]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dax.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
46
47 static int __init init_dax_wait_table(void)
48 {
49 int i;
50
51 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
52 init_waitqueue_head(wait_table + i);
53 return 0;
54 }
55 fs_initcall(init_dax_wait_table);
56
57 static int dax_is_pmd_entry(void *entry)
58 {
59 return (unsigned long)entry & RADIX_DAX_PMD;
60 }
61
62 static int dax_is_pte_entry(void *entry)
63 {
64 return !((unsigned long)entry & RADIX_DAX_PMD);
65 }
66
67 static int dax_is_zero_entry(void *entry)
68 {
69 return (unsigned long)entry & RADIX_DAX_HZP;
70 }
71
72 static int dax_is_empty_entry(void *entry)
73 {
74 return (unsigned long)entry & RADIX_DAX_EMPTY;
75 }
76
77 /*
78 * DAX radix tree locking
79 */
80 struct exceptional_entry_key {
81 struct address_space *mapping;
82 pgoff_t entry_start;
83 };
84
85 struct wait_exceptional_entry_queue {
86 wait_queue_entry_t wait;
87 struct exceptional_entry_key key;
88 };
89
90 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
91 pgoff_t index, void *entry, struct exceptional_entry_key *key)
92 {
93 unsigned long hash;
94
95 /*
96 * If 'entry' is a PMD, align the 'index' that we use for the wait
97 * queue to the start of that PMD. This ensures that all offsets in
98 * the range covered by the PMD map to the same bit lock.
99 */
100 if (dax_is_pmd_entry(entry))
101 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
102
103 key->mapping = mapping;
104 key->entry_start = index;
105
106 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
107 return wait_table + hash;
108 }
109
110 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
111 int sync, void *keyp)
112 {
113 struct exceptional_entry_key *key = keyp;
114 struct wait_exceptional_entry_queue *ewait =
115 container_of(wait, struct wait_exceptional_entry_queue, wait);
116
117 if (key->mapping != ewait->key.mapping ||
118 key->entry_start != ewait->key.entry_start)
119 return 0;
120 return autoremove_wake_function(wait, mode, sync, NULL);
121 }
122
123 /*
124 * Check whether the given slot is locked. The function must be called with
125 * mapping->tree_lock held
126 */
127 static inline int slot_locked(struct address_space *mapping, void **slot)
128 {
129 unsigned long entry = (unsigned long)
130 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
131 return entry & RADIX_DAX_ENTRY_LOCK;
132 }
133
134 /*
135 * Mark the given slot is locked. The function must be called with
136 * mapping->tree_lock held
137 */
138 static inline void *lock_slot(struct address_space *mapping, void **slot)
139 {
140 unsigned long entry = (unsigned long)
141 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
142
143 entry |= RADIX_DAX_ENTRY_LOCK;
144 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
145 return (void *)entry;
146 }
147
148 /*
149 * Mark the given slot is unlocked. The function must be called with
150 * mapping->tree_lock held
151 */
152 static inline void *unlock_slot(struct address_space *mapping, void **slot)
153 {
154 unsigned long entry = (unsigned long)
155 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
156
157 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
158 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
159 return (void *)entry;
160 }
161
162 /*
163 * Lookup entry in radix tree, wait for it to become unlocked if it is
164 * exceptional entry and return it. The caller must call
165 * put_unlocked_mapping_entry() when he decided not to lock the entry or
166 * put_locked_mapping_entry() when he locked the entry and now wants to
167 * unlock it.
168 *
169 * The function must be called with mapping->tree_lock held.
170 */
171 static void *get_unlocked_mapping_entry(struct address_space *mapping,
172 pgoff_t index, void ***slotp)
173 {
174 void *entry, **slot;
175 struct wait_exceptional_entry_queue ewait;
176 wait_queue_head_t *wq;
177
178 init_wait(&ewait.wait);
179 ewait.wait.func = wake_exceptional_entry_func;
180
181 for (;;) {
182 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
183 &slot);
184 if (!entry || !radix_tree_exceptional_entry(entry) ||
185 !slot_locked(mapping, slot)) {
186 if (slotp)
187 *slotp = slot;
188 return entry;
189 }
190
191 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
192 prepare_to_wait_exclusive(wq, &ewait.wait,
193 TASK_UNINTERRUPTIBLE);
194 spin_unlock_irq(&mapping->tree_lock);
195 schedule();
196 finish_wait(wq, &ewait.wait);
197 spin_lock_irq(&mapping->tree_lock);
198 }
199 }
200
201 static void dax_unlock_mapping_entry(struct address_space *mapping,
202 pgoff_t index)
203 {
204 void *entry, **slot;
205
206 spin_lock_irq(&mapping->tree_lock);
207 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
208 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
209 !slot_locked(mapping, slot))) {
210 spin_unlock_irq(&mapping->tree_lock);
211 return;
212 }
213 unlock_slot(mapping, slot);
214 spin_unlock_irq(&mapping->tree_lock);
215 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
216 }
217
218 static void put_locked_mapping_entry(struct address_space *mapping,
219 pgoff_t index, void *entry)
220 {
221 if (!radix_tree_exceptional_entry(entry)) {
222 unlock_page(entry);
223 put_page(entry);
224 } else {
225 dax_unlock_mapping_entry(mapping, index);
226 }
227 }
228
229 /*
230 * Called when we are done with radix tree entry we looked up via
231 * get_unlocked_mapping_entry() and which we didn't lock in the end.
232 */
233 static void put_unlocked_mapping_entry(struct address_space *mapping,
234 pgoff_t index, void *entry)
235 {
236 if (!radix_tree_exceptional_entry(entry))
237 return;
238
239 /* We have to wake up next waiter for the radix tree entry lock */
240 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
241 }
242
243 /*
244 * Find radix tree entry at given index. If it points to a page, return with
245 * the page locked. If it points to the exceptional entry, return with the
246 * radix tree entry locked. If the radix tree doesn't contain given index,
247 * create empty exceptional entry for the index and return with it locked.
248 *
249 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
250 * either return that locked entry or will return an error. This error will
251 * happen if there are any 4k entries (either zero pages or DAX entries)
252 * within the 2MiB range that we are requesting.
253 *
254 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
255 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
256 * insertion will fail if it finds any 4k entries already in the tree, and a
257 * 4k insertion will cause an existing 2MiB entry to be unmapped and
258 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
259 * well as 2MiB empty entries.
260 *
261 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
262 * real storage backing them. We will leave these real 2MiB DAX entries in
263 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
264 *
265 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
266 * persistent memory the benefit is doubtful. We can add that later if we can
267 * show it helps.
268 */
269 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
270 unsigned long size_flag)
271 {
272 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
273 void *entry, **slot;
274
275 restart:
276 spin_lock_irq(&mapping->tree_lock);
277 entry = get_unlocked_mapping_entry(mapping, index, &slot);
278
279 if (entry) {
280 if (size_flag & RADIX_DAX_PMD) {
281 if (!radix_tree_exceptional_entry(entry) ||
282 dax_is_pte_entry(entry)) {
283 put_unlocked_mapping_entry(mapping, index,
284 entry);
285 entry = ERR_PTR(-EEXIST);
286 goto out_unlock;
287 }
288 } else { /* trying to grab a PTE entry */
289 if (radix_tree_exceptional_entry(entry) &&
290 dax_is_pmd_entry(entry) &&
291 (dax_is_zero_entry(entry) ||
292 dax_is_empty_entry(entry))) {
293 pmd_downgrade = true;
294 }
295 }
296 }
297
298 /* No entry for given index? Make sure radix tree is big enough. */
299 if (!entry || pmd_downgrade) {
300 int err;
301
302 if (pmd_downgrade) {
303 /*
304 * Make sure 'entry' remains valid while we drop
305 * mapping->tree_lock.
306 */
307 entry = lock_slot(mapping, slot);
308 }
309
310 spin_unlock_irq(&mapping->tree_lock);
311 /*
312 * Besides huge zero pages the only other thing that gets
313 * downgraded are empty entries which don't need to be
314 * unmapped.
315 */
316 if (pmd_downgrade && dax_is_zero_entry(entry))
317 unmap_mapping_range(mapping,
318 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
319
320 err = radix_tree_preload(
321 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
322 if (err) {
323 if (pmd_downgrade)
324 put_locked_mapping_entry(mapping, index, entry);
325 return ERR_PTR(err);
326 }
327 spin_lock_irq(&mapping->tree_lock);
328
329 if (!entry) {
330 /*
331 * We needed to drop the page_tree lock while calling
332 * radix_tree_preload() and we didn't have an entry to
333 * lock. See if another thread inserted an entry at
334 * our index during this time.
335 */
336 entry = __radix_tree_lookup(&mapping->page_tree, index,
337 NULL, &slot);
338 if (entry) {
339 radix_tree_preload_end();
340 spin_unlock_irq(&mapping->tree_lock);
341 goto restart;
342 }
343 }
344
345 if (pmd_downgrade) {
346 radix_tree_delete(&mapping->page_tree, index);
347 mapping->nrexceptional--;
348 dax_wake_mapping_entry_waiter(mapping, index, entry,
349 true);
350 }
351
352 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
353
354 err = __radix_tree_insert(&mapping->page_tree, index,
355 dax_radix_order(entry), entry);
356 radix_tree_preload_end();
357 if (err) {
358 spin_unlock_irq(&mapping->tree_lock);
359 /*
360 * Our insertion of a DAX entry failed, most likely
361 * because we were inserting a PMD entry and it
362 * collided with a PTE sized entry at a different
363 * index in the PMD range. We haven't inserted
364 * anything into the radix tree and have no waiters to
365 * wake.
366 */
367 return ERR_PTR(err);
368 }
369 /* Good, we have inserted empty locked entry into the tree. */
370 mapping->nrexceptional++;
371 spin_unlock_irq(&mapping->tree_lock);
372 return entry;
373 }
374 /* Normal page in radix tree? */
375 if (!radix_tree_exceptional_entry(entry)) {
376 struct page *page = entry;
377
378 get_page(page);
379 spin_unlock_irq(&mapping->tree_lock);
380 lock_page(page);
381 /* Page got truncated? Retry... */
382 if (unlikely(page->mapping != mapping)) {
383 unlock_page(page);
384 put_page(page);
385 goto restart;
386 }
387 return page;
388 }
389 entry = lock_slot(mapping, slot);
390 out_unlock:
391 spin_unlock_irq(&mapping->tree_lock);
392 return entry;
393 }
394
395 /*
396 * We do not necessarily hold the mapping->tree_lock when we call this
397 * function so it is possible that 'entry' is no longer a valid item in the
398 * radix tree. This is okay because all we really need to do is to find the
399 * correct waitqueue where tasks might be waiting for that old 'entry' and
400 * wake them.
401 */
402 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
403 pgoff_t index, void *entry, bool wake_all)
404 {
405 struct exceptional_entry_key key;
406 wait_queue_head_t *wq;
407
408 wq = dax_entry_waitqueue(mapping, index, entry, &key);
409
410 /*
411 * Checking for locked entry and prepare_to_wait_exclusive() happens
412 * under mapping->tree_lock, ditto for entry handling in our callers.
413 * So at this point all tasks that could have seen our entry locked
414 * must be in the waitqueue and the following check will see them.
415 */
416 if (waitqueue_active(wq))
417 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
418 }
419
420 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
421 pgoff_t index, bool trunc)
422 {
423 int ret = 0;
424 void *entry;
425 struct radix_tree_root *page_tree = &mapping->page_tree;
426
427 spin_lock_irq(&mapping->tree_lock);
428 entry = get_unlocked_mapping_entry(mapping, index, NULL);
429 if (!entry || !radix_tree_exceptional_entry(entry))
430 goto out;
431 if (!trunc &&
432 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
433 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
434 goto out;
435 radix_tree_delete(page_tree, index);
436 mapping->nrexceptional--;
437 ret = 1;
438 out:
439 put_unlocked_mapping_entry(mapping, index, entry);
440 spin_unlock_irq(&mapping->tree_lock);
441 return ret;
442 }
443 /*
444 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
445 * entry to get unlocked before deleting it.
446 */
447 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
448 {
449 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
450
451 /*
452 * This gets called from truncate / punch_hole path. As such, the caller
453 * must hold locks protecting against concurrent modifications of the
454 * radix tree (usually fs-private i_mmap_sem for writing). Since the
455 * caller has seen exceptional entry for this index, we better find it
456 * at that index as well...
457 */
458 WARN_ON_ONCE(!ret);
459 return ret;
460 }
461
462 /*
463 * Invalidate exceptional DAX entry if it is clean.
464 */
465 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
466 pgoff_t index)
467 {
468 return __dax_invalidate_mapping_entry(mapping, index, false);
469 }
470
471 /*
472 * The user has performed a load from a hole in the file. Allocating
473 * a new page in the file would cause excessive storage usage for
474 * workloads with sparse files. We allocate a page cache page instead.
475 * We'll kick it out of the page cache if it's ever written to,
476 * otherwise it will simply fall out of the page cache under memory
477 * pressure without ever having been dirtied.
478 */
479 static int dax_load_hole(struct address_space *mapping, void **entry,
480 struct vm_fault *vmf)
481 {
482 struct inode *inode = mapping->host;
483 struct page *page;
484 int ret;
485
486 /* Hole page already exists? Return it... */
487 if (!radix_tree_exceptional_entry(*entry)) {
488 page = *entry;
489 goto finish_fault;
490 }
491
492 /* This will replace locked radix tree entry with a hole page */
493 page = find_or_create_page(mapping, vmf->pgoff,
494 vmf->gfp_mask | __GFP_ZERO);
495 if (!page) {
496 ret = VM_FAULT_OOM;
497 goto out;
498 }
499
500 finish_fault:
501 vmf->page = page;
502 ret = finish_fault(vmf);
503 vmf->page = NULL;
504 *entry = page;
505 if (!ret) {
506 /* Grab reference for PTE that is now referencing the page */
507 get_page(page);
508 ret = VM_FAULT_NOPAGE;
509 }
510 out:
511 trace_dax_load_hole(inode, vmf, ret);
512 return ret;
513 }
514
515 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
516 sector_t sector, size_t size, struct page *to,
517 unsigned long vaddr)
518 {
519 void *vto, *kaddr;
520 pgoff_t pgoff;
521 pfn_t pfn;
522 long rc;
523 int id;
524
525 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
526 if (rc)
527 return rc;
528
529 id = dax_read_lock();
530 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
531 if (rc < 0) {
532 dax_read_unlock(id);
533 return rc;
534 }
535 vto = kmap_atomic(to);
536 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
537 kunmap_atomic(vto);
538 dax_read_unlock(id);
539 return 0;
540 }
541
542 /*
543 * By this point grab_mapping_entry() has ensured that we have a locked entry
544 * of the appropriate size so we don't have to worry about downgrading PMDs to
545 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
546 * already in the tree, we will skip the insertion and just dirty the PMD as
547 * appropriate.
548 */
549 static void *dax_insert_mapping_entry(struct address_space *mapping,
550 struct vm_fault *vmf,
551 void *entry, sector_t sector,
552 unsigned long flags)
553 {
554 struct radix_tree_root *page_tree = &mapping->page_tree;
555 int error = 0;
556 bool hole_fill = false;
557 void *new_entry;
558 pgoff_t index = vmf->pgoff;
559
560 if (vmf->flags & FAULT_FLAG_WRITE)
561 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
562
563 /* Replacing hole page with block mapping? */
564 if (!radix_tree_exceptional_entry(entry)) {
565 hole_fill = true;
566 /*
567 * Unmap the page now before we remove it from page cache below.
568 * The page is locked so it cannot be faulted in again.
569 */
570 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
571 PAGE_SIZE, 0);
572 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
573 if (error)
574 return ERR_PTR(error);
575 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
576 /* replacing huge zero page with PMD block mapping */
577 unmap_mapping_range(mapping,
578 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
579 }
580
581 spin_lock_irq(&mapping->tree_lock);
582 new_entry = dax_radix_locked_entry(sector, flags);
583
584 if (hole_fill) {
585 __delete_from_page_cache(entry, NULL);
586 /* Drop pagecache reference */
587 put_page(entry);
588 error = __radix_tree_insert(page_tree, index,
589 dax_radix_order(new_entry), new_entry);
590 if (error) {
591 new_entry = ERR_PTR(error);
592 goto unlock;
593 }
594 mapping->nrexceptional++;
595 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
596 /*
597 * Only swap our new entry into the radix tree if the current
598 * entry is a zero page or an empty entry. If a normal PTE or
599 * PMD entry is already in the tree, we leave it alone. This
600 * means that if we are trying to insert a PTE and the
601 * existing entry is a PMD, we will just leave the PMD in the
602 * tree and dirty it if necessary.
603 */
604 struct radix_tree_node *node;
605 void **slot;
606 void *ret;
607
608 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
609 WARN_ON_ONCE(ret != entry);
610 __radix_tree_replace(page_tree, node, slot,
611 new_entry, NULL, NULL);
612 }
613 if (vmf->flags & FAULT_FLAG_WRITE)
614 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
615 unlock:
616 spin_unlock_irq(&mapping->tree_lock);
617 if (hole_fill) {
618 radix_tree_preload_end();
619 /*
620 * We don't need hole page anymore, it has been replaced with
621 * locked radix tree entry now.
622 */
623 if (mapping->a_ops->freepage)
624 mapping->a_ops->freepage(entry);
625 unlock_page(entry);
626 put_page(entry);
627 }
628 return new_entry;
629 }
630
631 static inline unsigned long
632 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
633 {
634 unsigned long address;
635
636 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
637 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
638 return address;
639 }
640
641 /* Walk all mappings of a given index of a file and writeprotect them */
642 static void dax_mapping_entry_mkclean(struct address_space *mapping,
643 pgoff_t index, unsigned long pfn)
644 {
645 struct vm_area_struct *vma;
646 pte_t pte, *ptep = NULL;
647 pmd_t *pmdp = NULL;
648 spinlock_t *ptl;
649
650 i_mmap_lock_read(mapping);
651 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
652 unsigned long address, start, end;
653
654 cond_resched();
655
656 if (!(vma->vm_flags & VM_SHARED))
657 continue;
658
659 address = pgoff_address(index, vma);
660
661 /*
662 * Note because we provide start/end to follow_pte_pmd it will
663 * call mmu_notifier_invalidate_range_start() on our behalf
664 * before taking any lock.
665 */
666 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
667 continue;
668
669 if (pmdp) {
670 #ifdef CONFIG_FS_DAX_PMD
671 pmd_t pmd;
672
673 if (pfn != pmd_pfn(*pmdp))
674 goto unlock_pmd;
675 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
676 goto unlock_pmd;
677
678 flush_cache_page(vma, address, pfn);
679 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
680 pmd = pmd_wrprotect(pmd);
681 pmd = pmd_mkclean(pmd);
682 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
683 mmu_notifier_invalidate_range(vma->vm_mm, start, end);
684 unlock_pmd:
685 spin_unlock(ptl);
686 #endif
687 } else {
688 if (pfn != pte_pfn(*ptep))
689 goto unlock_pte;
690 if (!pte_dirty(*ptep) && !pte_write(*ptep))
691 goto unlock_pte;
692
693 flush_cache_page(vma, address, pfn);
694 pte = ptep_clear_flush(vma, address, ptep);
695 pte = pte_wrprotect(pte);
696 pte = pte_mkclean(pte);
697 set_pte_at(vma->vm_mm, address, ptep, pte);
698 mmu_notifier_invalidate_range(vma->vm_mm, start, end);
699 unlock_pte:
700 pte_unmap_unlock(ptep, ptl);
701 }
702
703 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
704 }
705 i_mmap_unlock_read(mapping);
706 }
707
708 static int dax_writeback_one(struct block_device *bdev,
709 struct dax_device *dax_dev, struct address_space *mapping,
710 pgoff_t index, void *entry)
711 {
712 struct radix_tree_root *page_tree = &mapping->page_tree;
713 void *entry2, **slot, *kaddr;
714 long ret = 0, id;
715 sector_t sector;
716 pgoff_t pgoff;
717 size_t size;
718 pfn_t pfn;
719
720 /*
721 * A page got tagged dirty in DAX mapping? Something is seriously
722 * wrong.
723 */
724 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
725 return -EIO;
726
727 spin_lock_irq(&mapping->tree_lock);
728 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
729 /* Entry got punched out / reallocated? */
730 if (!entry2 || !radix_tree_exceptional_entry(entry2))
731 goto put_unlocked;
732 /*
733 * Entry got reallocated elsewhere? No need to writeback. We have to
734 * compare sectors as we must not bail out due to difference in lockbit
735 * or entry type.
736 */
737 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
738 goto put_unlocked;
739 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
740 dax_is_zero_entry(entry))) {
741 ret = -EIO;
742 goto put_unlocked;
743 }
744
745 /* Another fsync thread may have already written back this entry */
746 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
747 goto put_unlocked;
748 /* Lock the entry to serialize with page faults */
749 entry = lock_slot(mapping, slot);
750 /*
751 * We can clear the tag now but we have to be careful so that concurrent
752 * dax_writeback_one() calls for the same index cannot finish before we
753 * actually flush the caches. This is achieved as the calls will look
754 * at the entry only under tree_lock and once they do that they will
755 * see the entry locked and wait for it to unlock.
756 */
757 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
758 spin_unlock_irq(&mapping->tree_lock);
759
760 /*
761 * Even if dax_writeback_mapping_range() was given a wbc->range_start
762 * in the middle of a PMD, the 'index' we are given will be aligned to
763 * the start index of the PMD, as will the sector we pull from
764 * 'entry'. This allows us to flush for PMD_SIZE and not have to
765 * worry about partial PMD writebacks.
766 */
767 sector = dax_radix_sector(entry);
768 size = PAGE_SIZE << dax_radix_order(entry);
769
770 id = dax_read_lock();
771 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
772 if (ret)
773 goto dax_unlock;
774
775 /*
776 * dax_direct_access() may sleep, so cannot hold tree_lock over
777 * its invocation.
778 */
779 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
780 if (ret < 0)
781 goto dax_unlock;
782
783 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
784 ret = -EIO;
785 goto dax_unlock;
786 }
787
788 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
789 dax_flush(dax_dev, pgoff, kaddr, size);
790 /*
791 * After we have flushed the cache, we can clear the dirty tag. There
792 * cannot be new dirty data in the pfn after the flush has completed as
793 * the pfn mappings are writeprotected and fault waits for mapping
794 * entry lock.
795 */
796 spin_lock_irq(&mapping->tree_lock);
797 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
798 spin_unlock_irq(&mapping->tree_lock);
799 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
800 dax_unlock:
801 dax_read_unlock(id);
802 put_locked_mapping_entry(mapping, index, entry);
803 return ret;
804
805 put_unlocked:
806 put_unlocked_mapping_entry(mapping, index, entry2);
807 spin_unlock_irq(&mapping->tree_lock);
808 return ret;
809 }
810
811 /*
812 * Flush the mapping to the persistent domain within the byte range of [start,
813 * end]. This is required by data integrity operations to ensure file data is
814 * on persistent storage prior to completion of the operation.
815 */
816 int dax_writeback_mapping_range(struct address_space *mapping,
817 struct block_device *bdev, struct writeback_control *wbc)
818 {
819 struct inode *inode = mapping->host;
820 pgoff_t start_index, end_index;
821 pgoff_t indices[PAGEVEC_SIZE];
822 struct dax_device *dax_dev;
823 struct pagevec pvec;
824 bool done = false;
825 int i, ret = 0;
826
827 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
828 return -EIO;
829
830 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
831 return 0;
832
833 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
834 if (!dax_dev)
835 return -EIO;
836
837 start_index = wbc->range_start >> PAGE_SHIFT;
838 end_index = wbc->range_end >> PAGE_SHIFT;
839
840 trace_dax_writeback_range(inode, start_index, end_index);
841
842 tag_pages_for_writeback(mapping, start_index, end_index);
843
844 pagevec_init(&pvec, 0);
845 while (!done) {
846 pvec.nr = find_get_entries_tag(mapping, start_index,
847 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
848 pvec.pages, indices);
849
850 if (pvec.nr == 0)
851 break;
852
853 for (i = 0; i < pvec.nr; i++) {
854 if (indices[i] > end_index) {
855 done = true;
856 break;
857 }
858
859 ret = dax_writeback_one(bdev, dax_dev, mapping,
860 indices[i], pvec.pages[i]);
861 if (ret < 0) {
862 mapping_set_error(mapping, ret);
863 goto out;
864 }
865 }
866 start_index = indices[pvec.nr - 1] + 1;
867 }
868 out:
869 put_dax(dax_dev);
870 trace_dax_writeback_range_done(inode, start_index, end_index);
871 return (ret < 0 ? ret : 0);
872 }
873 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
874
875 static int dax_insert_mapping(struct address_space *mapping,
876 struct block_device *bdev, struct dax_device *dax_dev,
877 sector_t sector, size_t size, void **entryp,
878 struct vm_area_struct *vma, struct vm_fault *vmf)
879 {
880 unsigned long vaddr = vmf->address;
881 void *entry = *entryp;
882 void *ret, *kaddr;
883 pgoff_t pgoff;
884 int id, rc;
885 pfn_t pfn;
886
887 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
888 if (rc)
889 return rc;
890
891 id = dax_read_lock();
892 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
893 if (rc < 0) {
894 dax_read_unlock(id);
895 return rc;
896 }
897 dax_read_unlock(id);
898
899 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
900 if (IS_ERR(ret))
901 return PTR_ERR(ret);
902 *entryp = ret;
903
904 trace_dax_insert_mapping(mapping->host, vmf, ret);
905 return vm_insert_mixed(vma, vaddr, pfn);
906 }
907
908 /**
909 * dax_pfn_mkwrite - handle first write to DAX page
910 * @vmf: The description of the fault
911 */
912 int dax_pfn_mkwrite(struct vm_fault *vmf)
913 {
914 struct file *file = vmf->vma->vm_file;
915 struct address_space *mapping = file->f_mapping;
916 struct inode *inode = mapping->host;
917 void *entry, **slot;
918 pgoff_t index = vmf->pgoff;
919
920 spin_lock_irq(&mapping->tree_lock);
921 entry = get_unlocked_mapping_entry(mapping, index, &slot);
922 if (!entry || !radix_tree_exceptional_entry(entry)) {
923 if (entry)
924 put_unlocked_mapping_entry(mapping, index, entry);
925 spin_unlock_irq(&mapping->tree_lock);
926 trace_dax_pfn_mkwrite_no_entry(inode, vmf, VM_FAULT_NOPAGE);
927 return VM_FAULT_NOPAGE;
928 }
929 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
930 entry = lock_slot(mapping, slot);
931 spin_unlock_irq(&mapping->tree_lock);
932 /*
933 * If we race with somebody updating the PTE and finish_mkwrite_fault()
934 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
935 * the fault in either case.
936 */
937 finish_mkwrite_fault(vmf);
938 put_locked_mapping_entry(mapping, index, entry);
939 trace_dax_pfn_mkwrite(inode, vmf, VM_FAULT_NOPAGE);
940 return VM_FAULT_NOPAGE;
941 }
942 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
943
944 static bool dax_range_is_aligned(struct block_device *bdev,
945 unsigned int offset, unsigned int length)
946 {
947 unsigned short sector_size = bdev_logical_block_size(bdev);
948
949 if (!IS_ALIGNED(offset, sector_size))
950 return false;
951 if (!IS_ALIGNED(length, sector_size))
952 return false;
953
954 return true;
955 }
956
957 int __dax_zero_page_range(struct block_device *bdev,
958 struct dax_device *dax_dev, sector_t sector,
959 unsigned int offset, unsigned int size)
960 {
961 if (dax_range_is_aligned(bdev, offset, size)) {
962 sector_t start_sector = sector + (offset >> 9);
963
964 return blkdev_issue_zeroout(bdev, start_sector,
965 size >> 9, GFP_NOFS, 0);
966 } else {
967 pgoff_t pgoff;
968 long rc, id;
969 void *kaddr;
970 pfn_t pfn;
971
972 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
973 if (rc)
974 return rc;
975
976 id = dax_read_lock();
977 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
978 &pfn);
979 if (rc < 0) {
980 dax_read_unlock(id);
981 return rc;
982 }
983 memset(kaddr + offset, 0, size);
984 dax_flush(dax_dev, pgoff, kaddr + offset, size);
985 dax_read_unlock(id);
986 }
987 return 0;
988 }
989 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
990
991 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
992 {
993 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
994 }
995
996 static loff_t
997 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
998 struct iomap *iomap)
999 {
1000 struct block_device *bdev = iomap->bdev;
1001 struct dax_device *dax_dev = iomap->dax_dev;
1002 struct iov_iter *iter = data;
1003 loff_t end = pos + length, done = 0;
1004 ssize_t ret = 0;
1005 int id;
1006
1007 if (iov_iter_rw(iter) == READ) {
1008 end = min(end, i_size_read(inode));
1009 if (pos >= end)
1010 return 0;
1011
1012 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1013 return iov_iter_zero(min(length, end - pos), iter);
1014 }
1015
1016 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1017 return -EIO;
1018
1019 /*
1020 * Write can allocate block for an area which has a hole page mapped
1021 * into page tables. We have to tear down these mappings so that data
1022 * written by write(2) is visible in mmap.
1023 */
1024 if (iomap->flags & IOMAP_F_NEW) {
1025 invalidate_inode_pages2_range(inode->i_mapping,
1026 pos >> PAGE_SHIFT,
1027 (end - 1) >> PAGE_SHIFT);
1028 }
1029
1030 id = dax_read_lock();
1031 while (pos < end) {
1032 unsigned offset = pos & (PAGE_SIZE - 1);
1033 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1034 const sector_t sector = dax_iomap_sector(iomap, pos);
1035 ssize_t map_len;
1036 pgoff_t pgoff;
1037 void *kaddr;
1038 pfn_t pfn;
1039
1040 if (fatal_signal_pending(current)) {
1041 ret = -EINTR;
1042 break;
1043 }
1044
1045 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1046 if (ret)
1047 break;
1048
1049 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1050 &kaddr, &pfn);
1051 if (map_len < 0) {
1052 ret = map_len;
1053 break;
1054 }
1055
1056 map_len = PFN_PHYS(map_len);
1057 kaddr += offset;
1058 map_len -= offset;
1059 if (map_len > end - pos)
1060 map_len = end - pos;
1061
1062 if (iov_iter_rw(iter) == WRITE)
1063 map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1064 map_len, iter);
1065 else
1066 map_len = copy_to_iter(kaddr, map_len, iter);
1067 if (map_len <= 0) {
1068 ret = map_len ? map_len : -EFAULT;
1069 break;
1070 }
1071
1072 pos += map_len;
1073 length -= map_len;
1074 done += map_len;
1075 }
1076 dax_read_unlock(id);
1077
1078 return done ? done : ret;
1079 }
1080
1081 /**
1082 * dax_iomap_rw - Perform I/O to a DAX file
1083 * @iocb: The control block for this I/O
1084 * @iter: The addresses to do I/O from or to
1085 * @ops: iomap ops passed from the file system
1086 *
1087 * This function performs read and write operations to directly mapped
1088 * persistent memory. The callers needs to take care of read/write exclusion
1089 * and evicting any page cache pages in the region under I/O.
1090 */
1091 ssize_t
1092 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1093 const struct iomap_ops *ops)
1094 {
1095 struct address_space *mapping = iocb->ki_filp->f_mapping;
1096 struct inode *inode = mapping->host;
1097 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1098 unsigned flags = 0;
1099
1100 if (iov_iter_rw(iter) == WRITE) {
1101 lockdep_assert_held_exclusive(&inode->i_rwsem);
1102 flags |= IOMAP_WRITE;
1103 } else {
1104 lockdep_assert_held(&inode->i_rwsem);
1105 }
1106
1107 while (iov_iter_count(iter)) {
1108 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1109 iter, dax_iomap_actor);
1110 if (ret <= 0)
1111 break;
1112 pos += ret;
1113 done += ret;
1114 }
1115
1116 iocb->ki_pos += done;
1117 return done ? done : ret;
1118 }
1119 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1120
1121 static int dax_fault_return(int error)
1122 {
1123 if (error == 0)
1124 return VM_FAULT_NOPAGE;
1125 if (error == -ENOMEM)
1126 return VM_FAULT_OOM;
1127 return VM_FAULT_SIGBUS;
1128 }
1129
1130 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1131 const struct iomap_ops *ops)
1132 {
1133 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1134 struct inode *inode = mapping->host;
1135 unsigned long vaddr = vmf->address;
1136 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1137 sector_t sector;
1138 struct iomap iomap = { 0 };
1139 unsigned flags = IOMAP_FAULT;
1140 int error, major = 0;
1141 int vmf_ret = 0;
1142 void *entry;
1143
1144 trace_dax_pte_fault(inode, vmf, vmf_ret);
1145 /*
1146 * Check whether offset isn't beyond end of file now. Caller is supposed
1147 * to hold locks serializing us with truncate / punch hole so this is
1148 * a reliable test.
1149 */
1150 if (pos >= i_size_read(inode)) {
1151 vmf_ret = VM_FAULT_SIGBUS;
1152 goto out;
1153 }
1154
1155 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1156 flags |= IOMAP_WRITE;
1157
1158 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1159 if (IS_ERR(entry)) {
1160 vmf_ret = dax_fault_return(PTR_ERR(entry));
1161 goto out;
1162 }
1163
1164 /*
1165 * It is possible, particularly with mixed reads & writes to private
1166 * mappings, that we have raced with a PMD fault that overlaps with
1167 * the PTE we need to set up. If so just return and the fault will be
1168 * retried.
1169 */
1170 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1171 vmf_ret = VM_FAULT_NOPAGE;
1172 goto unlock_entry;
1173 }
1174
1175 /*
1176 * Note that we don't bother to use iomap_apply here: DAX required
1177 * the file system block size to be equal the page size, which means
1178 * that we never have to deal with more than a single extent here.
1179 */
1180 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1181 if (error) {
1182 vmf_ret = dax_fault_return(error);
1183 goto unlock_entry;
1184 }
1185 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1186 error = -EIO; /* fs corruption? */
1187 goto error_finish_iomap;
1188 }
1189
1190 sector = dax_iomap_sector(&iomap, pos);
1191
1192 if (vmf->cow_page) {
1193 switch (iomap.type) {
1194 case IOMAP_HOLE:
1195 case IOMAP_UNWRITTEN:
1196 clear_user_highpage(vmf->cow_page, vaddr);
1197 break;
1198 case IOMAP_MAPPED:
1199 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1200 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1201 break;
1202 default:
1203 WARN_ON_ONCE(1);
1204 error = -EIO;
1205 break;
1206 }
1207
1208 if (error)
1209 goto error_finish_iomap;
1210
1211 __SetPageUptodate(vmf->cow_page);
1212 vmf_ret = finish_fault(vmf);
1213 if (!vmf_ret)
1214 vmf_ret = VM_FAULT_DONE_COW;
1215 goto finish_iomap;
1216 }
1217
1218 switch (iomap.type) {
1219 case IOMAP_MAPPED:
1220 if (iomap.flags & IOMAP_F_NEW) {
1221 count_vm_event(PGMAJFAULT);
1222 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1223 major = VM_FAULT_MAJOR;
1224 }
1225 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1226 sector, PAGE_SIZE, &entry, vmf->vma, vmf);
1227 /* -EBUSY is fine, somebody else faulted on the same PTE */
1228 if (error == -EBUSY)
1229 error = 0;
1230 break;
1231 case IOMAP_UNWRITTEN:
1232 case IOMAP_HOLE:
1233 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1234 vmf_ret = dax_load_hole(mapping, &entry, vmf);
1235 goto finish_iomap;
1236 }
1237 /*FALLTHRU*/
1238 default:
1239 WARN_ON_ONCE(1);
1240 error = -EIO;
1241 break;
1242 }
1243
1244 error_finish_iomap:
1245 vmf_ret = dax_fault_return(error) | major;
1246 finish_iomap:
1247 if (ops->iomap_end) {
1248 int copied = PAGE_SIZE;
1249
1250 if (vmf_ret & VM_FAULT_ERROR)
1251 copied = 0;
1252 /*
1253 * The fault is done by now and there's no way back (other
1254 * thread may be already happily using PTE we have installed).
1255 * Just ignore error from ->iomap_end since we cannot do much
1256 * with it.
1257 */
1258 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1259 }
1260 unlock_entry:
1261 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1262 out:
1263 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1264 return vmf_ret;
1265 }
1266
1267 #ifdef CONFIG_FS_DAX_PMD
1268 /*
1269 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1270 * more often than one might expect in the below functions.
1271 */
1272 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1273
1274 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1275 loff_t pos, void **entryp)
1276 {
1277 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1278 const sector_t sector = dax_iomap_sector(iomap, pos);
1279 struct dax_device *dax_dev = iomap->dax_dev;
1280 struct block_device *bdev = iomap->bdev;
1281 struct inode *inode = mapping->host;
1282 const size_t size = PMD_SIZE;
1283 void *ret = NULL, *kaddr;
1284 long length = 0;
1285 pgoff_t pgoff;
1286 pfn_t pfn;
1287 int id;
1288
1289 if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1290 goto fallback;
1291
1292 id = dax_read_lock();
1293 length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1294 if (length < 0)
1295 goto unlock_fallback;
1296 length = PFN_PHYS(length);
1297
1298 if (length < size)
1299 goto unlock_fallback;
1300 if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1301 goto unlock_fallback;
1302 if (!pfn_t_devmap(pfn))
1303 goto unlock_fallback;
1304 dax_read_unlock(id);
1305
1306 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, sector,
1307 RADIX_DAX_PMD);
1308 if (IS_ERR(ret))
1309 goto fallback;
1310 *entryp = ret;
1311
1312 trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1313 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1314 pfn, vmf->flags & FAULT_FLAG_WRITE);
1315
1316 unlock_fallback:
1317 dax_read_unlock(id);
1318 fallback:
1319 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1320 return VM_FAULT_FALLBACK;
1321 }
1322
1323 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1324 void **entryp)
1325 {
1326 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1327 unsigned long pmd_addr = vmf->address & PMD_MASK;
1328 struct inode *inode = mapping->host;
1329 struct page *zero_page;
1330 void *ret = NULL;
1331 spinlock_t *ptl;
1332 pmd_t pmd_entry;
1333
1334 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1335
1336 if (unlikely(!zero_page))
1337 goto fallback;
1338
1339 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1340 RADIX_DAX_PMD | RADIX_DAX_HZP);
1341 if (IS_ERR(ret))
1342 goto fallback;
1343 *entryp = ret;
1344
1345 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1346 if (!pmd_none(*(vmf->pmd))) {
1347 spin_unlock(ptl);
1348 goto fallback;
1349 }
1350
1351 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1352 pmd_entry = pmd_mkhuge(pmd_entry);
1353 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1354 spin_unlock(ptl);
1355 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1356 return VM_FAULT_NOPAGE;
1357
1358 fallback:
1359 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1360 return VM_FAULT_FALLBACK;
1361 }
1362
1363 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1364 const struct iomap_ops *ops)
1365 {
1366 struct vm_area_struct *vma = vmf->vma;
1367 struct address_space *mapping = vma->vm_file->f_mapping;
1368 unsigned long pmd_addr = vmf->address & PMD_MASK;
1369 bool write = vmf->flags & FAULT_FLAG_WRITE;
1370 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1371 struct inode *inode = mapping->host;
1372 int result = VM_FAULT_FALLBACK;
1373 struct iomap iomap = { 0 };
1374 pgoff_t max_pgoff, pgoff;
1375 void *entry;
1376 loff_t pos;
1377 int error;
1378
1379 /*
1380 * Check whether offset isn't beyond end of file now. Caller is
1381 * supposed to hold locks serializing us with truncate / punch hole so
1382 * this is a reliable test.
1383 */
1384 pgoff = linear_page_index(vma, pmd_addr);
1385 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1386
1387 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1388
1389 /*
1390 * Make sure that the faulting address's PMD offset (color) matches
1391 * the PMD offset from the start of the file. This is necessary so
1392 * that a PMD range in the page table overlaps exactly with a PMD
1393 * range in the radix tree.
1394 */
1395 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1396 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1397 goto fallback;
1398
1399 /* Fall back to PTEs if we're going to COW */
1400 if (write && !(vma->vm_flags & VM_SHARED))
1401 goto fallback;
1402
1403 /* If the PMD would extend outside the VMA */
1404 if (pmd_addr < vma->vm_start)
1405 goto fallback;
1406 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1407 goto fallback;
1408
1409 if (pgoff > max_pgoff) {
1410 result = VM_FAULT_SIGBUS;
1411 goto out;
1412 }
1413
1414 /* If the PMD would extend beyond the file size */
1415 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1416 goto fallback;
1417
1418 /*
1419 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1420 * PMD or a HZP entry. If it can't (because a 4k page is already in
1421 * the tree, for instance), it will return -EEXIST and we just fall
1422 * back to 4k entries.
1423 */
1424 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1425 if (IS_ERR(entry))
1426 goto fallback;
1427
1428 /*
1429 * It is possible, particularly with mixed reads & writes to private
1430 * mappings, that we have raced with a PTE fault that overlaps with
1431 * the PMD we need to set up. If so just return and the fault will be
1432 * retried.
1433 */
1434 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1435 !pmd_devmap(*vmf->pmd)) {
1436 result = 0;
1437 goto unlock_entry;
1438 }
1439
1440 /*
1441 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1442 * setting up a mapping, so really we're using iomap_begin() as a way
1443 * to look up our filesystem block.
1444 */
1445 pos = (loff_t)pgoff << PAGE_SHIFT;
1446 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1447 if (error)
1448 goto unlock_entry;
1449
1450 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1451 goto finish_iomap;
1452
1453 switch (iomap.type) {
1454 case IOMAP_MAPPED:
1455 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1456 break;
1457 case IOMAP_UNWRITTEN:
1458 case IOMAP_HOLE:
1459 if (WARN_ON_ONCE(write))
1460 break;
1461 result = dax_pmd_load_hole(vmf, &iomap, &entry);
1462 break;
1463 default:
1464 WARN_ON_ONCE(1);
1465 break;
1466 }
1467
1468 finish_iomap:
1469 if (ops->iomap_end) {
1470 int copied = PMD_SIZE;
1471
1472 if (result == VM_FAULT_FALLBACK)
1473 copied = 0;
1474 /*
1475 * The fault is done by now and there's no way back (other
1476 * thread may be already happily using PMD we have installed).
1477 * Just ignore error from ->iomap_end since we cannot do much
1478 * with it.
1479 */
1480 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1481 &iomap);
1482 }
1483 unlock_entry:
1484 put_locked_mapping_entry(mapping, pgoff, entry);
1485 fallback:
1486 if (result == VM_FAULT_FALLBACK) {
1487 split_huge_pmd(vma, vmf->pmd, vmf->address);
1488 count_vm_event(THP_FAULT_FALLBACK);
1489 }
1490 out:
1491 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1492 return result;
1493 }
1494 #else
1495 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1496 const struct iomap_ops *ops)
1497 {
1498 return VM_FAULT_FALLBACK;
1499 }
1500 #endif /* CONFIG_FS_DAX_PMD */
1501
1502 /**
1503 * dax_iomap_fault - handle a page fault on a DAX file
1504 * @vmf: The description of the fault
1505 * @ops: iomap ops passed from the file system
1506 *
1507 * When a page fault occurs, filesystems may call this helper in
1508 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1509 * has done all the necessary locking for page fault to proceed
1510 * successfully.
1511 */
1512 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1513 const struct iomap_ops *ops)
1514 {
1515 switch (pe_size) {
1516 case PE_SIZE_PTE:
1517 return dax_iomap_pte_fault(vmf, ops);
1518 case PE_SIZE_PMD:
1519 return dax_iomap_pmd_fault(vmf, ops);
1520 default:
1521 return VM_FAULT_FALLBACK;
1522 }
1523 }
1524 EXPORT_SYMBOL_GPL(dax_iomap_fault);