]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/buffer.c
Merge branch 'pm-pci'
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 enum rw_hint hint, struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57 {
58 bh->b_end_io = handler;
59 bh->b_private = private;
60 }
61 EXPORT_SYMBOL(init_buffer);
62
63 inline void touch_buffer(struct buffer_head *bh)
64 {
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75
76 void unlock_buffer(struct buffer_head *bh)
77 {
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83
84 /*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89 void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91 {
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115 }
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
118 /*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123 void __wait_on_buffer(struct buffer_head * bh)
124 {
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126 }
127 EXPORT_SYMBOL(__wait_on_buffer);
128
129 static void
130 __clear_page_buffers(struct page *page)
131 {
132 ClearPagePrivate(page);
133 set_page_private(page, 0);
134 put_page(page);
135 }
136
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
138 {
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 }
144
145 /*
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
152 */
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154 {
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
162 }
163
164 /*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169 {
170 __end_buffer_read_notouch(bh, uptodate);
171 put_bh(bh);
172 }
173 EXPORT_SYMBOL(end_buffer_read_sync);
174
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176 {
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
180 buffer_io_error(bh, ", lost sync page write");
181 mark_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186 }
187 EXPORT_SYMBOL(end_buffer_write_sync);
188
189 /*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
202 {
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211
212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
245 printk("device %pg blocksize: %d\n", bdev,
246 1 << bd_inode->i_blkbits);
247 }
248 out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
250 put_page(page);
251 out:
252 return ret;
253 }
254
255 /*
256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257 */
258 static void free_more_memory(void)
259 {
260 struct zoneref *z;
261 int nid;
262
263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
264 yield();
265
266 for_each_online_node(nid) {
267
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
272 GFP_NOFS, NULL);
273 }
274 }
275
276 /*
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
279 */
280 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281 {
282 unsigned long flags;
283 struct buffer_head *first;
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
287
288 BUG_ON(!buffer_async_read(bh));
289
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
295 buffer_io_error(bh, ", async page read");
296 SetPageError(page);
297 }
298
299 /*
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
303 */
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
316 }
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
321
322 /*
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
325 */
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
330
331 still_busy:
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
334 return;
335 }
336
337 /*
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 */
341 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
342 {
343 unsigned long flags;
344 struct buffer_head *first;
345 struct buffer_head *tmp;
346 struct page *page;
347
348 BUG_ON(!buffer_async_write(bh));
349
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
354 buffer_io_error(bh, ", lost async page write");
355 mark_buffer_write_io_error(bh);
356 clear_buffer_uptodate(bh);
357 SetPageError(page);
358 }
359
360 first = page_buffers(page);
361 local_irq_save(flags);
362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 local_irq_restore(flags);
376 end_page_writeback(page);
377 return;
378
379 still_busy:
380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 local_irq_restore(flags);
382 return;
383 }
384 EXPORT_SYMBOL(end_buffer_async_write);
385
386 /*
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
394 *
395 * The page comes unlocked when it has no locked buffer_async buffers
396 * left.
397 *
398 * PageLocked prevents anyone starting new async I/O reads any of
399 * the buffers.
400 *
401 * PageWriteback is used to prevent simultaneous writeout of the same
402 * page.
403 *
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
406 */
407 static void mark_buffer_async_read(struct buffer_head *bh)
408 {
409 bh->b_end_io = end_buffer_async_read;
410 set_buffer_async_read(bh);
411 }
412
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 bh_end_io_t *handler)
415 {
416 bh->b_end_io = handler;
417 set_buffer_async_write(bh);
418 }
419
420 void mark_buffer_async_write(struct buffer_head *bh)
421 {
422 mark_buffer_async_write_endio(bh, end_buffer_async_write);
423 }
424 EXPORT_SYMBOL(mark_buffer_async_write);
425
426
427 /*
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
433 *
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
437 *
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
447 * ->private_lock.
448 *
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
451 *
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
456 *
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
460 *
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464 * queued up.
465 *
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
473 * b_inode back.
474 */
475
476 /*
477 * The buffer's backing address_space's private_lock must be held
478 */
479 static void __remove_assoc_queue(struct buffer_head *bh)
480 {
481 list_del_init(&bh->b_assoc_buffers);
482 WARN_ON(!bh->b_assoc_map);
483 bh->b_assoc_map = NULL;
484 }
485
486 int inode_has_buffers(struct inode *inode)
487 {
488 return !list_empty(&inode->i_data.private_list);
489 }
490
491 /*
492 * osync is designed to support O_SYNC io. It waits synchronously for
493 * all already-submitted IO to complete, but does not queue any new
494 * writes to the disk.
495 *
496 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
497 * you dirty the buffers, and then use osync_inode_buffers to wait for
498 * completion. Any other dirty buffers which are not yet queued for
499 * write will not be flushed to disk by the osync.
500 */
501 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
502 {
503 struct buffer_head *bh;
504 struct list_head *p;
505 int err = 0;
506
507 spin_lock(lock);
508 repeat:
509 list_for_each_prev(p, list) {
510 bh = BH_ENTRY(p);
511 if (buffer_locked(bh)) {
512 get_bh(bh);
513 spin_unlock(lock);
514 wait_on_buffer(bh);
515 if (!buffer_uptodate(bh))
516 err = -EIO;
517 brelse(bh);
518 spin_lock(lock);
519 goto repeat;
520 }
521 }
522 spin_unlock(lock);
523 return err;
524 }
525
526 static void do_thaw_one(struct super_block *sb, void *unused)
527 {
528 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
529 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
530 }
531
532 static void do_thaw_all(struct work_struct *work)
533 {
534 iterate_supers(do_thaw_one, NULL);
535 kfree(work);
536 printk(KERN_WARNING "Emergency Thaw complete\n");
537 }
538
539 /**
540 * emergency_thaw_all -- forcibly thaw every frozen filesystem
541 *
542 * Used for emergency unfreeze of all filesystems via SysRq
543 */
544 void emergency_thaw_all(void)
545 {
546 struct work_struct *work;
547
548 work = kmalloc(sizeof(*work), GFP_ATOMIC);
549 if (work) {
550 INIT_WORK(work, do_thaw_all);
551 schedule_work(work);
552 }
553 }
554
555 /**
556 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
557 * @mapping: the mapping which wants those buffers written
558 *
559 * Starts I/O against the buffers at mapping->private_list, and waits upon
560 * that I/O.
561 *
562 * Basically, this is a convenience function for fsync().
563 * @mapping is a file or directory which needs those buffers to be written for
564 * a successful fsync().
565 */
566 int sync_mapping_buffers(struct address_space *mapping)
567 {
568 struct address_space *buffer_mapping = mapping->private_data;
569
570 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
571 return 0;
572
573 return fsync_buffers_list(&buffer_mapping->private_lock,
574 &mapping->private_list);
575 }
576 EXPORT_SYMBOL(sync_mapping_buffers);
577
578 /*
579 * Called when we've recently written block `bblock', and it is known that
580 * `bblock' was for a buffer_boundary() buffer. This means that the block at
581 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
582 * dirty, schedule it for IO. So that indirects merge nicely with their data.
583 */
584 void write_boundary_block(struct block_device *bdev,
585 sector_t bblock, unsigned blocksize)
586 {
587 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
588 if (bh) {
589 if (buffer_dirty(bh))
590 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
591 put_bh(bh);
592 }
593 }
594
595 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
596 {
597 struct address_space *mapping = inode->i_mapping;
598 struct address_space *buffer_mapping = bh->b_page->mapping;
599
600 mark_buffer_dirty(bh);
601 if (!mapping->private_data) {
602 mapping->private_data = buffer_mapping;
603 } else {
604 BUG_ON(mapping->private_data != buffer_mapping);
605 }
606 if (!bh->b_assoc_map) {
607 spin_lock(&buffer_mapping->private_lock);
608 list_move_tail(&bh->b_assoc_buffers,
609 &mapping->private_list);
610 bh->b_assoc_map = mapping;
611 spin_unlock(&buffer_mapping->private_lock);
612 }
613 }
614 EXPORT_SYMBOL(mark_buffer_dirty_inode);
615
616 /*
617 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
618 * dirty.
619 *
620 * If warn is true, then emit a warning if the page is not uptodate and has
621 * not been truncated.
622 *
623 * The caller must hold lock_page_memcg().
624 */
625 static void __set_page_dirty(struct page *page, struct address_space *mapping,
626 int warn)
627 {
628 unsigned long flags;
629
630 spin_lock_irqsave(&mapping->tree_lock, flags);
631 if (page->mapping) { /* Race with truncate? */
632 WARN_ON_ONCE(warn && !PageUptodate(page));
633 account_page_dirtied(page, mapping);
634 radix_tree_tag_set(&mapping->page_tree,
635 page_index(page), PAGECACHE_TAG_DIRTY);
636 }
637 spin_unlock_irqrestore(&mapping->tree_lock, flags);
638 }
639
640 /*
641 * Add a page to the dirty page list.
642 *
643 * It is a sad fact of life that this function is called from several places
644 * deeply under spinlocking. It may not sleep.
645 *
646 * If the page has buffers, the uptodate buffers are set dirty, to preserve
647 * dirty-state coherency between the page and the buffers. It the page does
648 * not have buffers then when they are later attached they will all be set
649 * dirty.
650 *
651 * The buffers are dirtied before the page is dirtied. There's a small race
652 * window in which a writepage caller may see the page cleanness but not the
653 * buffer dirtiness. That's fine. If this code were to set the page dirty
654 * before the buffers, a concurrent writepage caller could clear the page dirty
655 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
656 * page on the dirty page list.
657 *
658 * We use private_lock to lock against try_to_free_buffers while using the
659 * page's buffer list. Also use this to protect against clean buffers being
660 * added to the page after it was set dirty.
661 *
662 * FIXME: may need to call ->reservepage here as well. That's rather up to the
663 * address_space though.
664 */
665 int __set_page_dirty_buffers(struct page *page)
666 {
667 int newly_dirty;
668 struct address_space *mapping = page_mapping(page);
669
670 if (unlikely(!mapping))
671 return !TestSetPageDirty(page);
672
673 spin_lock(&mapping->private_lock);
674 if (page_has_buffers(page)) {
675 struct buffer_head *head = page_buffers(page);
676 struct buffer_head *bh = head;
677
678 do {
679 set_buffer_dirty(bh);
680 bh = bh->b_this_page;
681 } while (bh != head);
682 }
683 /*
684 * Lock out page->mem_cgroup migration to keep PageDirty
685 * synchronized with per-memcg dirty page counters.
686 */
687 lock_page_memcg(page);
688 newly_dirty = !TestSetPageDirty(page);
689 spin_unlock(&mapping->private_lock);
690
691 if (newly_dirty)
692 __set_page_dirty(page, mapping, 1);
693
694 unlock_page_memcg(page);
695
696 if (newly_dirty)
697 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
698
699 return newly_dirty;
700 }
701 EXPORT_SYMBOL(__set_page_dirty_buffers);
702
703 /*
704 * Write out and wait upon a list of buffers.
705 *
706 * We have conflicting pressures: we want to make sure that all
707 * initially dirty buffers get waited on, but that any subsequently
708 * dirtied buffers don't. After all, we don't want fsync to last
709 * forever if somebody is actively writing to the file.
710 *
711 * Do this in two main stages: first we copy dirty buffers to a
712 * temporary inode list, queueing the writes as we go. Then we clean
713 * up, waiting for those writes to complete.
714 *
715 * During this second stage, any subsequent updates to the file may end
716 * up refiling the buffer on the original inode's dirty list again, so
717 * there is a chance we will end up with a buffer queued for write but
718 * not yet completed on that list. So, as a final cleanup we go through
719 * the osync code to catch these locked, dirty buffers without requeuing
720 * any newly dirty buffers for write.
721 */
722 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
723 {
724 struct buffer_head *bh;
725 struct list_head tmp;
726 struct address_space *mapping;
727 int err = 0, err2;
728 struct blk_plug plug;
729
730 INIT_LIST_HEAD(&tmp);
731 blk_start_plug(&plug);
732
733 spin_lock(lock);
734 while (!list_empty(list)) {
735 bh = BH_ENTRY(list->next);
736 mapping = bh->b_assoc_map;
737 __remove_assoc_queue(bh);
738 /* Avoid race with mark_buffer_dirty_inode() which does
739 * a lockless check and we rely on seeing the dirty bit */
740 smp_mb();
741 if (buffer_dirty(bh) || buffer_locked(bh)) {
742 list_add(&bh->b_assoc_buffers, &tmp);
743 bh->b_assoc_map = mapping;
744 if (buffer_dirty(bh)) {
745 get_bh(bh);
746 spin_unlock(lock);
747 /*
748 * Ensure any pending I/O completes so that
749 * write_dirty_buffer() actually writes the
750 * current contents - it is a noop if I/O is
751 * still in flight on potentially older
752 * contents.
753 */
754 write_dirty_buffer(bh, REQ_SYNC);
755
756 /*
757 * Kick off IO for the previous mapping. Note
758 * that we will not run the very last mapping,
759 * wait_on_buffer() will do that for us
760 * through sync_buffer().
761 */
762 brelse(bh);
763 spin_lock(lock);
764 }
765 }
766 }
767
768 spin_unlock(lock);
769 blk_finish_plug(&plug);
770 spin_lock(lock);
771
772 while (!list_empty(&tmp)) {
773 bh = BH_ENTRY(tmp.prev);
774 get_bh(bh);
775 mapping = bh->b_assoc_map;
776 __remove_assoc_queue(bh);
777 /* Avoid race with mark_buffer_dirty_inode() which does
778 * a lockless check and we rely on seeing the dirty bit */
779 smp_mb();
780 if (buffer_dirty(bh)) {
781 list_add(&bh->b_assoc_buffers,
782 &mapping->private_list);
783 bh->b_assoc_map = mapping;
784 }
785 spin_unlock(lock);
786 wait_on_buffer(bh);
787 if (!buffer_uptodate(bh))
788 err = -EIO;
789 brelse(bh);
790 spin_lock(lock);
791 }
792
793 spin_unlock(lock);
794 err2 = osync_buffers_list(lock, list);
795 if (err)
796 return err;
797 else
798 return err2;
799 }
800
801 /*
802 * Invalidate any and all dirty buffers on a given inode. We are
803 * probably unmounting the fs, but that doesn't mean we have already
804 * done a sync(). Just drop the buffers from the inode list.
805 *
806 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
807 * assumes that all the buffers are against the blockdev. Not true
808 * for reiserfs.
809 */
810 void invalidate_inode_buffers(struct inode *inode)
811 {
812 if (inode_has_buffers(inode)) {
813 struct address_space *mapping = &inode->i_data;
814 struct list_head *list = &mapping->private_list;
815 struct address_space *buffer_mapping = mapping->private_data;
816
817 spin_lock(&buffer_mapping->private_lock);
818 while (!list_empty(list))
819 __remove_assoc_queue(BH_ENTRY(list->next));
820 spin_unlock(&buffer_mapping->private_lock);
821 }
822 }
823 EXPORT_SYMBOL(invalidate_inode_buffers);
824
825 /*
826 * Remove any clean buffers from the inode's buffer list. This is called
827 * when we're trying to free the inode itself. Those buffers can pin it.
828 *
829 * Returns true if all buffers were removed.
830 */
831 int remove_inode_buffers(struct inode *inode)
832 {
833 int ret = 1;
834
835 if (inode_has_buffers(inode)) {
836 struct address_space *mapping = &inode->i_data;
837 struct list_head *list = &mapping->private_list;
838 struct address_space *buffer_mapping = mapping->private_data;
839
840 spin_lock(&buffer_mapping->private_lock);
841 while (!list_empty(list)) {
842 struct buffer_head *bh = BH_ENTRY(list->next);
843 if (buffer_dirty(bh)) {
844 ret = 0;
845 break;
846 }
847 __remove_assoc_queue(bh);
848 }
849 spin_unlock(&buffer_mapping->private_lock);
850 }
851 return ret;
852 }
853
854 /*
855 * Create the appropriate buffers when given a page for data area and
856 * the size of each buffer.. Use the bh->b_this_page linked list to
857 * follow the buffers created. Return NULL if unable to create more
858 * buffers.
859 *
860 * The retry flag is used to differentiate async IO (paging, swapping)
861 * which may not fail from ordinary buffer allocations.
862 */
863 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
864 int retry)
865 {
866 struct buffer_head *bh, *head;
867 long offset;
868
869 try_again:
870 head = NULL;
871 offset = PAGE_SIZE;
872 while ((offset -= size) >= 0) {
873 bh = alloc_buffer_head(GFP_NOFS);
874 if (!bh)
875 goto no_grow;
876
877 bh->b_this_page = head;
878 bh->b_blocknr = -1;
879 head = bh;
880
881 bh->b_size = size;
882
883 /* Link the buffer to its page */
884 set_bh_page(bh, page, offset);
885 }
886 return head;
887 /*
888 * In case anything failed, we just free everything we got.
889 */
890 no_grow:
891 if (head) {
892 do {
893 bh = head;
894 head = head->b_this_page;
895 free_buffer_head(bh);
896 } while (head);
897 }
898
899 /*
900 * Return failure for non-async IO requests. Async IO requests
901 * are not allowed to fail, so we have to wait until buffer heads
902 * become available. But we don't want tasks sleeping with
903 * partially complete buffers, so all were released above.
904 */
905 if (!retry)
906 return NULL;
907
908 /* We're _really_ low on memory. Now we just
909 * wait for old buffer heads to become free due to
910 * finishing IO. Since this is an async request and
911 * the reserve list is empty, we're sure there are
912 * async buffer heads in use.
913 */
914 free_more_memory();
915 goto try_again;
916 }
917 EXPORT_SYMBOL_GPL(alloc_page_buffers);
918
919 static inline void
920 link_dev_buffers(struct page *page, struct buffer_head *head)
921 {
922 struct buffer_head *bh, *tail;
923
924 bh = head;
925 do {
926 tail = bh;
927 bh = bh->b_this_page;
928 } while (bh);
929 tail->b_this_page = head;
930 attach_page_buffers(page, head);
931 }
932
933 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
934 {
935 sector_t retval = ~((sector_t)0);
936 loff_t sz = i_size_read(bdev->bd_inode);
937
938 if (sz) {
939 unsigned int sizebits = blksize_bits(size);
940 retval = (sz >> sizebits);
941 }
942 return retval;
943 }
944
945 /*
946 * Initialise the state of a blockdev page's buffers.
947 */
948 static sector_t
949 init_page_buffers(struct page *page, struct block_device *bdev,
950 sector_t block, int size)
951 {
952 struct buffer_head *head = page_buffers(page);
953 struct buffer_head *bh = head;
954 int uptodate = PageUptodate(page);
955 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
956
957 do {
958 if (!buffer_mapped(bh)) {
959 init_buffer(bh, NULL, NULL);
960 bh->b_bdev = bdev;
961 bh->b_blocknr = block;
962 if (uptodate)
963 set_buffer_uptodate(bh);
964 if (block < end_block)
965 set_buffer_mapped(bh);
966 }
967 block++;
968 bh = bh->b_this_page;
969 } while (bh != head);
970
971 /*
972 * Caller needs to validate requested block against end of device.
973 */
974 return end_block;
975 }
976
977 /*
978 * Create the page-cache page that contains the requested block.
979 *
980 * This is used purely for blockdev mappings.
981 */
982 static int
983 grow_dev_page(struct block_device *bdev, sector_t block,
984 pgoff_t index, int size, int sizebits, gfp_t gfp)
985 {
986 struct inode *inode = bdev->bd_inode;
987 struct page *page;
988 struct buffer_head *bh;
989 sector_t end_block;
990 int ret = 0; /* Will call free_more_memory() */
991 gfp_t gfp_mask;
992
993 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
994
995 /*
996 * XXX: __getblk_slow() can not really deal with failure and
997 * will endlessly loop on improvised global reclaim. Prefer
998 * looping in the allocator rather than here, at least that
999 * code knows what it's doing.
1000 */
1001 gfp_mask |= __GFP_NOFAIL;
1002
1003 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1004 if (!page)
1005 return ret;
1006
1007 BUG_ON(!PageLocked(page));
1008
1009 if (page_has_buffers(page)) {
1010 bh = page_buffers(page);
1011 if (bh->b_size == size) {
1012 end_block = init_page_buffers(page, bdev,
1013 (sector_t)index << sizebits,
1014 size);
1015 goto done;
1016 }
1017 if (!try_to_free_buffers(page))
1018 goto failed;
1019 }
1020
1021 /*
1022 * Allocate some buffers for this page
1023 */
1024 bh = alloc_page_buffers(page, size, 0);
1025 if (!bh)
1026 goto failed;
1027
1028 /*
1029 * Link the page to the buffers and initialise them. Take the
1030 * lock to be atomic wrt __find_get_block(), which does not
1031 * run under the page lock.
1032 */
1033 spin_lock(&inode->i_mapping->private_lock);
1034 link_dev_buffers(page, bh);
1035 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1036 size);
1037 spin_unlock(&inode->i_mapping->private_lock);
1038 done:
1039 ret = (block < end_block) ? 1 : -ENXIO;
1040 failed:
1041 unlock_page(page);
1042 put_page(page);
1043 return ret;
1044 }
1045
1046 /*
1047 * Create buffers for the specified block device block's page. If
1048 * that page was dirty, the buffers are set dirty also.
1049 */
1050 static int
1051 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1052 {
1053 pgoff_t index;
1054 int sizebits;
1055
1056 sizebits = -1;
1057 do {
1058 sizebits++;
1059 } while ((size << sizebits) < PAGE_SIZE);
1060
1061 index = block >> sizebits;
1062
1063 /*
1064 * Check for a block which wants to lie outside our maximum possible
1065 * pagecache index. (this comparison is done using sector_t types).
1066 */
1067 if (unlikely(index != block >> sizebits)) {
1068 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1069 "device %pg\n",
1070 __func__, (unsigned long long)block,
1071 bdev);
1072 return -EIO;
1073 }
1074
1075 /* Create a page with the proper size buffers.. */
1076 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1077 }
1078
1079 static struct buffer_head *
1080 __getblk_slow(struct block_device *bdev, sector_t block,
1081 unsigned size, gfp_t gfp)
1082 {
1083 /* Size must be multiple of hard sectorsize */
1084 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1085 (size < 512 || size > PAGE_SIZE))) {
1086 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1087 size);
1088 printk(KERN_ERR "logical block size: %d\n",
1089 bdev_logical_block_size(bdev));
1090
1091 dump_stack();
1092 return NULL;
1093 }
1094
1095 for (;;) {
1096 struct buffer_head *bh;
1097 int ret;
1098
1099 bh = __find_get_block(bdev, block, size);
1100 if (bh)
1101 return bh;
1102
1103 ret = grow_buffers(bdev, block, size, gfp);
1104 if (ret < 0)
1105 return NULL;
1106 if (ret == 0)
1107 free_more_memory();
1108 }
1109 }
1110
1111 /*
1112 * The relationship between dirty buffers and dirty pages:
1113 *
1114 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1115 * the page is tagged dirty in its radix tree.
1116 *
1117 * At all times, the dirtiness of the buffers represents the dirtiness of
1118 * subsections of the page. If the page has buffers, the page dirty bit is
1119 * merely a hint about the true dirty state.
1120 *
1121 * When a page is set dirty in its entirety, all its buffers are marked dirty
1122 * (if the page has buffers).
1123 *
1124 * When a buffer is marked dirty, its page is dirtied, but the page's other
1125 * buffers are not.
1126 *
1127 * Also. When blockdev buffers are explicitly read with bread(), they
1128 * individually become uptodate. But their backing page remains not
1129 * uptodate - even if all of its buffers are uptodate. A subsequent
1130 * block_read_full_page() against that page will discover all the uptodate
1131 * buffers, will set the page uptodate and will perform no I/O.
1132 */
1133
1134 /**
1135 * mark_buffer_dirty - mark a buffer_head as needing writeout
1136 * @bh: the buffer_head to mark dirty
1137 *
1138 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1139 * backing page dirty, then tag the page as dirty in its address_space's radix
1140 * tree and then attach the address_space's inode to its superblock's dirty
1141 * inode list.
1142 *
1143 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1144 * mapping->tree_lock and mapping->host->i_lock.
1145 */
1146 void mark_buffer_dirty(struct buffer_head *bh)
1147 {
1148 WARN_ON_ONCE(!buffer_uptodate(bh));
1149
1150 trace_block_dirty_buffer(bh);
1151
1152 /*
1153 * Very *carefully* optimize the it-is-already-dirty case.
1154 *
1155 * Don't let the final "is it dirty" escape to before we
1156 * perhaps modified the buffer.
1157 */
1158 if (buffer_dirty(bh)) {
1159 smp_mb();
1160 if (buffer_dirty(bh))
1161 return;
1162 }
1163
1164 if (!test_set_buffer_dirty(bh)) {
1165 struct page *page = bh->b_page;
1166 struct address_space *mapping = NULL;
1167
1168 lock_page_memcg(page);
1169 if (!TestSetPageDirty(page)) {
1170 mapping = page_mapping(page);
1171 if (mapping)
1172 __set_page_dirty(page, mapping, 0);
1173 }
1174 unlock_page_memcg(page);
1175 if (mapping)
1176 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1177 }
1178 }
1179 EXPORT_SYMBOL(mark_buffer_dirty);
1180
1181 void mark_buffer_write_io_error(struct buffer_head *bh)
1182 {
1183 set_buffer_write_io_error(bh);
1184 /* FIXME: do we need to set this in both places? */
1185 if (bh->b_page && bh->b_page->mapping)
1186 mapping_set_error(bh->b_page->mapping, -EIO);
1187 if (bh->b_assoc_map)
1188 mapping_set_error(bh->b_assoc_map, -EIO);
1189 }
1190 EXPORT_SYMBOL(mark_buffer_write_io_error);
1191
1192 /*
1193 * Decrement a buffer_head's reference count. If all buffers against a page
1194 * have zero reference count, are clean and unlocked, and if the page is clean
1195 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1196 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1197 * a page but it ends up not being freed, and buffers may later be reattached).
1198 */
1199 void __brelse(struct buffer_head * buf)
1200 {
1201 if (atomic_read(&buf->b_count)) {
1202 put_bh(buf);
1203 return;
1204 }
1205 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1206 }
1207 EXPORT_SYMBOL(__brelse);
1208
1209 /*
1210 * bforget() is like brelse(), except it discards any
1211 * potentially dirty data.
1212 */
1213 void __bforget(struct buffer_head *bh)
1214 {
1215 clear_buffer_dirty(bh);
1216 if (bh->b_assoc_map) {
1217 struct address_space *buffer_mapping = bh->b_page->mapping;
1218
1219 spin_lock(&buffer_mapping->private_lock);
1220 list_del_init(&bh->b_assoc_buffers);
1221 bh->b_assoc_map = NULL;
1222 spin_unlock(&buffer_mapping->private_lock);
1223 }
1224 __brelse(bh);
1225 }
1226 EXPORT_SYMBOL(__bforget);
1227
1228 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1229 {
1230 lock_buffer(bh);
1231 if (buffer_uptodate(bh)) {
1232 unlock_buffer(bh);
1233 return bh;
1234 } else {
1235 get_bh(bh);
1236 bh->b_end_io = end_buffer_read_sync;
1237 submit_bh(REQ_OP_READ, 0, bh);
1238 wait_on_buffer(bh);
1239 if (buffer_uptodate(bh))
1240 return bh;
1241 }
1242 brelse(bh);
1243 return NULL;
1244 }
1245
1246 /*
1247 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1248 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1249 * refcount elevated by one when they're in an LRU. A buffer can only appear
1250 * once in a particular CPU's LRU. A single buffer can be present in multiple
1251 * CPU's LRUs at the same time.
1252 *
1253 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1254 * sb_find_get_block().
1255 *
1256 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1257 * a local interrupt disable for that.
1258 */
1259
1260 #define BH_LRU_SIZE 16
1261
1262 struct bh_lru {
1263 struct buffer_head *bhs[BH_LRU_SIZE];
1264 };
1265
1266 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1267
1268 #ifdef CONFIG_SMP
1269 #define bh_lru_lock() local_irq_disable()
1270 #define bh_lru_unlock() local_irq_enable()
1271 #else
1272 #define bh_lru_lock() preempt_disable()
1273 #define bh_lru_unlock() preempt_enable()
1274 #endif
1275
1276 static inline void check_irqs_on(void)
1277 {
1278 #ifdef irqs_disabled
1279 BUG_ON(irqs_disabled());
1280 #endif
1281 }
1282
1283 /*
1284 * The LRU management algorithm is dopey-but-simple. Sorry.
1285 */
1286 static void bh_lru_install(struct buffer_head *bh)
1287 {
1288 struct buffer_head *evictee = NULL;
1289
1290 check_irqs_on();
1291 bh_lru_lock();
1292 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1293 struct buffer_head *bhs[BH_LRU_SIZE];
1294 int in;
1295 int out = 0;
1296
1297 get_bh(bh);
1298 bhs[out++] = bh;
1299 for (in = 0; in < BH_LRU_SIZE; in++) {
1300 struct buffer_head *bh2 =
1301 __this_cpu_read(bh_lrus.bhs[in]);
1302
1303 if (bh2 == bh) {
1304 __brelse(bh2);
1305 } else {
1306 if (out >= BH_LRU_SIZE) {
1307 BUG_ON(evictee != NULL);
1308 evictee = bh2;
1309 } else {
1310 bhs[out++] = bh2;
1311 }
1312 }
1313 }
1314 while (out < BH_LRU_SIZE)
1315 bhs[out++] = NULL;
1316 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1317 }
1318 bh_lru_unlock();
1319
1320 if (evictee)
1321 __brelse(evictee);
1322 }
1323
1324 /*
1325 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1326 */
1327 static struct buffer_head *
1328 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1329 {
1330 struct buffer_head *ret = NULL;
1331 unsigned int i;
1332
1333 check_irqs_on();
1334 bh_lru_lock();
1335 for (i = 0; i < BH_LRU_SIZE; i++) {
1336 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1337
1338 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1339 bh->b_size == size) {
1340 if (i) {
1341 while (i) {
1342 __this_cpu_write(bh_lrus.bhs[i],
1343 __this_cpu_read(bh_lrus.bhs[i - 1]));
1344 i--;
1345 }
1346 __this_cpu_write(bh_lrus.bhs[0], bh);
1347 }
1348 get_bh(bh);
1349 ret = bh;
1350 break;
1351 }
1352 }
1353 bh_lru_unlock();
1354 return ret;
1355 }
1356
1357 /*
1358 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1359 * it in the LRU and mark it as accessed. If it is not present then return
1360 * NULL
1361 */
1362 struct buffer_head *
1363 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1364 {
1365 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1366
1367 if (bh == NULL) {
1368 /* __find_get_block_slow will mark the page accessed */
1369 bh = __find_get_block_slow(bdev, block);
1370 if (bh)
1371 bh_lru_install(bh);
1372 } else
1373 touch_buffer(bh);
1374
1375 return bh;
1376 }
1377 EXPORT_SYMBOL(__find_get_block);
1378
1379 /*
1380 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1381 * which corresponds to the passed block_device, block and size. The
1382 * returned buffer has its reference count incremented.
1383 *
1384 * __getblk_gfp() will lock up the machine if grow_dev_page's
1385 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1386 */
1387 struct buffer_head *
1388 __getblk_gfp(struct block_device *bdev, sector_t block,
1389 unsigned size, gfp_t gfp)
1390 {
1391 struct buffer_head *bh = __find_get_block(bdev, block, size);
1392
1393 might_sleep();
1394 if (bh == NULL)
1395 bh = __getblk_slow(bdev, block, size, gfp);
1396 return bh;
1397 }
1398 EXPORT_SYMBOL(__getblk_gfp);
1399
1400 /*
1401 * Do async read-ahead on a buffer..
1402 */
1403 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1404 {
1405 struct buffer_head *bh = __getblk(bdev, block, size);
1406 if (likely(bh)) {
1407 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1408 brelse(bh);
1409 }
1410 }
1411 EXPORT_SYMBOL(__breadahead);
1412
1413 /**
1414 * __bread_gfp() - reads a specified block and returns the bh
1415 * @bdev: the block_device to read from
1416 * @block: number of block
1417 * @size: size (in bytes) to read
1418 * @gfp: page allocation flag
1419 *
1420 * Reads a specified block, and returns buffer head that contains it.
1421 * The page cache can be allocated from non-movable area
1422 * not to prevent page migration if you set gfp to zero.
1423 * It returns NULL if the block was unreadable.
1424 */
1425 struct buffer_head *
1426 __bread_gfp(struct block_device *bdev, sector_t block,
1427 unsigned size, gfp_t gfp)
1428 {
1429 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1430
1431 if (likely(bh) && !buffer_uptodate(bh))
1432 bh = __bread_slow(bh);
1433 return bh;
1434 }
1435 EXPORT_SYMBOL(__bread_gfp);
1436
1437 /*
1438 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1439 * This doesn't race because it runs in each cpu either in irq
1440 * or with preempt disabled.
1441 */
1442 static void invalidate_bh_lru(void *arg)
1443 {
1444 struct bh_lru *b = &get_cpu_var(bh_lrus);
1445 int i;
1446
1447 for (i = 0; i < BH_LRU_SIZE; i++) {
1448 brelse(b->bhs[i]);
1449 b->bhs[i] = NULL;
1450 }
1451 put_cpu_var(bh_lrus);
1452 }
1453
1454 static bool has_bh_in_lru(int cpu, void *dummy)
1455 {
1456 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1457 int i;
1458
1459 for (i = 0; i < BH_LRU_SIZE; i++) {
1460 if (b->bhs[i])
1461 return 1;
1462 }
1463
1464 return 0;
1465 }
1466
1467 void invalidate_bh_lrus(void)
1468 {
1469 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1470 }
1471 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1472
1473 void set_bh_page(struct buffer_head *bh,
1474 struct page *page, unsigned long offset)
1475 {
1476 bh->b_page = page;
1477 BUG_ON(offset >= PAGE_SIZE);
1478 if (PageHighMem(page))
1479 /*
1480 * This catches illegal uses and preserves the offset:
1481 */
1482 bh->b_data = (char *)(0 + offset);
1483 else
1484 bh->b_data = page_address(page) + offset;
1485 }
1486 EXPORT_SYMBOL(set_bh_page);
1487
1488 /*
1489 * Called when truncating a buffer on a page completely.
1490 */
1491
1492 /* Bits that are cleared during an invalidate */
1493 #define BUFFER_FLAGS_DISCARD \
1494 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1495 1 << BH_Delay | 1 << BH_Unwritten)
1496
1497 static void discard_buffer(struct buffer_head * bh)
1498 {
1499 unsigned long b_state, b_state_old;
1500
1501 lock_buffer(bh);
1502 clear_buffer_dirty(bh);
1503 bh->b_bdev = NULL;
1504 b_state = bh->b_state;
1505 for (;;) {
1506 b_state_old = cmpxchg(&bh->b_state, b_state,
1507 (b_state & ~BUFFER_FLAGS_DISCARD));
1508 if (b_state_old == b_state)
1509 break;
1510 b_state = b_state_old;
1511 }
1512 unlock_buffer(bh);
1513 }
1514
1515 /**
1516 * block_invalidatepage - invalidate part or all of a buffer-backed page
1517 *
1518 * @page: the page which is affected
1519 * @offset: start of the range to invalidate
1520 * @length: length of the range to invalidate
1521 *
1522 * block_invalidatepage() is called when all or part of the page has become
1523 * invalidated by a truncate operation.
1524 *
1525 * block_invalidatepage() does not have to release all buffers, but it must
1526 * ensure that no dirty buffer is left outside @offset and that no I/O
1527 * is underway against any of the blocks which are outside the truncation
1528 * point. Because the caller is about to free (and possibly reuse) those
1529 * blocks on-disk.
1530 */
1531 void block_invalidatepage(struct page *page, unsigned int offset,
1532 unsigned int length)
1533 {
1534 struct buffer_head *head, *bh, *next;
1535 unsigned int curr_off = 0;
1536 unsigned int stop = length + offset;
1537
1538 BUG_ON(!PageLocked(page));
1539 if (!page_has_buffers(page))
1540 goto out;
1541
1542 /*
1543 * Check for overflow
1544 */
1545 BUG_ON(stop > PAGE_SIZE || stop < length);
1546
1547 head = page_buffers(page);
1548 bh = head;
1549 do {
1550 unsigned int next_off = curr_off + bh->b_size;
1551 next = bh->b_this_page;
1552
1553 /*
1554 * Are we still fully in range ?
1555 */
1556 if (next_off > stop)
1557 goto out;
1558
1559 /*
1560 * is this block fully invalidated?
1561 */
1562 if (offset <= curr_off)
1563 discard_buffer(bh);
1564 curr_off = next_off;
1565 bh = next;
1566 } while (bh != head);
1567
1568 /*
1569 * We release buffers only if the entire page is being invalidated.
1570 * The get_block cached value has been unconditionally invalidated,
1571 * so real IO is not possible anymore.
1572 */
1573 if (offset == 0)
1574 try_to_release_page(page, 0);
1575 out:
1576 return;
1577 }
1578 EXPORT_SYMBOL(block_invalidatepage);
1579
1580
1581 /*
1582 * We attach and possibly dirty the buffers atomically wrt
1583 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1584 * is already excluded via the page lock.
1585 */
1586 void create_empty_buffers(struct page *page,
1587 unsigned long blocksize, unsigned long b_state)
1588 {
1589 struct buffer_head *bh, *head, *tail;
1590
1591 head = alloc_page_buffers(page, blocksize, 1);
1592 bh = head;
1593 do {
1594 bh->b_state |= b_state;
1595 tail = bh;
1596 bh = bh->b_this_page;
1597 } while (bh);
1598 tail->b_this_page = head;
1599
1600 spin_lock(&page->mapping->private_lock);
1601 if (PageUptodate(page) || PageDirty(page)) {
1602 bh = head;
1603 do {
1604 if (PageDirty(page))
1605 set_buffer_dirty(bh);
1606 if (PageUptodate(page))
1607 set_buffer_uptodate(bh);
1608 bh = bh->b_this_page;
1609 } while (bh != head);
1610 }
1611 attach_page_buffers(page, head);
1612 spin_unlock(&page->mapping->private_lock);
1613 }
1614 EXPORT_SYMBOL(create_empty_buffers);
1615
1616 /**
1617 * clean_bdev_aliases: clean a range of buffers in block device
1618 * @bdev: Block device to clean buffers in
1619 * @block: Start of a range of blocks to clean
1620 * @len: Number of blocks to clean
1621 *
1622 * We are taking a range of blocks for data and we don't want writeback of any
1623 * buffer-cache aliases starting from return from this function and until the
1624 * moment when something will explicitly mark the buffer dirty (hopefully that
1625 * will not happen until we will free that block ;-) We don't even need to mark
1626 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1627 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1628 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1629 * would confuse anyone who might pick it with bread() afterwards...
1630 *
1631 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1632 * writeout I/O going on against recently-freed buffers. We don't wait on that
1633 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1634 * need to. That happens here.
1635 */
1636 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1637 {
1638 struct inode *bd_inode = bdev->bd_inode;
1639 struct address_space *bd_mapping = bd_inode->i_mapping;
1640 struct pagevec pvec;
1641 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1642 pgoff_t end;
1643 int i;
1644 struct buffer_head *bh;
1645 struct buffer_head *head;
1646
1647 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1648 pagevec_init(&pvec, 0);
1649 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1650 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1651 for (i = 0; i < pagevec_count(&pvec); i++) {
1652 struct page *page = pvec.pages[i];
1653
1654 index = page->index;
1655 if (index > end)
1656 break;
1657 if (!page_has_buffers(page))
1658 continue;
1659 /*
1660 * We use page lock instead of bd_mapping->private_lock
1661 * to pin buffers here since we can afford to sleep and
1662 * it scales better than a global spinlock lock.
1663 */
1664 lock_page(page);
1665 /* Recheck when the page is locked which pins bhs */
1666 if (!page_has_buffers(page))
1667 goto unlock_page;
1668 head = page_buffers(page);
1669 bh = head;
1670 do {
1671 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1672 goto next;
1673 if (bh->b_blocknr >= block + len)
1674 break;
1675 clear_buffer_dirty(bh);
1676 wait_on_buffer(bh);
1677 clear_buffer_req(bh);
1678 next:
1679 bh = bh->b_this_page;
1680 } while (bh != head);
1681 unlock_page:
1682 unlock_page(page);
1683 }
1684 pagevec_release(&pvec);
1685 cond_resched();
1686 index++;
1687 }
1688 }
1689 EXPORT_SYMBOL(clean_bdev_aliases);
1690
1691 /*
1692 * Size is a power-of-two in the range 512..PAGE_SIZE,
1693 * and the case we care about most is PAGE_SIZE.
1694 *
1695 * So this *could* possibly be written with those
1696 * constraints in mind (relevant mostly if some
1697 * architecture has a slow bit-scan instruction)
1698 */
1699 static inline int block_size_bits(unsigned int blocksize)
1700 {
1701 return ilog2(blocksize);
1702 }
1703
1704 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1705 {
1706 BUG_ON(!PageLocked(page));
1707
1708 if (!page_has_buffers(page))
1709 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1710 return page_buffers(page);
1711 }
1712
1713 /*
1714 * NOTE! All mapped/uptodate combinations are valid:
1715 *
1716 * Mapped Uptodate Meaning
1717 *
1718 * No No "unknown" - must do get_block()
1719 * No Yes "hole" - zero-filled
1720 * Yes No "allocated" - allocated on disk, not read in
1721 * Yes Yes "valid" - allocated and up-to-date in memory.
1722 *
1723 * "Dirty" is valid only with the last case (mapped+uptodate).
1724 */
1725
1726 /*
1727 * While block_write_full_page is writing back the dirty buffers under
1728 * the page lock, whoever dirtied the buffers may decide to clean them
1729 * again at any time. We handle that by only looking at the buffer
1730 * state inside lock_buffer().
1731 *
1732 * If block_write_full_page() is called for regular writeback
1733 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1734 * locked buffer. This only can happen if someone has written the buffer
1735 * directly, with submit_bh(). At the address_space level PageWriteback
1736 * prevents this contention from occurring.
1737 *
1738 * If block_write_full_page() is called with wbc->sync_mode ==
1739 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1740 * causes the writes to be flagged as synchronous writes.
1741 */
1742 int __block_write_full_page(struct inode *inode, struct page *page,
1743 get_block_t *get_block, struct writeback_control *wbc,
1744 bh_end_io_t *handler)
1745 {
1746 int err;
1747 sector_t block;
1748 sector_t last_block;
1749 struct buffer_head *bh, *head;
1750 unsigned int blocksize, bbits;
1751 int nr_underway = 0;
1752 int write_flags = wbc_to_write_flags(wbc);
1753
1754 head = create_page_buffers(page, inode,
1755 (1 << BH_Dirty)|(1 << BH_Uptodate));
1756
1757 /*
1758 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1759 * here, and the (potentially unmapped) buffers may become dirty at
1760 * any time. If a buffer becomes dirty here after we've inspected it
1761 * then we just miss that fact, and the page stays dirty.
1762 *
1763 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1764 * handle that here by just cleaning them.
1765 */
1766
1767 bh = head;
1768 blocksize = bh->b_size;
1769 bbits = block_size_bits(blocksize);
1770
1771 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1772 last_block = (i_size_read(inode) - 1) >> bbits;
1773
1774 /*
1775 * Get all the dirty buffers mapped to disk addresses and
1776 * handle any aliases from the underlying blockdev's mapping.
1777 */
1778 do {
1779 if (block > last_block) {
1780 /*
1781 * mapped buffers outside i_size will occur, because
1782 * this page can be outside i_size when there is a
1783 * truncate in progress.
1784 */
1785 /*
1786 * The buffer was zeroed by block_write_full_page()
1787 */
1788 clear_buffer_dirty(bh);
1789 set_buffer_uptodate(bh);
1790 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1791 buffer_dirty(bh)) {
1792 WARN_ON(bh->b_size != blocksize);
1793 err = get_block(inode, block, bh, 1);
1794 if (err)
1795 goto recover;
1796 clear_buffer_delay(bh);
1797 if (buffer_new(bh)) {
1798 /* blockdev mappings never come here */
1799 clear_buffer_new(bh);
1800 clean_bdev_bh_alias(bh);
1801 }
1802 }
1803 bh = bh->b_this_page;
1804 block++;
1805 } while (bh != head);
1806
1807 do {
1808 if (!buffer_mapped(bh))
1809 continue;
1810 /*
1811 * If it's a fully non-blocking write attempt and we cannot
1812 * lock the buffer then redirty the page. Note that this can
1813 * potentially cause a busy-wait loop from writeback threads
1814 * and kswapd activity, but those code paths have their own
1815 * higher-level throttling.
1816 */
1817 if (wbc->sync_mode != WB_SYNC_NONE) {
1818 lock_buffer(bh);
1819 } else if (!trylock_buffer(bh)) {
1820 redirty_page_for_writepage(wbc, page);
1821 continue;
1822 }
1823 if (test_clear_buffer_dirty(bh)) {
1824 mark_buffer_async_write_endio(bh, handler);
1825 } else {
1826 unlock_buffer(bh);
1827 }
1828 } while ((bh = bh->b_this_page) != head);
1829
1830 /*
1831 * The page and its buffers are protected by PageWriteback(), so we can
1832 * drop the bh refcounts early.
1833 */
1834 BUG_ON(PageWriteback(page));
1835 set_page_writeback(page);
1836
1837 do {
1838 struct buffer_head *next = bh->b_this_page;
1839 if (buffer_async_write(bh)) {
1840 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1841 inode->i_write_hint, wbc);
1842 nr_underway++;
1843 }
1844 bh = next;
1845 } while (bh != head);
1846 unlock_page(page);
1847
1848 err = 0;
1849 done:
1850 if (nr_underway == 0) {
1851 /*
1852 * The page was marked dirty, but the buffers were
1853 * clean. Someone wrote them back by hand with
1854 * ll_rw_block/submit_bh. A rare case.
1855 */
1856 end_page_writeback(page);
1857
1858 /*
1859 * The page and buffer_heads can be released at any time from
1860 * here on.
1861 */
1862 }
1863 return err;
1864
1865 recover:
1866 /*
1867 * ENOSPC, or some other error. We may already have added some
1868 * blocks to the file, so we need to write these out to avoid
1869 * exposing stale data.
1870 * The page is currently locked and not marked for writeback
1871 */
1872 bh = head;
1873 /* Recovery: lock and submit the mapped buffers */
1874 do {
1875 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1876 !buffer_delay(bh)) {
1877 lock_buffer(bh);
1878 mark_buffer_async_write_endio(bh, handler);
1879 } else {
1880 /*
1881 * The buffer may have been set dirty during
1882 * attachment to a dirty page.
1883 */
1884 clear_buffer_dirty(bh);
1885 }
1886 } while ((bh = bh->b_this_page) != head);
1887 SetPageError(page);
1888 BUG_ON(PageWriteback(page));
1889 mapping_set_error(page->mapping, err);
1890 set_page_writeback(page);
1891 do {
1892 struct buffer_head *next = bh->b_this_page;
1893 if (buffer_async_write(bh)) {
1894 clear_buffer_dirty(bh);
1895 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1896 inode->i_write_hint, wbc);
1897 nr_underway++;
1898 }
1899 bh = next;
1900 } while (bh != head);
1901 unlock_page(page);
1902 goto done;
1903 }
1904 EXPORT_SYMBOL(__block_write_full_page);
1905
1906 /*
1907 * If a page has any new buffers, zero them out here, and mark them uptodate
1908 * and dirty so they'll be written out (in order to prevent uninitialised
1909 * block data from leaking). And clear the new bit.
1910 */
1911 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1912 {
1913 unsigned int block_start, block_end;
1914 struct buffer_head *head, *bh;
1915
1916 BUG_ON(!PageLocked(page));
1917 if (!page_has_buffers(page))
1918 return;
1919
1920 bh = head = page_buffers(page);
1921 block_start = 0;
1922 do {
1923 block_end = block_start + bh->b_size;
1924
1925 if (buffer_new(bh)) {
1926 if (block_end > from && block_start < to) {
1927 if (!PageUptodate(page)) {
1928 unsigned start, size;
1929
1930 start = max(from, block_start);
1931 size = min(to, block_end) - start;
1932
1933 zero_user(page, start, size);
1934 set_buffer_uptodate(bh);
1935 }
1936
1937 clear_buffer_new(bh);
1938 mark_buffer_dirty(bh);
1939 }
1940 }
1941
1942 block_start = block_end;
1943 bh = bh->b_this_page;
1944 } while (bh != head);
1945 }
1946 EXPORT_SYMBOL(page_zero_new_buffers);
1947
1948 static void
1949 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1950 struct iomap *iomap)
1951 {
1952 loff_t offset = block << inode->i_blkbits;
1953
1954 bh->b_bdev = iomap->bdev;
1955
1956 /*
1957 * Block points to offset in file we need to map, iomap contains
1958 * the offset at which the map starts. If the map ends before the
1959 * current block, then do not map the buffer and let the caller
1960 * handle it.
1961 */
1962 BUG_ON(offset >= iomap->offset + iomap->length);
1963
1964 switch (iomap->type) {
1965 case IOMAP_HOLE:
1966 /*
1967 * If the buffer is not up to date or beyond the current EOF,
1968 * we need to mark it as new to ensure sub-block zeroing is
1969 * executed if necessary.
1970 */
1971 if (!buffer_uptodate(bh) ||
1972 (offset >= i_size_read(inode)))
1973 set_buffer_new(bh);
1974 break;
1975 case IOMAP_DELALLOC:
1976 if (!buffer_uptodate(bh) ||
1977 (offset >= i_size_read(inode)))
1978 set_buffer_new(bh);
1979 set_buffer_uptodate(bh);
1980 set_buffer_mapped(bh);
1981 set_buffer_delay(bh);
1982 break;
1983 case IOMAP_UNWRITTEN:
1984 /*
1985 * For unwritten regions, we always need to ensure that
1986 * sub-block writes cause the regions in the block we are not
1987 * writing to are zeroed. Set the buffer as new to ensure this.
1988 */
1989 set_buffer_new(bh);
1990 set_buffer_unwritten(bh);
1991 /* FALLTHRU */
1992 case IOMAP_MAPPED:
1993 if (offset >= i_size_read(inode))
1994 set_buffer_new(bh);
1995 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1996 ((offset - iomap->offset) >> inode->i_blkbits);
1997 set_buffer_mapped(bh);
1998 break;
1999 }
2000 }
2001
2002 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
2003 get_block_t *get_block, struct iomap *iomap)
2004 {
2005 unsigned from = pos & (PAGE_SIZE - 1);
2006 unsigned to = from + len;
2007 struct inode *inode = page->mapping->host;
2008 unsigned block_start, block_end;
2009 sector_t block;
2010 int err = 0;
2011 unsigned blocksize, bbits;
2012 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2013
2014 BUG_ON(!PageLocked(page));
2015 BUG_ON(from > PAGE_SIZE);
2016 BUG_ON(to > PAGE_SIZE);
2017 BUG_ON(from > to);
2018
2019 head = create_page_buffers(page, inode, 0);
2020 blocksize = head->b_size;
2021 bbits = block_size_bits(blocksize);
2022
2023 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2024
2025 for(bh = head, block_start = 0; bh != head || !block_start;
2026 block++, block_start=block_end, bh = bh->b_this_page) {
2027 block_end = block_start + blocksize;
2028 if (block_end <= from || block_start >= to) {
2029 if (PageUptodate(page)) {
2030 if (!buffer_uptodate(bh))
2031 set_buffer_uptodate(bh);
2032 }
2033 continue;
2034 }
2035 if (buffer_new(bh))
2036 clear_buffer_new(bh);
2037 if (!buffer_mapped(bh)) {
2038 WARN_ON(bh->b_size != blocksize);
2039 if (get_block) {
2040 err = get_block(inode, block, bh, 1);
2041 if (err)
2042 break;
2043 } else {
2044 iomap_to_bh(inode, block, bh, iomap);
2045 }
2046
2047 if (buffer_new(bh)) {
2048 clean_bdev_bh_alias(bh);
2049 if (PageUptodate(page)) {
2050 clear_buffer_new(bh);
2051 set_buffer_uptodate(bh);
2052 mark_buffer_dirty(bh);
2053 continue;
2054 }
2055 if (block_end > to || block_start < from)
2056 zero_user_segments(page,
2057 to, block_end,
2058 block_start, from);
2059 continue;
2060 }
2061 }
2062 if (PageUptodate(page)) {
2063 if (!buffer_uptodate(bh))
2064 set_buffer_uptodate(bh);
2065 continue;
2066 }
2067 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2068 !buffer_unwritten(bh) &&
2069 (block_start < from || block_end > to)) {
2070 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2071 *wait_bh++=bh;
2072 }
2073 }
2074 /*
2075 * If we issued read requests - let them complete.
2076 */
2077 while(wait_bh > wait) {
2078 wait_on_buffer(*--wait_bh);
2079 if (!buffer_uptodate(*wait_bh))
2080 err = -EIO;
2081 }
2082 if (unlikely(err))
2083 page_zero_new_buffers(page, from, to);
2084 return err;
2085 }
2086
2087 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2088 get_block_t *get_block)
2089 {
2090 return __block_write_begin_int(page, pos, len, get_block, NULL);
2091 }
2092 EXPORT_SYMBOL(__block_write_begin);
2093
2094 static int __block_commit_write(struct inode *inode, struct page *page,
2095 unsigned from, unsigned to)
2096 {
2097 unsigned block_start, block_end;
2098 int partial = 0;
2099 unsigned blocksize;
2100 struct buffer_head *bh, *head;
2101
2102 bh = head = page_buffers(page);
2103 blocksize = bh->b_size;
2104
2105 block_start = 0;
2106 do {
2107 block_end = block_start + blocksize;
2108 if (block_end <= from || block_start >= to) {
2109 if (!buffer_uptodate(bh))
2110 partial = 1;
2111 } else {
2112 set_buffer_uptodate(bh);
2113 mark_buffer_dirty(bh);
2114 }
2115 clear_buffer_new(bh);
2116
2117 block_start = block_end;
2118 bh = bh->b_this_page;
2119 } while (bh != head);
2120
2121 /*
2122 * If this is a partial write which happened to make all buffers
2123 * uptodate then we can optimize away a bogus readpage() for
2124 * the next read(). Here we 'discover' whether the page went
2125 * uptodate as a result of this (potentially partial) write.
2126 */
2127 if (!partial)
2128 SetPageUptodate(page);
2129 return 0;
2130 }
2131
2132 /*
2133 * block_write_begin takes care of the basic task of block allocation and
2134 * bringing partial write blocks uptodate first.
2135 *
2136 * The filesystem needs to handle block truncation upon failure.
2137 */
2138 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2139 unsigned flags, struct page **pagep, get_block_t *get_block)
2140 {
2141 pgoff_t index = pos >> PAGE_SHIFT;
2142 struct page *page;
2143 int status;
2144
2145 page = grab_cache_page_write_begin(mapping, index, flags);
2146 if (!page)
2147 return -ENOMEM;
2148
2149 status = __block_write_begin(page, pos, len, get_block);
2150 if (unlikely(status)) {
2151 unlock_page(page);
2152 put_page(page);
2153 page = NULL;
2154 }
2155
2156 *pagep = page;
2157 return status;
2158 }
2159 EXPORT_SYMBOL(block_write_begin);
2160
2161 int block_write_end(struct file *file, struct address_space *mapping,
2162 loff_t pos, unsigned len, unsigned copied,
2163 struct page *page, void *fsdata)
2164 {
2165 struct inode *inode = mapping->host;
2166 unsigned start;
2167
2168 start = pos & (PAGE_SIZE - 1);
2169
2170 if (unlikely(copied < len)) {
2171 /*
2172 * The buffers that were written will now be uptodate, so we
2173 * don't have to worry about a readpage reading them and
2174 * overwriting a partial write. However if we have encountered
2175 * a short write and only partially written into a buffer, it
2176 * will not be marked uptodate, so a readpage might come in and
2177 * destroy our partial write.
2178 *
2179 * Do the simplest thing, and just treat any short write to a
2180 * non uptodate page as a zero-length write, and force the
2181 * caller to redo the whole thing.
2182 */
2183 if (!PageUptodate(page))
2184 copied = 0;
2185
2186 page_zero_new_buffers(page, start+copied, start+len);
2187 }
2188 flush_dcache_page(page);
2189
2190 /* This could be a short (even 0-length) commit */
2191 __block_commit_write(inode, page, start, start+copied);
2192
2193 return copied;
2194 }
2195 EXPORT_SYMBOL(block_write_end);
2196
2197 int generic_write_end(struct file *file, struct address_space *mapping,
2198 loff_t pos, unsigned len, unsigned copied,
2199 struct page *page, void *fsdata)
2200 {
2201 struct inode *inode = mapping->host;
2202 loff_t old_size = inode->i_size;
2203 int i_size_changed = 0;
2204
2205 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2206
2207 /*
2208 * No need to use i_size_read() here, the i_size
2209 * cannot change under us because we hold i_mutex.
2210 *
2211 * But it's important to update i_size while still holding page lock:
2212 * page writeout could otherwise come in and zero beyond i_size.
2213 */
2214 if (pos+copied > inode->i_size) {
2215 i_size_write(inode, pos+copied);
2216 i_size_changed = 1;
2217 }
2218
2219 unlock_page(page);
2220 put_page(page);
2221
2222 if (old_size < pos)
2223 pagecache_isize_extended(inode, old_size, pos);
2224 /*
2225 * Don't mark the inode dirty under page lock. First, it unnecessarily
2226 * makes the holding time of page lock longer. Second, it forces lock
2227 * ordering of page lock and transaction start for journaling
2228 * filesystems.
2229 */
2230 if (i_size_changed)
2231 mark_inode_dirty(inode);
2232
2233 return copied;
2234 }
2235 EXPORT_SYMBOL(generic_write_end);
2236
2237 /*
2238 * block_is_partially_uptodate checks whether buffers within a page are
2239 * uptodate or not.
2240 *
2241 * Returns true if all buffers which correspond to a file portion
2242 * we want to read are uptodate.
2243 */
2244 int block_is_partially_uptodate(struct page *page, unsigned long from,
2245 unsigned long count)
2246 {
2247 unsigned block_start, block_end, blocksize;
2248 unsigned to;
2249 struct buffer_head *bh, *head;
2250 int ret = 1;
2251
2252 if (!page_has_buffers(page))
2253 return 0;
2254
2255 head = page_buffers(page);
2256 blocksize = head->b_size;
2257 to = min_t(unsigned, PAGE_SIZE - from, count);
2258 to = from + to;
2259 if (from < blocksize && to > PAGE_SIZE - blocksize)
2260 return 0;
2261
2262 bh = head;
2263 block_start = 0;
2264 do {
2265 block_end = block_start + blocksize;
2266 if (block_end > from && block_start < to) {
2267 if (!buffer_uptodate(bh)) {
2268 ret = 0;
2269 break;
2270 }
2271 if (block_end >= to)
2272 break;
2273 }
2274 block_start = block_end;
2275 bh = bh->b_this_page;
2276 } while (bh != head);
2277
2278 return ret;
2279 }
2280 EXPORT_SYMBOL(block_is_partially_uptodate);
2281
2282 /*
2283 * Generic "read page" function for block devices that have the normal
2284 * get_block functionality. This is most of the block device filesystems.
2285 * Reads the page asynchronously --- the unlock_buffer() and
2286 * set/clear_buffer_uptodate() functions propagate buffer state into the
2287 * page struct once IO has completed.
2288 */
2289 int block_read_full_page(struct page *page, get_block_t *get_block)
2290 {
2291 struct inode *inode = page->mapping->host;
2292 sector_t iblock, lblock;
2293 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2294 unsigned int blocksize, bbits;
2295 int nr, i;
2296 int fully_mapped = 1;
2297
2298 head = create_page_buffers(page, inode, 0);
2299 blocksize = head->b_size;
2300 bbits = block_size_bits(blocksize);
2301
2302 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2303 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2304 bh = head;
2305 nr = 0;
2306 i = 0;
2307
2308 do {
2309 if (buffer_uptodate(bh))
2310 continue;
2311
2312 if (!buffer_mapped(bh)) {
2313 int err = 0;
2314
2315 fully_mapped = 0;
2316 if (iblock < lblock) {
2317 WARN_ON(bh->b_size != blocksize);
2318 err = get_block(inode, iblock, bh, 0);
2319 if (err)
2320 SetPageError(page);
2321 }
2322 if (!buffer_mapped(bh)) {
2323 zero_user(page, i * blocksize, blocksize);
2324 if (!err)
2325 set_buffer_uptodate(bh);
2326 continue;
2327 }
2328 /*
2329 * get_block() might have updated the buffer
2330 * synchronously
2331 */
2332 if (buffer_uptodate(bh))
2333 continue;
2334 }
2335 arr[nr++] = bh;
2336 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2337
2338 if (fully_mapped)
2339 SetPageMappedToDisk(page);
2340
2341 if (!nr) {
2342 /*
2343 * All buffers are uptodate - we can set the page uptodate
2344 * as well. But not if get_block() returned an error.
2345 */
2346 if (!PageError(page))
2347 SetPageUptodate(page);
2348 unlock_page(page);
2349 return 0;
2350 }
2351
2352 /* Stage two: lock the buffers */
2353 for (i = 0; i < nr; i++) {
2354 bh = arr[i];
2355 lock_buffer(bh);
2356 mark_buffer_async_read(bh);
2357 }
2358
2359 /*
2360 * Stage 3: start the IO. Check for uptodateness
2361 * inside the buffer lock in case another process reading
2362 * the underlying blockdev brought it uptodate (the sct fix).
2363 */
2364 for (i = 0; i < nr; i++) {
2365 bh = arr[i];
2366 if (buffer_uptodate(bh))
2367 end_buffer_async_read(bh, 1);
2368 else
2369 submit_bh(REQ_OP_READ, 0, bh);
2370 }
2371 return 0;
2372 }
2373 EXPORT_SYMBOL(block_read_full_page);
2374
2375 /* utility function for filesystems that need to do work on expanding
2376 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2377 * deal with the hole.
2378 */
2379 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2380 {
2381 struct address_space *mapping = inode->i_mapping;
2382 struct page *page;
2383 void *fsdata;
2384 int err;
2385
2386 err = inode_newsize_ok(inode, size);
2387 if (err)
2388 goto out;
2389
2390 err = pagecache_write_begin(NULL, mapping, size, 0,
2391 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2392 if (err)
2393 goto out;
2394
2395 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2396 BUG_ON(err > 0);
2397
2398 out:
2399 return err;
2400 }
2401 EXPORT_SYMBOL(generic_cont_expand_simple);
2402
2403 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2404 loff_t pos, loff_t *bytes)
2405 {
2406 struct inode *inode = mapping->host;
2407 unsigned int blocksize = i_blocksize(inode);
2408 struct page *page;
2409 void *fsdata;
2410 pgoff_t index, curidx;
2411 loff_t curpos;
2412 unsigned zerofrom, offset, len;
2413 int err = 0;
2414
2415 index = pos >> PAGE_SHIFT;
2416 offset = pos & ~PAGE_MASK;
2417
2418 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2419 zerofrom = curpos & ~PAGE_MASK;
2420 if (zerofrom & (blocksize-1)) {
2421 *bytes |= (blocksize-1);
2422 (*bytes)++;
2423 }
2424 len = PAGE_SIZE - zerofrom;
2425
2426 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2427 &page, &fsdata);
2428 if (err)
2429 goto out;
2430 zero_user(page, zerofrom, len);
2431 err = pagecache_write_end(file, mapping, curpos, len, len,
2432 page, fsdata);
2433 if (err < 0)
2434 goto out;
2435 BUG_ON(err != len);
2436 err = 0;
2437
2438 balance_dirty_pages_ratelimited(mapping);
2439
2440 if (unlikely(fatal_signal_pending(current))) {
2441 err = -EINTR;
2442 goto out;
2443 }
2444 }
2445
2446 /* page covers the boundary, find the boundary offset */
2447 if (index == curidx) {
2448 zerofrom = curpos & ~PAGE_MASK;
2449 /* if we will expand the thing last block will be filled */
2450 if (offset <= zerofrom) {
2451 goto out;
2452 }
2453 if (zerofrom & (blocksize-1)) {
2454 *bytes |= (blocksize-1);
2455 (*bytes)++;
2456 }
2457 len = offset - zerofrom;
2458
2459 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2460 &page, &fsdata);
2461 if (err)
2462 goto out;
2463 zero_user(page, zerofrom, len);
2464 err = pagecache_write_end(file, mapping, curpos, len, len,
2465 page, fsdata);
2466 if (err < 0)
2467 goto out;
2468 BUG_ON(err != len);
2469 err = 0;
2470 }
2471 out:
2472 return err;
2473 }
2474
2475 /*
2476 * For moronic filesystems that do not allow holes in file.
2477 * We may have to extend the file.
2478 */
2479 int cont_write_begin(struct file *file, struct address_space *mapping,
2480 loff_t pos, unsigned len, unsigned flags,
2481 struct page **pagep, void **fsdata,
2482 get_block_t *get_block, loff_t *bytes)
2483 {
2484 struct inode *inode = mapping->host;
2485 unsigned int blocksize = i_blocksize(inode);
2486 unsigned int zerofrom;
2487 int err;
2488
2489 err = cont_expand_zero(file, mapping, pos, bytes);
2490 if (err)
2491 return err;
2492
2493 zerofrom = *bytes & ~PAGE_MASK;
2494 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2495 *bytes |= (blocksize-1);
2496 (*bytes)++;
2497 }
2498
2499 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2500 }
2501 EXPORT_SYMBOL(cont_write_begin);
2502
2503 int block_commit_write(struct page *page, unsigned from, unsigned to)
2504 {
2505 struct inode *inode = page->mapping->host;
2506 __block_commit_write(inode,page,from,to);
2507 return 0;
2508 }
2509 EXPORT_SYMBOL(block_commit_write);
2510
2511 /*
2512 * block_page_mkwrite() is not allowed to change the file size as it gets
2513 * called from a page fault handler when a page is first dirtied. Hence we must
2514 * be careful to check for EOF conditions here. We set the page up correctly
2515 * for a written page which means we get ENOSPC checking when writing into
2516 * holes and correct delalloc and unwritten extent mapping on filesystems that
2517 * support these features.
2518 *
2519 * We are not allowed to take the i_mutex here so we have to play games to
2520 * protect against truncate races as the page could now be beyond EOF. Because
2521 * truncate writes the inode size before removing pages, once we have the
2522 * page lock we can determine safely if the page is beyond EOF. If it is not
2523 * beyond EOF, then the page is guaranteed safe against truncation until we
2524 * unlock the page.
2525 *
2526 * Direct callers of this function should protect against filesystem freezing
2527 * using sb_start_pagefault() - sb_end_pagefault() functions.
2528 */
2529 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2530 get_block_t get_block)
2531 {
2532 struct page *page = vmf->page;
2533 struct inode *inode = file_inode(vma->vm_file);
2534 unsigned long end;
2535 loff_t size;
2536 int ret;
2537
2538 lock_page(page);
2539 size = i_size_read(inode);
2540 if ((page->mapping != inode->i_mapping) ||
2541 (page_offset(page) > size)) {
2542 /* We overload EFAULT to mean page got truncated */
2543 ret = -EFAULT;
2544 goto out_unlock;
2545 }
2546
2547 /* page is wholly or partially inside EOF */
2548 if (((page->index + 1) << PAGE_SHIFT) > size)
2549 end = size & ~PAGE_MASK;
2550 else
2551 end = PAGE_SIZE;
2552
2553 ret = __block_write_begin(page, 0, end, get_block);
2554 if (!ret)
2555 ret = block_commit_write(page, 0, end);
2556
2557 if (unlikely(ret < 0))
2558 goto out_unlock;
2559 set_page_dirty(page);
2560 wait_for_stable_page(page);
2561 return 0;
2562 out_unlock:
2563 unlock_page(page);
2564 return ret;
2565 }
2566 EXPORT_SYMBOL(block_page_mkwrite);
2567
2568 /*
2569 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2570 * immediately, while under the page lock. So it needs a special end_io
2571 * handler which does not touch the bh after unlocking it.
2572 */
2573 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2574 {
2575 __end_buffer_read_notouch(bh, uptodate);
2576 }
2577
2578 /*
2579 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2580 * the page (converting it to circular linked list and taking care of page
2581 * dirty races).
2582 */
2583 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2584 {
2585 struct buffer_head *bh;
2586
2587 BUG_ON(!PageLocked(page));
2588
2589 spin_lock(&page->mapping->private_lock);
2590 bh = head;
2591 do {
2592 if (PageDirty(page))
2593 set_buffer_dirty(bh);
2594 if (!bh->b_this_page)
2595 bh->b_this_page = head;
2596 bh = bh->b_this_page;
2597 } while (bh != head);
2598 attach_page_buffers(page, head);
2599 spin_unlock(&page->mapping->private_lock);
2600 }
2601
2602 /*
2603 * On entry, the page is fully not uptodate.
2604 * On exit the page is fully uptodate in the areas outside (from,to)
2605 * The filesystem needs to handle block truncation upon failure.
2606 */
2607 int nobh_write_begin(struct address_space *mapping,
2608 loff_t pos, unsigned len, unsigned flags,
2609 struct page **pagep, void **fsdata,
2610 get_block_t *get_block)
2611 {
2612 struct inode *inode = mapping->host;
2613 const unsigned blkbits = inode->i_blkbits;
2614 const unsigned blocksize = 1 << blkbits;
2615 struct buffer_head *head, *bh;
2616 struct page *page;
2617 pgoff_t index;
2618 unsigned from, to;
2619 unsigned block_in_page;
2620 unsigned block_start, block_end;
2621 sector_t block_in_file;
2622 int nr_reads = 0;
2623 int ret = 0;
2624 int is_mapped_to_disk = 1;
2625
2626 index = pos >> PAGE_SHIFT;
2627 from = pos & (PAGE_SIZE - 1);
2628 to = from + len;
2629
2630 page = grab_cache_page_write_begin(mapping, index, flags);
2631 if (!page)
2632 return -ENOMEM;
2633 *pagep = page;
2634 *fsdata = NULL;
2635
2636 if (page_has_buffers(page)) {
2637 ret = __block_write_begin(page, pos, len, get_block);
2638 if (unlikely(ret))
2639 goto out_release;
2640 return ret;
2641 }
2642
2643 if (PageMappedToDisk(page))
2644 return 0;
2645
2646 /*
2647 * Allocate buffers so that we can keep track of state, and potentially
2648 * attach them to the page if an error occurs. In the common case of
2649 * no error, they will just be freed again without ever being attached
2650 * to the page (which is all OK, because we're under the page lock).
2651 *
2652 * Be careful: the buffer linked list is a NULL terminated one, rather
2653 * than the circular one we're used to.
2654 */
2655 head = alloc_page_buffers(page, blocksize, 0);
2656 if (!head) {
2657 ret = -ENOMEM;
2658 goto out_release;
2659 }
2660
2661 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2662
2663 /*
2664 * We loop across all blocks in the page, whether or not they are
2665 * part of the affected region. This is so we can discover if the
2666 * page is fully mapped-to-disk.
2667 */
2668 for (block_start = 0, block_in_page = 0, bh = head;
2669 block_start < PAGE_SIZE;
2670 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2671 int create;
2672
2673 block_end = block_start + blocksize;
2674 bh->b_state = 0;
2675 create = 1;
2676 if (block_start >= to)
2677 create = 0;
2678 ret = get_block(inode, block_in_file + block_in_page,
2679 bh, create);
2680 if (ret)
2681 goto failed;
2682 if (!buffer_mapped(bh))
2683 is_mapped_to_disk = 0;
2684 if (buffer_new(bh))
2685 clean_bdev_bh_alias(bh);
2686 if (PageUptodate(page)) {
2687 set_buffer_uptodate(bh);
2688 continue;
2689 }
2690 if (buffer_new(bh) || !buffer_mapped(bh)) {
2691 zero_user_segments(page, block_start, from,
2692 to, block_end);
2693 continue;
2694 }
2695 if (buffer_uptodate(bh))
2696 continue; /* reiserfs does this */
2697 if (block_start < from || block_end > to) {
2698 lock_buffer(bh);
2699 bh->b_end_io = end_buffer_read_nobh;
2700 submit_bh(REQ_OP_READ, 0, bh);
2701 nr_reads++;
2702 }
2703 }
2704
2705 if (nr_reads) {
2706 /*
2707 * The page is locked, so these buffers are protected from
2708 * any VM or truncate activity. Hence we don't need to care
2709 * for the buffer_head refcounts.
2710 */
2711 for (bh = head; bh; bh = bh->b_this_page) {
2712 wait_on_buffer(bh);
2713 if (!buffer_uptodate(bh))
2714 ret = -EIO;
2715 }
2716 if (ret)
2717 goto failed;
2718 }
2719
2720 if (is_mapped_to_disk)
2721 SetPageMappedToDisk(page);
2722
2723 *fsdata = head; /* to be released by nobh_write_end */
2724
2725 return 0;
2726
2727 failed:
2728 BUG_ON(!ret);
2729 /*
2730 * Error recovery is a bit difficult. We need to zero out blocks that
2731 * were newly allocated, and dirty them to ensure they get written out.
2732 * Buffers need to be attached to the page at this point, otherwise
2733 * the handling of potential IO errors during writeout would be hard
2734 * (could try doing synchronous writeout, but what if that fails too?)
2735 */
2736 attach_nobh_buffers(page, head);
2737 page_zero_new_buffers(page, from, to);
2738
2739 out_release:
2740 unlock_page(page);
2741 put_page(page);
2742 *pagep = NULL;
2743
2744 return ret;
2745 }
2746 EXPORT_SYMBOL(nobh_write_begin);
2747
2748 int nobh_write_end(struct file *file, struct address_space *mapping,
2749 loff_t pos, unsigned len, unsigned copied,
2750 struct page *page, void *fsdata)
2751 {
2752 struct inode *inode = page->mapping->host;
2753 struct buffer_head *head = fsdata;
2754 struct buffer_head *bh;
2755 BUG_ON(fsdata != NULL && page_has_buffers(page));
2756
2757 if (unlikely(copied < len) && head)
2758 attach_nobh_buffers(page, head);
2759 if (page_has_buffers(page))
2760 return generic_write_end(file, mapping, pos, len,
2761 copied, page, fsdata);
2762
2763 SetPageUptodate(page);
2764 set_page_dirty(page);
2765 if (pos+copied > inode->i_size) {
2766 i_size_write(inode, pos+copied);
2767 mark_inode_dirty(inode);
2768 }
2769
2770 unlock_page(page);
2771 put_page(page);
2772
2773 while (head) {
2774 bh = head;
2775 head = head->b_this_page;
2776 free_buffer_head(bh);
2777 }
2778
2779 return copied;
2780 }
2781 EXPORT_SYMBOL(nobh_write_end);
2782
2783 /*
2784 * nobh_writepage() - based on block_full_write_page() except
2785 * that it tries to operate without attaching bufferheads to
2786 * the page.
2787 */
2788 int nobh_writepage(struct page *page, get_block_t *get_block,
2789 struct writeback_control *wbc)
2790 {
2791 struct inode * const inode = page->mapping->host;
2792 loff_t i_size = i_size_read(inode);
2793 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2794 unsigned offset;
2795 int ret;
2796
2797 /* Is the page fully inside i_size? */
2798 if (page->index < end_index)
2799 goto out;
2800
2801 /* Is the page fully outside i_size? (truncate in progress) */
2802 offset = i_size & (PAGE_SIZE-1);
2803 if (page->index >= end_index+1 || !offset) {
2804 /*
2805 * The page may have dirty, unmapped buffers. For example,
2806 * they may have been added in ext3_writepage(). Make them
2807 * freeable here, so the page does not leak.
2808 */
2809 #if 0
2810 /* Not really sure about this - do we need this ? */
2811 if (page->mapping->a_ops->invalidatepage)
2812 page->mapping->a_ops->invalidatepage(page, offset);
2813 #endif
2814 unlock_page(page);
2815 return 0; /* don't care */
2816 }
2817
2818 /*
2819 * The page straddles i_size. It must be zeroed out on each and every
2820 * writepage invocation because it may be mmapped. "A file is mapped
2821 * in multiples of the page size. For a file that is not a multiple of
2822 * the page size, the remaining memory is zeroed when mapped, and
2823 * writes to that region are not written out to the file."
2824 */
2825 zero_user_segment(page, offset, PAGE_SIZE);
2826 out:
2827 ret = mpage_writepage(page, get_block, wbc);
2828 if (ret == -EAGAIN)
2829 ret = __block_write_full_page(inode, page, get_block, wbc,
2830 end_buffer_async_write);
2831 return ret;
2832 }
2833 EXPORT_SYMBOL(nobh_writepage);
2834
2835 int nobh_truncate_page(struct address_space *mapping,
2836 loff_t from, get_block_t *get_block)
2837 {
2838 pgoff_t index = from >> PAGE_SHIFT;
2839 unsigned offset = from & (PAGE_SIZE-1);
2840 unsigned blocksize;
2841 sector_t iblock;
2842 unsigned length, pos;
2843 struct inode *inode = mapping->host;
2844 struct page *page;
2845 struct buffer_head map_bh;
2846 int err;
2847
2848 blocksize = i_blocksize(inode);
2849 length = offset & (blocksize - 1);
2850
2851 /* Block boundary? Nothing to do */
2852 if (!length)
2853 return 0;
2854
2855 length = blocksize - length;
2856 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2857
2858 page = grab_cache_page(mapping, index);
2859 err = -ENOMEM;
2860 if (!page)
2861 goto out;
2862
2863 if (page_has_buffers(page)) {
2864 has_buffers:
2865 unlock_page(page);
2866 put_page(page);
2867 return block_truncate_page(mapping, from, get_block);
2868 }
2869
2870 /* Find the buffer that contains "offset" */
2871 pos = blocksize;
2872 while (offset >= pos) {
2873 iblock++;
2874 pos += blocksize;
2875 }
2876
2877 map_bh.b_size = blocksize;
2878 map_bh.b_state = 0;
2879 err = get_block(inode, iblock, &map_bh, 0);
2880 if (err)
2881 goto unlock;
2882 /* unmapped? It's a hole - nothing to do */
2883 if (!buffer_mapped(&map_bh))
2884 goto unlock;
2885
2886 /* Ok, it's mapped. Make sure it's up-to-date */
2887 if (!PageUptodate(page)) {
2888 err = mapping->a_ops->readpage(NULL, page);
2889 if (err) {
2890 put_page(page);
2891 goto out;
2892 }
2893 lock_page(page);
2894 if (!PageUptodate(page)) {
2895 err = -EIO;
2896 goto unlock;
2897 }
2898 if (page_has_buffers(page))
2899 goto has_buffers;
2900 }
2901 zero_user(page, offset, length);
2902 set_page_dirty(page);
2903 err = 0;
2904
2905 unlock:
2906 unlock_page(page);
2907 put_page(page);
2908 out:
2909 return err;
2910 }
2911 EXPORT_SYMBOL(nobh_truncate_page);
2912
2913 int block_truncate_page(struct address_space *mapping,
2914 loff_t from, get_block_t *get_block)
2915 {
2916 pgoff_t index = from >> PAGE_SHIFT;
2917 unsigned offset = from & (PAGE_SIZE-1);
2918 unsigned blocksize;
2919 sector_t iblock;
2920 unsigned length, pos;
2921 struct inode *inode = mapping->host;
2922 struct page *page;
2923 struct buffer_head *bh;
2924 int err;
2925
2926 blocksize = i_blocksize(inode);
2927 length = offset & (blocksize - 1);
2928
2929 /* Block boundary? Nothing to do */
2930 if (!length)
2931 return 0;
2932
2933 length = blocksize - length;
2934 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2935
2936 page = grab_cache_page(mapping, index);
2937 err = -ENOMEM;
2938 if (!page)
2939 goto out;
2940
2941 if (!page_has_buffers(page))
2942 create_empty_buffers(page, blocksize, 0);
2943
2944 /* Find the buffer that contains "offset" */
2945 bh = page_buffers(page);
2946 pos = blocksize;
2947 while (offset >= pos) {
2948 bh = bh->b_this_page;
2949 iblock++;
2950 pos += blocksize;
2951 }
2952
2953 err = 0;
2954 if (!buffer_mapped(bh)) {
2955 WARN_ON(bh->b_size != blocksize);
2956 err = get_block(inode, iblock, bh, 0);
2957 if (err)
2958 goto unlock;
2959 /* unmapped? It's a hole - nothing to do */
2960 if (!buffer_mapped(bh))
2961 goto unlock;
2962 }
2963
2964 /* Ok, it's mapped. Make sure it's up-to-date */
2965 if (PageUptodate(page))
2966 set_buffer_uptodate(bh);
2967
2968 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2969 err = -EIO;
2970 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2971 wait_on_buffer(bh);
2972 /* Uhhuh. Read error. Complain and punt. */
2973 if (!buffer_uptodate(bh))
2974 goto unlock;
2975 }
2976
2977 zero_user(page, offset, length);
2978 mark_buffer_dirty(bh);
2979 err = 0;
2980
2981 unlock:
2982 unlock_page(page);
2983 put_page(page);
2984 out:
2985 return err;
2986 }
2987 EXPORT_SYMBOL(block_truncate_page);
2988
2989 /*
2990 * The generic ->writepage function for buffer-backed address_spaces
2991 */
2992 int block_write_full_page(struct page *page, get_block_t *get_block,
2993 struct writeback_control *wbc)
2994 {
2995 struct inode * const inode = page->mapping->host;
2996 loff_t i_size = i_size_read(inode);
2997 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2998 unsigned offset;
2999
3000 /* Is the page fully inside i_size? */
3001 if (page->index < end_index)
3002 return __block_write_full_page(inode, page, get_block, wbc,
3003 end_buffer_async_write);
3004
3005 /* Is the page fully outside i_size? (truncate in progress) */
3006 offset = i_size & (PAGE_SIZE-1);
3007 if (page->index >= end_index+1 || !offset) {
3008 /*
3009 * The page may have dirty, unmapped buffers. For example,
3010 * they may have been added in ext3_writepage(). Make them
3011 * freeable here, so the page does not leak.
3012 */
3013 do_invalidatepage(page, 0, PAGE_SIZE);
3014 unlock_page(page);
3015 return 0; /* don't care */
3016 }
3017
3018 /*
3019 * The page straddles i_size. It must be zeroed out on each and every
3020 * writepage invocation because it may be mmapped. "A file is mapped
3021 * in multiples of the page size. For a file that is not a multiple of
3022 * the page size, the remaining memory is zeroed when mapped, and
3023 * writes to that region are not written out to the file."
3024 */
3025 zero_user_segment(page, offset, PAGE_SIZE);
3026 return __block_write_full_page(inode, page, get_block, wbc,
3027 end_buffer_async_write);
3028 }
3029 EXPORT_SYMBOL(block_write_full_page);
3030
3031 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3032 get_block_t *get_block)
3033 {
3034 struct inode *inode = mapping->host;
3035 struct buffer_head tmp = {
3036 .b_size = i_blocksize(inode),
3037 };
3038
3039 get_block(inode, block, &tmp, 0);
3040 return tmp.b_blocknr;
3041 }
3042 EXPORT_SYMBOL(generic_block_bmap);
3043
3044 static void end_bio_bh_io_sync(struct bio *bio)
3045 {
3046 struct buffer_head *bh = bio->bi_private;
3047
3048 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3049 set_bit(BH_Quiet, &bh->b_state);
3050
3051 bh->b_end_io(bh, !bio->bi_status);
3052 bio_put(bio);
3053 }
3054
3055 /*
3056 * This allows us to do IO even on the odd last sectors
3057 * of a device, even if the block size is some multiple
3058 * of the physical sector size.
3059 *
3060 * We'll just truncate the bio to the size of the device,
3061 * and clear the end of the buffer head manually.
3062 *
3063 * Truly out-of-range accesses will turn into actual IO
3064 * errors, this only handles the "we need to be able to
3065 * do IO at the final sector" case.
3066 */
3067 void guard_bio_eod(int op, struct bio *bio)
3068 {
3069 sector_t maxsector;
3070 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3071 unsigned truncated_bytes;
3072
3073 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3074 if (!maxsector)
3075 return;
3076
3077 /*
3078 * If the *whole* IO is past the end of the device,
3079 * let it through, and the IO layer will turn it into
3080 * an EIO.
3081 */
3082 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3083 return;
3084
3085 maxsector -= bio->bi_iter.bi_sector;
3086 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3087 return;
3088
3089 /* Uhhuh. We've got a bio that straddles the device size! */
3090 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3091
3092 /* Truncate the bio.. */
3093 bio->bi_iter.bi_size -= truncated_bytes;
3094 bvec->bv_len -= truncated_bytes;
3095
3096 /* ..and clear the end of the buffer for reads */
3097 if (op == REQ_OP_READ) {
3098 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3099 truncated_bytes);
3100 }
3101 }
3102
3103 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3104 enum rw_hint write_hint, struct writeback_control *wbc)
3105 {
3106 struct bio *bio;
3107
3108 BUG_ON(!buffer_locked(bh));
3109 BUG_ON(!buffer_mapped(bh));
3110 BUG_ON(!bh->b_end_io);
3111 BUG_ON(buffer_delay(bh));
3112 BUG_ON(buffer_unwritten(bh));
3113
3114 /*
3115 * Only clear out a write error when rewriting
3116 */
3117 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3118 clear_buffer_write_io_error(bh);
3119
3120 /*
3121 * from here on down, it's all bio -- do the initial mapping,
3122 * submit_bio -> generic_make_request may further map this bio around
3123 */
3124 bio = bio_alloc(GFP_NOIO, 1);
3125
3126 if (wbc) {
3127 wbc_init_bio(wbc, bio);
3128 wbc_account_io(wbc, bh->b_page, bh->b_size);
3129 }
3130
3131 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3132 bio->bi_bdev = bh->b_bdev;
3133 bio->bi_write_hint = write_hint;
3134
3135 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3136 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3137
3138 bio->bi_end_io = end_bio_bh_io_sync;
3139 bio->bi_private = bh;
3140
3141 /* Take care of bh's that straddle the end of the device */
3142 guard_bio_eod(op, bio);
3143
3144 if (buffer_meta(bh))
3145 op_flags |= REQ_META;
3146 if (buffer_prio(bh))
3147 op_flags |= REQ_PRIO;
3148 bio_set_op_attrs(bio, op, op_flags);
3149
3150 submit_bio(bio);
3151 return 0;
3152 }
3153
3154 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3155 {
3156 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3157 }
3158 EXPORT_SYMBOL(submit_bh);
3159
3160 /**
3161 * ll_rw_block: low-level access to block devices (DEPRECATED)
3162 * @op: whether to %READ or %WRITE
3163 * @op_flags: req_flag_bits
3164 * @nr: number of &struct buffer_heads in the array
3165 * @bhs: array of pointers to &struct buffer_head
3166 *
3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3170 * %REQ_RAHEAD.
3171 *
3172 * This function drops any buffer that it cannot get a lock on (with the
3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3174 * request, and any buffer that appears to be up-to-date when doing read
3175 * request. Further it marks as clean buffers that are processed for
3176 * writing (the buffer cache won't assume that they are actually clean
3177 * until the buffer gets unlocked).
3178 *
3179 * ll_rw_block sets b_end_io to simple completion handler that marks
3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3181 * any waiters.
3182 *
3183 * All of the buffers must be for the same device, and must also be a
3184 * multiple of the current approved size for the device.
3185 */
3186 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3187 {
3188 int i;
3189
3190 for (i = 0; i < nr; i++) {
3191 struct buffer_head *bh = bhs[i];
3192
3193 if (!trylock_buffer(bh))
3194 continue;
3195 if (op == WRITE) {
3196 if (test_clear_buffer_dirty(bh)) {
3197 bh->b_end_io = end_buffer_write_sync;
3198 get_bh(bh);
3199 submit_bh(op, op_flags, bh);
3200 continue;
3201 }
3202 } else {
3203 if (!buffer_uptodate(bh)) {
3204 bh->b_end_io = end_buffer_read_sync;
3205 get_bh(bh);
3206 submit_bh(op, op_flags, bh);
3207 continue;
3208 }
3209 }
3210 unlock_buffer(bh);
3211 }
3212 }
3213 EXPORT_SYMBOL(ll_rw_block);
3214
3215 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3216 {
3217 lock_buffer(bh);
3218 if (!test_clear_buffer_dirty(bh)) {
3219 unlock_buffer(bh);
3220 return;
3221 }
3222 bh->b_end_io = end_buffer_write_sync;
3223 get_bh(bh);
3224 submit_bh(REQ_OP_WRITE, op_flags, bh);
3225 }
3226 EXPORT_SYMBOL(write_dirty_buffer);
3227
3228 /*
3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3230 * and then start new I/O and then wait upon it. The caller must have a ref on
3231 * the buffer_head.
3232 */
3233 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3234 {
3235 int ret = 0;
3236
3237 WARN_ON(atomic_read(&bh->b_count) < 1);
3238 lock_buffer(bh);
3239 if (test_clear_buffer_dirty(bh)) {
3240 get_bh(bh);
3241 bh->b_end_io = end_buffer_write_sync;
3242 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3243 wait_on_buffer(bh);
3244 if (!ret && !buffer_uptodate(bh))
3245 ret = -EIO;
3246 } else {
3247 unlock_buffer(bh);
3248 }
3249 return ret;
3250 }
3251 EXPORT_SYMBOL(__sync_dirty_buffer);
3252
3253 int sync_dirty_buffer(struct buffer_head *bh)
3254 {
3255 return __sync_dirty_buffer(bh, REQ_SYNC);
3256 }
3257 EXPORT_SYMBOL(sync_dirty_buffer);
3258
3259 /*
3260 * try_to_free_buffers() checks if all the buffers on this particular page
3261 * are unused, and releases them if so.
3262 *
3263 * Exclusion against try_to_free_buffers may be obtained by either
3264 * locking the page or by holding its mapping's private_lock.
3265 *
3266 * If the page is dirty but all the buffers are clean then we need to
3267 * be sure to mark the page clean as well. This is because the page
3268 * may be against a block device, and a later reattachment of buffers
3269 * to a dirty page will set *all* buffers dirty. Which would corrupt
3270 * filesystem data on the same device.
3271 *
3272 * The same applies to regular filesystem pages: if all the buffers are
3273 * clean then we set the page clean and proceed. To do that, we require
3274 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3275 * private_lock.
3276 *
3277 * try_to_free_buffers() is non-blocking.
3278 */
3279 static inline int buffer_busy(struct buffer_head *bh)
3280 {
3281 return atomic_read(&bh->b_count) |
3282 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3283 }
3284
3285 static int
3286 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3287 {
3288 struct buffer_head *head = page_buffers(page);
3289 struct buffer_head *bh;
3290
3291 bh = head;
3292 do {
3293 if (buffer_busy(bh))
3294 goto failed;
3295 bh = bh->b_this_page;
3296 } while (bh != head);
3297
3298 do {
3299 struct buffer_head *next = bh->b_this_page;
3300
3301 if (bh->b_assoc_map)
3302 __remove_assoc_queue(bh);
3303 bh = next;
3304 } while (bh != head);
3305 *buffers_to_free = head;
3306 __clear_page_buffers(page);
3307 return 1;
3308 failed:
3309 return 0;
3310 }
3311
3312 int try_to_free_buffers(struct page *page)
3313 {
3314 struct address_space * const mapping = page->mapping;
3315 struct buffer_head *buffers_to_free = NULL;
3316 int ret = 0;
3317
3318 BUG_ON(!PageLocked(page));
3319 if (PageWriteback(page))
3320 return 0;
3321
3322 if (mapping == NULL) { /* can this still happen? */
3323 ret = drop_buffers(page, &buffers_to_free);
3324 goto out;
3325 }
3326
3327 spin_lock(&mapping->private_lock);
3328 ret = drop_buffers(page, &buffers_to_free);
3329
3330 /*
3331 * If the filesystem writes its buffers by hand (eg ext3)
3332 * then we can have clean buffers against a dirty page. We
3333 * clean the page here; otherwise the VM will never notice
3334 * that the filesystem did any IO at all.
3335 *
3336 * Also, during truncate, discard_buffer will have marked all
3337 * the page's buffers clean. We discover that here and clean
3338 * the page also.
3339 *
3340 * private_lock must be held over this entire operation in order
3341 * to synchronise against __set_page_dirty_buffers and prevent the
3342 * dirty bit from being lost.
3343 */
3344 if (ret)
3345 cancel_dirty_page(page);
3346 spin_unlock(&mapping->private_lock);
3347 out:
3348 if (buffers_to_free) {
3349 struct buffer_head *bh = buffers_to_free;
3350
3351 do {
3352 struct buffer_head *next = bh->b_this_page;
3353 free_buffer_head(bh);
3354 bh = next;
3355 } while (bh != buffers_to_free);
3356 }
3357 return ret;
3358 }
3359 EXPORT_SYMBOL(try_to_free_buffers);
3360
3361 /*
3362 * There are no bdflush tunables left. But distributions are
3363 * still running obsolete flush daemons, so we terminate them here.
3364 *
3365 * Use of bdflush() is deprecated and will be removed in a future kernel.
3366 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3367 */
3368 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3369 {
3370 static int msg_count;
3371
3372 if (!capable(CAP_SYS_ADMIN))
3373 return -EPERM;
3374
3375 if (msg_count < 5) {
3376 msg_count++;
3377 printk(KERN_INFO
3378 "warning: process `%s' used the obsolete bdflush"
3379 " system call\n", current->comm);
3380 printk(KERN_INFO "Fix your initscripts?\n");
3381 }
3382
3383 if (func == 1)
3384 do_exit(0);
3385 return 0;
3386 }
3387
3388 /*
3389 * Buffer-head allocation
3390 */
3391 static struct kmem_cache *bh_cachep __read_mostly;
3392
3393 /*
3394 * Once the number of bh's in the machine exceeds this level, we start
3395 * stripping them in writeback.
3396 */
3397 static unsigned long max_buffer_heads;
3398
3399 int buffer_heads_over_limit;
3400
3401 struct bh_accounting {
3402 int nr; /* Number of live bh's */
3403 int ratelimit; /* Limit cacheline bouncing */
3404 };
3405
3406 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3407
3408 static void recalc_bh_state(void)
3409 {
3410 int i;
3411 int tot = 0;
3412
3413 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3414 return;
3415 __this_cpu_write(bh_accounting.ratelimit, 0);
3416 for_each_online_cpu(i)
3417 tot += per_cpu(bh_accounting, i).nr;
3418 buffer_heads_over_limit = (tot > max_buffer_heads);
3419 }
3420
3421 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3422 {
3423 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3424 if (ret) {
3425 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3426 preempt_disable();
3427 __this_cpu_inc(bh_accounting.nr);
3428 recalc_bh_state();
3429 preempt_enable();
3430 }
3431 return ret;
3432 }
3433 EXPORT_SYMBOL(alloc_buffer_head);
3434
3435 void free_buffer_head(struct buffer_head *bh)
3436 {
3437 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3438 kmem_cache_free(bh_cachep, bh);
3439 preempt_disable();
3440 __this_cpu_dec(bh_accounting.nr);
3441 recalc_bh_state();
3442 preempt_enable();
3443 }
3444 EXPORT_SYMBOL(free_buffer_head);
3445
3446 static int buffer_exit_cpu_dead(unsigned int cpu)
3447 {
3448 int i;
3449 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3450
3451 for (i = 0; i < BH_LRU_SIZE; i++) {
3452 brelse(b->bhs[i]);
3453 b->bhs[i] = NULL;
3454 }
3455 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3456 per_cpu(bh_accounting, cpu).nr = 0;
3457 return 0;
3458 }
3459
3460 /**
3461 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3462 * @bh: struct buffer_head
3463 *
3464 * Return true if the buffer is up-to-date and false,
3465 * with the buffer locked, if not.
3466 */
3467 int bh_uptodate_or_lock(struct buffer_head *bh)
3468 {
3469 if (!buffer_uptodate(bh)) {
3470 lock_buffer(bh);
3471 if (!buffer_uptodate(bh))
3472 return 0;
3473 unlock_buffer(bh);
3474 }
3475 return 1;
3476 }
3477 EXPORT_SYMBOL(bh_uptodate_or_lock);
3478
3479 /**
3480 * bh_submit_read - Submit a locked buffer for reading
3481 * @bh: struct buffer_head
3482 *
3483 * Returns zero on success and -EIO on error.
3484 */
3485 int bh_submit_read(struct buffer_head *bh)
3486 {
3487 BUG_ON(!buffer_locked(bh));
3488
3489 if (buffer_uptodate(bh)) {
3490 unlock_buffer(bh);
3491 return 0;
3492 }
3493
3494 get_bh(bh);
3495 bh->b_end_io = end_buffer_read_sync;
3496 submit_bh(REQ_OP_READ, 0, bh);
3497 wait_on_buffer(bh);
3498 if (buffer_uptodate(bh))
3499 return 0;
3500 return -EIO;
3501 }
3502 EXPORT_SYMBOL(bh_submit_read);
3503
3504 /*
3505 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3506 *
3507 * Returns the offset within the file on success, and -ENOENT otherwise.
3508 */
3509 static loff_t
3510 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3511 {
3512 loff_t offset = page_offset(page);
3513 struct buffer_head *bh, *head;
3514 bool seek_data = whence == SEEK_DATA;
3515
3516 if (lastoff < offset)
3517 lastoff = offset;
3518
3519 bh = head = page_buffers(page);
3520 do {
3521 offset += bh->b_size;
3522 if (lastoff >= offset)
3523 continue;
3524
3525 /*
3526 * Unwritten extents that have data in the page cache covering
3527 * them can be identified by the BH_Unwritten state flag.
3528 * Pages with multiple buffers might have a mix of holes, data
3529 * and unwritten extents - any buffer with valid data in it
3530 * should have BH_Uptodate flag set on it.
3531 */
3532
3533 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3534 return lastoff;
3535
3536 lastoff = offset;
3537 } while ((bh = bh->b_this_page) != head);
3538 return -ENOENT;
3539 }
3540
3541 /*
3542 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3543 *
3544 * Within unwritten extents, the page cache determines which parts are holes
3545 * and which are data: unwritten and uptodate buffer heads count as data;
3546 * everything else counts as a hole.
3547 *
3548 * Returns the resulting offset on successs, and -ENOENT otherwise.
3549 */
3550 loff_t
3551 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3552 int whence)
3553 {
3554 pgoff_t index = offset >> PAGE_SHIFT;
3555 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3556 loff_t lastoff = offset;
3557 struct pagevec pvec;
3558
3559 if (length <= 0)
3560 return -ENOENT;
3561
3562 pagevec_init(&pvec, 0);
3563
3564 do {
3565 unsigned want, nr_pages, i;
3566
3567 want = min_t(unsigned, end - index, PAGEVEC_SIZE);
3568 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, want);
3569 if (nr_pages == 0)
3570 break;
3571
3572 for (i = 0; i < nr_pages; i++) {
3573 struct page *page = pvec.pages[i];
3574
3575 /*
3576 * At this point, the page may be truncated or
3577 * invalidated (changing page->mapping to NULL), or
3578 * even swizzled back from swapper_space to tmpfs file
3579 * mapping. However, page->index will not change
3580 * because we have a reference on the page.
3581 *
3582 * If current page offset is beyond where we've ended,
3583 * we've found a hole.
3584 */
3585 if (whence == SEEK_HOLE &&
3586 lastoff < page_offset(page))
3587 goto check_range;
3588
3589 /* Searching done if the page index is out of range. */
3590 if (page->index >= end)
3591 goto not_found;
3592
3593 lock_page(page);
3594 if (likely(page->mapping == inode->i_mapping) &&
3595 page_has_buffers(page)) {
3596 lastoff = page_seek_hole_data(page, lastoff, whence);
3597 if (lastoff >= 0) {
3598 unlock_page(page);
3599 goto check_range;
3600 }
3601 }
3602 unlock_page(page);
3603 lastoff = page_offset(page) + PAGE_SIZE;
3604 }
3605
3606 /* Searching done if fewer pages returned than wanted. */
3607 if (nr_pages < want)
3608 break;
3609
3610 index = pvec.pages[i - 1]->index + 1;
3611 pagevec_release(&pvec);
3612 } while (index < end);
3613
3614 /* When no page at lastoff and we are not done, we found a hole. */
3615 if (whence != SEEK_HOLE)
3616 goto not_found;
3617
3618 check_range:
3619 if (lastoff < offset + length)
3620 goto out;
3621 not_found:
3622 lastoff = -ENOENT;
3623 out:
3624 pagevec_release(&pvec);
3625 return lastoff;
3626 }
3627
3628 void __init buffer_init(void)
3629 {
3630 unsigned long nrpages;
3631 int ret;
3632
3633 bh_cachep = kmem_cache_create("buffer_head",
3634 sizeof(struct buffer_head), 0,
3635 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3636 SLAB_MEM_SPREAD),
3637 NULL);
3638
3639 /*
3640 * Limit the bh occupancy to 10% of ZONE_NORMAL
3641 */
3642 nrpages = (nr_free_buffer_pages() * 10) / 100;
3643 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3644 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3645 NULL, buffer_exit_cpu_dead);
3646 WARN_ON(ret < 0);
3647 }