]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dax.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
46
47 static int __init init_dax_wait_table(void)
48 {
49 int i;
50
51 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
52 init_waitqueue_head(wait_table + i);
53 return 0;
54 }
55 fs_initcall(init_dax_wait_table);
56
57 /*
58 * We use lowest available bit in exceptional entry for locking, one bit for
59 * the entry size (PMD) and two more to tell us if the entry is a zero page or
60 * an empty entry that is just used for locking. In total four special bits.
61 *
62 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
63 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
64 * block allocation.
65 */
66 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
67 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
68 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
69 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
70 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
71
72 static unsigned long dax_radix_sector(void *entry)
73 {
74 return (unsigned long)entry >> RADIX_DAX_SHIFT;
75 }
76
77 static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
78 {
79 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
80 ((unsigned long)sector << RADIX_DAX_SHIFT) |
81 RADIX_DAX_ENTRY_LOCK);
82 }
83
84 static unsigned int dax_radix_order(void *entry)
85 {
86 if ((unsigned long)entry & RADIX_DAX_PMD)
87 return PMD_SHIFT - PAGE_SHIFT;
88 return 0;
89 }
90
91 static int dax_is_pmd_entry(void *entry)
92 {
93 return (unsigned long)entry & RADIX_DAX_PMD;
94 }
95
96 static int dax_is_pte_entry(void *entry)
97 {
98 return !((unsigned long)entry & RADIX_DAX_PMD);
99 }
100
101 static int dax_is_zero_entry(void *entry)
102 {
103 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
104 }
105
106 static int dax_is_empty_entry(void *entry)
107 {
108 return (unsigned long)entry & RADIX_DAX_EMPTY;
109 }
110
111 /*
112 * DAX radix tree locking
113 */
114 struct exceptional_entry_key {
115 struct address_space *mapping;
116 pgoff_t entry_start;
117 };
118
119 struct wait_exceptional_entry_queue {
120 wait_queue_entry_t wait;
121 struct exceptional_entry_key key;
122 };
123
124 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
125 pgoff_t index, void *entry, struct exceptional_entry_key *key)
126 {
127 unsigned long hash;
128
129 /*
130 * If 'entry' is a PMD, align the 'index' that we use for the wait
131 * queue to the start of that PMD. This ensures that all offsets in
132 * the range covered by the PMD map to the same bit lock.
133 */
134 if (dax_is_pmd_entry(entry))
135 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
136
137 key->mapping = mapping;
138 key->entry_start = index;
139
140 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
141 return wait_table + hash;
142 }
143
144 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
145 int sync, void *keyp)
146 {
147 struct exceptional_entry_key *key = keyp;
148 struct wait_exceptional_entry_queue *ewait =
149 container_of(wait, struct wait_exceptional_entry_queue, wait);
150
151 if (key->mapping != ewait->key.mapping ||
152 key->entry_start != ewait->key.entry_start)
153 return 0;
154 return autoremove_wake_function(wait, mode, sync, NULL);
155 }
156
157 /*
158 * We do not necessarily hold the mapping->tree_lock when we call this
159 * function so it is possible that 'entry' is no longer a valid item in the
160 * radix tree. This is okay because all we really need to do is to find the
161 * correct waitqueue where tasks might be waiting for that old 'entry' and
162 * wake them.
163 */
164 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
165 pgoff_t index, void *entry, bool wake_all)
166 {
167 struct exceptional_entry_key key;
168 wait_queue_head_t *wq;
169
170 wq = dax_entry_waitqueue(mapping, index, entry, &key);
171
172 /*
173 * Checking for locked entry and prepare_to_wait_exclusive() happens
174 * under mapping->tree_lock, ditto for entry handling in our callers.
175 * So at this point all tasks that could have seen our entry locked
176 * must be in the waitqueue and the following check will see them.
177 */
178 if (waitqueue_active(wq))
179 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
180 }
181
182 /*
183 * Check whether the given slot is locked. The function must be called with
184 * mapping->tree_lock held
185 */
186 static inline int slot_locked(struct address_space *mapping, void **slot)
187 {
188 unsigned long entry = (unsigned long)
189 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
190 return entry & RADIX_DAX_ENTRY_LOCK;
191 }
192
193 /*
194 * Mark the given slot is locked. The function must be called with
195 * mapping->tree_lock held
196 */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199 unsigned long entry = (unsigned long)
200 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
201
202 entry |= RADIX_DAX_ENTRY_LOCK;
203 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
204 return (void *)entry;
205 }
206
207 /*
208 * Mark the given slot is unlocked. The function must be called with
209 * mapping->tree_lock held
210 */
211 static inline void *unlock_slot(struct address_space *mapping, void **slot)
212 {
213 unsigned long entry = (unsigned long)
214 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
215
216 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
217 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
218 return (void *)entry;
219 }
220
221 /*
222 * Lookup entry in radix tree, wait for it to become unlocked if it is
223 * exceptional entry and return it. The caller must call
224 * put_unlocked_mapping_entry() when he decided not to lock the entry or
225 * put_locked_mapping_entry() when he locked the entry and now wants to
226 * unlock it.
227 *
228 * The function must be called with mapping->tree_lock held.
229 */
230 static void *get_unlocked_mapping_entry(struct address_space *mapping,
231 pgoff_t index, void ***slotp)
232 {
233 void *entry, **slot;
234 struct wait_exceptional_entry_queue ewait;
235 wait_queue_head_t *wq;
236
237 init_wait(&ewait.wait);
238 ewait.wait.func = wake_exceptional_entry_func;
239
240 for (;;) {
241 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
242 &slot);
243 if (!entry ||
244 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
245 !slot_locked(mapping, slot)) {
246 if (slotp)
247 *slotp = slot;
248 return entry;
249 }
250
251 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
252 prepare_to_wait_exclusive(wq, &ewait.wait,
253 TASK_UNINTERRUPTIBLE);
254 spin_unlock_irq(&mapping->tree_lock);
255 schedule();
256 finish_wait(wq, &ewait.wait);
257 spin_lock_irq(&mapping->tree_lock);
258 }
259 }
260
261 static void dax_unlock_mapping_entry(struct address_space *mapping,
262 pgoff_t index)
263 {
264 void *entry, **slot;
265
266 spin_lock_irq(&mapping->tree_lock);
267 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
268 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
269 !slot_locked(mapping, slot))) {
270 spin_unlock_irq(&mapping->tree_lock);
271 return;
272 }
273 unlock_slot(mapping, slot);
274 spin_unlock_irq(&mapping->tree_lock);
275 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
276 }
277
278 static void put_locked_mapping_entry(struct address_space *mapping,
279 pgoff_t index)
280 {
281 dax_unlock_mapping_entry(mapping, index);
282 }
283
284 /*
285 * Called when we are done with radix tree entry we looked up via
286 * get_unlocked_mapping_entry() and which we didn't lock in the end.
287 */
288 static void put_unlocked_mapping_entry(struct address_space *mapping,
289 pgoff_t index, void *entry)
290 {
291 if (!entry)
292 return;
293
294 /* We have to wake up next waiter for the radix tree entry lock */
295 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
296 }
297
298 /*
299 * Find radix tree entry at given index. If it points to an exceptional entry,
300 * return it with the radix tree entry locked. If the radix tree doesn't
301 * contain given index, create an empty exceptional entry for the index and
302 * return with it locked.
303 *
304 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
305 * either return that locked entry or will return an error. This error will
306 * happen if there are any 4k entries within the 2MiB range that we are
307 * requesting.
308 *
309 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
310 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
311 * insertion will fail if it finds any 4k entries already in the tree, and a
312 * 4k insertion will cause an existing 2MiB entry to be unmapped and
313 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
314 * well as 2MiB empty entries.
315 *
316 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
317 * real storage backing them. We will leave these real 2MiB DAX entries in
318 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
319 *
320 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
321 * persistent memory the benefit is doubtful. We can add that later if we can
322 * show it helps.
323 */
324 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
325 unsigned long size_flag)
326 {
327 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
328 void *entry, **slot;
329
330 restart:
331 spin_lock_irq(&mapping->tree_lock);
332 entry = get_unlocked_mapping_entry(mapping, index, &slot);
333
334 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
335 entry = ERR_PTR(-EIO);
336 goto out_unlock;
337 }
338
339 if (entry) {
340 if (size_flag & RADIX_DAX_PMD) {
341 if (dax_is_pte_entry(entry)) {
342 put_unlocked_mapping_entry(mapping, index,
343 entry);
344 entry = ERR_PTR(-EEXIST);
345 goto out_unlock;
346 }
347 } else { /* trying to grab a PTE entry */
348 if (dax_is_pmd_entry(entry) &&
349 (dax_is_zero_entry(entry) ||
350 dax_is_empty_entry(entry))) {
351 pmd_downgrade = true;
352 }
353 }
354 }
355
356 /* No entry for given index? Make sure radix tree is big enough. */
357 if (!entry || pmd_downgrade) {
358 int err;
359
360 if (pmd_downgrade) {
361 /*
362 * Make sure 'entry' remains valid while we drop
363 * mapping->tree_lock.
364 */
365 entry = lock_slot(mapping, slot);
366 }
367
368 spin_unlock_irq(&mapping->tree_lock);
369 /*
370 * Besides huge zero pages the only other thing that gets
371 * downgraded are empty entries which don't need to be
372 * unmapped.
373 */
374 if (pmd_downgrade && dax_is_zero_entry(entry))
375 unmap_mapping_range(mapping,
376 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
377
378 err = radix_tree_preload(
379 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
380 if (err) {
381 if (pmd_downgrade)
382 put_locked_mapping_entry(mapping, index);
383 return ERR_PTR(err);
384 }
385 spin_lock_irq(&mapping->tree_lock);
386
387 if (!entry) {
388 /*
389 * We needed to drop the page_tree lock while calling
390 * radix_tree_preload() and we didn't have an entry to
391 * lock. See if another thread inserted an entry at
392 * our index during this time.
393 */
394 entry = __radix_tree_lookup(&mapping->page_tree, index,
395 NULL, &slot);
396 if (entry) {
397 radix_tree_preload_end();
398 spin_unlock_irq(&mapping->tree_lock);
399 goto restart;
400 }
401 }
402
403 if (pmd_downgrade) {
404 radix_tree_delete(&mapping->page_tree, index);
405 mapping->nrexceptional--;
406 dax_wake_mapping_entry_waiter(mapping, index, entry,
407 true);
408 }
409
410 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
411
412 err = __radix_tree_insert(&mapping->page_tree, index,
413 dax_radix_order(entry), entry);
414 radix_tree_preload_end();
415 if (err) {
416 spin_unlock_irq(&mapping->tree_lock);
417 /*
418 * Our insertion of a DAX entry failed, most likely
419 * because we were inserting a PMD entry and it
420 * collided with a PTE sized entry at a different
421 * index in the PMD range. We haven't inserted
422 * anything into the radix tree and have no waiters to
423 * wake.
424 */
425 return ERR_PTR(err);
426 }
427 /* Good, we have inserted empty locked entry into the tree. */
428 mapping->nrexceptional++;
429 spin_unlock_irq(&mapping->tree_lock);
430 return entry;
431 }
432 entry = lock_slot(mapping, slot);
433 out_unlock:
434 spin_unlock_irq(&mapping->tree_lock);
435 return entry;
436 }
437
438 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
439 pgoff_t index, bool trunc)
440 {
441 int ret = 0;
442 void *entry;
443 struct radix_tree_root *page_tree = &mapping->page_tree;
444
445 spin_lock_irq(&mapping->tree_lock);
446 entry = get_unlocked_mapping_entry(mapping, index, NULL);
447 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
448 goto out;
449 if (!trunc &&
450 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
451 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
452 goto out;
453 radix_tree_delete(page_tree, index);
454 mapping->nrexceptional--;
455 ret = 1;
456 out:
457 put_unlocked_mapping_entry(mapping, index, entry);
458 spin_unlock_irq(&mapping->tree_lock);
459 return ret;
460 }
461 /*
462 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
463 * entry to get unlocked before deleting it.
464 */
465 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
466 {
467 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
468
469 /*
470 * This gets called from truncate / punch_hole path. As such, the caller
471 * must hold locks protecting against concurrent modifications of the
472 * radix tree (usually fs-private i_mmap_sem for writing). Since the
473 * caller has seen exceptional entry for this index, we better find it
474 * at that index as well...
475 */
476 WARN_ON_ONCE(!ret);
477 return ret;
478 }
479
480 /*
481 * Invalidate exceptional DAX entry if it is clean.
482 */
483 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
484 pgoff_t index)
485 {
486 return __dax_invalidate_mapping_entry(mapping, index, false);
487 }
488
489 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
490 sector_t sector, size_t size, struct page *to,
491 unsigned long vaddr)
492 {
493 void *vto, *kaddr;
494 pgoff_t pgoff;
495 pfn_t pfn;
496 long rc;
497 int id;
498
499 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
500 if (rc)
501 return rc;
502
503 id = dax_read_lock();
504 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
505 if (rc < 0) {
506 dax_read_unlock(id);
507 return rc;
508 }
509 vto = kmap_atomic(to);
510 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
511 kunmap_atomic(vto);
512 dax_read_unlock(id);
513 return 0;
514 }
515
516 /*
517 * By this point grab_mapping_entry() has ensured that we have a locked entry
518 * of the appropriate size so we don't have to worry about downgrading PMDs to
519 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
520 * already in the tree, we will skip the insertion and just dirty the PMD as
521 * appropriate.
522 */
523 static void *dax_insert_mapping_entry(struct address_space *mapping,
524 struct vm_fault *vmf,
525 void *entry, sector_t sector,
526 unsigned long flags)
527 {
528 struct radix_tree_root *page_tree = &mapping->page_tree;
529 void *new_entry;
530 pgoff_t index = vmf->pgoff;
531
532 if (vmf->flags & FAULT_FLAG_WRITE)
533 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
534
535 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
536 /* we are replacing a zero page with block mapping */
537 if (dax_is_pmd_entry(entry))
538 unmap_mapping_range(mapping,
539 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
540 PMD_SIZE, 0);
541 else /* pte entry */
542 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
543 PAGE_SIZE, 0);
544 }
545
546 spin_lock_irq(&mapping->tree_lock);
547 new_entry = dax_radix_locked_entry(sector, flags);
548
549 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
550 /*
551 * Only swap our new entry into the radix tree if the current
552 * entry is a zero page or an empty entry. If a normal PTE or
553 * PMD entry is already in the tree, we leave it alone. This
554 * means that if we are trying to insert a PTE and the
555 * existing entry is a PMD, we will just leave the PMD in the
556 * tree and dirty it if necessary.
557 */
558 struct radix_tree_node *node;
559 void **slot;
560 void *ret;
561
562 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
563 WARN_ON_ONCE(ret != entry);
564 __radix_tree_replace(page_tree, node, slot,
565 new_entry, NULL, NULL);
566 entry = new_entry;
567 }
568
569 if (vmf->flags & FAULT_FLAG_WRITE)
570 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
571
572 spin_unlock_irq(&mapping->tree_lock);
573 return entry;
574 }
575
576 static inline unsigned long
577 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
578 {
579 unsigned long address;
580
581 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
582 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
583 return address;
584 }
585
586 /* Walk all mappings of a given index of a file and writeprotect them */
587 static void dax_mapping_entry_mkclean(struct address_space *mapping,
588 pgoff_t index, unsigned long pfn)
589 {
590 struct vm_area_struct *vma;
591 pte_t pte, *ptep = NULL;
592 pmd_t *pmdp = NULL;
593 spinlock_t *ptl;
594
595 i_mmap_lock_read(mapping);
596 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
597 unsigned long address, start, end;
598
599 cond_resched();
600
601 if (!(vma->vm_flags & VM_SHARED))
602 continue;
603
604 address = pgoff_address(index, vma);
605
606 /*
607 * Note because we provide start/end to follow_pte_pmd it will
608 * call mmu_notifier_invalidate_range_start() on our behalf
609 * before taking any lock.
610 */
611 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
612 continue;
613
614 if (pmdp) {
615 #ifdef CONFIG_FS_DAX_PMD
616 pmd_t pmd;
617
618 if (pfn != pmd_pfn(*pmdp))
619 goto unlock_pmd;
620 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
621 goto unlock_pmd;
622
623 flush_cache_page(vma, address, pfn);
624 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
625 pmd = pmd_wrprotect(pmd);
626 pmd = pmd_mkclean(pmd);
627 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
628 mmu_notifier_invalidate_range(vma->vm_mm, start, end);
629 unlock_pmd:
630 spin_unlock(ptl);
631 #endif
632 } else {
633 if (pfn != pte_pfn(*ptep))
634 goto unlock_pte;
635 if (!pte_dirty(*ptep) && !pte_write(*ptep))
636 goto unlock_pte;
637
638 flush_cache_page(vma, address, pfn);
639 pte = ptep_clear_flush(vma, address, ptep);
640 pte = pte_wrprotect(pte);
641 pte = pte_mkclean(pte);
642 set_pte_at(vma->vm_mm, address, ptep, pte);
643 mmu_notifier_invalidate_range(vma->vm_mm, start, end);
644 unlock_pte:
645 pte_unmap_unlock(ptep, ptl);
646 }
647
648 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
649 }
650 i_mmap_unlock_read(mapping);
651 }
652
653 static int dax_writeback_one(struct block_device *bdev,
654 struct dax_device *dax_dev, struct address_space *mapping,
655 pgoff_t index, void *entry)
656 {
657 struct radix_tree_root *page_tree = &mapping->page_tree;
658 void *entry2, **slot, *kaddr;
659 long ret = 0, id;
660 sector_t sector;
661 pgoff_t pgoff;
662 size_t size;
663 pfn_t pfn;
664
665 /*
666 * A page got tagged dirty in DAX mapping? Something is seriously
667 * wrong.
668 */
669 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
670 return -EIO;
671
672 spin_lock_irq(&mapping->tree_lock);
673 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
674 /* Entry got punched out / reallocated? */
675 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
676 goto put_unlocked;
677 /*
678 * Entry got reallocated elsewhere? No need to writeback. We have to
679 * compare sectors as we must not bail out due to difference in lockbit
680 * or entry type.
681 */
682 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
683 goto put_unlocked;
684 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
685 dax_is_zero_entry(entry))) {
686 ret = -EIO;
687 goto put_unlocked;
688 }
689
690 /* Another fsync thread may have already written back this entry */
691 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
692 goto put_unlocked;
693 /* Lock the entry to serialize with page faults */
694 entry = lock_slot(mapping, slot);
695 /*
696 * We can clear the tag now but we have to be careful so that concurrent
697 * dax_writeback_one() calls for the same index cannot finish before we
698 * actually flush the caches. This is achieved as the calls will look
699 * at the entry only under tree_lock and once they do that they will
700 * see the entry locked and wait for it to unlock.
701 */
702 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
703 spin_unlock_irq(&mapping->tree_lock);
704
705 /*
706 * Even if dax_writeback_mapping_range() was given a wbc->range_start
707 * in the middle of a PMD, the 'index' we are given will be aligned to
708 * the start index of the PMD, as will the sector we pull from
709 * 'entry'. This allows us to flush for PMD_SIZE and not have to
710 * worry about partial PMD writebacks.
711 */
712 sector = dax_radix_sector(entry);
713 size = PAGE_SIZE << dax_radix_order(entry);
714
715 id = dax_read_lock();
716 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
717 if (ret)
718 goto dax_unlock;
719
720 /*
721 * dax_direct_access() may sleep, so cannot hold tree_lock over
722 * its invocation.
723 */
724 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
725 if (ret < 0)
726 goto dax_unlock;
727
728 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
729 ret = -EIO;
730 goto dax_unlock;
731 }
732
733 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
734 dax_flush(dax_dev, kaddr, size);
735 /*
736 * After we have flushed the cache, we can clear the dirty tag. There
737 * cannot be new dirty data in the pfn after the flush has completed as
738 * the pfn mappings are writeprotected and fault waits for mapping
739 * entry lock.
740 */
741 spin_lock_irq(&mapping->tree_lock);
742 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
743 spin_unlock_irq(&mapping->tree_lock);
744 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
745 dax_unlock:
746 dax_read_unlock(id);
747 put_locked_mapping_entry(mapping, index);
748 return ret;
749
750 put_unlocked:
751 put_unlocked_mapping_entry(mapping, index, entry2);
752 spin_unlock_irq(&mapping->tree_lock);
753 return ret;
754 }
755
756 /*
757 * Flush the mapping to the persistent domain within the byte range of [start,
758 * end]. This is required by data integrity operations to ensure file data is
759 * on persistent storage prior to completion of the operation.
760 */
761 int dax_writeback_mapping_range(struct address_space *mapping,
762 struct block_device *bdev, struct writeback_control *wbc)
763 {
764 struct inode *inode = mapping->host;
765 pgoff_t start_index, end_index;
766 pgoff_t indices[PAGEVEC_SIZE];
767 struct dax_device *dax_dev;
768 struct pagevec pvec;
769 bool done = false;
770 int i, ret = 0;
771
772 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
773 return -EIO;
774
775 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
776 return 0;
777
778 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
779 if (!dax_dev)
780 return -EIO;
781
782 start_index = wbc->range_start >> PAGE_SHIFT;
783 end_index = wbc->range_end >> PAGE_SHIFT;
784
785 trace_dax_writeback_range(inode, start_index, end_index);
786
787 tag_pages_for_writeback(mapping, start_index, end_index);
788
789 pagevec_init(&pvec, 0);
790 while (!done) {
791 pvec.nr = find_get_entries_tag(mapping, start_index,
792 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
793 pvec.pages, indices);
794
795 if (pvec.nr == 0)
796 break;
797
798 for (i = 0; i < pvec.nr; i++) {
799 if (indices[i] > end_index) {
800 done = true;
801 break;
802 }
803
804 ret = dax_writeback_one(bdev, dax_dev, mapping,
805 indices[i], pvec.pages[i]);
806 if (ret < 0) {
807 mapping_set_error(mapping, ret);
808 goto out;
809 }
810 }
811 start_index = indices[pvec.nr - 1] + 1;
812 }
813 out:
814 put_dax(dax_dev);
815 trace_dax_writeback_range_done(inode, start_index, end_index);
816 return (ret < 0 ? ret : 0);
817 }
818 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
819
820 static int dax_insert_mapping(struct address_space *mapping,
821 struct block_device *bdev, struct dax_device *dax_dev,
822 sector_t sector, size_t size, void *entry,
823 struct vm_area_struct *vma, struct vm_fault *vmf)
824 {
825 unsigned long vaddr = vmf->address;
826 void *ret, *kaddr;
827 pgoff_t pgoff;
828 int id, rc;
829 pfn_t pfn;
830
831 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
832 if (rc)
833 return rc;
834
835 id = dax_read_lock();
836 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
837 if (rc < 0) {
838 dax_read_unlock(id);
839 return rc;
840 }
841 dax_read_unlock(id);
842
843 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
844 if (IS_ERR(ret))
845 return PTR_ERR(ret);
846
847 trace_dax_insert_mapping(mapping->host, vmf, ret);
848 if (vmf->flags & FAULT_FLAG_WRITE)
849 return vm_insert_mixed_mkwrite(vma, vaddr, pfn);
850 else
851 return vm_insert_mixed(vma, vaddr, pfn);
852 }
853
854 /*
855 * The user has performed a load from a hole in the file. Allocating a new
856 * page in the file would cause excessive storage usage for workloads with
857 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
858 * If this page is ever written to we will re-fault and change the mapping to
859 * point to real DAX storage instead.
860 */
861 static int dax_load_hole(struct address_space *mapping, void *entry,
862 struct vm_fault *vmf)
863 {
864 struct inode *inode = mapping->host;
865 unsigned long vaddr = vmf->address;
866 int ret = VM_FAULT_NOPAGE;
867 struct page *zero_page;
868 void *entry2;
869
870 zero_page = ZERO_PAGE(0);
871 if (unlikely(!zero_page)) {
872 ret = VM_FAULT_OOM;
873 goto out;
874 }
875
876 entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
877 RADIX_DAX_ZERO_PAGE);
878 if (IS_ERR(entry2)) {
879 ret = VM_FAULT_SIGBUS;
880 goto out;
881 }
882
883 vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
884 out:
885 trace_dax_load_hole(inode, vmf, ret);
886 return ret;
887 }
888
889 static bool dax_range_is_aligned(struct block_device *bdev,
890 unsigned int offset, unsigned int length)
891 {
892 unsigned short sector_size = bdev_logical_block_size(bdev);
893
894 if (!IS_ALIGNED(offset, sector_size))
895 return false;
896 if (!IS_ALIGNED(length, sector_size))
897 return false;
898
899 return true;
900 }
901
902 int __dax_zero_page_range(struct block_device *bdev,
903 struct dax_device *dax_dev, sector_t sector,
904 unsigned int offset, unsigned int size)
905 {
906 if (dax_range_is_aligned(bdev, offset, size)) {
907 sector_t start_sector = sector + (offset >> 9);
908
909 return blkdev_issue_zeroout(bdev, start_sector,
910 size >> 9, GFP_NOFS, 0);
911 } else {
912 pgoff_t pgoff;
913 long rc, id;
914 void *kaddr;
915 pfn_t pfn;
916
917 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
918 if (rc)
919 return rc;
920
921 id = dax_read_lock();
922 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
923 &pfn);
924 if (rc < 0) {
925 dax_read_unlock(id);
926 return rc;
927 }
928 memset(kaddr + offset, 0, size);
929 dax_flush(dax_dev, kaddr + offset, size);
930 dax_read_unlock(id);
931 }
932 return 0;
933 }
934 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
935
936 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
937 {
938 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
939 }
940
941 static loff_t
942 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
943 struct iomap *iomap)
944 {
945 struct block_device *bdev = iomap->bdev;
946 struct dax_device *dax_dev = iomap->dax_dev;
947 struct iov_iter *iter = data;
948 loff_t end = pos + length, done = 0;
949 ssize_t ret = 0;
950 int id;
951
952 if (iov_iter_rw(iter) == READ) {
953 end = min(end, i_size_read(inode));
954 if (pos >= end)
955 return 0;
956
957 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
958 return iov_iter_zero(min(length, end - pos), iter);
959 }
960
961 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
962 return -EIO;
963
964 /*
965 * Write can allocate block for an area which has a hole page mapped
966 * into page tables. We have to tear down these mappings so that data
967 * written by write(2) is visible in mmap.
968 */
969 if (iomap->flags & IOMAP_F_NEW) {
970 invalidate_inode_pages2_range(inode->i_mapping,
971 pos >> PAGE_SHIFT,
972 (end - 1) >> PAGE_SHIFT);
973 }
974
975 id = dax_read_lock();
976 while (pos < end) {
977 unsigned offset = pos & (PAGE_SIZE - 1);
978 const size_t size = ALIGN(length + offset, PAGE_SIZE);
979 const sector_t sector = dax_iomap_sector(iomap, pos);
980 ssize_t map_len;
981 pgoff_t pgoff;
982 void *kaddr;
983 pfn_t pfn;
984
985 if (fatal_signal_pending(current)) {
986 ret = -EINTR;
987 break;
988 }
989
990 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
991 if (ret)
992 break;
993
994 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
995 &kaddr, &pfn);
996 if (map_len < 0) {
997 ret = map_len;
998 break;
999 }
1000
1001 map_len = PFN_PHYS(map_len);
1002 kaddr += offset;
1003 map_len -= offset;
1004 if (map_len > end - pos)
1005 map_len = end - pos;
1006
1007 if (iov_iter_rw(iter) == WRITE)
1008 map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1009 map_len, iter);
1010 else
1011 map_len = copy_to_iter(kaddr, map_len, iter);
1012 if (map_len <= 0) {
1013 ret = map_len ? map_len : -EFAULT;
1014 break;
1015 }
1016
1017 pos += map_len;
1018 length -= map_len;
1019 done += map_len;
1020 }
1021 dax_read_unlock(id);
1022
1023 return done ? done : ret;
1024 }
1025
1026 /**
1027 * dax_iomap_rw - Perform I/O to a DAX file
1028 * @iocb: The control block for this I/O
1029 * @iter: The addresses to do I/O from or to
1030 * @ops: iomap ops passed from the file system
1031 *
1032 * This function performs read and write operations to directly mapped
1033 * persistent memory. The callers needs to take care of read/write exclusion
1034 * and evicting any page cache pages in the region under I/O.
1035 */
1036 ssize_t
1037 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1038 const struct iomap_ops *ops)
1039 {
1040 struct address_space *mapping = iocb->ki_filp->f_mapping;
1041 struct inode *inode = mapping->host;
1042 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1043 unsigned flags = 0;
1044
1045 if (iov_iter_rw(iter) == WRITE) {
1046 lockdep_assert_held_exclusive(&inode->i_rwsem);
1047 flags |= IOMAP_WRITE;
1048 } else {
1049 lockdep_assert_held(&inode->i_rwsem);
1050 }
1051
1052 while (iov_iter_count(iter)) {
1053 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1054 iter, dax_iomap_actor);
1055 if (ret <= 0)
1056 break;
1057 pos += ret;
1058 done += ret;
1059 }
1060
1061 iocb->ki_pos += done;
1062 return done ? done : ret;
1063 }
1064 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1065
1066 static int dax_fault_return(int error)
1067 {
1068 if (error == 0)
1069 return VM_FAULT_NOPAGE;
1070 if (error == -ENOMEM)
1071 return VM_FAULT_OOM;
1072 return VM_FAULT_SIGBUS;
1073 }
1074
1075 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1076 const struct iomap_ops *ops)
1077 {
1078 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1079 struct inode *inode = mapping->host;
1080 unsigned long vaddr = vmf->address;
1081 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1082 sector_t sector;
1083 struct iomap iomap = { 0 };
1084 unsigned flags = IOMAP_FAULT;
1085 int error, major = 0;
1086 int vmf_ret = 0;
1087 void *entry;
1088
1089 trace_dax_pte_fault(inode, vmf, vmf_ret);
1090 /*
1091 * Check whether offset isn't beyond end of file now. Caller is supposed
1092 * to hold locks serializing us with truncate / punch hole so this is
1093 * a reliable test.
1094 */
1095 if (pos >= i_size_read(inode)) {
1096 vmf_ret = VM_FAULT_SIGBUS;
1097 goto out;
1098 }
1099
1100 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1101 flags |= IOMAP_WRITE;
1102
1103 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1104 if (IS_ERR(entry)) {
1105 vmf_ret = dax_fault_return(PTR_ERR(entry));
1106 goto out;
1107 }
1108
1109 /*
1110 * It is possible, particularly with mixed reads & writes to private
1111 * mappings, that we have raced with a PMD fault that overlaps with
1112 * the PTE we need to set up. If so just return and the fault will be
1113 * retried.
1114 */
1115 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1116 vmf_ret = VM_FAULT_NOPAGE;
1117 goto unlock_entry;
1118 }
1119
1120 /*
1121 * Note that we don't bother to use iomap_apply here: DAX required
1122 * the file system block size to be equal the page size, which means
1123 * that we never have to deal with more than a single extent here.
1124 */
1125 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1126 if (error) {
1127 vmf_ret = dax_fault_return(error);
1128 goto unlock_entry;
1129 }
1130 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1131 error = -EIO; /* fs corruption? */
1132 goto error_finish_iomap;
1133 }
1134
1135 sector = dax_iomap_sector(&iomap, pos);
1136
1137 if (vmf->cow_page) {
1138 switch (iomap.type) {
1139 case IOMAP_HOLE:
1140 case IOMAP_UNWRITTEN:
1141 clear_user_highpage(vmf->cow_page, vaddr);
1142 break;
1143 case IOMAP_MAPPED:
1144 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1145 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1146 break;
1147 default:
1148 WARN_ON_ONCE(1);
1149 error = -EIO;
1150 break;
1151 }
1152
1153 if (error)
1154 goto error_finish_iomap;
1155
1156 __SetPageUptodate(vmf->cow_page);
1157 vmf_ret = finish_fault(vmf);
1158 if (!vmf_ret)
1159 vmf_ret = VM_FAULT_DONE_COW;
1160 goto finish_iomap;
1161 }
1162
1163 switch (iomap.type) {
1164 case IOMAP_MAPPED:
1165 if (iomap.flags & IOMAP_F_NEW) {
1166 count_vm_event(PGMAJFAULT);
1167 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1168 major = VM_FAULT_MAJOR;
1169 }
1170 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1171 sector, PAGE_SIZE, entry, vmf->vma, vmf);
1172 /* -EBUSY is fine, somebody else faulted on the same PTE */
1173 if (error == -EBUSY)
1174 error = 0;
1175 break;
1176 case IOMAP_UNWRITTEN:
1177 case IOMAP_HOLE:
1178 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1179 vmf_ret = dax_load_hole(mapping, entry, vmf);
1180 goto finish_iomap;
1181 }
1182 /*FALLTHRU*/
1183 default:
1184 WARN_ON_ONCE(1);
1185 error = -EIO;
1186 break;
1187 }
1188
1189 error_finish_iomap:
1190 vmf_ret = dax_fault_return(error) | major;
1191 finish_iomap:
1192 if (ops->iomap_end) {
1193 int copied = PAGE_SIZE;
1194
1195 if (vmf_ret & VM_FAULT_ERROR)
1196 copied = 0;
1197 /*
1198 * The fault is done by now and there's no way back (other
1199 * thread may be already happily using PTE we have installed).
1200 * Just ignore error from ->iomap_end since we cannot do much
1201 * with it.
1202 */
1203 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1204 }
1205 unlock_entry:
1206 put_locked_mapping_entry(mapping, vmf->pgoff);
1207 out:
1208 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1209 return vmf_ret;
1210 }
1211
1212 #ifdef CONFIG_FS_DAX_PMD
1213 /*
1214 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1215 * more often than one might expect in the below functions.
1216 */
1217 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1218
1219 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1220 loff_t pos, void *entry)
1221 {
1222 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1223 const sector_t sector = dax_iomap_sector(iomap, pos);
1224 struct dax_device *dax_dev = iomap->dax_dev;
1225 struct block_device *bdev = iomap->bdev;
1226 struct inode *inode = mapping->host;
1227 const size_t size = PMD_SIZE;
1228 void *ret = NULL, *kaddr;
1229 long length = 0;
1230 pgoff_t pgoff;
1231 pfn_t pfn;
1232 int id;
1233
1234 if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1235 goto fallback;
1236
1237 id = dax_read_lock();
1238 length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1239 if (length < 0)
1240 goto unlock_fallback;
1241 length = PFN_PHYS(length);
1242
1243 if (length < size)
1244 goto unlock_fallback;
1245 if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1246 goto unlock_fallback;
1247 if (!pfn_t_devmap(pfn))
1248 goto unlock_fallback;
1249 dax_read_unlock(id);
1250
1251 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector,
1252 RADIX_DAX_PMD);
1253 if (IS_ERR(ret))
1254 goto fallback;
1255
1256 trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1257 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1258 pfn, vmf->flags & FAULT_FLAG_WRITE);
1259
1260 unlock_fallback:
1261 dax_read_unlock(id);
1262 fallback:
1263 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1264 return VM_FAULT_FALLBACK;
1265 }
1266
1267 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1268 void *entry)
1269 {
1270 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1271 unsigned long pmd_addr = vmf->address & PMD_MASK;
1272 struct inode *inode = mapping->host;
1273 struct page *zero_page;
1274 void *ret = NULL;
1275 spinlock_t *ptl;
1276 pmd_t pmd_entry;
1277
1278 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1279
1280 if (unlikely(!zero_page))
1281 goto fallback;
1282
1283 ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1284 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE);
1285 if (IS_ERR(ret))
1286 goto fallback;
1287
1288 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1289 if (!pmd_none(*(vmf->pmd))) {
1290 spin_unlock(ptl);
1291 goto fallback;
1292 }
1293
1294 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1295 pmd_entry = pmd_mkhuge(pmd_entry);
1296 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1297 spin_unlock(ptl);
1298 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1299 return VM_FAULT_NOPAGE;
1300
1301 fallback:
1302 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1303 return VM_FAULT_FALLBACK;
1304 }
1305
1306 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1307 const struct iomap_ops *ops)
1308 {
1309 struct vm_area_struct *vma = vmf->vma;
1310 struct address_space *mapping = vma->vm_file->f_mapping;
1311 unsigned long pmd_addr = vmf->address & PMD_MASK;
1312 bool write = vmf->flags & FAULT_FLAG_WRITE;
1313 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1314 struct inode *inode = mapping->host;
1315 int result = VM_FAULT_FALLBACK;
1316 struct iomap iomap = { 0 };
1317 pgoff_t max_pgoff, pgoff;
1318 void *entry;
1319 loff_t pos;
1320 int error;
1321
1322 /*
1323 * Check whether offset isn't beyond end of file now. Caller is
1324 * supposed to hold locks serializing us with truncate / punch hole so
1325 * this is a reliable test.
1326 */
1327 pgoff = linear_page_index(vma, pmd_addr);
1328 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1329
1330 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1331
1332 /*
1333 * Make sure that the faulting address's PMD offset (color) matches
1334 * the PMD offset from the start of the file. This is necessary so
1335 * that a PMD range in the page table overlaps exactly with a PMD
1336 * range in the radix tree.
1337 */
1338 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1339 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1340 goto fallback;
1341
1342 /* Fall back to PTEs if we're going to COW */
1343 if (write && !(vma->vm_flags & VM_SHARED))
1344 goto fallback;
1345
1346 /* If the PMD would extend outside the VMA */
1347 if (pmd_addr < vma->vm_start)
1348 goto fallback;
1349 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1350 goto fallback;
1351
1352 if (pgoff > max_pgoff) {
1353 result = VM_FAULT_SIGBUS;
1354 goto out;
1355 }
1356
1357 /* If the PMD would extend beyond the file size */
1358 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1359 goto fallback;
1360
1361 /*
1362 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1363 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1364 * is already in the tree, for instance), it will return -EEXIST and
1365 * we just fall back to 4k entries.
1366 */
1367 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1368 if (IS_ERR(entry))
1369 goto fallback;
1370
1371 /*
1372 * It is possible, particularly with mixed reads & writes to private
1373 * mappings, that we have raced with a PTE fault that overlaps with
1374 * the PMD we need to set up. If so just return and the fault will be
1375 * retried.
1376 */
1377 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1378 !pmd_devmap(*vmf->pmd)) {
1379 result = 0;
1380 goto unlock_entry;
1381 }
1382
1383 /*
1384 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1385 * setting up a mapping, so really we're using iomap_begin() as a way
1386 * to look up our filesystem block.
1387 */
1388 pos = (loff_t)pgoff << PAGE_SHIFT;
1389 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1390 if (error)
1391 goto unlock_entry;
1392
1393 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1394 goto finish_iomap;
1395
1396 switch (iomap.type) {
1397 case IOMAP_MAPPED:
1398 result = dax_pmd_insert_mapping(vmf, &iomap, pos, entry);
1399 break;
1400 case IOMAP_UNWRITTEN:
1401 case IOMAP_HOLE:
1402 if (WARN_ON_ONCE(write))
1403 break;
1404 result = dax_pmd_load_hole(vmf, &iomap, entry);
1405 break;
1406 default:
1407 WARN_ON_ONCE(1);
1408 break;
1409 }
1410
1411 finish_iomap:
1412 if (ops->iomap_end) {
1413 int copied = PMD_SIZE;
1414
1415 if (result == VM_FAULT_FALLBACK)
1416 copied = 0;
1417 /*
1418 * The fault is done by now and there's no way back (other
1419 * thread may be already happily using PMD we have installed).
1420 * Just ignore error from ->iomap_end since we cannot do much
1421 * with it.
1422 */
1423 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1424 &iomap);
1425 }
1426 unlock_entry:
1427 put_locked_mapping_entry(mapping, pgoff);
1428 fallback:
1429 if (result == VM_FAULT_FALLBACK) {
1430 split_huge_pmd(vma, vmf->pmd, vmf->address);
1431 count_vm_event(THP_FAULT_FALLBACK);
1432 }
1433 out:
1434 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1435 return result;
1436 }
1437 #else
1438 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1439 const struct iomap_ops *ops)
1440 {
1441 return VM_FAULT_FALLBACK;
1442 }
1443 #endif /* CONFIG_FS_DAX_PMD */
1444
1445 /**
1446 * dax_iomap_fault - handle a page fault on a DAX file
1447 * @vmf: The description of the fault
1448 * @ops: iomap ops passed from the file system
1449 *
1450 * When a page fault occurs, filesystems may call this helper in
1451 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1452 * has done all the necessary locking for page fault to proceed
1453 * successfully.
1454 */
1455 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1456 const struct iomap_ops *ops)
1457 {
1458 switch (pe_size) {
1459 case PE_SIZE_PTE:
1460 return dax_iomap_pte_fault(vmf, ops);
1461 case PE_SIZE_PMD:
1462 return dax_iomap_pmd_fault(vmf, ops);
1463 default:
1464 return VM_FAULT_FALLBACK;
1465 }
1466 }
1467 EXPORT_SYMBOL_GPL(dax_iomap_fault);