]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dax.c
Merge remote-tracking branches 'asoc/fix/dpcm', 'asoc/fix/imx', 'asoc/fix/msm8916...
[mirror_ubuntu-artful-kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
46
47 static int __init init_dax_wait_table(void)
48 {
49 int i;
50
51 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
52 init_waitqueue_head(wait_table + i);
53 return 0;
54 }
55 fs_initcall(init_dax_wait_table);
56
57 static int dax_is_pmd_entry(void *entry)
58 {
59 return (unsigned long)entry & RADIX_DAX_PMD;
60 }
61
62 static int dax_is_pte_entry(void *entry)
63 {
64 return !((unsigned long)entry & RADIX_DAX_PMD);
65 }
66
67 static int dax_is_zero_entry(void *entry)
68 {
69 return (unsigned long)entry & RADIX_DAX_HZP;
70 }
71
72 static int dax_is_empty_entry(void *entry)
73 {
74 return (unsigned long)entry & RADIX_DAX_EMPTY;
75 }
76
77 /*
78 * DAX radix tree locking
79 */
80 struct exceptional_entry_key {
81 struct address_space *mapping;
82 pgoff_t entry_start;
83 };
84
85 struct wait_exceptional_entry_queue {
86 wait_queue_entry_t wait;
87 struct exceptional_entry_key key;
88 };
89
90 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
91 pgoff_t index, void *entry, struct exceptional_entry_key *key)
92 {
93 unsigned long hash;
94
95 /*
96 * If 'entry' is a PMD, align the 'index' that we use for the wait
97 * queue to the start of that PMD. This ensures that all offsets in
98 * the range covered by the PMD map to the same bit lock.
99 */
100 if (dax_is_pmd_entry(entry))
101 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
102
103 key->mapping = mapping;
104 key->entry_start = index;
105
106 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
107 return wait_table + hash;
108 }
109
110 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
111 int sync, void *keyp)
112 {
113 struct exceptional_entry_key *key = keyp;
114 struct wait_exceptional_entry_queue *ewait =
115 container_of(wait, struct wait_exceptional_entry_queue, wait);
116
117 if (key->mapping != ewait->key.mapping ||
118 key->entry_start != ewait->key.entry_start)
119 return 0;
120 return autoremove_wake_function(wait, mode, sync, NULL);
121 }
122
123 /*
124 * Check whether the given slot is locked. The function must be called with
125 * mapping->tree_lock held
126 */
127 static inline int slot_locked(struct address_space *mapping, void **slot)
128 {
129 unsigned long entry = (unsigned long)
130 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
131 return entry & RADIX_DAX_ENTRY_LOCK;
132 }
133
134 /*
135 * Mark the given slot is locked. The function must be called with
136 * mapping->tree_lock held
137 */
138 static inline void *lock_slot(struct address_space *mapping, void **slot)
139 {
140 unsigned long entry = (unsigned long)
141 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
142
143 entry |= RADIX_DAX_ENTRY_LOCK;
144 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
145 return (void *)entry;
146 }
147
148 /*
149 * Mark the given slot is unlocked. The function must be called with
150 * mapping->tree_lock held
151 */
152 static inline void *unlock_slot(struct address_space *mapping, void **slot)
153 {
154 unsigned long entry = (unsigned long)
155 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
156
157 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
158 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
159 return (void *)entry;
160 }
161
162 /*
163 * Lookup entry in radix tree, wait for it to become unlocked if it is
164 * exceptional entry and return it. The caller must call
165 * put_unlocked_mapping_entry() when he decided not to lock the entry or
166 * put_locked_mapping_entry() when he locked the entry and now wants to
167 * unlock it.
168 *
169 * The function must be called with mapping->tree_lock held.
170 */
171 static void *get_unlocked_mapping_entry(struct address_space *mapping,
172 pgoff_t index, void ***slotp)
173 {
174 void *entry, **slot;
175 struct wait_exceptional_entry_queue ewait;
176 wait_queue_head_t *wq;
177
178 init_wait(&ewait.wait);
179 ewait.wait.func = wake_exceptional_entry_func;
180
181 for (;;) {
182 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
183 &slot);
184 if (!entry || !radix_tree_exceptional_entry(entry) ||
185 !slot_locked(mapping, slot)) {
186 if (slotp)
187 *slotp = slot;
188 return entry;
189 }
190
191 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
192 prepare_to_wait_exclusive(wq, &ewait.wait,
193 TASK_UNINTERRUPTIBLE);
194 spin_unlock_irq(&mapping->tree_lock);
195 schedule();
196 finish_wait(wq, &ewait.wait);
197 spin_lock_irq(&mapping->tree_lock);
198 }
199 }
200
201 static void dax_unlock_mapping_entry(struct address_space *mapping,
202 pgoff_t index)
203 {
204 void *entry, **slot;
205
206 spin_lock_irq(&mapping->tree_lock);
207 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
208 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
209 !slot_locked(mapping, slot))) {
210 spin_unlock_irq(&mapping->tree_lock);
211 return;
212 }
213 unlock_slot(mapping, slot);
214 spin_unlock_irq(&mapping->tree_lock);
215 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
216 }
217
218 static void put_locked_mapping_entry(struct address_space *mapping,
219 pgoff_t index, void *entry)
220 {
221 if (!radix_tree_exceptional_entry(entry)) {
222 unlock_page(entry);
223 put_page(entry);
224 } else {
225 dax_unlock_mapping_entry(mapping, index);
226 }
227 }
228
229 /*
230 * Called when we are done with radix tree entry we looked up via
231 * get_unlocked_mapping_entry() and which we didn't lock in the end.
232 */
233 static void put_unlocked_mapping_entry(struct address_space *mapping,
234 pgoff_t index, void *entry)
235 {
236 if (!radix_tree_exceptional_entry(entry))
237 return;
238
239 /* We have to wake up next waiter for the radix tree entry lock */
240 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
241 }
242
243 /*
244 * Find radix tree entry at given index. If it points to a page, return with
245 * the page locked. If it points to the exceptional entry, return with the
246 * radix tree entry locked. If the radix tree doesn't contain given index,
247 * create empty exceptional entry for the index and return with it locked.
248 *
249 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
250 * either return that locked entry or will return an error. This error will
251 * happen if there are any 4k entries (either zero pages or DAX entries)
252 * within the 2MiB range that we are requesting.
253 *
254 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
255 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
256 * insertion will fail if it finds any 4k entries already in the tree, and a
257 * 4k insertion will cause an existing 2MiB entry to be unmapped and
258 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
259 * well as 2MiB empty entries.
260 *
261 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
262 * real storage backing them. We will leave these real 2MiB DAX entries in
263 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
264 *
265 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
266 * persistent memory the benefit is doubtful. We can add that later if we can
267 * show it helps.
268 */
269 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
270 unsigned long size_flag)
271 {
272 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
273 void *entry, **slot;
274
275 restart:
276 spin_lock_irq(&mapping->tree_lock);
277 entry = get_unlocked_mapping_entry(mapping, index, &slot);
278
279 if (entry) {
280 if (size_flag & RADIX_DAX_PMD) {
281 if (!radix_tree_exceptional_entry(entry) ||
282 dax_is_pte_entry(entry)) {
283 put_unlocked_mapping_entry(mapping, index,
284 entry);
285 entry = ERR_PTR(-EEXIST);
286 goto out_unlock;
287 }
288 } else { /* trying to grab a PTE entry */
289 if (radix_tree_exceptional_entry(entry) &&
290 dax_is_pmd_entry(entry) &&
291 (dax_is_zero_entry(entry) ||
292 dax_is_empty_entry(entry))) {
293 pmd_downgrade = true;
294 }
295 }
296 }
297
298 /* No entry for given index? Make sure radix tree is big enough. */
299 if (!entry || pmd_downgrade) {
300 int err;
301
302 if (pmd_downgrade) {
303 /*
304 * Make sure 'entry' remains valid while we drop
305 * mapping->tree_lock.
306 */
307 entry = lock_slot(mapping, slot);
308 }
309
310 spin_unlock_irq(&mapping->tree_lock);
311 /*
312 * Besides huge zero pages the only other thing that gets
313 * downgraded are empty entries which don't need to be
314 * unmapped.
315 */
316 if (pmd_downgrade && dax_is_zero_entry(entry))
317 unmap_mapping_range(mapping,
318 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
319
320 err = radix_tree_preload(
321 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
322 if (err) {
323 if (pmd_downgrade)
324 put_locked_mapping_entry(mapping, index, entry);
325 return ERR_PTR(err);
326 }
327 spin_lock_irq(&mapping->tree_lock);
328
329 if (!entry) {
330 /*
331 * We needed to drop the page_tree lock while calling
332 * radix_tree_preload() and we didn't have an entry to
333 * lock. See if another thread inserted an entry at
334 * our index during this time.
335 */
336 entry = __radix_tree_lookup(&mapping->page_tree, index,
337 NULL, &slot);
338 if (entry) {
339 radix_tree_preload_end();
340 spin_unlock_irq(&mapping->tree_lock);
341 goto restart;
342 }
343 }
344
345 if (pmd_downgrade) {
346 radix_tree_delete(&mapping->page_tree, index);
347 mapping->nrexceptional--;
348 dax_wake_mapping_entry_waiter(mapping, index, entry,
349 true);
350 }
351
352 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
353
354 err = __radix_tree_insert(&mapping->page_tree, index,
355 dax_radix_order(entry), entry);
356 radix_tree_preload_end();
357 if (err) {
358 spin_unlock_irq(&mapping->tree_lock);
359 /*
360 * Our insertion of a DAX entry failed, most likely
361 * because we were inserting a PMD entry and it
362 * collided with a PTE sized entry at a different
363 * index in the PMD range. We haven't inserted
364 * anything into the radix tree and have no waiters to
365 * wake.
366 */
367 return ERR_PTR(err);
368 }
369 /* Good, we have inserted empty locked entry into the tree. */
370 mapping->nrexceptional++;
371 spin_unlock_irq(&mapping->tree_lock);
372 return entry;
373 }
374 /* Normal page in radix tree? */
375 if (!radix_tree_exceptional_entry(entry)) {
376 struct page *page = entry;
377
378 get_page(page);
379 spin_unlock_irq(&mapping->tree_lock);
380 lock_page(page);
381 /* Page got truncated? Retry... */
382 if (unlikely(page->mapping != mapping)) {
383 unlock_page(page);
384 put_page(page);
385 goto restart;
386 }
387 return page;
388 }
389 entry = lock_slot(mapping, slot);
390 out_unlock:
391 spin_unlock_irq(&mapping->tree_lock);
392 return entry;
393 }
394
395 /*
396 * We do not necessarily hold the mapping->tree_lock when we call this
397 * function so it is possible that 'entry' is no longer a valid item in the
398 * radix tree. This is okay because all we really need to do is to find the
399 * correct waitqueue where tasks might be waiting for that old 'entry' and
400 * wake them.
401 */
402 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
403 pgoff_t index, void *entry, bool wake_all)
404 {
405 struct exceptional_entry_key key;
406 wait_queue_head_t *wq;
407
408 wq = dax_entry_waitqueue(mapping, index, entry, &key);
409
410 /*
411 * Checking for locked entry and prepare_to_wait_exclusive() happens
412 * under mapping->tree_lock, ditto for entry handling in our callers.
413 * So at this point all tasks that could have seen our entry locked
414 * must be in the waitqueue and the following check will see them.
415 */
416 if (waitqueue_active(wq))
417 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
418 }
419
420 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
421 pgoff_t index, bool trunc)
422 {
423 int ret = 0;
424 void *entry;
425 struct radix_tree_root *page_tree = &mapping->page_tree;
426
427 spin_lock_irq(&mapping->tree_lock);
428 entry = get_unlocked_mapping_entry(mapping, index, NULL);
429 if (!entry || !radix_tree_exceptional_entry(entry))
430 goto out;
431 if (!trunc &&
432 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
433 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
434 goto out;
435 radix_tree_delete(page_tree, index);
436 mapping->nrexceptional--;
437 ret = 1;
438 out:
439 put_unlocked_mapping_entry(mapping, index, entry);
440 spin_unlock_irq(&mapping->tree_lock);
441 return ret;
442 }
443 /*
444 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
445 * entry to get unlocked before deleting it.
446 */
447 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
448 {
449 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
450
451 /*
452 * This gets called from truncate / punch_hole path. As such, the caller
453 * must hold locks protecting against concurrent modifications of the
454 * radix tree (usually fs-private i_mmap_sem for writing). Since the
455 * caller has seen exceptional entry for this index, we better find it
456 * at that index as well...
457 */
458 WARN_ON_ONCE(!ret);
459 return ret;
460 }
461
462 /*
463 * Invalidate exceptional DAX entry if it is clean.
464 */
465 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
466 pgoff_t index)
467 {
468 return __dax_invalidate_mapping_entry(mapping, index, false);
469 }
470
471 /*
472 * The user has performed a load from a hole in the file. Allocating
473 * a new page in the file would cause excessive storage usage for
474 * workloads with sparse files. We allocate a page cache page instead.
475 * We'll kick it out of the page cache if it's ever written to,
476 * otherwise it will simply fall out of the page cache under memory
477 * pressure without ever having been dirtied.
478 */
479 static int dax_load_hole(struct address_space *mapping, void **entry,
480 struct vm_fault *vmf)
481 {
482 struct inode *inode = mapping->host;
483 struct page *page;
484 int ret;
485
486 /* Hole page already exists? Return it... */
487 if (!radix_tree_exceptional_entry(*entry)) {
488 page = *entry;
489 goto finish_fault;
490 }
491
492 /* This will replace locked radix tree entry with a hole page */
493 page = find_or_create_page(mapping, vmf->pgoff,
494 vmf->gfp_mask | __GFP_ZERO);
495 if (!page) {
496 ret = VM_FAULT_OOM;
497 goto out;
498 }
499
500 finish_fault:
501 vmf->page = page;
502 ret = finish_fault(vmf);
503 vmf->page = NULL;
504 *entry = page;
505 if (!ret) {
506 /* Grab reference for PTE that is now referencing the page */
507 get_page(page);
508 ret = VM_FAULT_NOPAGE;
509 }
510 out:
511 trace_dax_load_hole(inode, vmf, ret);
512 return ret;
513 }
514
515 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
516 sector_t sector, size_t size, struct page *to,
517 unsigned long vaddr)
518 {
519 void *vto, *kaddr;
520 pgoff_t pgoff;
521 pfn_t pfn;
522 long rc;
523 int id;
524
525 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
526 if (rc)
527 return rc;
528
529 id = dax_read_lock();
530 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
531 if (rc < 0) {
532 dax_read_unlock(id);
533 return rc;
534 }
535 vto = kmap_atomic(to);
536 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
537 kunmap_atomic(vto);
538 dax_read_unlock(id);
539 return 0;
540 }
541
542 /*
543 * By this point grab_mapping_entry() has ensured that we have a locked entry
544 * of the appropriate size so we don't have to worry about downgrading PMDs to
545 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
546 * already in the tree, we will skip the insertion and just dirty the PMD as
547 * appropriate.
548 */
549 static void *dax_insert_mapping_entry(struct address_space *mapping,
550 struct vm_fault *vmf,
551 void *entry, sector_t sector,
552 unsigned long flags)
553 {
554 struct radix_tree_root *page_tree = &mapping->page_tree;
555 int error = 0;
556 bool hole_fill = false;
557 void *new_entry;
558 pgoff_t index = vmf->pgoff;
559
560 if (vmf->flags & FAULT_FLAG_WRITE)
561 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
562
563 /* Replacing hole page with block mapping? */
564 if (!radix_tree_exceptional_entry(entry)) {
565 hole_fill = true;
566 /*
567 * Unmap the page now before we remove it from page cache below.
568 * The page is locked so it cannot be faulted in again.
569 */
570 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
571 PAGE_SIZE, 0);
572 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
573 if (error)
574 return ERR_PTR(error);
575 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
576 /* replacing huge zero page with PMD block mapping */
577 unmap_mapping_range(mapping,
578 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
579 }
580
581 spin_lock_irq(&mapping->tree_lock);
582 new_entry = dax_radix_locked_entry(sector, flags);
583
584 if (hole_fill) {
585 __delete_from_page_cache(entry, NULL);
586 /* Drop pagecache reference */
587 put_page(entry);
588 error = __radix_tree_insert(page_tree, index,
589 dax_radix_order(new_entry), new_entry);
590 if (error) {
591 new_entry = ERR_PTR(error);
592 goto unlock;
593 }
594 mapping->nrexceptional++;
595 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
596 /*
597 * Only swap our new entry into the radix tree if the current
598 * entry is a zero page or an empty entry. If a normal PTE or
599 * PMD entry is already in the tree, we leave it alone. This
600 * means that if we are trying to insert a PTE and the
601 * existing entry is a PMD, we will just leave the PMD in the
602 * tree and dirty it if necessary.
603 */
604 struct radix_tree_node *node;
605 void **slot;
606 void *ret;
607
608 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
609 WARN_ON_ONCE(ret != entry);
610 __radix_tree_replace(page_tree, node, slot,
611 new_entry, NULL, NULL);
612 }
613 if (vmf->flags & FAULT_FLAG_WRITE)
614 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
615 unlock:
616 spin_unlock_irq(&mapping->tree_lock);
617 if (hole_fill) {
618 radix_tree_preload_end();
619 /*
620 * We don't need hole page anymore, it has been replaced with
621 * locked radix tree entry now.
622 */
623 if (mapping->a_ops->freepage)
624 mapping->a_ops->freepage(entry);
625 unlock_page(entry);
626 put_page(entry);
627 }
628 return new_entry;
629 }
630
631 static inline unsigned long
632 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
633 {
634 unsigned long address;
635
636 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
637 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
638 return address;
639 }
640
641 /* Walk all mappings of a given index of a file and writeprotect them */
642 static void dax_mapping_entry_mkclean(struct address_space *mapping,
643 pgoff_t index, unsigned long pfn)
644 {
645 struct vm_area_struct *vma;
646 pte_t pte, *ptep = NULL;
647 pmd_t *pmdp = NULL;
648 spinlock_t *ptl;
649 bool changed;
650
651 i_mmap_lock_read(mapping);
652 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
653 unsigned long address;
654
655 cond_resched();
656
657 if (!(vma->vm_flags & VM_SHARED))
658 continue;
659
660 address = pgoff_address(index, vma);
661 changed = false;
662 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
663 continue;
664
665 if (pmdp) {
666 #ifdef CONFIG_FS_DAX_PMD
667 pmd_t pmd;
668
669 if (pfn != pmd_pfn(*pmdp))
670 goto unlock_pmd;
671 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
672 goto unlock_pmd;
673
674 flush_cache_page(vma, address, pfn);
675 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
676 pmd = pmd_wrprotect(pmd);
677 pmd = pmd_mkclean(pmd);
678 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
679 changed = true;
680 unlock_pmd:
681 spin_unlock(ptl);
682 #endif
683 } else {
684 if (pfn != pte_pfn(*ptep))
685 goto unlock_pte;
686 if (!pte_dirty(*ptep) && !pte_write(*ptep))
687 goto unlock_pte;
688
689 flush_cache_page(vma, address, pfn);
690 pte = ptep_clear_flush(vma, address, ptep);
691 pte = pte_wrprotect(pte);
692 pte = pte_mkclean(pte);
693 set_pte_at(vma->vm_mm, address, ptep, pte);
694 changed = true;
695 unlock_pte:
696 pte_unmap_unlock(ptep, ptl);
697 }
698
699 if (changed)
700 mmu_notifier_invalidate_page(vma->vm_mm, address);
701 }
702 i_mmap_unlock_read(mapping);
703 }
704
705 static int dax_writeback_one(struct block_device *bdev,
706 struct dax_device *dax_dev, struct address_space *mapping,
707 pgoff_t index, void *entry)
708 {
709 struct radix_tree_root *page_tree = &mapping->page_tree;
710 void *entry2, **slot, *kaddr;
711 long ret = 0, id;
712 sector_t sector;
713 pgoff_t pgoff;
714 size_t size;
715 pfn_t pfn;
716
717 /*
718 * A page got tagged dirty in DAX mapping? Something is seriously
719 * wrong.
720 */
721 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
722 return -EIO;
723
724 spin_lock_irq(&mapping->tree_lock);
725 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
726 /* Entry got punched out / reallocated? */
727 if (!entry2 || !radix_tree_exceptional_entry(entry2))
728 goto put_unlocked;
729 /*
730 * Entry got reallocated elsewhere? No need to writeback. We have to
731 * compare sectors as we must not bail out due to difference in lockbit
732 * or entry type.
733 */
734 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
735 goto put_unlocked;
736 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
737 dax_is_zero_entry(entry))) {
738 ret = -EIO;
739 goto put_unlocked;
740 }
741
742 /* Another fsync thread may have already written back this entry */
743 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
744 goto put_unlocked;
745 /* Lock the entry to serialize with page faults */
746 entry = lock_slot(mapping, slot);
747 /*
748 * We can clear the tag now but we have to be careful so that concurrent
749 * dax_writeback_one() calls for the same index cannot finish before we
750 * actually flush the caches. This is achieved as the calls will look
751 * at the entry only under tree_lock and once they do that they will
752 * see the entry locked and wait for it to unlock.
753 */
754 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
755 spin_unlock_irq(&mapping->tree_lock);
756
757 /*
758 * Even if dax_writeback_mapping_range() was given a wbc->range_start
759 * in the middle of a PMD, the 'index' we are given will be aligned to
760 * the start index of the PMD, as will the sector we pull from
761 * 'entry'. This allows us to flush for PMD_SIZE and not have to
762 * worry about partial PMD writebacks.
763 */
764 sector = dax_radix_sector(entry);
765 size = PAGE_SIZE << dax_radix_order(entry);
766
767 id = dax_read_lock();
768 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
769 if (ret)
770 goto dax_unlock;
771
772 /*
773 * dax_direct_access() may sleep, so cannot hold tree_lock over
774 * its invocation.
775 */
776 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
777 if (ret < 0)
778 goto dax_unlock;
779
780 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
781 ret = -EIO;
782 goto dax_unlock;
783 }
784
785 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
786 dax_flush(dax_dev, pgoff, kaddr, size);
787 /*
788 * After we have flushed the cache, we can clear the dirty tag. There
789 * cannot be new dirty data in the pfn after the flush has completed as
790 * the pfn mappings are writeprotected and fault waits for mapping
791 * entry lock.
792 */
793 spin_lock_irq(&mapping->tree_lock);
794 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
795 spin_unlock_irq(&mapping->tree_lock);
796 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
797 dax_unlock:
798 dax_read_unlock(id);
799 put_locked_mapping_entry(mapping, index, entry);
800 return ret;
801
802 put_unlocked:
803 put_unlocked_mapping_entry(mapping, index, entry2);
804 spin_unlock_irq(&mapping->tree_lock);
805 return ret;
806 }
807
808 /*
809 * Flush the mapping to the persistent domain within the byte range of [start,
810 * end]. This is required by data integrity operations to ensure file data is
811 * on persistent storage prior to completion of the operation.
812 */
813 int dax_writeback_mapping_range(struct address_space *mapping,
814 struct block_device *bdev, struct writeback_control *wbc)
815 {
816 struct inode *inode = mapping->host;
817 pgoff_t start_index, end_index;
818 pgoff_t indices[PAGEVEC_SIZE];
819 struct dax_device *dax_dev;
820 struct pagevec pvec;
821 bool done = false;
822 int i, ret = 0;
823
824 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
825 return -EIO;
826
827 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
828 return 0;
829
830 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
831 if (!dax_dev)
832 return -EIO;
833
834 start_index = wbc->range_start >> PAGE_SHIFT;
835 end_index = wbc->range_end >> PAGE_SHIFT;
836
837 trace_dax_writeback_range(inode, start_index, end_index);
838
839 tag_pages_for_writeback(mapping, start_index, end_index);
840
841 pagevec_init(&pvec, 0);
842 while (!done) {
843 pvec.nr = find_get_entries_tag(mapping, start_index,
844 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
845 pvec.pages, indices);
846
847 if (pvec.nr == 0)
848 break;
849
850 for (i = 0; i < pvec.nr; i++) {
851 if (indices[i] > end_index) {
852 done = true;
853 break;
854 }
855
856 ret = dax_writeback_one(bdev, dax_dev, mapping,
857 indices[i], pvec.pages[i]);
858 if (ret < 0) {
859 mapping_set_error(mapping, ret);
860 goto out;
861 }
862 }
863 start_index = indices[pvec.nr - 1] + 1;
864 }
865 out:
866 put_dax(dax_dev);
867 trace_dax_writeback_range_done(inode, start_index, end_index);
868 return (ret < 0 ? ret : 0);
869 }
870 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
871
872 static int dax_insert_mapping(struct address_space *mapping,
873 struct block_device *bdev, struct dax_device *dax_dev,
874 sector_t sector, size_t size, void **entryp,
875 struct vm_area_struct *vma, struct vm_fault *vmf)
876 {
877 unsigned long vaddr = vmf->address;
878 void *entry = *entryp;
879 void *ret, *kaddr;
880 pgoff_t pgoff;
881 int id, rc;
882 pfn_t pfn;
883
884 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
885 if (rc)
886 return rc;
887
888 id = dax_read_lock();
889 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
890 if (rc < 0) {
891 dax_read_unlock(id);
892 return rc;
893 }
894 dax_read_unlock(id);
895
896 ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
897 if (IS_ERR(ret))
898 return PTR_ERR(ret);
899 *entryp = ret;
900
901 trace_dax_insert_mapping(mapping->host, vmf, ret);
902 return vm_insert_mixed(vma, vaddr, pfn);
903 }
904
905 /**
906 * dax_pfn_mkwrite - handle first write to DAX page
907 * @vmf: The description of the fault
908 */
909 int dax_pfn_mkwrite(struct vm_fault *vmf)
910 {
911 struct file *file = vmf->vma->vm_file;
912 struct address_space *mapping = file->f_mapping;
913 struct inode *inode = mapping->host;
914 void *entry, **slot;
915 pgoff_t index = vmf->pgoff;
916
917 spin_lock_irq(&mapping->tree_lock);
918 entry = get_unlocked_mapping_entry(mapping, index, &slot);
919 if (!entry || !radix_tree_exceptional_entry(entry)) {
920 if (entry)
921 put_unlocked_mapping_entry(mapping, index, entry);
922 spin_unlock_irq(&mapping->tree_lock);
923 trace_dax_pfn_mkwrite_no_entry(inode, vmf, VM_FAULT_NOPAGE);
924 return VM_FAULT_NOPAGE;
925 }
926 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
927 entry = lock_slot(mapping, slot);
928 spin_unlock_irq(&mapping->tree_lock);
929 /*
930 * If we race with somebody updating the PTE and finish_mkwrite_fault()
931 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
932 * the fault in either case.
933 */
934 finish_mkwrite_fault(vmf);
935 put_locked_mapping_entry(mapping, index, entry);
936 trace_dax_pfn_mkwrite(inode, vmf, VM_FAULT_NOPAGE);
937 return VM_FAULT_NOPAGE;
938 }
939 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
940
941 static bool dax_range_is_aligned(struct block_device *bdev,
942 unsigned int offset, unsigned int length)
943 {
944 unsigned short sector_size = bdev_logical_block_size(bdev);
945
946 if (!IS_ALIGNED(offset, sector_size))
947 return false;
948 if (!IS_ALIGNED(length, sector_size))
949 return false;
950
951 return true;
952 }
953
954 int __dax_zero_page_range(struct block_device *bdev,
955 struct dax_device *dax_dev, sector_t sector,
956 unsigned int offset, unsigned int size)
957 {
958 if (dax_range_is_aligned(bdev, offset, size)) {
959 sector_t start_sector = sector + (offset >> 9);
960
961 return blkdev_issue_zeroout(bdev, start_sector,
962 size >> 9, GFP_NOFS, 0);
963 } else {
964 pgoff_t pgoff;
965 long rc, id;
966 void *kaddr;
967 pfn_t pfn;
968
969 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
970 if (rc)
971 return rc;
972
973 id = dax_read_lock();
974 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
975 &pfn);
976 if (rc < 0) {
977 dax_read_unlock(id);
978 return rc;
979 }
980 memset(kaddr + offset, 0, size);
981 dax_flush(dax_dev, pgoff, kaddr + offset, size);
982 dax_read_unlock(id);
983 }
984 return 0;
985 }
986 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
987
988 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
989 {
990 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
991 }
992
993 static loff_t
994 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
995 struct iomap *iomap)
996 {
997 struct block_device *bdev = iomap->bdev;
998 struct dax_device *dax_dev = iomap->dax_dev;
999 struct iov_iter *iter = data;
1000 loff_t end = pos + length, done = 0;
1001 ssize_t ret = 0;
1002 int id;
1003
1004 if (iov_iter_rw(iter) == READ) {
1005 end = min(end, i_size_read(inode));
1006 if (pos >= end)
1007 return 0;
1008
1009 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1010 return iov_iter_zero(min(length, end - pos), iter);
1011 }
1012
1013 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1014 return -EIO;
1015
1016 /*
1017 * Write can allocate block for an area which has a hole page mapped
1018 * into page tables. We have to tear down these mappings so that data
1019 * written by write(2) is visible in mmap.
1020 */
1021 if (iomap->flags & IOMAP_F_NEW) {
1022 invalidate_inode_pages2_range(inode->i_mapping,
1023 pos >> PAGE_SHIFT,
1024 (end - 1) >> PAGE_SHIFT);
1025 }
1026
1027 id = dax_read_lock();
1028 while (pos < end) {
1029 unsigned offset = pos & (PAGE_SIZE - 1);
1030 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1031 const sector_t sector = dax_iomap_sector(iomap, pos);
1032 ssize_t map_len;
1033 pgoff_t pgoff;
1034 void *kaddr;
1035 pfn_t pfn;
1036
1037 if (fatal_signal_pending(current)) {
1038 ret = -EINTR;
1039 break;
1040 }
1041
1042 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1043 if (ret)
1044 break;
1045
1046 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1047 &kaddr, &pfn);
1048 if (map_len < 0) {
1049 ret = map_len;
1050 break;
1051 }
1052
1053 map_len = PFN_PHYS(map_len);
1054 kaddr += offset;
1055 map_len -= offset;
1056 if (map_len > end - pos)
1057 map_len = end - pos;
1058
1059 if (iov_iter_rw(iter) == WRITE)
1060 map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1061 map_len, iter);
1062 else
1063 map_len = copy_to_iter(kaddr, map_len, iter);
1064 if (map_len <= 0) {
1065 ret = map_len ? map_len : -EFAULT;
1066 break;
1067 }
1068
1069 pos += map_len;
1070 length -= map_len;
1071 done += map_len;
1072 }
1073 dax_read_unlock(id);
1074
1075 return done ? done : ret;
1076 }
1077
1078 /**
1079 * dax_iomap_rw - Perform I/O to a DAX file
1080 * @iocb: The control block for this I/O
1081 * @iter: The addresses to do I/O from or to
1082 * @ops: iomap ops passed from the file system
1083 *
1084 * This function performs read and write operations to directly mapped
1085 * persistent memory. The callers needs to take care of read/write exclusion
1086 * and evicting any page cache pages in the region under I/O.
1087 */
1088 ssize_t
1089 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1090 const struct iomap_ops *ops)
1091 {
1092 struct address_space *mapping = iocb->ki_filp->f_mapping;
1093 struct inode *inode = mapping->host;
1094 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1095 unsigned flags = 0;
1096
1097 if (iov_iter_rw(iter) == WRITE) {
1098 lockdep_assert_held_exclusive(&inode->i_rwsem);
1099 flags |= IOMAP_WRITE;
1100 } else {
1101 lockdep_assert_held(&inode->i_rwsem);
1102 }
1103
1104 while (iov_iter_count(iter)) {
1105 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1106 iter, dax_iomap_actor);
1107 if (ret <= 0)
1108 break;
1109 pos += ret;
1110 done += ret;
1111 }
1112
1113 iocb->ki_pos += done;
1114 return done ? done : ret;
1115 }
1116 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1117
1118 static int dax_fault_return(int error)
1119 {
1120 if (error == 0)
1121 return VM_FAULT_NOPAGE;
1122 if (error == -ENOMEM)
1123 return VM_FAULT_OOM;
1124 return VM_FAULT_SIGBUS;
1125 }
1126
1127 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1128 const struct iomap_ops *ops)
1129 {
1130 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1131 struct inode *inode = mapping->host;
1132 unsigned long vaddr = vmf->address;
1133 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1134 sector_t sector;
1135 struct iomap iomap = { 0 };
1136 unsigned flags = IOMAP_FAULT;
1137 int error, major = 0;
1138 int vmf_ret = 0;
1139 void *entry;
1140
1141 trace_dax_pte_fault(inode, vmf, vmf_ret);
1142 /*
1143 * Check whether offset isn't beyond end of file now. Caller is supposed
1144 * to hold locks serializing us with truncate / punch hole so this is
1145 * a reliable test.
1146 */
1147 if (pos >= i_size_read(inode)) {
1148 vmf_ret = VM_FAULT_SIGBUS;
1149 goto out;
1150 }
1151
1152 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1153 flags |= IOMAP_WRITE;
1154
1155 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1156 if (IS_ERR(entry)) {
1157 vmf_ret = dax_fault_return(PTR_ERR(entry));
1158 goto out;
1159 }
1160
1161 /*
1162 * It is possible, particularly with mixed reads & writes to private
1163 * mappings, that we have raced with a PMD fault that overlaps with
1164 * the PTE we need to set up. If so just return and the fault will be
1165 * retried.
1166 */
1167 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1168 vmf_ret = VM_FAULT_NOPAGE;
1169 goto unlock_entry;
1170 }
1171
1172 /*
1173 * Note that we don't bother to use iomap_apply here: DAX required
1174 * the file system block size to be equal the page size, which means
1175 * that we never have to deal with more than a single extent here.
1176 */
1177 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1178 if (error) {
1179 vmf_ret = dax_fault_return(error);
1180 goto unlock_entry;
1181 }
1182 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1183 error = -EIO; /* fs corruption? */
1184 goto error_finish_iomap;
1185 }
1186
1187 sector = dax_iomap_sector(&iomap, pos);
1188
1189 if (vmf->cow_page) {
1190 switch (iomap.type) {
1191 case IOMAP_HOLE:
1192 case IOMAP_UNWRITTEN:
1193 clear_user_highpage(vmf->cow_page, vaddr);
1194 break;
1195 case IOMAP_MAPPED:
1196 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1197 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1198 break;
1199 default:
1200 WARN_ON_ONCE(1);
1201 error = -EIO;
1202 break;
1203 }
1204
1205 if (error)
1206 goto error_finish_iomap;
1207
1208 __SetPageUptodate(vmf->cow_page);
1209 vmf_ret = finish_fault(vmf);
1210 if (!vmf_ret)
1211 vmf_ret = VM_FAULT_DONE_COW;
1212 goto finish_iomap;
1213 }
1214
1215 switch (iomap.type) {
1216 case IOMAP_MAPPED:
1217 if (iomap.flags & IOMAP_F_NEW) {
1218 count_vm_event(PGMAJFAULT);
1219 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1220 major = VM_FAULT_MAJOR;
1221 }
1222 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1223 sector, PAGE_SIZE, &entry, vmf->vma, vmf);
1224 /* -EBUSY is fine, somebody else faulted on the same PTE */
1225 if (error == -EBUSY)
1226 error = 0;
1227 break;
1228 case IOMAP_UNWRITTEN:
1229 case IOMAP_HOLE:
1230 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1231 vmf_ret = dax_load_hole(mapping, &entry, vmf);
1232 goto finish_iomap;
1233 }
1234 /*FALLTHRU*/
1235 default:
1236 WARN_ON_ONCE(1);
1237 error = -EIO;
1238 break;
1239 }
1240
1241 error_finish_iomap:
1242 vmf_ret = dax_fault_return(error) | major;
1243 finish_iomap:
1244 if (ops->iomap_end) {
1245 int copied = PAGE_SIZE;
1246
1247 if (vmf_ret & VM_FAULT_ERROR)
1248 copied = 0;
1249 /*
1250 * The fault is done by now and there's no way back (other
1251 * thread may be already happily using PTE we have installed).
1252 * Just ignore error from ->iomap_end since we cannot do much
1253 * with it.
1254 */
1255 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1256 }
1257 unlock_entry:
1258 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1259 out:
1260 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1261 return vmf_ret;
1262 }
1263
1264 #ifdef CONFIG_FS_DAX_PMD
1265 /*
1266 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1267 * more often than one might expect in the below functions.
1268 */
1269 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1270
1271 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1272 loff_t pos, void **entryp)
1273 {
1274 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1275 const sector_t sector = dax_iomap_sector(iomap, pos);
1276 struct dax_device *dax_dev = iomap->dax_dev;
1277 struct block_device *bdev = iomap->bdev;
1278 struct inode *inode = mapping->host;
1279 const size_t size = PMD_SIZE;
1280 void *ret = NULL, *kaddr;
1281 long length = 0;
1282 pgoff_t pgoff;
1283 pfn_t pfn;
1284 int id;
1285
1286 if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1287 goto fallback;
1288
1289 id = dax_read_lock();
1290 length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1291 if (length < 0)
1292 goto unlock_fallback;
1293 length = PFN_PHYS(length);
1294
1295 if (length < size)
1296 goto unlock_fallback;
1297 if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1298 goto unlock_fallback;
1299 if (!pfn_t_devmap(pfn))
1300 goto unlock_fallback;
1301 dax_read_unlock(id);
1302
1303 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, sector,
1304 RADIX_DAX_PMD);
1305 if (IS_ERR(ret))
1306 goto fallback;
1307 *entryp = ret;
1308
1309 trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1310 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1311 pfn, vmf->flags & FAULT_FLAG_WRITE);
1312
1313 unlock_fallback:
1314 dax_read_unlock(id);
1315 fallback:
1316 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1317 return VM_FAULT_FALLBACK;
1318 }
1319
1320 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1321 void **entryp)
1322 {
1323 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1324 unsigned long pmd_addr = vmf->address & PMD_MASK;
1325 struct inode *inode = mapping->host;
1326 struct page *zero_page;
1327 void *ret = NULL;
1328 spinlock_t *ptl;
1329 pmd_t pmd_entry;
1330
1331 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1332
1333 if (unlikely(!zero_page))
1334 goto fallback;
1335
1336 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1337 RADIX_DAX_PMD | RADIX_DAX_HZP);
1338 if (IS_ERR(ret))
1339 goto fallback;
1340 *entryp = ret;
1341
1342 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1343 if (!pmd_none(*(vmf->pmd))) {
1344 spin_unlock(ptl);
1345 goto fallback;
1346 }
1347
1348 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1349 pmd_entry = pmd_mkhuge(pmd_entry);
1350 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1351 spin_unlock(ptl);
1352 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1353 return VM_FAULT_NOPAGE;
1354
1355 fallback:
1356 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1357 return VM_FAULT_FALLBACK;
1358 }
1359
1360 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1361 const struct iomap_ops *ops)
1362 {
1363 struct vm_area_struct *vma = vmf->vma;
1364 struct address_space *mapping = vma->vm_file->f_mapping;
1365 unsigned long pmd_addr = vmf->address & PMD_MASK;
1366 bool write = vmf->flags & FAULT_FLAG_WRITE;
1367 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1368 struct inode *inode = mapping->host;
1369 int result = VM_FAULT_FALLBACK;
1370 struct iomap iomap = { 0 };
1371 pgoff_t max_pgoff, pgoff;
1372 void *entry;
1373 loff_t pos;
1374 int error;
1375
1376 /*
1377 * Check whether offset isn't beyond end of file now. Caller is
1378 * supposed to hold locks serializing us with truncate / punch hole so
1379 * this is a reliable test.
1380 */
1381 pgoff = linear_page_index(vma, pmd_addr);
1382 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1383
1384 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1385
1386 /* Fall back to PTEs if we're going to COW */
1387 if (write && !(vma->vm_flags & VM_SHARED))
1388 goto fallback;
1389
1390 /* If the PMD would extend outside the VMA */
1391 if (pmd_addr < vma->vm_start)
1392 goto fallback;
1393 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1394 goto fallback;
1395
1396 if (pgoff > max_pgoff) {
1397 result = VM_FAULT_SIGBUS;
1398 goto out;
1399 }
1400
1401 /* If the PMD would extend beyond the file size */
1402 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1403 goto fallback;
1404
1405 /*
1406 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1407 * PMD or a HZP entry. If it can't (because a 4k page is already in
1408 * the tree, for instance), it will return -EEXIST and we just fall
1409 * back to 4k entries.
1410 */
1411 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1412 if (IS_ERR(entry))
1413 goto fallback;
1414
1415 /*
1416 * It is possible, particularly with mixed reads & writes to private
1417 * mappings, that we have raced with a PTE fault that overlaps with
1418 * the PMD we need to set up. If so just return and the fault will be
1419 * retried.
1420 */
1421 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1422 !pmd_devmap(*vmf->pmd)) {
1423 result = 0;
1424 goto unlock_entry;
1425 }
1426
1427 /*
1428 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1429 * setting up a mapping, so really we're using iomap_begin() as a way
1430 * to look up our filesystem block.
1431 */
1432 pos = (loff_t)pgoff << PAGE_SHIFT;
1433 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1434 if (error)
1435 goto unlock_entry;
1436
1437 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1438 goto finish_iomap;
1439
1440 switch (iomap.type) {
1441 case IOMAP_MAPPED:
1442 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1443 break;
1444 case IOMAP_UNWRITTEN:
1445 case IOMAP_HOLE:
1446 if (WARN_ON_ONCE(write))
1447 break;
1448 result = dax_pmd_load_hole(vmf, &iomap, &entry);
1449 break;
1450 default:
1451 WARN_ON_ONCE(1);
1452 break;
1453 }
1454
1455 finish_iomap:
1456 if (ops->iomap_end) {
1457 int copied = PMD_SIZE;
1458
1459 if (result == VM_FAULT_FALLBACK)
1460 copied = 0;
1461 /*
1462 * The fault is done by now and there's no way back (other
1463 * thread may be already happily using PMD we have installed).
1464 * Just ignore error from ->iomap_end since we cannot do much
1465 * with it.
1466 */
1467 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1468 &iomap);
1469 }
1470 unlock_entry:
1471 put_locked_mapping_entry(mapping, pgoff, entry);
1472 fallback:
1473 if (result == VM_FAULT_FALLBACK) {
1474 split_huge_pmd(vma, vmf->pmd, vmf->address);
1475 count_vm_event(THP_FAULT_FALLBACK);
1476 }
1477 out:
1478 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1479 return result;
1480 }
1481 #else
1482 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1483 const struct iomap_ops *ops)
1484 {
1485 return VM_FAULT_FALLBACK;
1486 }
1487 #endif /* CONFIG_FS_DAX_PMD */
1488
1489 /**
1490 * dax_iomap_fault - handle a page fault on a DAX file
1491 * @vmf: The description of the fault
1492 * @ops: iomap ops passed from the file system
1493 *
1494 * When a page fault occurs, filesystems may call this helper in
1495 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1496 * has done all the necessary locking for page fault to proceed
1497 * successfully.
1498 */
1499 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1500 const struct iomap_ops *ops)
1501 {
1502 switch (pe_size) {
1503 case PE_SIZE_PTE:
1504 return dax_iomap_pte_fault(vmf, ops);
1505 case PE_SIZE_PMD:
1506 return dax_iomap_pmd_fault(vmf, ops);
1507 default:
1508 return VM_FAULT_FALLBACK;
1509 }
1510 }
1511 EXPORT_SYMBOL_GPL(dax_iomap_fault);