) or at the end
5351 * of the right side (treat as changed).
5352 */
5353 if (key.offset >= ekey->offset + left_len)
5354 ret = 1;
5355 else
5356 ret = 0;
5357
5358
5359 out:
5360 btrfs_free_path(path);
5361 return ret;
5362 }
5363
5364 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5365 {
5366 struct btrfs_path *path;
5367 struct btrfs_root *root = sctx->send_root;
5368 struct btrfs_file_extent_item *fi;
5369 struct btrfs_key key;
5370 u64 extent_end;
5371 u8 type;
5372 int ret;
5373
5374 path = alloc_path_for_send();
5375 if (!path)
5376 return -ENOMEM;
5377
5378 sctx->cur_inode_last_extent = 0;
5379
5380 key.objectid = sctx->cur_ino;
5381 key.type = BTRFS_EXTENT_DATA_KEY;
5382 key.offset = offset;
5383 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5384 if (ret < 0)
5385 goto out;
5386 ret = 0;
5387 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5388 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5389 goto out;
5390
5391 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5392 struct btrfs_file_extent_item);
5393 type = btrfs_file_extent_type(path->nodes[0], fi);
5394 if (type == BTRFS_FILE_EXTENT_INLINE) {
5395 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5396 path->slots[0], fi);
5397 extent_end = ALIGN(key.offset + size,
5398 sctx->send_root->fs_info->sectorsize);
5399 } else {
5400 extent_end = key.offset +
5401 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5402 }
5403 sctx->cur_inode_last_extent = extent_end;
5404 out:
5405 btrfs_free_path(path);
5406 return ret;
5407 }
5408
5409 static int range_is_hole_in_parent(struct send_ctx *sctx,
5410 const u64 start,
5411 const u64 end)
5412 {
5413 struct btrfs_path *path;
5414 struct btrfs_key key;
5415 struct btrfs_root *root = sctx->parent_root;
5416 u64 search_start = start;
5417 int ret;
5418
5419 path = alloc_path_for_send();
5420 if (!path)
5421 return -ENOMEM;
5422
5423 key.objectid = sctx->cur_ino;
5424 key.type = BTRFS_EXTENT_DATA_KEY;
5425 key.offset = search_start;
5426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5427 if (ret < 0)
5428 goto out;
5429 if (ret > 0 && path->slots[0] > 0)
5430 path->slots[0]--;
5431
5432 while (search_start < end) {
5433 struct extent_buffer *leaf = path->nodes[0];
5434 int slot = path->slots[0];
5435 struct btrfs_file_extent_item *fi;
5436 u64 extent_end;
5437
5438 if (slot >= btrfs_header_nritems(leaf)) {
5439 ret = btrfs_next_leaf(root, path);
5440 if (ret < 0)
5441 goto out;
5442 else if (ret > 0)
5443 break;
5444 continue;
5445 }
5446
5447 btrfs_item_key_to_cpu(leaf, &key, slot);
5448 if (key.objectid < sctx->cur_ino ||
5449 key.type < BTRFS_EXTENT_DATA_KEY)
5450 goto next;
5451 if (key.objectid > sctx->cur_ino ||
5452 key.type > BTRFS_EXTENT_DATA_KEY ||
5453 key.offset >= end)
5454 break;
5455
5456 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5457 if (btrfs_file_extent_type(leaf, fi) ==
5458 BTRFS_FILE_EXTENT_INLINE) {
5459 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5460
5461 extent_end = ALIGN(key.offset + size,
5462 root->fs_info->sectorsize);
5463 } else {
5464 extent_end = key.offset +
5465 btrfs_file_extent_num_bytes(leaf, fi);
5466 }
5467 if (extent_end <= start)
5468 goto next;
5469 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5470 search_start = extent_end;
5471 goto next;
5472 }
5473 ret = 0;
5474 goto out;
5475 next:
5476 path->slots[0]++;
5477 }
5478 ret = 1;
5479 out:
5480 btrfs_free_path(path);
5481 return ret;
5482 }
5483
5484 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5485 struct btrfs_key *key)
5486 {
5487 struct btrfs_file_extent_item *fi;
5488 u64 extent_end;
5489 u8 type;
5490 int ret = 0;
5491
5492 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5493 return 0;
5494
5495 if (sctx->cur_inode_last_extent == (u64)-1) {
5496 ret = get_last_extent(sctx, key->offset - 1);
5497 if (ret)
5498 return ret;
5499 }
5500
5501 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5502 struct btrfs_file_extent_item);
5503 type = btrfs_file_extent_type(path->nodes[0], fi);
5504 if (type == BTRFS_FILE_EXTENT_INLINE) {
5505 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5506 path->slots[0], fi);
5507 extent_end = ALIGN(key->offset + size,
5508 sctx->send_root->fs_info->sectorsize);
5509 } else {
5510 extent_end = key->offset +
5511 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5512 }
5513
5514 if (path->slots[0] == 0 &&
5515 sctx->cur_inode_last_extent < key->offset) {
5516 /*
5517 * We might have skipped entire leafs that contained only
5518 * file extent items for our current inode. These leafs have
5519 * a generation number smaller (older) than the one in the
5520 * current leaf and the leaf our last extent came from, and
5521 * are located between these 2 leafs.
5522 */
5523 ret = get_last_extent(sctx, key->offset - 1);
5524 if (ret)
5525 return ret;
5526 }
5527
5528 if (sctx->cur_inode_last_extent < key->offset) {
5529 ret = range_is_hole_in_parent(sctx,
5530 sctx->cur_inode_last_extent,
5531 key->offset);
5532 if (ret < 0)
5533 return ret;
5534 else if (ret == 0)
5535 ret = send_hole(sctx, key->offset);
5536 else
5537 ret = 0;
5538 }
5539 sctx->cur_inode_last_extent = extent_end;
5540 return ret;
5541 }
5542
5543 static int process_extent(struct send_ctx *sctx,
5544 struct btrfs_path *path,
5545 struct btrfs_key *key)
5546 {
5547 struct clone_root *found_clone = NULL;
5548 int ret = 0;
5549
5550 if (S_ISLNK(sctx->cur_inode_mode))
5551 return 0;
5552
5553 if (sctx->parent_root && !sctx->cur_inode_new) {
5554 ret = is_extent_unchanged(sctx, path, key);
5555 if (ret < 0)
5556 goto out;
5557 if (ret) {
5558 ret = 0;
5559 goto out_hole;
5560 }
5561 } else {
5562 struct btrfs_file_extent_item *ei;
5563 u8 type;
5564
5565 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5566 struct btrfs_file_extent_item);
5567 type = btrfs_file_extent_type(path->nodes[0], ei);
5568 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5569 type == BTRFS_FILE_EXTENT_REG) {
5570 /*
5571 * The send spec does not have a prealloc command yet,
5572 * so just leave a hole for prealloc'ed extents until
5573 * we have enough commands queued up to justify rev'ing
5574 * the send spec.
5575 */
5576 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5577 ret = 0;
5578 goto out;
5579 }
5580
5581 /* Have a hole, just skip it. */
5582 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5583 ret = 0;
5584 goto out;
5585 }
5586 }
5587 }
5588
5589 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5590 sctx->cur_inode_size, &found_clone);
5591 if (ret != -ENOENT && ret < 0)
5592 goto out;
5593
5594 ret = send_write_or_clone(sctx, path, key, found_clone);
5595 if (ret)
5596 goto out;
5597 out_hole:
5598 ret = maybe_send_hole(sctx, path, key);
5599 out:
5600 return ret;
5601 }
5602
5603 static int process_all_extents(struct send_ctx *sctx)
5604 {
5605 int ret;
5606 struct btrfs_root *root;
5607 struct btrfs_path *path;
5608 struct btrfs_key key;
5609 struct btrfs_key found_key;
5610 struct extent_buffer *eb;
5611 int slot;
5612
5613 root = sctx->send_root;
5614 path = alloc_path_for_send();
5615 if (!path)
5616 return -ENOMEM;
5617
5618 key.objectid = sctx->cmp_key->objectid;
5619 key.type = BTRFS_EXTENT_DATA_KEY;
5620 key.offset = 0;
5621 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5622 if (ret < 0)
5623 goto out;
5624
5625 while (1) {
5626 eb = path->nodes[0];
5627 slot = path->slots[0];
5628
5629 if (slot >= btrfs_header_nritems(eb)) {
5630 ret = btrfs_next_leaf(root, path);
5631 if (ret < 0) {
5632 goto out;
5633 } else if (ret > 0) {
5634 ret = 0;
5635 break;
5636 }
5637 continue;
5638 }
5639
5640 btrfs_item_key_to_cpu(eb, &found_key, slot);
5641
5642 if (found_key.objectid != key.objectid ||
5643 found_key.type != key.type) {
5644 ret = 0;
5645 goto out;
5646 }
5647
5648 ret = process_extent(sctx, path, &found_key);
5649 if (ret < 0)
5650 goto out;
5651
5652 path->slots[0]++;
5653 }
5654
5655 out:
5656 btrfs_free_path(path);
5657 return ret;
5658 }
5659
5660 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5661 int *pending_move,
5662 int *refs_processed)
5663 {
5664 int ret = 0;
5665
5666 if (sctx->cur_ino == 0)
5667 goto out;
5668 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5669 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5670 goto out;
5671 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5672 goto out;
5673
5674 ret = process_recorded_refs(sctx, pending_move);
5675 if (ret < 0)
5676 goto out;
5677
5678 *refs_processed = 1;
5679 out:
5680 return ret;
5681 }
5682
5683 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5684 {
5685 int ret = 0;
5686 u64 left_mode;
5687 u64 left_uid;
5688 u64 left_gid;
5689 u64 right_mode;
5690 u64 right_uid;
5691 u64 right_gid;
5692 int need_chmod = 0;
5693 int need_chown = 0;
5694 int pending_move = 0;
5695 int refs_processed = 0;
5696
5697 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5698 &refs_processed);
5699 if (ret < 0)
5700 goto out;
5701
5702 /*
5703 * We have processed the refs and thus need to advance send_progress.
5704 * Now, calls to get_cur_xxx will take the updated refs of the current
5705 * inode into account.
5706 *
5707 * On the other hand, if our current inode is a directory and couldn't
5708 * be moved/renamed because its parent was renamed/moved too and it has
5709 * a higher inode number, we can only move/rename our current inode
5710 * after we moved/renamed its parent. Therefore in this case operate on
5711 * the old path (pre move/rename) of our current inode, and the
5712 * move/rename will be performed later.
5713 */
5714 if (refs_processed && !pending_move)
5715 sctx->send_progress = sctx->cur_ino + 1;
5716
5717 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5718 goto out;
5719 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5720 goto out;
5721
5722 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5723 &left_mode, &left_uid, &left_gid, NULL);
5724 if (ret < 0)
5725 goto out;
5726
5727 if (!sctx->parent_root || sctx->cur_inode_new) {
5728 need_chown = 1;
5729 if (!S_ISLNK(sctx->cur_inode_mode))
5730 need_chmod = 1;
5731 } else {
5732 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5733 NULL, NULL, &right_mode, &right_uid,
5734 &right_gid, NULL);
5735 if (ret < 0)
5736 goto out;
5737
5738 if (left_uid != right_uid || left_gid != right_gid)
5739 need_chown = 1;
5740 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5741 need_chmod = 1;
5742 }
5743
5744 if (S_ISREG(sctx->cur_inode_mode)) {
5745 if (need_send_hole(sctx)) {
5746 if (sctx->cur_inode_last_extent == (u64)-1 ||
5747 sctx->cur_inode_last_extent <
5748 sctx->cur_inode_size) {
5749 ret = get_last_extent(sctx, (u64)-1);
5750 if (ret)
5751 goto out;
5752 }
5753 if (sctx->cur_inode_last_extent <
5754 sctx->cur_inode_size) {
5755 ret = send_hole(sctx, sctx->cur_inode_size);
5756 if (ret)
5757 goto out;
5758 }
5759 }
5760 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5761 sctx->cur_inode_size);
5762 if (ret < 0)
5763 goto out;
5764 }
5765
5766 if (need_chown) {
5767 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5768 left_uid, left_gid);
5769 if (ret < 0)
5770 goto out;
5771 }
5772 if (need_chmod) {
5773 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5774 left_mode);
5775 if (ret < 0)
5776 goto out;
5777 }
5778
5779 /*
5780 * If other directory inodes depended on our current directory
5781 * inode's move/rename, now do their move/rename operations.
5782 */
5783 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5784 ret = apply_children_dir_moves(sctx);
5785 if (ret)
5786 goto out;
5787 /*
5788 * Need to send that every time, no matter if it actually
5789 * changed between the two trees as we have done changes to
5790 * the inode before. If our inode is a directory and it's
5791 * waiting to be moved/renamed, we will send its utimes when
5792 * it's moved/renamed, therefore we don't need to do it here.
5793 */
5794 sctx->send_progress = sctx->cur_ino + 1;
5795 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5796 if (ret < 0)
5797 goto out;
5798 }
5799
5800 out:
5801 return ret;
5802 }
5803
5804 static int changed_inode(struct send_ctx *sctx,
5805 enum btrfs_compare_tree_result result)
5806 {
5807 int ret = 0;
5808 struct btrfs_key *key = sctx->cmp_key;
5809 struct btrfs_inode_item *left_ii = NULL;
5810 struct btrfs_inode_item *right_ii = NULL;
5811 u64 left_gen = 0;
5812 u64 right_gen = 0;
5813
5814 sctx->cur_ino = key->objectid;
5815 sctx->cur_inode_new_gen = 0;
5816 sctx->cur_inode_last_extent = (u64)-1;
5817
5818 /*
5819 * Set send_progress to current inode. This will tell all get_cur_xxx
5820 * functions that the current inode's refs are not updated yet. Later,
5821 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5822 */
5823 sctx->send_progress = sctx->cur_ino;
5824
5825 if (result == BTRFS_COMPARE_TREE_NEW ||
5826 result == BTRFS_COMPARE_TREE_CHANGED) {
5827 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5828 sctx->left_path->slots[0],
5829 struct btrfs_inode_item);
5830 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5831 left_ii);
5832 } else {
5833 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5834 sctx->right_path->slots[0],
5835 struct btrfs_inode_item);
5836 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5837 right_ii);
5838 }
5839 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5840 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5841 sctx->right_path->slots[0],
5842 struct btrfs_inode_item);
5843
5844 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5845 right_ii);
5846
5847 /*
5848 * The cur_ino = root dir case is special here. We can't treat
5849 * the inode as deleted+reused because it would generate a
5850 * stream that tries to delete/mkdir the root dir.
5851 */
5852 if (left_gen != right_gen &&
5853 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5854 sctx->cur_inode_new_gen = 1;
5855 }
5856
5857 if (result == BTRFS_COMPARE_TREE_NEW) {
5858 sctx->cur_inode_gen = left_gen;
5859 sctx->cur_inode_new = 1;
5860 sctx->cur_inode_deleted = 0;
5861 sctx->cur_inode_size = btrfs_inode_size(
5862 sctx->left_path->nodes[0], left_ii);
5863 sctx->cur_inode_mode = btrfs_inode_mode(
5864 sctx->left_path->nodes[0], left_ii);
5865 sctx->cur_inode_rdev = btrfs_inode_rdev(
5866 sctx->left_path->nodes[0], left_ii);
5867 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5868 ret = send_create_inode_if_needed(sctx);
5869 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5870 sctx->cur_inode_gen = right_gen;
5871 sctx->cur_inode_new = 0;
5872 sctx->cur_inode_deleted = 1;
5873 sctx->cur_inode_size = btrfs_inode_size(
5874 sctx->right_path->nodes[0], right_ii);
5875 sctx->cur_inode_mode = btrfs_inode_mode(
5876 sctx->right_path->nodes[0], right_ii);
5877 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5878 /*
5879 * We need to do some special handling in case the inode was
5880 * reported as changed with a changed generation number. This
5881 * means that the original inode was deleted and new inode
5882 * reused the same inum. So we have to treat the old inode as
5883 * deleted and the new one as new.
5884 */
5885 if (sctx->cur_inode_new_gen) {
5886 /*
5887 * First, process the inode as if it was deleted.
5888 */
5889 sctx->cur_inode_gen = right_gen;
5890 sctx->cur_inode_new = 0;
5891 sctx->cur_inode_deleted = 1;
5892 sctx->cur_inode_size = btrfs_inode_size(
5893 sctx->right_path->nodes[0], right_ii);
5894 sctx->cur_inode_mode = btrfs_inode_mode(
5895 sctx->right_path->nodes[0], right_ii);
5896 ret = process_all_refs(sctx,
5897 BTRFS_COMPARE_TREE_DELETED);
5898 if (ret < 0)
5899 goto out;
5900
5901 /*
5902 * Now process the inode as if it was new.
5903 */
5904 sctx->cur_inode_gen = left_gen;
5905 sctx->cur_inode_new = 1;
5906 sctx->cur_inode_deleted = 0;
5907 sctx->cur_inode_size = btrfs_inode_size(
5908 sctx->left_path->nodes[0], left_ii);
5909 sctx->cur_inode_mode = btrfs_inode_mode(
5910 sctx->left_path->nodes[0], left_ii);
5911 sctx->cur_inode_rdev = btrfs_inode_rdev(
5912 sctx->left_path->nodes[0], left_ii);
5913 ret = send_create_inode_if_needed(sctx);
5914 if (ret < 0)
5915 goto out;
5916
5917 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5918 if (ret < 0)
5919 goto out;
5920 /*
5921 * Advance send_progress now as we did not get into
5922 * process_recorded_refs_if_needed in the new_gen case.
5923 */
5924 sctx->send_progress = sctx->cur_ino + 1;
5925
5926 /*
5927 * Now process all extents and xattrs of the inode as if
5928 * they were all new.
5929 */
5930 ret = process_all_extents(sctx);
5931 if (ret < 0)
5932 goto out;
5933 ret = process_all_new_xattrs(sctx);
5934 if (ret < 0)
5935 goto out;
5936 } else {
5937 sctx->cur_inode_gen = left_gen;
5938 sctx->cur_inode_new = 0;
5939 sctx->cur_inode_new_gen = 0;
5940 sctx->cur_inode_deleted = 0;
5941 sctx->cur_inode_size = btrfs_inode_size(
5942 sctx->left_path->nodes[0], left_ii);
5943 sctx->cur_inode_mode = btrfs_inode_mode(
5944 sctx->left_path->nodes[0], left_ii);
5945 }
5946 }
5947
5948 out:
5949 return ret;
5950 }
5951
5952 /*
5953 * We have to process new refs before deleted refs, but compare_trees gives us
5954 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5955 * first and later process them in process_recorded_refs.
5956 * For the cur_inode_new_gen case, we skip recording completely because
5957 * changed_inode did already initiate processing of refs. The reason for this is
5958 * that in this case, compare_tree actually compares the refs of 2 different
5959 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5960 * refs of the right tree as deleted and all refs of the left tree as new.
5961 */
5962 static int changed_ref(struct send_ctx *sctx,
5963 enum btrfs_compare_tree_result result)
5964 {
5965 int ret = 0;
5966
5967 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5968 inconsistent_snapshot_error(sctx, result, "reference");
5969 return -EIO;
5970 }
5971
5972 if (!sctx->cur_inode_new_gen &&
5973 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5974 if (result == BTRFS_COMPARE_TREE_NEW)
5975 ret = record_new_ref(sctx);
5976 else if (result == BTRFS_COMPARE_TREE_DELETED)
5977 ret = record_deleted_ref(sctx);
5978 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5979 ret = record_changed_ref(sctx);
5980 }
5981
5982 return ret;
5983 }
5984
5985 /*
5986 * Process new/deleted/changed xattrs. We skip processing in the
5987 * cur_inode_new_gen case because changed_inode did already initiate processing
5988 * of xattrs. The reason is the same as in changed_ref
5989 */
5990 static int changed_xattr(struct send_ctx *sctx,
5991 enum btrfs_compare_tree_result result)
5992 {
5993 int ret = 0;
5994
5995 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5996 inconsistent_snapshot_error(sctx, result, "xattr");
5997 return -EIO;
5998 }
5999
6000 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6001 if (result == BTRFS_COMPARE_TREE_NEW)
6002 ret = process_new_xattr(sctx);
6003 else if (result == BTRFS_COMPARE_TREE_DELETED)
6004 ret = process_deleted_xattr(sctx);
6005 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6006 ret = process_changed_xattr(sctx);
6007 }
6008
6009 return ret;
6010 }
6011
6012 /*
6013 * Process new/deleted/changed extents. We skip processing in the
6014 * cur_inode_new_gen case because changed_inode did already initiate processing
6015 * of extents. The reason is the same as in changed_ref
6016 */
6017 static int changed_extent(struct send_ctx *sctx,
6018 enum btrfs_compare_tree_result result)
6019 {
6020 int ret = 0;
6021
6022 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6023
6024 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6025 struct extent_buffer *leaf_l;
6026 struct extent_buffer *leaf_r;
6027 struct btrfs_file_extent_item *ei_l;
6028 struct btrfs_file_extent_item *ei_r;
6029
6030 leaf_l = sctx->left_path->nodes[0];
6031 leaf_r = sctx->right_path->nodes[0];
6032 ei_l = btrfs_item_ptr(leaf_l,
6033 sctx->left_path->slots[0],
6034 struct btrfs_file_extent_item);
6035 ei_r = btrfs_item_ptr(leaf_r,
6036 sctx->right_path->slots[0],
6037 struct btrfs_file_extent_item);
6038
6039 /*
6040 * We may have found an extent item that has changed
6041 * only its disk_bytenr field and the corresponding
6042 * inode item was not updated. This case happens due to
6043 * very specific timings during relocation when a leaf
6044 * that contains file extent items is COWed while
6045 * relocation is ongoing and its in the stage where it
6046 * updates data pointers. So when this happens we can
6047 * safely ignore it since we know it's the same extent,
6048 * but just at different logical and physical locations
6049 * (when an extent is fully replaced with a new one, we
6050 * know the generation number must have changed too,
6051 * since snapshot creation implies committing the current
6052 * transaction, and the inode item must have been updated
6053 * as well).
6054 * This replacement of the disk_bytenr happens at
6055 * relocation.c:replace_file_extents() through
6056 * relocation.c:btrfs_reloc_cow_block().
6057 */
6058 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6059 btrfs_file_extent_generation(leaf_r, ei_r) &&
6060 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6061 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6062 btrfs_file_extent_compression(leaf_l, ei_l) ==
6063 btrfs_file_extent_compression(leaf_r, ei_r) &&
6064 btrfs_file_extent_encryption(leaf_l, ei_l) ==
6065 btrfs_file_extent_encryption(leaf_r, ei_r) &&
6066 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6067 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6068 btrfs_file_extent_type(leaf_l, ei_l) ==
6069 btrfs_file_extent_type(leaf_r, ei_r) &&
6070 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6071 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6072 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6073 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6074 btrfs_file_extent_offset(leaf_l, ei_l) ==
6075 btrfs_file_extent_offset(leaf_r, ei_r) &&
6076 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6077 btrfs_file_extent_num_bytes(leaf_r, ei_r))
6078 return 0;
6079 }
6080
6081 inconsistent_snapshot_error(sctx, result, "extent");
6082 return -EIO;
6083 }
6084
6085 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6086 if (result != BTRFS_COMPARE_TREE_DELETED)
6087 ret = process_extent(sctx, sctx->left_path,
6088 sctx->cmp_key);
6089 }
6090
6091 return ret;
6092 }
6093
6094 static int dir_changed(struct send_ctx *sctx, u64 dir)
6095 {
6096 u64 orig_gen, new_gen;
6097 int ret;
6098
6099 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6100 NULL, NULL);
6101 if (ret)
6102 return ret;
6103
6104 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6105 NULL, NULL, NULL);
6106 if (ret)
6107 return ret;
6108
6109 return (orig_gen != new_gen) ? 1 : 0;
6110 }
6111
6112 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6113 struct btrfs_key *key)
6114 {
6115 struct btrfs_inode_extref *extref;
6116 struct extent_buffer *leaf;
6117 u64 dirid = 0, last_dirid = 0;
6118 unsigned long ptr;
6119 u32 item_size;
6120 u32 cur_offset = 0;
6121 int ref_name_len;
6122 int ret = 0;
6123
6124 /* Easy case, just check this one dirid */
6125 if (key->type == BTRFS_INODE_REF_KEY) {
6126 dirid = key->offset;
6127
6128 ret = dir_changed(sctx, dirid);
6129 goto out;
6130 }
6131
6132 leaf = path->nodes[0];
6133 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6134 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6135 while (cur_offset < item_size) {
6136 extref = (struct btrfs_inode_extref *)(ptr +
6137 cur_offset);
6138 dirid = btrfs_inode_extref_parent(leaf, extref);
6139 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6140 cur_offset += ref_name_len + sizeof(*extref);
6141 if (dirid == last_dirid)
6142 continue;
6143 ret = dir_changed(sctx, dirid);
6144 if (ret)
6145 break;
6146 last_dirid = dirid;
6147 }
6148 out:
6149 return ret;
6150 }
6151
6152 /*
6153 * Updates compare related fields in sctx and simply forwards to the actual
6154 * changed_xxx functions.
6155 */
6156 static int changed_cb(struct btrfs_root *left_root,
6157 struct btrfs_root *right_root,
6158 struct btrfs_path *left_path,
6159 struct btrfs_path *right_path,
6160 struct btrfs_key *key,
6161 enum btrfs_compare_tree_result result,
6162 void *ctx)
6163 {
6164 int ret = 0;
6165 struct send_ctx *sctx = ctx;
6166
6167 if (result == BTRFS_COMPARE_TREE_SAME) {
6168 if (key->type == BTRFS_INODE_REF_KEY ||
6169 key->type == BTRFS_INODE_EXTREF_KEY) {
6170 ret = compare_refs(sctx, left_path, key);
6171 if (!ret)
6172 return 0;
6173 if (ret < 0)
6174 return ret;
6175 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6176 return maybe_send_hole(sctx, left_path, key);
6177 } else {
6178 return 0;
6179 }
6180 result = BTRFS_COMPARE_TREE_CHANGED;
6181 ret = 0;
6182 }
6183
6184 sctx->left_path = left_path;
6185 sctx->right_path = right_path;
6186 sctx->cmp_key = key;
6187
6188 ret = finish_inode_if_needed(sctx, 0);
6189 if (ret < 0)
6190 goto out;
6191
6192 /* Ignore non-FS objects */
6193 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6194 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6195 goto out;
6196
6197 if (key->type == BTRFS_INODE_ITEM_KEY)
6198 ret = changed_inode(sctx, result);
6199 else if (key->type == BTRFS_INODE_REF_KEY ||
6200 key->type == BTRFS_INODE_EXTREF_KEY)
6201 ret = changed_ref(sctx, result);
6202 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6203 ret = changed_xattr(sctx, result);
6204 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6205 ret = changed_extent(sctx, result);
6206
6207 out:
6208 return ret;
6209 }
6210
6211 static int full_send_tree(struct send_ctx *sctx)
6212 {
6213 int ret;
6214 struct btrfs_root *send_root = sctx->send_root;
6215 struct btrfs_key key;
6216 struct btrfs_key found_key;
6217 struct btrfs_path *path;
6218 struct extent_buffer *eb;
6219 int slot;
6220
6221 path = alloc_path_for_send();
6222 if (!path)
6223 return -ENOMEM;
6224
6225 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6226 key.type = BTRFS_INODE_ITEM_KEY;
6227 key.offset = 0;
6228
6229 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6230 if (ret < 0)
6231 goto out;
6232 if (ret)
6233 goto out_finish;
6234
6235 while (1) {
6236 eb = path->nodes[0];
6237 slot = path->slots[0];
6238 btrfs_item_key_to_cpu(eb, &found_key, slot);
6239
6240 ret = changed_cb(send_root, NULL, path, NULL,
6241 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6242 if (ret < 0)
6243 goto out;
6244
6245 key.objectid = found_key.objectid;
6246 key.type = found_key.type;
6247 key.offset = found_key.offset + 1;
6248
6249 ret = btrfs_next_item(send_root, path);
6250 if (ret < 0)
6251 goto out;
6252 if (ret) {
6253 ret = 0;
6254 break;
6255 }
6256 }
6257
6258 out_finish:
6259 ret = finish_inode_if_needed(sctx, 1);
6260
6261 out:
6262 btrfs_free_path(path);
6263 return ret;
6264 }
6265
6266 static int send_subvol(struct send_ctx *sctx)
6267 {
6268 int ret;
6269
6270 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6271 ret = send_header(sctx);
6272 if (ret < 0)
6273 goto out;
6274 }
6275
6276 ret = send_subvol_begin(sctx);
6277 if (ret < 0)
6278 goto out;
6279
6280 if (sctx->parent_root) {
6281 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6282 changed_cb, sctx);
6283 if (ret < 0)
6284 goto out;
6285 ret = finish_inode_if_needed(sctx, 1);
6286 if (ret < 0)
6287 goto out;
6288 } else {
6289 ret = full_send_tree(sctx);
6290 if (ret < 0)
6291 goto out;
6292 }
6293
6294 out:
6295 free_recorded_refs(sctx);
6296 return ret;
6297 }
6298
6299 /*
6300 * If orphan cleanup did remove any orphans from a root, it means the tree
6301 * was modified and therefore the commit root is not the same as the current
6302 * root anymore. This is a problem, because send uses the commit root and
6303 * therefore can see inode items that don't exist in the current root anymore,
6304 * and for example make calls to btrfs_iget, which will do tree lookups based
6305 * on the current root and not on the commit root. Those lookups will fail,
6306 * returning a -ESTALE error, and making send fail with that error. So make
6307 * sure a send does not see any orphans we have just removed, and that it will
6308 * see the same inodes regardless of whether a transaction commit happened
6309 * before it started (meaning that the commit root will be the same as the
6310 * current root) or not.
6311 */
6312 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6313 {
6314 int i;
6315 struct btrfs_trans_handle *trans = NULL;
6316
6317 again:
6318 if (sctx->parent_root &&
6319 sctx->parent_root->node != sctx->parent_root->commit_root)
6320 goto commit_trans;
6321
6322 for (i = 0; i < sctx->clone_roots_cnt; i++)
6323 if (sctx->clone_roots[i].root->node !=
6324 sctx->clone_roots[i].root->commit_root)
6325 goto commit_trans;
6326
6327 if (trans)
6328 return btrfs_end_transaction(trans);
6329
6330 return 0;
6331
6332 commit_trans:
6333 /* Use any root, all fs roots will get their commit roots updated. */
6334 if (!trans) {
6335 trans = btrfs_join_transaction(sctx->send_root);
6336 if (IS_ERR(trans))
6337 return PTR_ERR(trans);
6338 goto again;
6339 }
6340
6341 return btrfs_commit_transaction(trans);
6342 }
6343
6344 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6345 {
6346 spin_lock(&root->root_item_lock);
6347 root->send_in_progress--;
6348 /*
6349 * Not much left to do, we don't know why it's unbalanced and
6350 * can't blindly reset it to 0.
6351 */
6352 if (root->send_in_progress < 0)
6353 btrfs_err(root->fs_info,
6354 "send_in_progres unbalanced %d root %llu",
6355 root->send_in_progress, root->root_key.objectid);
6356 spin_unlock(&root->root_item_lock);
6357 }
6358
6359 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6360 {
6361 int ret = 0;
6362 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6363 struct btrfs_fs_info *fs_info = send_root->fs_info;
6364 struct btrfs_root *clone_root;
6365 struct btrfs_ioctl_send_args *arg = NULL;
6366 struct btrfs_key key;
6367 struct send_ctx *sctx = NULL;
6368 u32 i;
6369 u64 *clone_sources_tmp = NULL;
6370 int clone_sources_to_rollback = 0;
6371 unsigned alloc_size;
6372 int sort_clone_roots = 0;
6373 int index;
6374
6375 if (!capable(CAP_SYS_ADMIN))
6376 return -EPERM;
6377
6378 /*
6379 * The subvolume must remain read-only during send, protect against
6380 * making it RW. This also protects against deletion.
6381 */
6382 spin_lock(&send_root->root_item_lock);
6383 send_root->send_in_progress++;
6384 spin_unlock(&send_root->root_item_lock);
6385
6386 /*
6387 * This is done when we lookup the root, it should already be complete
6388 * by the time we get here.
6389 */
6390 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6391
6392 /*
6393 * Userspace tools do the checks and warn the user if it's
6394 * not RO.
6395 */
6396 if (!btrfs_root_readonly(send_root)) {
6397 ret = -EPERM;
6398 goto out;
6399 }
6400
6401 arg = memdup_user(arg_, sizeof(*arg));
6402 if (IS_ERR(arg)) {
6403 ret = PTR_ERR(arg);
6404 arg = NULL;
6405 goto out;
6406 }
6407
6408 /*
6409 * Check that we don't overflow at later allocations, we request
6410 * clone_sources_count + 1 items, and compare to unsigned long inside
6411 * access_ok.
6412 */
6413 if (arg->clone_sources_count >
6414 ULONG_MAX / sizeof(struct clone_root) - 1) {
6415 ret = -EINVAL;
6416 goto out;
6417 }
6418
6419 if (!access_ok(VERIFY_READ, arg->clone_sources,
6420 sizeof(*arg->clone_sources) *
6421 arg->clone_sources_count)) {
6422 ret = -EFAULT;
6423 goto out;
6424 }
6425
6426 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6427 ret = -EINVAL;
6428 goto out;
6429 }
6430
6431 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6432 if (!sctx) {
6433 ret = -ENOMEM;
6434 goto out;
6435 }
6436
6437 INIT_LIST_HEAD(&sctx->new_refs);
6438 INIT_LIST_HEAD(&sctx->deleted_refs);
6439 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6440 INIT_LIST_HEAD(&sctx->name_cache_list);
6441
6442 sctx->flags = arg->flags;
6443
6444 sctx->send_filp = fget(arg->send_fd);
6445 if (!sctx->send_filp) {
6446 ret = -EBADF;
6447 goto out;
6448 }
6449
6450 sctx->send_root = send_root;
6451 /*
6452 * Unlikely but possible, if the subvolume is marked for deletion but
6453 * is slow to remove the directory entry, send can still be started
6454 */
6455 if (btrfs_root_dead(sctx->send_root)) {
6456 ret = -EPERM;
6457 goto out;
6458 }
6459
6460 sctx->clone_roots_cnt = arg->clone_sources_count;
6461
6462 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6463 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6464 if (!sctx->send_buf) {
6465 ret = -ENOMEM;
6466 goto out;
6467 }
6468
6469 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6470 if (!sctx->read_buf) {
6471 ret = -ENOMEM;
6472 goto out;
6473 }
6474
6475 sctx->pending_dir_moves = RB_ROOT;
6476 sctx->waiting_dir_moves = RB_ROOT;
6477 sctx->orphan_dirs = RB_ROOT;
6478
6479 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6480
6481 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6482 if (!sctx->clone_roots) {
6483 ret = -ENOMEM;
6484 goto out;
6485 }
6486
6487 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6488
6489 if (arg->clone_sources_count) {
6490 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6491 if (!clone_sources_tmp) {
6492 ret = -ENOMEM;
6493 goto out;
6494 }
6495
6496 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6497 alloc_size);
6498 if (ret) {
6499 ret = -EFAULT;
6500 goto out;
6501 }
6502
6503 for (i = 0; i < arg->clone_sources_count; i++) {
6504 key.objectid = clone_sources_tmp[i];
6505 key.type = BTRFS_ROOT_ITEM_KEY;
6506 key.offset = (u64)-1;
6507
6508 index = srcu_read_lock(&fs_info->subvol_srcu);
6509
6510 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6511 if (IS_ERR(clone_root)) {
6512 srcu_read_unlock(&fs_info->subvol_srcu, index);
6513 ret = PTR_ERR(clone_root);
6514 goto out;
6515 }
6516 spin_lock(&clone_root->root_item_lock);
6517 if (!btrfs_root_readonly(clone_root) ||
6518 btrfs_root_dead(clone_root)) {
6519 spin_unlock(&clone_root->root_item_lock);
6520 srcu_read_unlock(&fs_info->subvol_srcu, index);
6521 ret = -EPERM;
6522 goto out;
6523 }
6524 clone_root->send_in_progress++;
6525 spin_unlock(&clone_root->root_item_lock);
6526 srcu_read_unlock(&fs_info->subvol_srcu, index);
6527
6528 sctx->clone_roots[i].root = clone_root;
6529 clone_sources_to_rollback = i + 1;
6530 }
6531 kvfree(clone_sources_tmp);
6532 clone_sources_tmp = NULL;
6533 }
6534
6535 if (arg->parent_root) {
6536 key.objectid = arg->parent_root;
6537 key.type = BTRFS_ROOT_ITEM_KEY;
6538 key.offset = (u64)-1;
6539
6540 index = srcu_read_lock(&fs_info->subvol_srcu);
6541
6542 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6543 if (IS_ERR(sctx->parent_root)) {
6544 srcu_read_unlock(&fs_info->subvol_srcu, index);
6545 ret = PTR_ERR(sctx->parent_root);
6546 goto out;
6547 }
6548
6549 spin_lock(&sctx->parent_root->root_item_lock);
6550 sctx->parent_root->send_in_progress++;
6551 if (!btrfs_root_readonly(sctx->parent_root) ||
6552 btrfs_root_dead(sctx->parent_root)) {
6553 spin_unlock(&sctx->parent_root->root_item_lock);
6554 srcu_read_unlock(&fs_info->subvol_srcu, index);
6555 ret = -EPERM;
6556 goto out;
6557 }
6558 spin_unlock(&sctx->parent_root->root_item_lock);
6559
6560 srcu_read_unlock(&fs_info->subvol_srcu, index);
6561 }
6562
6563 /*
6564 * Clones from send_root are allowed, but only if the clone source
6565 * is behind the current send position. This is checked while searching
6566 * for possible clone sources.
6567 */
6568 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6569
6570 /* We do a bsearch later */
6571 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6572 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6573 NULL);
6574 sort_clone_roots = 1;
6575
6576 ret = ensure_commit_roots_uptodate(sctx);
6577 if (ret)
6578 goto out;
6579
6580 current->journal_info = BTRFS_SEND_TRANS_STUB;
6581 ret = send_subvol(sctx);
6582 current->journal_info = NULL;
6583 if (ret < 0)
6584 goto out;
6585
6586 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6587 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6588 if (ret < 0)
6589 goto out;
6590 ret = send_cmd(sctx);
6591 if (ret < 0)
6592 goto out;
6593 }
6594
6595 out:
6596 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6597 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6598 struct rb_node *n;
6599 struct pending_dir_move *pm;
6600
6601 n = rb_first(&sctx->pending_dir_moves);
6602 pm = rb_entry(n, struct pending_dir_move, node);
6603 while (!list_empty(&pm->list)) {
6604 struct pending_dir_move *pm2;
6605
6606 pm2 = list_first_entry(&pm->list,
6607 struct pending_dir_move, list);
6608 free_pending_move(sctx, pm2);
6609 }
6610 free_pending_move(sctx, pm);
6611 }
6612
6613 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6614 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6615 struct rb_node *n;
6616 struct waiting_dir_move *dm;
6617
6618 n = rb_first(&sctx->waiting_dir_moves);
6619 dm = rb_entry(n, struct waiting_dir_move, node);
6620 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6621 kfree(dm);
6622 }
6623
6624 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6625 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6626 struct rb_node *n;
6627 struct orphan_dir_info *odi;
6628
6629 n = rb_first(&sctx->orphan_dirs);
6630 odi = rb_entry(n, struct orphan_dir_info, node);
6631 free_orphan_dir_info(sctx, odi);
6632 }
6633
6634 if (sort_clone_roots) {
6635 for (i = 0; i < sctx->clone_roots_cnt; i++)
6636 btrfs_root_dec_send_in_progress(
6637 sctx->clone_roots[i].root);
6638 } else {
6639 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6640 btrfs_root_dec_send_in_progress(
6641 sctx->clone_roots[i].root);
6642
6643 btrfs_root_dec_send_in_progress(send_root);
6644 }
6645 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6646 btrfs_root_dec_send_in_progress(sctx->parent_root);
6647
6648 kfree(arg);
6649 kvfree(clone_sources_tmp);
6650
6651 if (sctx) {
6652 if (sctx->send_filp)
6653 fput(sctx->send_filp);
6654
6655 kvfree(sctx->clone_roots);
6656 kvfree(sctx->send_buf);
6657 kvfree(sctx->read_buf);
6658
6659 name_cache_free(sctx);
6660
6661 kfree(sctx);
6662 }
6663
6664 return ret;
6665 }