]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/dcache.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 unsigned int hash)
117 {
118 hash += (unsigned long) parent / L1_CACHE_BYTES;
119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121
122
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 .age_limit = 45,
126 };
127
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132
133 /*
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
137 *
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
141 *
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
144 */
145 static long get_nr_dentry(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 static long get_nr_dentry_unused(void)
155 {
156 int i;
157 long sum = 0;
158 for_each_possible_cpu(i)
159 sum += per_cpu(nr_dentry_unused, i);
160 return sum < 0 ? 0 : sum;
161 }
162
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 size_t *lenp, loff_t *ppos)
165 {
166 dentry_stat.nr_dentry = get_nr_dentry();
167 dentry_stat.nr_unused = get_nr_dentry_unused();
168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171
172 /*
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
175 */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177
178 #include <asm/word-at-a-time.h>
179 /*
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
184 *
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
187 */
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 unsigned long a,b,mask;
191
192 for (;;) {
193 a = *(unsigned long *)cs;
194 b = load_unaligned_zeropad(ct);
195 if (tcount < sizeof(unsigned long))
196 break;
197 if (unlikely(a != b))
198 return 1;
199 cs += sizeof(unsigned long);
200 ct += sizeof(unsigned long);
201 tcount -= sizeof(unsigned long);
202 if (!tcount)
203 return 0;
204 }
205 mask = bytemask_from_count(tcount);
206 return unlikely(!!((a ^ b) & mask));
207 }
208
209 #else
210
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 do {
214 if (*cs != *ct)
215 return 1;
216 cs++;
217 ct++;
218 tcount--;
219 } while (tcount);
220 return 0;
221 }
222
223 #endif
224
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 /*
228 * Be careful about RCU walk racing with rename:
229 * use 'lockless_dereference' to fetch the name pointer.
230 *
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
238 *
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
242 */
243 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244
245 return dentry_string_cmp(cs, ct, tcount);
246 }
247
248 struct external_name {
249 union {
250 atomic_t count;
251 struct rcu_head head;
252 } u;
253 unsigned char name[];
254 };
255
256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260
261 static void __d_free(struct rcu_head *head)
262 {
263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264
265 kmem_cache_free(dentry_cache, dentry);
266 }
267
268 static void __d_free_external(struct rcu_head *head)
269 {
270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 kfree(external_name(dentry));
272 kmem_cache_free(dentry_cache, dentry);
273 }
274
275 static inline int dname_external(const struct dentry *dentry)
276 {
277 return dentry->d_name.name != dentry->d_iname;
278 }
279
280 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
281 {
282 spin_lock(&dentry->d_lock);
283 if (unlikely(dname_external(dentry))) {
284 struct external_name *p = external_name(dentry);
285 atomic_inc(&p->u.count);
286 spin_unlock(&dentry->d_lock);
287 name->name = p->name;
288 } else {
289 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
290 spin_unlock(&dentry->d_lock);
291 name->name = name->inline_name;
292 }
293 }
294 EXPORT_SYMBOL(take_dentry_name_snapshot);
295
296 void release_dentry_name_snapshot(struct name_snapshot *name)
297 {
298 if (unlikely(name->name != name->inline_name)) {
299 struct external_name *p;
300 p = container_of(name->name, struct external_name, name[0]);
301 if (unlikely(atomic_dec_and_test(&p->u.count)))
302 kfree_rcu(p, u.head);
303 }
304 }
305 EXPORT_SYMBOL(release_dentry_name_snapshot);
306
307 static inline void __d_set_inode_and_type(struct dentry *dentry,
308 struct inode *inode,
309 unsigned type_flags)
310 {
311 unsigned flags;
312
313 dentry->d_inode = inode;
314 flags = READ_ONCE(dentry->d_flags);
315 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
316 flags |= type_flags;
317 WRITE_ONCE(dentry->d_flags, flags);
318 }
319
320 static inline void __d_clear_type_and_inode(struct dentry *dentry)
321 {
322 unsigned flags = READ_ONCE(dentry->d_flags);
323
324 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
325 WRITE_ONCE(dentry->d_flags, flags);
326 dentry->d_inode = NULL;
327 }
328
329 static void dentry_free(struct dentry *dentry)
330 {
331 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
332 if (unlikely(dname_external(dentry))) {
333 struct external_name *p = external_name(dentry);
334 if (likely(atomic_dec_and_test(&p->u.count))) {
335 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
336 return;
337 }
338 }
339 /* if dentry was never visible to RCU, immediate free is OK */
340 if (!(dentry->d_flags & DCACHE_RCUACCESS))
341 __d_free(&dentry->d_u.d_rcu);
342 else
343 call_rcu(&dentry->d_u.d_rcu, __d_free);
344 }
345
346 /*
347 * Release the dentry's inode, using the filesystem
348 * d_iput() operation if defined.
349 */
350 static void dentry_unlink_inode(struct dentry * dentry)
351 __releases(dentry->d_lock)
352 __releases(dentry->d_inode->i_lock)
353 {
354 struct inode *inode = dentry->d_inode;
355 bool hashed = !d_unhashed(dentry);
356
357 if (hashed)
358 raw_write_seqcount_begin(&dentry->d_seq);
359 __d_clear_type_and_inode(dentry);
360 hlist_del_init(&dentry->d_u.d_alias);
361 if (hashed)
362 raw_write_seqcount_end(&dentry->d_seq);
363 spin_unlock(&dentry->d_lock);
364 spin_unlock(&inode->i_lock);
365 if (!inode->i_nlink)
366 fsnotify_inoderemove(inode);
367 if (dentry->d_op && dentry->d_op->d_iput)
368 dentry->d_op->d_iput(dentry, inode);
369 else
370 iput(inode);
371 }
372
373 /*
374 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
375 * is in use - which includes both the "real" per-superblock
376 * LRU list _and_ the DCACHE_SHRINK_LIST use.
377 *
378 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
379 * on the shrink list (ie not on the superblock LRU list).
380 *
381 * The per-cpu "nr_dentry_unused" counters are updated with
382 * the DCACHE_LRU_LIST bit.
383 *
384 * These helper functions make sure we always follow the
385 * rules. d_lock must be held by the caller.
386 */
387 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
388 static void d_lru_add(struct dentry *dentry)
389 {
390 D_FLAG_VERIFY(dentry, 0);
391 dentry->d_flags |= DCACHE_LRU_LIST;
392 this_cpu_inc(nr_dentry_unused);
393 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
394 }
395
396 static void d_lru_del(struct dentry *dentry)
397 {
398 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
399 dentry->d_flags &= ~DCACHE_LRU_LIST;
400 this_cpu_dec(nr_dentry_unused);
401 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
402 }
403
404 static void d_shrink_del(struct dentry *dentry)
405 {
406 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
407 list_del_init(&dentry->d_lru);
408 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 this_cpu_dec(nr_dentry_unused);
410 }
411
412 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
413 {
414 D_FLAG_VERIFY(dentry, 0);
415 list_add(&dentry->d_lru, list);
416 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
417 this_cpu_inc(nr_dentry_unused);
418 }
419
420 /*
421 * These can only be called under the global LRU lock, ie during the
422 * callback for freeing the LRU list. "isolate" removes it from the
423 * LRU lists entirely, while shrink_move moves it to the indicated
424 * private list.
425 */
426 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
427 {
428 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 dentry->d_flags &= ~DCACHE_LRU_LIST;
430 this_cpu_dec(nr_dentry_unused);
431 list_lru_isolate(lru, &dentry->d_lru);
432 }
433
434 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
435 struct list_head *list)
436 {
437 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
438 dentry->d_flags |= DCACHE_SHRINK_LIST;
439 list_lru_isolate_move(lru, &dentry->d_lru, list);
440 }
441
442 /*
443 * dentry_lru_(add|del)_list) must be called with d_lock held.
444 */
445 static void dentry_lru_add(struct dentry *dentry)
446 {
447 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
448 d_lru_add(dentry);
449 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
450 dentry->d_flags |= DCACHE_REFERENCED;
451 }
452
453 /**
454 * d_drop - drop a dentry
455 * @dentry: dentry to drop
456 *
457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458 * be found through a VFS lookup any more. Note that this is different from
459 * deleting the dentry - d_delete will try to mark the dentry negative if
460 * possible, giving a successful _negative_ lookup, while d_drop will
461 * just make the cache lookup fail.
462 *
463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464 * reason (NFS timeouts or autofs deletes).
465 *
466 * __d_drop requires dentry->d_lock.
467 */
468 void __d_drop(struct dentry *dentry)
469 {
470 if (!d_unhashed(dentry)) {
471 struct hlist_bl_head *b;
472 /*
473 * Hashed dentries are normally on the dentry hashtable,
474 * with the exception of those newly allocated by
475 * d_obtain_alias, which are always IS_ROOT:
476 */
477 if (unlikely(IS_ROOT(dentry)))
478 b = &dentry->d_sb->s_anon;
479 else
480 b = d_hash(dentry->d_name.hash);
481
482 hlist_bl_lock(b);
483 __hlist_bl_del(&dentry->d_hash);
484 dentry->d_hash.pprev = NULL;
485 hlist_bl_unlock(b);
486 /* After this call, in-progress rcu-walk path lookup will fail. */
487 write_seqcount_invalidate(&dentry->d_seq);
488 }
489 }
490 EXPORT_SYMBOL(__d_drop);
491
492 void d_drop(struct dentry *dentry)
493 {
494 spin_lock(&dentry->d_lock);
495 __d_drop(dentry);
496 spin_unlock(&dentry->d_lock);
497 }
498 EXPORT_SYMBOL(d_drop);
499
500 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
501 {
502 struct dentry *next;
503 /*
504 * Inform d_walk() and shrink_dentry_list() that we are no longer
505 * attached to the dentry tree
506 */
507 dentry->d_flags |= DCACHE_DENTRY_KILLED;
508 if (unlikely(list_empty(&dentry->d_child)))
509 return;
510 __list_del_entry(&dentry->d_child);
511 /*
512 * Cursors can move around the list of children. While we'd been
513 * a normal list member, it didn't matter - ->d_child.next would've
514 * been updated. However, from now on it won't be and for the
515 * things like d_walk() it might end up with a nasty surprise.
516 * Normally d_walk() doesn't care about cursors moving around -
517 * ->d_lock on parent prevents that and since a cursor has no children
518 * of its own, we get through it without ever unlocking the parent.
519 * There is one exception, though - if we ascend from a child that
520 * gets killed as soon as we unlock it, the next sibling is found
521 * using the value left in its ->d_child.next. And if _that_
522 * pointed to a cursor, and cursor got moved (e.g. by lseek())
523 * before d_walk() regains parent->d_lock, we'll end up skipping
524 * everything the cursor had been moved past.
525 *
526 * Solution: make sure that the pointer left behind in ->d_child.next
527 * points to something that won't be moving around. I.e. skip the
528 * cursors.
529 */
530 while (dentry->d_child.next != &parent->d_subdirs) {
531 next = list_entry(dentry->d_child.next, struct dentry, d_child);
532 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
533 break;
534 dentry->d_child.next = next->d_child.next;
535 }
536 }
537
538 static void __dentry_kill(struct dentry *dentry)
539 {
540 struct dentry *parent = NULL;
541 bool can_free = true;
542 if (!IS_ROOT(dentry))
543 parent = dentry->d_parent;
544
545 /*
546 * The dentry is now unrecoverably dead to the world.
547 */
548 lockref_mark_dead(&dentry->d_lockref);
549
550 /*
551 * inform the fs via d_prune that this dentry is about to be
552 * unhashed and destroyed.
553 */
554 if (dentry->d_flags & DCACHE_OP_PRUNE)
555 dentry->d_op->d_prune(dentry);
556
557 if (dentry->d_flags & DCACHE_LRU_LIST) {
558 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
559 d_lru_del(dentry);
560 }
561 /* if it was on the hash then remove it */
562 __d_drop(dentry);
563 dentry_unlist(dentry, parent);
564 if (parent)
565 spin_unlock(&parent->d_lock);
566 if (dentry->d_inode)
567 dentry_unlink_inode(dentry);
568 else
569 spin_unlock(&dentry->d_lock);
570 this_cpu_dec(nr_dentry);
571 if (dentry->d_op && dentry->d_op->d_release)
572 dentry->d_op->d_release(dentry);
573
574 spin_lock(&dentry->d_lock);
575 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
576 dentry->d_flags |= DCACHE_MAY_FREE;
577 can_free = false;
578 }
579 spin_unlock(&dentry->d_lock);
580 if (likely(can_free))
581 dentry_free(dentry);
582 }
583
584 /*
585 * Finish off a dentry we've decided to kill.
586 * dentry->d_lock must be held, returns with it unlocked.
587 * If ref is non-zero, then decrement the refcount too.
588 * Returns dentry requiring refcount drop, or NULL if we're done.
589 */
590 static struct dentry *dentry_kill(struct dentry *dentry)
591 __releases(dentry->d_lock)
592 {
593 struct inode *inode = dentry->d_inode;
594 struct dentry *parent = NULL;
595
596 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
597 goto failed;
598
599 if (!IS_ROOT(dentry)) {
600 parent = dentry->d_parent;
601 if (unlikely(!spin_trylock(&parent->d_lock))) {
602 if (inode)
603 spin_unlock(&inode->i_lock);
604 goto failed;
605 }
606 }
607
608 __dentry_kill(dentry);
609 return parent;
610
611 failed:
612 spin_unlock(&dentry->d_lock);
613 return dentry; /* try again with same dentry */
614 }
615
616 static inline struct dentry *lock_parent(struct dentry *dentry)
617 {
618 struct dentry *parent = dentry->d_parent;
619 if (IS_ROOT(dentry))
620 return NULL;
621 if (unlikely(dentry->d_lockref.count < 0))
622 return NULL;
623 if (likely(spin_trylock(&parent->d_lock)))
624 return parent;
625 rcu_read_lock();
626 spin_unlock(&dentry->d_lock);
627 again:
628 parent = ACCESS_ONCE(dentry->d_parent);
629 spin_lock(&parent->d_lock);
630 /*
631 * We can't blindly lock dentry until we are sure
632 * that we won't violate the locking order.
633 * Any changes of dentry->d_parent must have
634 * been done with parent->d_lock held, so
635 * spin_lock() above is enough of a barrier
636 * for checking if it's still our child.
637 */
638 if (unlikely(parent != dentry->d_parent)) {
639 spin_unlock(&parent->d_lock);
640 goto again;
641 }
642 rcu_read_unlock();
643 if (parent != dentry)
644 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
645 else
646 parent = NULL;
647 return parent;
648 }
649
650 /*
651 * Try to do a lockless dput(), and return whether that was successful.
652 *
653 * If unsuccessful, we return false, having already taken the dentry lock.
654 *
655 * The caller needs to hold the RCU read lock, so that the dentry is
656 * guaranteed to stay around even if the refcount goes down to zero!
657 */
658 static inline bool fast_dput(struct dentry *dentry)
659 {
660 int ret;
661 unsigned int d_flags;
662
663 /*
664 * If we have a d_op->d_delete() operation, we sould not
665 * let the dentry count go to zero, so use "put_or_lock".
666 */
667 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
668 return lockref_put_or_lock(&dentry->d_lockref);
669
670 /*
671 * .. otherwise, we can try to just decrement the
672 * lockref optimistically.
673 */
674 ret = lockref_put_return(&dentry->d_lockref);
675
676 /*
677 * If the lockref_put_return() failed due to the lock being held
678 * by somebody else, the fast path has failed. We will need to
679 * get the lock, and then check the count again.
680 */
681 if (unlikely(ret < 0)) {
682 spin_lock(&dentry->d_lock);
683 if (dentry->d_lockref.count > 1) {
684 dentry->d_lockref.count--;
685 spin_unlock(&dentry->d_lock);
686 return 1;
687 }
688 return 0;
689 }
690
691 /*
692 * If we weren't the last ref, we're done.
693 */
694 if (ret)
695 return 1;
696
697 /*
698 * Careful, careful. The reference count went down
699 * to zero, but we don't hold the dentry lock, so
700 * somebody else could get it again, and do another
701 * dput(), and we need to not race with that.
702 *
703 * However, there is a very special and common case
704 * where we don't care, because there is nothing to
705 * do: the dentry is still hashed, it does not have
706 * a 'delete' op, and it's referenced and already on
707 * the LRU list.
708 *
709 * NOTE! Since we aren't locked, these values are
710 * not "stable". However, it is sufficient that at
711 * some point after we dropped the reference the
712 * dentry was hashed and the flags had the proper
713 * value. Other dentry users may have re-gotten
714 * a reference to the dentry and change that, but
715 * our work is done - we can leave the dentry
716 * around with a zero refcount.
717 */
718 smp_rmb();
719 d_flags = ACCESS_ONCE(dentry->d_flags);
720 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
721
722 /* Nothing to do? Dropping the reference was all we needed? */
723 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
724 return 1;
725
726 /*
727 * Not the fast normal case? Get the lock. We've already decremented
728 * the refcount, but we'll need to re-check the situation after
729 * getting the lock.
730 */
731 spin_lock(&dentry->d_lock);
732
733 /*
734 * Did somebody else grab a reference to it in the meantime, and
735 * we're no longer the last user after all? Alternatively, somebody
736 * else could have killed it and marked it dead. Either way, we
737 * don't need to do anything else.
738 */
739 if (dentry->d_lockref.count) {
740 spin_unlock(&dentry->d_lock);
741 return 1;
742 }
743
744 /*
745 * Re-get the reference we optimistically dropped. We hold the
746 * lock, and we just tested that it was zero, so we can just
747 * set it to 1.
748 */
749 dentry->d_lockref.count = 1;
750 return 0;
751 }
752
753
754 /*
755 * This is dput
756 *
757 * This is complicated by the fact that we do not want to put
758 * dentries that are no longer on any hash chain on the unused
759 * list: we'd much rather just get rid of them immediately.
760 *
761 * However, that implies that we have to traverse the dentry
762 * tree upwards to the parents which might _also_ now be
763 * scheduled for deletion (it may have been only waiting for
764 * its last child to go away).
765 *
766 * This tail recursion is done by hand as we don't want to depend
767 * on the compiler to always get this right (gcc generally doesn't).
768 * Real recursion would eat up our stack space.
769 */
770
771 /*
772 * dput - release a dentry
773 * @dentry: dentry to release
774 *
775 * Release a dentry. This will drop the usage count and if appropriate
776 * call the dentry unlink method as well as removing it from the queues and
777 * releasing its resources. If the parent dentries were scheduled for release
778 * they too may now get deleted.
779 */
780 void dput(struct dentry *dentry)
781 {
782 if (unlikely(!dentry))
783 return;
784
785 repeat:
786 might_sleep();
787
788 rcu_read_lock();
789 if (likely(fast_dput(dentry))) {
790 rcu_read_unlock();
791 return;
792 }
793
794 /* Slow case: now with the dentry lock held */
795 rcu_read_unlock();
796
797 WARN_ON(d_in_lookup(dentry));
798
799 /* Unreachable? Get rid of it */
800 if (unlikely(d_unhashed(dentry)))
801 goto kill_it;
802
803 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
804 goto kill_it;
805
806 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
807 if (dentry->d_op->d_delete(dentry))
808 goto kill_it;
809 }
810
811 dentry_lru_add(dentry);
812
813 dentry->d_lockref.count--;
814 spin_unlock(&dentry->d_lock);
815 return;
816
817 kill_it:
818 dentry = dentry_kill(dentry);
819 if (dentry) {
820 cond_resched();
821 goto repeat;
822 }
823 }
824 EXPORT_SYMBOL(dput);
825
826
827 /* This must be called with d_lock held */
828 static inline void __dget_dlock(struct dentry *dentry)
829 {
830 dentry->d_lockref.count++;
831 }
832
833 static inline void __dget(struct dentry *dentry)
834 {
835 lockref_get(&dentry->d_lockref);
836 }
837
838 struct dentry *dget_parent(struct dentry *dentry)
839 {
840 int gotref;
841 struct dentry *ret;
842
843 /*
844 * Do optimistic parent lookup without any
845 * locking.
846 */
847 rcu_read_lock();
848 ret = ACCESS_ONCE(dentry->d_parent);
849 gotref = lockref_get_not_zero(&ret->d_lockref);
850 rcu_read_unlock();
851 if (likely(gotref)) {
852 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
853 return ret;
854 dput(ret);
855 }
856
857 repeat:
858 /*
859 * Don't need rcu_dereference because we re-check it was correct under
860 * the lock.
861 */
862 rcu_read_lock();
863 ret = dentry->d_parent;
864 spin_lock(&ret->d_lock);
865 if (unlikely(ret != dentry->d_parent)) {
866 spin_unlock(&ret->d_lock);
867 rcu_read_unlock();
868 goto repeat;
869 }
870 rcu_read_unlock();
871 BUG_ON(!ret->d_lockref.count);
872 ret->d_lockref.count++;
873 spin_unlock(&ret->d_lock);
874 return ret;
875 }
876 EXPORT_SYMBOL(dget_parent);
877
878 /**
879 * d_find_alias - grab a hashed alias of inode
880 * @inode: inode in question
881 *
882 * If inode has a hashed alias, or is a directory and has any alias,
883 * acquire the reference to alias and return it. Otherwise return NULL.
884 * Notice that if inode is a directory there can be only one alias and
885 * it can be unhashed only if it has no children, or if it is the root
886 * of a filesystem, or if the directory was renamed and d_revalidate
887 * was the first vfs operation to notice.
888 *
889 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
890 * any other hashed alias over that one.
891 */
892 static struct dentry *__d_find_alias(struct inode *inode)
893 {
894 struct dentry *alias, *discon_alias;
895
896 again:
897 discon_alias = NULL;
898 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
899 spin_lock(&alias->d_lock);
900 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
901 if (IS_ROOT(alias) &&
902 (alias->d_flags & DCACHE_DISCONNECTED)) {
903 discon_alias = alias;
904 } else {
905 __dget_dlock(alias);
906 spin_unlock(&alias->d_lock);
907 return alias;
908 }
909 }
910 spin_unlock(&alias->d_lock);
911 }
912 if (discon_alias) {
913 alias = discon_alias;
914 spin_lock(&alias->d_lock);
915 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
916 __dget_dlock(alias);
917 spin_unlock(&alias->d_lock);
918 return alias;
919 }
920 spin_unlock(&alias->d_lock);
921 goto again;
922 }
923 return NULL;
924 }
925
926 struct dentry *d_find_alias(struct inode *inode)
927 {
928 struct dentry *de = NULL;
929
930 if (!hlist_empty(&inode->i_dentry)) {
931 spin_lock(&inode->i_lock);
932 de = __d_find_alias(inode);
933 spin_unlock(&inode->i_lock);
934 }
935 return de;
936 }
937 EXPORT_SYMBOL(d_find_alias);
938
939 /*
940 * Try to kill dentries associated with this inode.
941 * WARNING: you must own a reference to inode.
942 */
943 void d_prune_aliases(struct inode *inode)
944 {
945 struct dentry *dentry;
946 restart:
947 spin_lock(&inode->i_lock);
948 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
949 spin_lock(&dentry->d_lock);
950 if (!dentry->d_lockref.count) {
951 struct dentry *parent = lock_parent(dentry);
952 if (likely(!dentry->d_lockref.count)) {
953 __dentry_kill(dentry);
954 dput(parent);
955 goto restart;
956 }
957 if (parent)
958 spin_unlock(&parent->d_lock);
959 }
960 spin_unlock(&dentry->d_lock);
961 }
962 spin_unlock(&inode->i_lock);
963 }
964 EXPORT_SYMBOL(d_prune_aliases);
965
966 static void shrink_dentry_list(struct list_head *list)
967 {
968 struct dentry *dentry, *parent;
969
970 while (!list_empty(list)) {
971 struct inode *inode;
972 dentry = list_entry(list->prev, struct dentry, d_lru);
973 spin_lock(&dentry->d_lock);
974 parent = lock_parent(dentry);
975
976 /*
977 * The dispose list is isolated and dentries are not accounted
978 * to the LRU here, so we can simply remove it from the list
979 * here regardless of whether it is referenced or not.
980 */
981 d_shrink_del(dentry);
982
983 /*
984 * We found an inuse dentry which was not removed from
985 * the LRU because of laziness during lookup. Do not free it.
986 */
987 if (dentry->d_lockref.count > 0) {
988 spin_unlock(&dentry->d_lock);
989 if (parent)
990 spin_unlock(&parent->d_lock);
991 continue;
992 }
993
994
995 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
996 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
997 spin_unlock(&dentry->d_lock);
998 if (parent)
999 spin_unlock(&parent->d_lock);
1000 if (can_free)
1001 dentry_free(dentry);
1002 continue;
1003 }
1004
1005 inode = dentry->d_inode;
1006 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1007 d_shrink_add(dentry, list);
1008 spin_unlock(&dentry->d_lock);
1009 if (parent)
1010 spin_unlock(&parent->d_lock);
1011 continue;
1012 }
1013
1014 __dentry_kill(dentry);
1015
1016 /*
1017 * We need to prune ancestors too. This is necessary to prevent
1018 * quadratic behavior of shrink_dcache_parent(), but is also
1019 * expected to be beneficial in reducing dentry cache
1020 * fragmentation.
1021 */
1022 dentry = parent;
1023 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1024 parent = lock_parent(dentry);
1025 if (dentry->d_lockref.count != 1) {
1026 dentry->d_lockref.count--;
1027 spin_unlock(&dentry->d_lock);
1028 if (parent)
1029 spin_unlock(&parent->d_lock);
1030 break;
1031 }
1032 inode = dentry->d_inode; /* can't be NULL */
1033 if (unlikely(!spin_trylock(&inode->i_lock))) {
1034 spin_unlock(&dentry->d_lock);
1035 if (parent)
1036 spin_unlock(&parent->d_lock);
1037 cpu_relax();
1038 continue;
1039 }
1040 __dentry_kill(dentry);
1041 dentry = parent;
1042 }
1043 }
1044 }
1045
1046 static enum lru_status dentry_lru_isolate(struct list_head *item,
1047 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1048 {
1049 struct list_head *freeable = arg;
1050 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1051
1052
1053 /*
1054 * we are inverting the lru lock/dentry->d_lock here,
1055 * so use a trylock. If we fail to get the lock, just skip
1056 * it
1057 */
1058 if (!spin_trylock(&dentry->d_lock))
1059 return LRU_SKIP;
1060
1061 /*
1062 * Referenced dentries are still in use. If they have active
1063 * counts, just remove them from the LRU. Otherwise give them
1064 * another pass through the LRU.
1065 */
1066 if (dentry->d_lockref.count) {
1067 d_lru_isolate(lru, dentry);
1068 spin_unlock(&dentry->d_lock);
1069 return LRU_REMOVED;
1070 }
1071
1072 if (dentry->d_flags & DCACHE_REFERENCED) {
1073 dentry->d_flags &= ~DCACHE_REFERENCED;
1074 spin_unlock(&dentry->d_lock);
1075
1076 /*
1077 * The list move itself will be made by the common LRU code. At
1078 * this point, we've dropped the dentry->d_lock but keep the
1079 * lru lock. This is safe to do, since every list movement is
1080 * protected by the lru lock even if both locks are held.
1081 *
1082 * This is guaranteed by the fact that all LRU management
1083 * functions are intermediated by the LRU API calls like
1084 * list_lru_add and list_lru_del. List movement in this file
1085 * only ever occur through this functions or through callbacks
1086 * like this one, that are called from the LRU API.
1087 *
1088 * The only exceptions to this are functions like
1089 * shrink_dentry_list, and code that first checks for the
1090 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1091 * operating only with stack provided lists after they are
1092 * properly isolated from the main list. It is thus, always a
1093 * local access.
1094 */
1095 return LRU_ROTATE;
1096 }
1097
1098 d_lru_shrink_move(lru, dentry, freeable);
1099 spin_unlock(&dentry->d_lock);
1100
1101 return LRU_REMOVED;
1102 }
1103
1104 /**
1105 * prune_dcache_sb - shrink the dcache
1106 * @sb: superblock
1107 * @sc: shrink control, passed to list_lru_shrink_walk()
1108 *
1109 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1110 * is done when we need more memory and called from the superblock shrinker
1111 * function.
1112 *
1113 * This function may fail to free any resources if all the dentries are in
1114 * use.
1115 */
1116 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1117 {
1118 LIST_HEAD(dispose);
1119 long freed;
1120
1121 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1122 dentry_lru_isolate, &dispose);
1123 shrink_dentry_list(&dispose);
1124 return freed;
1125 }
1126
1127 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1128 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1129 {
1130 struct list_head *freeable = arg;
1131 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1132
1133 /*
1134 * we are inverting the lru lock/dentry->d_lock here,
1135 * so use a trylock. If we fail to get the lock, just skip
1136 * it
1137 */
1138 if (!spin_trylock(&dentry->d_lock))
1139 return LRU_SKIP;
1140
1141 d_lru_shrink_move(lru, dentry, freeable);
1142 spin_unlock(&dentry->d_lock);
1143
1144 return LRU_REMOVED;
1145 }
1146
1147
1148 /**
1149 * shrink_dcache_sb - shrink dcache for a superblock
1150 * @sb: superblock
1151 *
1152 * Shrink the dcache for the specified super block. This is used to free
1153 * the dcache before unmounting a file system.
1154 */
1155 void shrink_dcache_sb(struct super_block *sb)
1156 {
1157 long freed;
1158
1159 do {
1160 LIST_HEAD(dispose);
1161
1162 freed = list_lru_walk(&sb->s_dentry_lru,
1163 dentry_lru_isolate_shrink, &dispose, 1024);
1164
1165 this_cpu_sub(nr_dentry_unused, freed);
1166 shrink_dentry_list(&dispose);
1167 cond_resched();
1168 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1169 }
1170 EXPORT_SYMBOL(shrink_dcache_sb);
1171
1172 /**
1173 * enum d_walk_ret - action to talke during tree walk
1174 * @D_WALK_CONTINUE: contrinue walk
1175 * @D_WALK_QUIT: quit walk
1176 * @D_WALK_NORETRY: quit when retry is needed
1177 * @D_WALK_SKIP: skip this dentry and its children
1178 */
1179 enum d_walk_ret {
1180 D_WALK_CONTINUE,
1181 D_WALK_QUIT,
1182 D_WALK_NORETRY,
1183 D_WALK_SKIP,
1184 };
1185
1186 /**
1187 * d_walk - walk the dentry tree
1188 * @parent: start of walk
1189 * @data: data passed to @enter() and @finish()
1190 * @enter: callback when first entering the dentry
1191 * @finish: callback when successfully finished the walk
1192 *
1193 * The @enter() and @finish() callbacks are called with d_lock held.
1194 */
1195 static void d_walk(struct dentry *parent, void *data,
1196 enum d_walk_ret (*enter)(void *, struct dentry *),
1197 void (*finish)(void *))
1198 {
1199 struct dentry *this_parent;
1200 struct list_head *next;
1201 unsigned seq = 0;
1202 enum d_walk_ret ret;
1203 bool retry = true;
1204
1205 again:
1206 read_seqbegin_or_lock(&rename_lock, &seq);
1207 this_parent = parent;
1208 spin_lock(&this_parent->d_lock);
1209
1210 ret = enter(data, this_parent);
1211 switch (ret) {
1212 case D_WALK_CONTINUE:
1213 break;
1214 case D_WALK_QUIT:
1215 case D_WALK_SKIP:
1216 goto out_unlock;
1217 case D_WALK_NORETRY:
1218 retry = false;
1219 break;
1220 }
1221 repeat:
1222 next = this_parent->d_subdirs.next;
1223 resume:
1224 while (next != &this_parent->d_subdirs) {
1225 struct list_head *tmp = next;
1226 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1227 next = tmp->next;
1228
1229 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1230 continue;
1231
1232 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1233
1234 ret = enter(data, dentry);
1235 switch (ret) {
1236 case D_WALK_CONTINUE:
1237 break;
1238 case D_WALK_QUIT:
1239 spin_unlock(&dentry->d_lock);
1240 goto out_unlock;
1241 case D_WALK_NORETRY:
1242 retry = false;
1243 break;
1244 case D_WALK_SKIP:
1245 spin_unlock(&dentry->d_lock);
1246 continue;
1247 }
1248
1249 if (!list_empty(&dentry->d_subdirs)) {
1250 spin_unlock(&this_parent->d_lock);
1251 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1252 this_parent = dentry;
1253 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1254 goto repeat;
1255 }
1256 spin_unlock(&dentry->d_lock);
1257 }
1258 /*
1259 * All done at this level ... ascend and resume the search.
1260 */
1261 rcu_read_lock();
1262 ascend:
1263 if (this_parent != parent) {
1264 struct dentry *child = this_parent;
1265 this_parent = child->d_parent;
1266
1267 spin_unlock(&child->d_lock);
1268 spin_lock(&this_parent->d_lock);
1269
1270 /* might go back up the wrong parent if we have had a rename. */
1271 if (need_seqretry(&rename_lock, seq))
1272 goto rename_retry;
1273 /* go into the first sibling still alive */
1274 do {
1275 next = child->d_child.next;
1276 if (next == &this_parent->d_subdirs)
1277 goto ascend;
1278 child = list_entry(next, struct dentry, d_child);
1279 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1280 rcu_read_unlock();
1281 goto resume;
1282 }
1283 if (need_seqretry(&rename_lock, seq))
1284 goto rename_retry;
1285 rcu_read_unlock();
1286 if (finish)
1287 finish(data);
1288
1289 out_unlock:
1290 spin_unlock(&this_parent->d_lock);
1291 done_seqretry(&rename_lock, seq);
1292 return;
1293
1294 rename_retry:
1295 spin_unlock(&this_parent->d_lock);
1296 rcu_read_unlock();
1297 BUG_ON(seq & 1);
1298 if (!retry)
1299 return;
1300 seq = 1;
1301 goto again;
1302 }
1303
1304 struct check_mount {
1305 struct vfsmount *mnt;
1306 unsigned int mounted;
1307 };
1308
1309 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1310 {
1311 struct check_mount *info = data;
1312 struct path path = { .mnt = info->mnt, .dentry = dentry };
1313
1314 if (likely(!d_mountpoint(dentry)))
1315 return D_WALK_CONTINUE;
1316 if (__path_is_mountpoint(&path)) {
1317 info->mounted = 1;
1318 return D_WALK_QUIT;
1319 }
1320 return D_WALK_CONTINUE;
1321 }
1322
1323 /**
1324 * path_has_submounts - check for mounts over a dentry in the
1325 * current namespace.
1326 * @parent: path to check.
1327 *
1328 * Return true if the parent or its subdirectories contain
1329 * a mount point in the current namespace.
1330 */
1331 int path_has_submounts(const struct path *parent)
1332 {
1333 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1334
1335 read_seqlock_excl(&mount_lock);
1336 d_walk(parent->dentry, &data, path_check_mount, NULL);
1337 read_sequnlock_excl(&mount_lock);
1338
1339 return data.mounted;
1340 }
1341 EXPORT_SYMBOL(path_has_submounts);
1342
1343 /*
1344 * Called by mount code to set a mountpoint and check if the mountpoint is
1345 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1346 * subtree can become unreachable).
1347 *
1348 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1349 * this reason take rename_lock and d_lock on dentry and ancestors.
1350 */
1351 int d_set_mounted(struct dentry *dentry)
1352 {
1353 struct dentry *p;
1354 int ret = -ENOENT;
1355 write_seqlock(&rename_lock);
1356 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1357 /* Need exclusion wrt. d_invalidate() */
1358 spin_lock(&p->d_lock);
1359 if (unlikely(d_unhashed(p))) {
1360 spin_unlock(&p->d_lock);
1361 goto out;
1362 }
1363 spin_unlock(&p->d_lock);
1364 }
1365 spin_lock(&dentry->d_lock);
1366 if (!d_unlinked(dentry)) {
1367 ret = -EBUSY;
1368 if (!d_mountpoint(dentry)) {
1369 dentry->d_flags |= DCACHE_MOUNTED;
1370 ret = 0;
1371 }
1372 }
1373 spin_unlock(&dentry->d_lock);
1374 out:
1375 write_sequnlock(&rename_lock);
1376 return ret;
1377 }
1378
1379 /*
1380 * Search the dentry child list of the specified parent,
1381 * and move any unused dentries to the end of the unused
1382 * list for prune_dcache(). We descend to the next level
1383 * whenever the d_subdirs list is non-empty and continue
1384 * searching.
1385 *
1386 * It returns zero iff there are no unused children,
1387 * otherwise it returns the number of children moved to
1388 * the end of the unused list. This may not be the total
1389 * number of unused children, because select_parent can
1390 * drop the lock and return early due to latency
1391 * constraints.
1392 */
1393
1394 struct select_data {
1395 struct dentry *start;
1396 struct list_head dispose;
1397 int found;
1398 };
1399
1400 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1401 {
1402 struct select_data *data = _data;
1403 enum d_walk_ret ret = D_WALK_CONTINUE;
1404
1405 if (data->start == dentry)
1406 goto out;
1407
1408 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1409 data->found++;
1410 } else {
1411 if (dentry->d_flags & DCACHE_LRU_LIST)
1412 d_lru_del(dentry);
1413 if (!dentry->d_lockref.count) {
1414 d_shrink_add(dentry, &data->dispose);
1415 data->found++;
1416 }
1417 }
1418 /*
1419 * We can return to the caller if we have found some (this
1420 * ensures forward progress). We'll be coming back to find
1421 * the rest.
1422 */
1423 if (!list_empty(&data->dispose))
1424 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1425 out:
1426 return ret;
1427 }
1428
1429 /**
1430 * shrink_dcache_parent - prune dcache
1431 * @parent: parent of entries to prune
1432 *
1433 * Prune the dcache to remove unused children of the parent dentry.
1434 */
1435 void shrink_dcache_parent(struct dentry *parent)
1436 {
1437 for (;;) {
1438 struct select_data data;
1439
1440 INIT_LIST_HEAD(&data.dispose);
1441 data.start = parent;
1442 data.found = 0;
1443
1444 d_walk(parent, &data, select_collect, NULL);
1445 if (!data.found)
1446 break;
1447
1448 shrink_dentry_list(&data.dispose);
1449 cond_resched();
1450 }
1451 }
1452 EXPORT_SYMBOL(shrink_dcache_parent);
1453
1454 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1455 {
1456 /* it has busy descendents; complain about those instead */
1457 if (!list_empty(&dentry->d_subdirs))
1458 return D_WALK_CONTINUE;
1459
1460 /* root with refcount 1 is fine */
1461 if (dentry == _data && dentry->d_lockref.count == 1)
1462 return D_WALK_CONTINUE;
1463
1464 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1465 " still in use (%d) [unmount of %s %s]\n",
1466 dentry,
1467 dentry->d_inode ?
1468 dentry->d_inode->i_ino : 0UL,
1469 dentry,
1470 dentry->d_lockref.count,
1471 dentry->d_sb->s_type->name,
1472 dentry->d_sb->s_id);
1473 WARN_ON(1);
1474 return D_WALK_CONTINUE;
1475 }
1476
1477 static void do_one_tree(struct dentry *dentry)
1478 {
1479 shrink_dcache_parent(dentry);
1480 d_walk(dentry, dentry, umount_check, NULL);
1481 d_drop(dentry);
1482 dput(dentry);
1483 }
1484
1485 /*
1486 * destroy the dentries attached to a superblock on unmounting
1487 */
1488 void shrink_dcache_for_umount(struct super_block *sb)
1489 {
1490 struct dentry *dentry;
1491
1492 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1493
1494 dentry = sb->s_root;
1495 sb->s_root = NULL;
1496 do_one_tree(dentry);
1497
1498 while (!hlist_bl_empty(&sb->s_anon)) {
1499 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1500 do_one_tree(dentry);
1501 }
1502 }
1503
1504 struct detach_data {
1505 struct select_data select;
1506 struct dentry *mountpoint;
1507 };
1508 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1509 {
1510 struct detach_data *data = _data;
1511
1512 if (d_mountpoint(dentry)) {
1513 __dget_dlock(dentry);
1514 data->mountpoint = dentry;
1515 return D_WALK_QUIT;
1516 }
1517
1518 return select_collect(&data->select, dentry);
1519 }
1520
1521 static void check_and_drop(void *_data)
1522 {
1523 struct detach_data *data = _data;
1524
1525 if (!data->mountpoint && list_empty(&data->select.dispose))
1526 __d_drop(data->select.start);
1527 }
1528
1529 /**
1530 * d_invalidate - detach submounts, prune dcache, and drop
1531 * @dentry: dentry to invalidate (aka detach, prune and drop)
1532 *
1533 * no dcache lock.
1534 *
1535 * The final d_drop is done as an atomic operation relative to
1536 * rename_lock ensuring there are no races with d_set_mounted. This
1537 * ensures there are no unhashed dentries on the path to a mountpoint.
1538 */
1539 void d_invalidate(struct dentry *dentry)
1540 {
1541 /*
1542 * If it's already been dropped, return OK.
1543 */
1544 spin_lock(&dentry->d_lock);
1545 if (d_unhashed(dentry)) {
1546 spin_unlock(&dentry->d_lock);
1547 return;
1548 }
1549 spin_unlock(&dentry->d_lock);
1550
1551 /* Negative dentries can be dropped without further checks */
1552 if (!dentry->d_inode) {
1553 d_drop(dentry);
1554 return;
1555 }
1556
1557 for (;;) {
1558 struct detach_data data;
1559
1560 data.mountpoint = NULL;
1561 INIT_LIST_HEAD(&data.select.dispose);
1562 data.select.start = dentry;
1563 data.select.found = 0;
1564
1565 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1566
1567 if (!list_empty(&data.select.dispose))
1568 shrink_dentry_list(&data.select.dispose);
1569 else if (!data.mountpoint)
1570 return;
1571
1572 if (data.mountpoint) {
1573 detach_mounts(data.mountpoint);
1574 dput(data.mountpoint);
1575 }
1576 cond_resched();
1577 }
1578 }
1579 EXPORT_SYMBOL(d_invalidate);
1580
1581 /**
1582 * __d_alloc - allocate a dcache entry
1583 * @sb: filesystem it will belong to
1584 * @name: qstr of the name
1585 *
1586 * Allocates a dentry. It returns %NULL if there is insufficient memory
1587 * available. On a success the dentry is returned. The name passed in is
1588 * copied and the copy passed in may be reused after this call.
1589 */
1590
1591 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1592 {
1593 struct dentry *dentry;
1594 char *dname;
1595 int err;
1596
1597 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1598 if (!dentry)
1599 return NULL;
1600
1601 /*
1602 * We guarantee that the inline name is always NUL-terminated.
1603 * This way the memcpy() done by the name switching in rename
1604 * will still always have a NUL at the end, even if we might
1605 * be overwriting an internal NUL character
1606 */
1607 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1608 if (unlikely(!name)) {
1609 static const struct qstr anon = QSTR_INIT("/", 1);
1610 name = &anon;
1611 dname = dentry->d_iname;
1612 } else if (name->len > DNAME_INLINE_LEN-1) {
1613 size_t size = offsetof(struct external_name, name[1]);
1614 struct external_name *p = kmalloc(size + name->len,
1615 GFP_KERNEL_ACCOUNT);
1616 if (!p) {
1617 kmem_cache_free(dentry_cache, dentry);
1618 return NULL;
1619 }
1620 atomic_set(&p->u.count, 1);
1621 dname = p->name;
1622 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1623 kasan_unpoison_shadow(dname,
1624 round_up(name->len + 1, sizeof(unsigned long)));
1625 } else {
1626 dname = dentry->d_iname;
1627 }
1628
1629 dentry->d_name.len = name->len;
1630 dentry->d_name.hash = name->hash;
1631 memcpy(dname, name->name, name->len);
1632 dname[name->len] = 0;
1633
1634 /* Make sure we always see the terminating NUL character */
1635 smp_wmb();
1636 dentry->d_name.name = dname;
1637
1638 dentry->d_lockref.count = 1;
1639 dentry->d_flags = 0;
1640 spin_lock_init(&dentry->d_lock);
1641 seqcount_init(&dentry->d_seq);
1642 dentry->d_inode = NULL;
1643 dentry->d_parent = dentry;
1644 dentry->d_sb = sb;
1645 dentry->d_op = NULL;
1646 dentry->d_fsdata = NULL;
1647 INIT_HLIST_BL_NODE(&dentry->d_hash);
1648 INIT_LIST_HEAD(&dentry->d_lru);
1649 INIT_LIST_HEAD(&dentry->d_subdirs);
1650 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1651 INIT_LIST_HEAD(&dentry->d_child);
1652 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1653
1654 if (dentry->d_op && dentry->d_op->d_init) {
1655 err = dentry->d_op->d_init(dentry);
1656 if (err) {
1657 if (dname_external(dentry))
1658 kfree(external_name(dentry));
1659 kmem_cache_free(dentry_cache, dentry);
1660 return NULL;
1661 }
1662 }
1663
1664 this_cpu_inc(nr_dentry);
1665
1666 return dentry;
1667 }
1668
1669 /**
1670 * d_alloc - allocate a dcache entry
1671 * @parent: parent of entry to allocate
1672 * @name: qstr of the name
1673 *
1674 * Allocates a dentry. It returns %NULL if there is insufficient memory
1675 * available. On a success the dentry is returned. The name passed in is
1676 * copied and the copy passed in may be reused after this call.
1677 */
1678 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1679 {
1680 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1681 if (!dentry)
1682 return NULL;
1683 dentry->d_flags |= DCACHE_RCUACCESS;
1684 spin_lock(&parent->d_lock);
1685 /*
1686 * don't need child lock because it is not subject
1687 * to concurrency here
1688 */
1689 __dget_dlock(parent);
1690 dentry->d_parent = parent;
1691 list_add(&dentry->d_child, &parent->d_subdirs);
1692 spin_unlock(&parent->d_lock);
1693
1694 return dentry;
1695 }
1696 EXPORT_SYMBOL(d_alloc);
1697
1698 struct dentry *d_alloc_cursor(struct dentry * parent)
1699 {
1700 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1701 if (dentry) {
1702 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1703 dentry->d_parent = dget(parent);
1704 }
1705 return dentry;
1706 }
1707
1708 /**
1709 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1710 * @sb: the superblock
1711 * @name: qstr of the name
1712 *
1713 * For a filesystem that just pins its dentries in memory and never
1714 * performs lookups at all, return an unhashed IS_ROOT dentry.
1715 */
1716 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1717 {
1718 return __d_alloc(sb, name);
1719 }
1720 EXPORT_SYMBOL(d_alloc_pseudo);
1721
1722 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1723 {
1724 struct qstr q;
1725
1726 q.name = name;
1727 q.hash_len = hashlen_string(parent, name);
1728 return d_alloc(parent, &q);
1729 }
1730 EXPORT_SYMBOL(d_alloc_name);
1731
1732 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1733 {
1734 WARN_ON_ONCE(dentry->d_op);
1735 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1736 DCACHE_OP_COMPARE |
1737 DCACHE_OP_REVALIDATE |
1738 DCACHE_OP_WEAK_REVALIDATE |
1739 DCACHE_OP_DELETE |
1740 DCACHE_OP_REAL));
1741 dentry->d_op = op;
1742 if (!op)
1743 return;
1744 if (op->d_hash)
1745 dentry->d_flags |= DCACHE_OP_HASH;
1746 if (op->d_compare)
1747 dentry->d_flags |= DCACHE_OP_COMPARE;
1748 if (op->d_revalidate)
1749 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1750 if (op->d_weak_revalidate)
1751 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1752 if (op->d_delete)
1753 dentry->d_flags |= DCACHE_OP_DELETE;
1754 if (op->d_prune)
1755 dentry->d_flags |= DCACHE_OP_PRUNE;
1756 if (op->d_real)
1757 dentry->d_flags |= DCACHE_OP_REAL;
1758
1759 }
1760 EXPORT_SYMBOL(d_set_d_op);
1761
1762
1763 /*
1764 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1765 * @dentry - The dentry to mark
1766 *
1767 * Mark a dentry as falling through to the lower layer (as set with
1768 * d_pin_lower()). This flag may be recorded on the medium.
1769 */
1770 void d_set_fallthru(struct dentry *dentry)
1771 {
1772 spin_lock(&dentry->d_lock);
1773 dentry->d_flags |= DCACHE_FALLTHRU;
1774 spin_unlock(&dentry->d_lock);
1775 }
1776 EXPORT_SYMBOL(d_set_fallthru);
1777
1778 static unsigned d_flags_for_inode(struct inode *inode)
1779 {
1780 unsigned add_flags = DCACHE_REGULAR_TYPE;
1781
1782 if (!inode)
1783 return DCACHE_MISS_TYPE;
1784
1785 if (S_ISDIR(inode->i_mode)) {
1786 add_flags = DCACHE_DIRECTORY_TYPE;
1787 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1788 if (unlikely(!inode->i_op->lookup))
1789 add_flags = DCACHE_AUTODIR_TYPE;
1790 else
1791 inode->i_opflags |= IOP_LOOKUP;
1792 }
1793 goto type_determined;
1794 }
1795
1796 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1797 if (unlikely(inode->i_op->get_link)) {
1798 add_flags = DCACHE_SYMLINK_TYPE;
1799 goto type_determined;
1800 }
1801 inode->i_opflags |= IOP_NOFOLLOW;
1802 }
1803
1804 if (unlikely(!S_ISREG(inode->i_mode)))
1805 add_flags = DCACHE_SPECIAL_TYPE;
1806
1807 type_determined:
1808 if (unlikely(IS_AUTOMOUNT(inode)))
1809 add_flags |= DCACHE_NEED_AUTOMOUNT;
1810 return add_flags;
1811 }
1812
1813 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1814 {
1815 unsigned add_flags = d_flags_for_inode(inode);
1816 WARN_ON(d_in_lookup(dentry));
1817
1818 spin_lock(&dentry->d_lock);
1819 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1820 raw_write_seqcount_begin(&dentry->d_seq);
1821 __d_set_inode_and_type(dentry, inode, add_flags);
1822 raw_write_seqcount_end(&dentry->d_seq);
1823 fsnotify_update_flags(dentry);
1824 spin_unlock(&dentry->d_lock);
1825 }
1826
1827 /**
1828 * d_instantiate - fill in inode information for a dentry
1829 * @entry: dentry to complete
1830 * @inode: inode to attach to this dentry
1831 *
1832 * Fill in inode information in the entry.
1833 *
1834 * This turns negative dentries into productive full members
1835 * of society.
1836 *
1837 * NOTE! This assumes that the inode count has been incremented
1838 * (or otherwise set) by the caller to indicate that it is now
1839 * in use by the dcache.
1840 */
1841
1842 void d_instantiate(struct dentry *entry, struct inode * inode)
1843 {
1844 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1845 if (inode) {
1846 security_d_instantiate(entry, inode);
1847 spin_lock(&inode->i_lock);
1848 __d_instantiate(entry, inode);
1849 spin_unlock(&inode->i_lock);
1850 }
1851 }
1852 EXPORT_SYMBOL(d_instantiate);
1853
1854 /**
1855 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1856 * @entry: dentry to complete
1857 * @inode: inode to attach to this dentry
1858 *
1859 * Fill in inode information in the entry. If a directory alias is found, then
1860 * return an error (and drop inode). Together with d_materialise_unique() this
1861 * guarantees that a directory inode may never have more than one alias.
1862 */
1863 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1864 {
1865 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1866
1867 security_d_instantiate(entry, inode);
1868 spin_lock(&inode->i_lock);
1869 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1870 spin_unlock(&inode->i_lock);
1871 iput(inode);
1872 return -EBUSY;
1873 }
1874 __d_instantiate(entry, inode);
1875 spin_unlock(&inode->i_lock);
1876
1877 return 0;
1878 }
1879 EXPORT_SYMBOL(d_instantiate_no_diralias);
1880
1881 struct dentry *d_make_root(struct inode *root_inode)
1882 {
1883 struct dentry *res = NULL;
1884
1885 if (root_inode) {
1886 res = __d_alloc(root_inode->i_sb, NULL);
1887 if (res)
1888 d_instantiate(res, root_inode);
1889 else
1890 iput(root_inode);
1891 }
1892 return res;
1893 }
1894 EXPORT_SYMBOL(d_make_root);
1895
1896 static struct dentry * __d_find_any_alias(struct inode *inode)
1897 {
1898 struct dentry *alias;
1899
1900 if (hlist_empty(&inode->i_dentry))
1901 return NULL;
1902 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1903 __dget(alias);
1904 return alias;
1905 }
1906
1907 /**
1908 * d_find_any_alias - find any alias for a given inode
1909 * @inode: inode to find an alias for
1910 *
1911 * If any aliases exist for the given inode, take and return a
1912 * reference for one of them. If no aliases exist, return %NULL.
1913 */
1914 struct dentry *d_find_any_alias(struct inode *inode)
1915 {
1916 struct dentry *de;
1917
1918 spin_lock(&inode->i_lock);
1919 de = __d_find_any_alias(inode);
1920 spin_unlock(&inode->i_lock);
1921 return de;
1922 }
1923 EXPORT_SYMBOL(d_find_any_alias);
1924
1925 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1926 {
1927 struct dentry *tmp;
1928 struct dentry *res;
1929 unsigned add_flags;
1930
1931 if (!inode)
1932 return ERR_PTR(-ESTALE);
1933 if (IS_ERR(inode))
1934 return ERR_CAST(inode);
1935
1936 res = d_find_any_alias(inode);
1937 if (res)
1938 goto out_iput;
1939
1940 tmp = __d_alloc(inode->i_sb, NULL);
1941 if (!tmp) {
1942 res = ERR_PTR(-ENOMEM);
1943 goto out_iput;
1944 }
1945
1946 security_d_instantiate(tmp, inode);
1947 spin_lock(&inode->i_lock);
1948 res = __d_find_any_alias(inode);
1949 if (res) {
1950 spin_unlock(&inode->i_lock);
1951 dput(tmp);
1952 goto out_iput;
1953 }
1954
1955 /* attach a disconnected dentry */
1956 add_flags = d_flags_for_inode(inode);
1957
1958 if (disconnected)
1959 add_flags |= DCACHE_DISCONNECTED;
1960
1961 spin_lock(&tmp->d_lock);
1962 __d_set_inode_and_type(tmp, inode, add_flags);
1963 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1964 hlist_bl_lock(&tmp->d_sb->s_anon);
1965 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1966 hlist_bl_unlock(&tmp->d_sb->s_anon);
1967 spin_unlock(&tmp->d_lock);
1968 spin_unlock(&inode->i_lock);
1969
1970 return tmp;
1971
1972 out_iput:
1973 iput(inode);
1974 return res;
1975 }
1976
1977 /**
1978 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1979 * @inode: inode to allocate the dentry for
1980 *
1981 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1982 * similar open by handle operations. The returned dentry may be anonymous,
1983 * or may have a full name (if the inode was already in the cache).
1984 *
1985 * When called on a directory inode, we must ensure that the inode only ever
1986 * has one dentry. If a dentry is found, that is returned instead of
1987 * allocating a new one.
1988 *
1989 * On successful return, the reference to the inode has been transferred
1990 * to the dentry. In case of an error the reference on the inode is released.
1991 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1992 * be passed in and the error will be propagated to the return value,
1993 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1994 */
1995 struct dentry *d_obtain_alias(struct inode *inode)
1996 {
1997 return __d_obtain_alias(inode, 1);
1998 }
1999 EXPORT_SYMBOL(d_obtain_alias);
2000
2001 /**
2002 * d_obtain_root - find or allocate a dentry for a given inode
2003 * @inode: inode to allocate the dentry for
2004 *
2005 * Obtain an IS_ROOT dentry for the root of a filesystem.
2006 *
2007 * We must ensure that directory inodes only ever have one dentry. If a
2008 * dentry is found, that is returned instead of allocating a new one.
2009 *
2010 * On successful return, the reference to the inode has been transferred
2011 * to the dentry. In case of an error the reference on the inode is
2012 * released. A %NULL or IS_ERR inode may be passed in and will be the
2013 * error will be propagate to the return value, with a %NULL @inode
2014 * replaced by ERR_PTR(-ESTALE).
2015 */
2016 struct dentry *d_obtain_root(struct inode *inode)
2017 {
2018 return __d_obtain_alias(inode, 0);
2019 }
2020 EXPORT_SYMBOL(d_obtain_root);
2021
2022 /**
2023 * d_add_ci - lookup or allocate new dentry with case-exact name
2024 * @inode: the inode case-insensitive lookup has found
2025 * @dentry: the negative dentry that was passed to the parent's lookup func
2026 * @name: the case-exact name to be associated with the returned dentry
2027 *
2028 * This is to avoid filling the dcache with case-insensitive names to the
2029 * same inode, only the actual correct case is stored in the dcache for
2030 * case-insensitive filesystems.
2031 *
2032 * For a case-insensitive lookup match and if the the case-exact dentry
2033 * already exists in in the dcache, use it and return it.
2034 *
2035 * If no entry exists with the exact case name, allocate new dentry with
2036 * the exact case, and return the spliced entry.
2037 */
2038 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2039 struct qstr *name)
2040 {
2041 struct dentry *found, *res;
2042
2043 /*
2044 * First check if a dentry matching the name already exists,
2045 * if not go ahead and create it now.
2046 */
2047 found = d_hash_and_lookup(dentry->d_parent, name);
2048 if (found) {
2049 iput(inode);
2050 return found;
2051 }
2052 if (d_in_lookup(dentry)) {
2053 found = d_alloc_parallel(dentry->d_parent, name,
2054 dentry->d_wait);
2055 if (IS_ERR(found) || !d_in_lookup(found)) {
2056 iput(inode);
2057 return found;
2058 }
2059 } else {
2060 found = d_alloc(dentry->d_parent, name);
2061 if (!found) {
2062 iput(inode);
2063 return ERR_PTR(-ENOMEM);
2064 }
2065 }
2066 res = d_splice_alias(inode, found);
2067 if (res) {
2068 dput(found);
2069 return res;
2070 }
2071 return found;
2072 }
2073 EXPORT_SYMBOL(d_add_ci);
2074
2075
2076 static inline bool d_same_name(const struct dentry *dentry,
2077 const struct dentry *parent,
2078 const struct qstr *name)
2079 {
2080 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2081 if (dentry->d_name.len != name->len)
2082 return false;
2083 return dentry_cmp(dentry, name->name, name->len) == 0;
2084 }
2085 return parent->d_op->d_compare(dentry,
2086 dentry->d_name.len, dentry->d_name.name,
2087 name) == 0;
2088 }
2089
2090 /**
2091 * __d_lookup_rcu - search for a dentry (racy, store-free)
2092 * @parent: parent dentry
2093 * @name: qstr of name we wish to find
2094 * @seqp: returns d_seq value at the point where the dentry was found
2095 * Returns: dentry, or NULL
2096 *
2097 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2098 * resolution (store-free path walking) design described in
2099 * Documentation/filesystems/path-lookup.txt.
2100 *
2101 * This is not to be used outside core vfs.
2102 *
2103 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2104 * held, and rcu_read_lock held. The returned dentry must not be stored into
2105 * without taking d_lock and checking d_seq sequence count against @seq
2106 * returned here.
2107 *
2108 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2109 * function.
2110 *
2111 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2112 * the returned dentry, so long as its parent's seqlock is checked after the
2113 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2114 * is formed, giving integrity down the path walk.
2115 *
2116 * NOTE! The caller *has* to check the resulting dentry against the sequence
2117 * number we've returned before using any of the resulting dentry state!
2118 */
2119 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2120 const struct qstr *name,
2121 unsigned *seqp)
2122 {
2123 u64 hashlen = name->hash_len;
2124 const unsigned char *str = name->name;
2125 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2126 struct hlist_bl_node *node;
2127 struct dentry *dentry;
2128
2129 /*
2130 * Note: There is significant duplication with __d_lookup_rcu which is
2131 * required to prevent single threaded performance regressions
2132 * especially on architectures where smp_rmb (in seqcounts) are costly.
2133 * Keep the two functions in sync.
2134 */
2135
2136 /*
2137 * The hash list is protected using RCU.
2138 *
2139 * Carefully use d_seq when comparing a candidate dentry, to avoid
2140 * races with d_move().
2141 *
2142 * It is possible that concurrent renames can mess up our list
2143 * walk here and result in missing our dentry, resulting in the
2144 * false-negative result. d_lookup() protects against concurrent
2145 * renames using rename_lock seqlock.
2146 *
2147 * See Documentation/filesystems/path-lookup.txt for more details.
2148 */
2149 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2150 unsigned seq;
2151
2152 seqretry:
2153 /*
2154 * The dentry sequence count protects us from concurrent
2155 * renames, and thus protects parent and name fields.
2156 *
2157 * The caller must perform a seqcount check in order
2158 * to do anything useful with the returned dentry.
2159 *
2160 * NOTE! We do a "raw" seqcount_begin here. That means that
2161 * we don't wait for the sequence count to stabilize if it
2162 * is in the middle of a sequence change. If we do the slow
2163 * dentry compare, we will do seqretries until it is stable,
2164 * and if we end up with a successful lookup, we actually
2165 * want to exit RCU lookup anyway.
2166 *
2167 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2168 * we are still guaranteed NUL-termination of ->d_name.name.
2169 */
2170 seq = raw_seqcount_begin(&dentry->d_seq);
2171 if (dentry->d_parent != parent)
2172 continue;
2173 if (d_unhashed(dentry))
2174 continue;
2175
2176 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2177 int tlen;
2178 const char *tname;
2179 if (dentry->d_name.hash != hashlen_hash(hashlen))
2180 continue;
2181 tlen = dentry->d_name.len;
2182 tname = dentry->d_name.name;
2183 /* we want a consistent (name,len) pair */
2184 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2185 cpu_relax();
2186 goto seqretry;
2187 }
2188 if (parent->d_op->d_compare(dentry,
2189 tlen, tname, name) != 0)
2190 continue;
2191 } else {
2192 if (dentry->d_name.hash_len != hashlen)
2193 continue;
2194 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2195 continue;
2196 }
2197 *seqp = seq;
2198 return dentry;
2199 }
2200 return NULL;
2201 }
2202
2203 /**
2204 * d_lookup - search for a dentry
2205 * @parent: parent dentry
2206 * @name: qstr of name we wish to find
2207 * Returns: dentry, or NULL
2208 *
2209 * d_lookup searches the children of the parent dentry for the name in
2210 * question. If the dentry is found its reference count is incremented and the
2211 * dentry is returned. The caller must use dput to free the entry when it has
2212 * finished using it. %NULL is returned if the dentry does not exist.
2213 */
2214 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2215 {
2216 struct dentry *dentry;
2217 unsigned seq;
2218
2219 do {
2220 seq = read_seqbegin(&rename_lock);
2221 dentry = __d_lookup(parent, name);
2222 if (dentry)
2223 break;
2224 } while (read_seqretry(&rename_lock, seq));
2225 return dentry;
2226 }
2227 EXPORT_SYMBOL(d_lookup);
2228
2229 /**
2230 * __d_lookup - search for a dentry (racy)
2231 * @parent: parent dentry
2232 * @name: qstr of name we wish to find
2233 * Returns: dentry, or NULL
2234 *
2235 * __d_lookup is like d_lookup, however it may (rarely) return a
2236 * false-negative result due to unrelated rename activity.
2237 *
2238 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2239 * however it must be used carefully, eg. with a following d_lookup in
2240 * the case of failure.
2241 *
2242 * __d_lookup callers must be commented.
2243 */
2244 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2245 {
2246 unsigned int hash = name->hash;
2247 struct hlist_bl_head *b = d_hash(hash);
2248 struct hlist_bl_node *node;
2249 struct dentry *found = NULL;
2250 struct dentry *dentry;
2251
2252 /*
2253 * Note: There is significant duplication with __d_lookup_rcu which is
2254 * required to prevent single threaded performance regressions
2255 * especially on architectures where smp_rmb (in seqcounts) are costly.
2256 * Keep the two functions in sync.
2257 */
2258
2259 /*
2260 * The hash list is protected using RCU.
2261 *
2262 * Take d_lock when comparing a candidate dentry, to avoid races
2263 * with d_move().
2264 *
2265 * It is possible that concurrent renames can mess up our list
2266 * walk here and result in missing our dentry, resulting in the
2267 * false-negative result. d_lookup() protects against concurrent
2268 * renames using rename_lock seqlock.
2269 *
2270 * See Documentation/filesystems/path-lookup.txt for more details.
2271 */
2272 rcu_read_lock();
2273
2274 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2275
2276 if (dentry->d_name.hash != hash)
2277 continue;
2278
2279 spin_lock(&dentry->d_lock);
2280 if (dentry->d_parent != parent)
2281 goto next;
2282 if (d_unhashed(dentry))
2283 goto next;
2284
2285 if (!d_same_name(dentry, parent, name))
2286 goto next;
2287
2288 dentry->d_lockref.count++;
2289 found = dentry;
2290 spin_unlock(&dentry->d_lock);
2291 break;
2292 next:
2293 spin_unlock(&dentry->d_lock);
2294 }
2295 rcu_read_unlock();
2296
2297 return found;
2298 }
2299
2300 /**
2301 * d_hash_and_lookup - hash the qstr then search for a dentry
2302 * @dir: Directory to search in
2303 * @name: qstr of name we wish to find
2304 *
2305 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2306 */
2307 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2308 {
2309 /*
2310 * Check for a fs-specific hash function. Note that we must
2311 * calculate the standard hash first, as the d_op->d_hash()
2312 * routine may choose to leave the hash value unchanged.
2313 */
2314 name->hash = full_name_hash(dir, name->name, name->len);
2315 if (dir->d_flags & DCACHE_OP_HASH) {
2316 int err = dir->d_op->d_hash(dir, name);
2317 if (unlikely(err < 0))
2318 return ERR_PTR(err);
2319 }
2320 return d_lookup(dir, name);
2321 }
2322 EXPORT_SYMBOL(d_hash_and_lookup);
2323
2324 /*
2325 * When a file is deleted, we have two options:
2326 * - turn this dentry into a negative dentry
2327 * - unhash this dentry and free it.
2328 *
2329 * Usually, we want to just turn this into
2330 * a negative dentry, but if anybody else is
2331 * currently using the dentry or the inode
2332 * we can't do that and we fall back on removing
2333 * it from the hash queues and waiting for
2334 * it to be deleted later when it has no users
2335 */
2336
2337 /**
2338 * d_delete - delete a dentry
2339 * @dentry: The dentry to delete
2340 *
2341 * Turn the dentry into a negative dentry if possible, otherwise
2342 * remove it from the hash queues so it can be deleted later
2343 */
2344
2345 void d_delete(struct dentry * dentry)
2346 {
2347 struct inode *inode;
2348 int isdir = 0;
2349 /*
2350 * Are we the only user?
2351 */
2352 again:
2353 spin_lock(&dentry->d_lock);
2354 inode = dentry->d_inode;
2355 isdir = S_ISDIR(inode->i_mode);
2356 if (dentry->d_lockref.count == 1) {
2357 if (!spin_trylock(&inode->i_lock)) {
2358 spin_unlock(&dentry->d_lock);
2359 cpu_relax();
2360 goto again;
2361 }
2362 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2363 dentry_unlink_inode(dentry);
2364 fsnotify_nameremove(dentry, isdir);
2365 return;
2366 }
2367
2368 if (!d_unhashed(dentry))
2369 __d_drop(dentry);
2370
2371 spin_unlock(&dentry->d_lock);
2372
2373 fsnotify_nameremove(dentry, isdir);
2374 }
2375 EXPORT_SYMBOL(d_delete);
2376
2377 static void __d_rehash(struct dentry *entry)
2378 {
2379 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2380 BUG_ON(!d_unhashed(entry));
2381 hlist_bl_lock(b);
2382 hlist_bl_add_head_rcu(&entry->d_hash, b);
2383 hlist_bl_unlock(b);
2384 }
2385
2386 /**
2387 * d_rehash - add an entry back to the hash
2388 * @entry: dentry to add to the hash
2389 *
2390 * Adds a dentry to the hash according to its name.
2391 */
2392
2393 void d_rehash(struct dentry * entry)
2394 {
2395 spin_lock(&entry->d_lock);
2396 __d_rehash(entry);
2397 spin_unlock(&entry->d_lock);
2398 }
2399 EXPORT_SYMBOL(d_rehash);
2400
2401 static inline unsigned start_dir_add(struct inode *dir)
2402 {
2403
2404 for (;;) {
2405 unsigned n = dir->i_dir_seq;
2406 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2407 return n;
2408 cpu_relax();
2409 }
2410 }
2411
2412 static inline void end_dir_add(struct inode *dir, unsigned n)
2413 {
2414 smp_store_release(&dir->i_dir_seq, n + 2);
2415 }
2416
2417 static void d_wait_lookup(struct dentry *dentry)
2418 {
2419 if (d_in_lookup(dentry)) {
2420 DECLARE_WAITQUEUE(wait, current);
2421 add_wait_queue(dentry->d_wait, &wait);
2422 do {
2423 set_current_state(TASK_UNINTERRUPTIBLE);
2424 spin_unlock(&dentry->d_lock);
2425 schedule();
2426 spin_lock(&dentry->d_lock);
2427 } while (d_in_lookup(dentry));
2428 }
2429 }
2430
2431 struct dentry *d_alloc_parallel(struct dentry *parent,
2432 const struct qstr *name,
2433 wait_queue_head_t *wq)
2434 {
2435 unsigned int hash = name->hash;
2436 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2437 struct hlist_bl_node *node;
2438 struct dentry *new = d_alloc(parent, name);
2439 struct dentry *dentry;
2440 unsigned seq, r_seq, d_seq;
2441
2442 if (unlikely(!new))
2443 return ERR_PTR(-ENOMEM);
2444
2445 retry:
2446 rcu_read_lock();
2447 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2448 r_seq = read_seqbegin(&rename_lock);
2449 dentry = __d_lookup_rcu(parent, name, &d_seq);
2450 if (unlikely(dentry)) {
2451 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2452 rcu_read_unlock();
2453 goto retry;
2454 }
2455 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2456 rcu_read_unlock();
2457 dput(dentry);
2458 goto retry;
2459 }
2460 rcu_read_unlock();
2461 dput(new);
2462 return dentry;
2463 }
2464 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2465 rcu_read_unlock();
2466 goto retry;
2467 }
2468 hlist_bl_lock(b);
2469 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2470 hlist_bl_unlock(b);
2471 rcu_read_unlock();
2472 goto retry;
2473 }
2474 /*
2475 * No changes for the parent since the beginning of d_lookup().
2476 * Since all removals from the chain happen with hlist_bl_lock(),
2477 * any potential in-lookup matches are going to stay here until
2478 * we unlock the chain. All fields are stable in everything
2479 * we encounter.
2480 */
2481 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2482 if (dentry->d_name.hash != hash)
2483 continue;
2484 if (dentry->d_parent != parent)
2485 continue;
2486 if (!d_same_name(dentry, parent, name))
2487 continue;
2488 hlist_bl_unlock(b);
2489 /* now we can try to grab a reference */
2490 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2491 rcu_read_unlock();
2492 goto retry;
2493 }
2494
2495 rcu_read_unlock();
2496 /*
2497 * somebody is likely to be still doing lookup for it;
2498 * wait for them to finish
2499 */
2500 spin_lock(&dentry->d_lock);
2501 d_wait_lookup(dentry);
2502 /*
2503 * it's not in-lookup anymore; in principle we should repeat
2504 * everything from dcache lookup, but it's likely to be what
2505 * d_lookup() would've found anyway. If it is, just return it;
2506 * otherwise we really have to repeat the whole thing.
2507 */
2508 if (unlikely(dentry->d_name.hash != hash))
2509 goto mismatch;
2510 if (unlikely(dentry->d_parent != parent))
2511 goto mismatch;
2512 if (unlikely(d_unhashed(dentry)))
2513 goto mismatch;
2514 if (unlikely(!d_same_name(dentry, parent, name)))
2515 goto mismatch;
2516 /* OK, it *is* a hashed match; return it */
2517 spin_unlock(&dentry->d_lock);
2518 dput(new);
2519 return dentry;
2520 }
2521 rcu_read_unlock();
2522 /* we can't take ->d_lock here; it's OK, though. */
2523 new->d_flags |= DCACHE_PAR_LOOKUP;
2524 new->d_wait = wq;
2525 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2526 hlist_bl_unlock(b);
2527 return new;
2528 mismatch:
2529 spin_unlock(&dentry->d_lock);
2530 dput(dentry);
2531 goto retry;
2532 }
2533 EXPORT_SYMBOL(d_alloc_parallel);
2534
2535 void __d_lookup_done(struct dentry *dentry)
2536 {
2537 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2538 dentry->d_name.hash);
2539 hlist_bl_lock(b);
2540 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2541 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2542 wake_up_all(dentry->d_wait);
2543 dentry->d_wait = NULL;
2544 hlist_bl_unlock(b);
2545 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2546 INIT_LIST_HEAD(&dentry->d_lru);
2547 }
2548 EXPORT_SYMBOL(__d_lookup_done);
2549
2550 /* inode->i_lock held if inode is non-NULL */
2551
2552 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2553 {
2554 struct inode *dir = NULL;
2555 unsigned n;
2556 spin_lock(&dentry->d_lock);
2557 if (unlikely(d_in_lookup(dentry))) {
2558 dir = dentry->d_parent->d_inode;
2559 n = start_dir_add(dir);
2560 __d_lookup_done(dentry);
2561 }
2562 if (inode) {
2563 unsigned add_flags = d_flags_for_inode(inode);
2564 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2565 raw_write_seqcount_begin(&dentry->d_seq);
2566 __d_set_inode_and_type(dentry, inode, add_flags);
2567 raw_write_seqcount_end(&dentry->d_seq);
2568 fsnotify_update_flags(dentry);
2569 }
2570 __d_rehash(dentry);
2571 if (dir)
2572 end_dir_add(dir, n);
2573 spin_unlock(&dentry->d_lock);
2574 if (inode)
2575 spin_unlock(&inode->i_lock);
2576 }
2577
2578 /**
2579 * d_add - add dentry to hash queues
2580 * @entry: dentry to add
2581 * @inode: The inode to attach to this dentry
2582 *
2583 * This adds the entry to the hash queues and initializes @inode.
2584 * The entry was actually filled in earlier during d_alloc().
2585 */
2586
2587 void d_add(struct dentry *entry, struct inode *inode)
2588 {
2589 if (inode) {
2590 security_d_instantiate(entry, inode);
2591 spin_lock(&inode->i_lock);
2592 }
2593 __d_add(entry, inode);
2594 }
2595 EXPORT_SYMBOL(d_add);
2596
2597 /**
2598 * d_exact_alias - find and hash an exact unhashed alias
2599 * @entry: dentry to add
2600 * @inode: The inode to go with this dentry
2601 *
2602 * If an unhashed dentry with the same name/parent and desired
2603 * inode already exists, hash and return it. Otherwise, return
2604 * NULL.
2605 *
2606 * Parent directory should be locked.
2607 */
2608 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2609 {
2610 struct dentry *alias;
2611 unsigned int hash = entry->d_name.hash;
2612
2613 spin_lock(&inode->i_lock);
2614 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2615 /*
2616 * Don't need alias->d_lock here, because aliases with
2617 * d_parent == entry->d_parent are not subject to name or
2618 * parent changes, because the parent inode i_mutex is held.
2619 */
2620 if (alias->d_name.hash != hash)
2621 continue;
2622 if (alias->d_parent != entry->d_parent)
2623 continue;
2624 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2625 continue;
2626 spin_lock(&alias->d_lock);
2627 if (!d_unhashed(alias)) {
2628 spin_unlock(&alias->d_lock);
2629 alias = NULL;
2630 } else {
2631 __dget_dlock(alias);
2632 __d_rehash(alias);
2633 spin_unlock(&alias->d_lock);
2634 }
2635 spin_unlock(&inode->i_lock);
2636 return alias;
2637 }
2638 spin_unlock(&inode->i_lock);
2639 return NULL;
2640 }
2641 EXPORT_SYMBOL(d_exact_alias);
2642
2643 /**
2644 * dentry_update_name_case - update case insensitive dentry with a new name
2645 * @dentry: dentry to be updated
2646 * @name: new name
2647 *
2648 * Update a case insensitive dentry with new case of name.
2649 *
2650 * dentry must have been returned by d_lookup with name @name. Old and new
2651 * name lengths must match (ie. no d_compare which allows mismatched name
2652 * lengths).
2653 *
2654 * Parent inode i_mutex must be held over d_lookup and into this call (to
2655 * keep renames and concurrent inserts, and readdir(2) away).
2656 */
2657 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2658 {
2659 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2660 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2661
2662 spin_lock(&dentry->d_lock);
2663 write_seqcount_begin(&dentry->d_seq);
2664 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2665 write_seqcount_end(&dentry->d_seq);
2666 spin_unlock(&dentry->d_lock);
2667 }
2668 EXPORT_SYMBOL(dentry_update_name_case);
2669
2670 static void swap_names(struct dentry *dentry, struct dentry *target)
2671 {
2672 if (unlikely(dname_external(target))) {
2673 if (unlikely(dname_external(dentry))) {
2674 /*
2675 * Both external: swap the pointers
2676 */
2677 swap(target->d_name.name, dentry->d_name.name);
2678 } else {
2679 /*
2680 * dentry:internal, target:external. Steal target's
2681 * storage and make target internal.
2682 */
2683 memcpy(target->d_iname, dentry->d_name.name,
2684 dentry->d_name.len + 1);
2685 dentry->d_name.name = target->d_name.name;
2686 target->d_name.name = target->d_iname;
2687 }
2688 } else {
2689 if (unlikely(dname_external(dentry))) {
2690 /*
2691 * dentry:external, target:internal. Give dentry's
2692 * storage to target and make dentry internal
2693 */
2694 memcpy(dentry->d_iname, target->d_name.name,
2695 target->d_name.len + 1);
2696 target->d_name.name = dentry->d_name.name;
2697 dentry->d_name.name = dentry->d_iname;
2698 } else {
2699 /*
2700 * Both are internal.
2701 */
2702 unsigned int i;
2703 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2704 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2705 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2706 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2707 swap(((long *) &dentry->d_iname)[i],
2708 ((long *) &target->d_iname)[i]);
2709 }
2710 }
2711 }
2712 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2713 }
2714
2715 static void copy_name(struct dentry *dentry, struct dentry *target)
2716 {
2717 struct external_name *old_name = NULL;
2718 if (unlikely(dname_external(dentry)))
2719 old_name = external_name(dentry);
2720 if (unlikely(dname_external(target))) {
2721 atomic_inc(&external_name(target)->u.count);
2722 dentry->d_name = target->d_name;
2723 } else {
2724 memcpy(dentry->d_iname, target->d_name.name,
2725 target->d_name.len + 1);
2726 dentry->d_name.name = dentry->d_iname;
2727 dentry->d_name.hash_len = target->d_name.hash_len;
2728 }
2729 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2730 kfree_rcu(old_name, u.head);
2731 }
2732
2733 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2734 {
2735 /*
2736 * XXXX: do we really need to take target->d_lock?
2737 */
2738 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2739 spin_lock(&target->d_parent->d_lock);
2740 else {
2741 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2742 spin_lock(&dentry->d_parent->d_lock);
2743 spin_lock_nested(&target->d_parent->d_lock,
2744 DENTRY_D_LOCK_NESTED);
2745 } else {
2746 spin_lock(&target->d_parent->d_lock);
2747 spin_lock_nested(&dentry->d_parent->d_lock,
2748 DENTRY_D_LOCK_NESTED);
2749 }
2750 }
2751 if (target < dentry) {
2752 spin_lock_nested(&target->d_lock, 2);
2753 spin_lock_nested(&dentry->d_lock, 3);
2754 } else {
2755 spin_lock_nested(&dentry->d_lock, 2);
2756 spin_lock_nested(&target->d_lock, 3);
2757 }
2758 }
2759
2760 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2761 {
2762 if (target->d_parent != dentry->d_parent)
2763 spin_unlock(&dentry->d_parent->d_lock);
2764 if (target->d_parent != target)
2765 spin_unlock(&target->d_parent->d_lock);
2766 spin_unlock(&target->d_lock);
2767 spin_unlock(&dentry->d_lock);
2768 }
2769
2770 /*
2771 * When switching names, the actual string doesn't strictly have to
2772 * be preserved in the target - because we're dropping the target
2773 * anyway. As such, we can just do a simple memcpy() to copy over
2774 * the new name before we switch, unless we are going to rehash
2775 * it. Note that if we *do* unhash the target, we are not allowed
2776 * to rehash it without giving it a new name/hash key - whether
2777 * we swap or overwrite the names here, resulting name won't match
2778 * the reality in filesystem; it's only there for d_path() purposes.
2779 * Note that all of this is happening under rename_lock, so the
2780 * any hash lookup seeing it in the middle of manipulations will
2781 * be discarded anyway. So we do not care what happens to the hash
2782 * key in that case.
2783 */
2784 /*
2785 * __d_move - move a dentry
2786 * @dentry: entry to move
2787 * @target: new dentry
2788 * @exchange: exchange the two dentries
2789 *
2790 * Update the dcache to reflect the move of a file name. Negative
2791 * dcache entries should not be moved in this way. Caller must hold
2792 * rename_lock, the i_mutex of the source and target directories,
2793 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2794 */
2795 static void __d_move(struct dentry *dentry, struct dentry *target,
2796 bool exchange)
2797 {
2798 struct inode *dir = NULL;
2799 unsigned n;
2800 if (!dentry->d_inode)
2801 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2802
2803 BUG_ON(d_ancestor(dentry, target));
2804 BUG_ON(d_ancestor(target, dentry));
2805
2806 dentry_lock_for_move(dentry, target);
2807 if (unlikely(d_in_lookup(target))) {
2808 dir = target->d_parent->d_inode;
2809 n = start_dir_add(dir);
2810 __d_lookup_done(target);
2811 }
2812
2813 write_seqcount_begin(&dentry->d_seq);
2814 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2815
2816 /* unhash both */
2817 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2818 __d_drop(dentry);
2819 __d_drop(target);
2820
2821 /* Switch the names.. */
2822 if (exchange)
2823 swap_names(dentry, target);
2824 else
2825 copy_name(dentry, target);
2826
2827 /* rehash in new place(s) */
2828 __d_rehash(dentry);
2829 if (exchange)
2830 __d_rehash(target);
2831
2832 /* ... and switch them in the tree */
2833 if (IS_ROOT(dentry)) {
2834 /* splicing a tree */
2835 dentry->d_flags |= DCACHE_RCUACCESS;
2836 dentry->d_parent = target->d_parent;
2837 target->d_parent = target;
2838 list_del_init(&target->d_child);
2839 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2840 } else {
2841 /* swapping two dentries */
2842 swap(dentry->d_parent, target->d_parent);
2843 list_move(&target->d_child, &target->d_parent->d_subdirs);
2844 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2845 if (exchange)
2846 fsnotify_update_flags(target);
2847 fsnotify_update_flags(dentry);
2848 }
2849
2850 write_seqcount_end(&target->d_seq);
2851 write_seqcount_end(&dentry->d_seq);
2852
2853 if (dir)
2854 end_dir_add(dir, n);
2855 dentry_unlock_for_move(dentry, target);
2856 }
2857
2858 /*
2859 * d_move - move a dentry
2860 * @dentry: entry to move
2861 * @target: new dentry
2862 *
2863 * Update the dcache to reflect the move of a file name. Negative
2864 * dcache entries should not be moved in this way. See the locking
2865 * requirements for __d_move.
2866 */
2867 void d_move(struct dentry *dentry, struct dentry *target)
2868 {
2869 write_seqlock(&rename_lock);
2870 __d_move(dentry, target, false);
2871 write_sequnlock(&rename_lock);
2872 }
2873 EXPORT_SYMBOL(d_move);
2874
2875 /*
2876 * d_exchange - exchange two dentries
2877 * @dentry1: first dentry
2878 * @dentry2: second dentry
2879 */
2880 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2881 {
2882 write_seqlock(&rename_lock);
2883
2884 WARN_ON(!dentry1->d_inode);
2885 WARN_ON(!dentry2->d_inode);
2886 WARN_ON(IS_ROOT(dentry1));
2887 WARN_ON(IS_ROOT(dentry2));
2888
2889 __d_move(dentry1, dentry2, true);
2890
2891 write_sequnlock(&rename_lock);
2892 }
2893
2894 /**
2895 * d_ancestor - search for an ancestor
2896 * @p1: ancestor dentry
2897 * @p2: child dentry
2898 *
2899 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2900 * an ancestor of p2, else NULL.
2901 */
2902 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2903 {
2904 struct dentry *p;
2905
2906 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2907 if (p->d_parent == p1)
2908 return p;
2909 }
2910 return NULL;
2911 }
2912
2913 /*
2914 * This helper attempts to cope with remotely renamed directories
2915 *
2916 * It assumes that the caller is already holding
2917 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2918 *
2919 * Note: If ever the locking in lock_rename() changes, then please
2920 * remember to update this too...
2921 */
2922 static int __d_unalias(struct inode *inode,
2923 struct dentry *dentry, struct dentry *alias)
2924 {
2925 struct mutex *m1 = NULL;
2926 struct rw_semaphore *m2 = NULL;
2927 int ret = -ESTALE;
2928
2929 /* If alias and dentry share a parent, then no extra locks required */
2930 if (alias->d_parent == dentry->d_parent)
2931 goto out_unalias;
2932
2933 /* See lock_rename() */
2934 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2935 goto out_err;
2936 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2937 if (!inode_trylock_shared(alias->d_parent->d_inode))
2938 goto out_err;
2939 m2 = &alias->d_parent->d_inode->i_rwsem;
2940 out_unalias:
2941 __d_move(alias, dentry, false);
2942 ret = 0;
2943 out_err:
2944 if (m2)
2945 up_read(m2);
2946 if (m1)
2947 mutex_unlock(m1);
2948 return ret;
2949 }
2950
2951 /**
2952 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2953 * @inode: the inode which may have a disconnected dentry
2954 * @dentry: a negative dentry which we want to point to the inode.
2955 *
2956 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2957 * place of the given dentry and return it, else simply d_add the inode
2958 * to the dentry and return NULL.
2959 *
2960 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2961 * we should error out: directories can't have multiple aliases.
2962 *
2963 * This is needed in the lookup routine of any filesystem that is exportable
2964 * (via knfsd) so that we can build dcache paths to directories effectively.
2965 *
2966 * If a dentry was found and moved, then it is returned. Otherwise NULL
2967 * is returned. This matches the expected return value of ->lookup.
2968 *
2969 * Cluster filesystems may call this function with a negative, hashed dentry.
2970 * In that case, we know that the inode will be a regular file, and also this
2971 * will only occur during atomic_open. So we need to check for the dentry
2972 * being already hashed only in the final case.
2973 */
2974 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2975 {
2976 if (IS_ERR(inode))
2977 return ERR_CAST(inode);
2978
2979 BUG_ON(!d_unhashed(dentry));
2980
2981 if (!inode)
2982 goto out;
2983
2984 security_d_instantiate(dentry, inode);
2985 spin_lock(&inode->i_lock);
2986 if (S_ISDIR(inode->i_mode)) {
2987 struct dentry *new = __d_find_any_alias(inode);
2988 if (unlikely(new)) {
2989 /* The reference to new ensures it remains an alias */
2990 spin_unlock(&inode->i_lock);
2991 write_seqlock(&rename_lock);
2992 if (unlikely(d_ancestor(new, dentry))) {
2993 write_sequnlock(&rename_lock);
2994 dput(new);
2995 new = ERR_PTR(-ELOOP);
2996 pr_warn_ratelimited(
2997 "VFS: Lookup of '%s' in %s %s"
2998 " would have caused loop\n",
2999 dentry->d_name.name,
3000 inode->i_sb->s_type->name,
3001 inode->i_sb->s_id);
3002 } else if (!IS_ROOT(new)) {
3003 int err = __d_unalias(inode, dentry, new);
3004 write_sequnlock(&rename_lock);
3005 if (err) {
3006 dput(new);
3007 new = ERR_PTR(err);
3008 }
3009 } else {
3010 __d_move(new, dentry, false);
3011 write_sequnlock(&rename_lock);
3012 }
3013 iput(inode);
3014 return new;
3015 }
3016 }
3017 out:
3018 __d_add(dentry, inode);
3019 return NULL;
3020 }
3021 EXPORT_SYMBOL(d_splice_alias);
3022
3023 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3024 {
3025 *buflen -= namelen;
3026 if (*buflen < 0)
3027 return -ENAMETOOLONG;
3028 *buffer -= namelen;
3029 memcpy(*buffer, str, namelen);
3030 return 0;
3031 }
3032
3033 /**
3034 * prepend_name - prepend a pathname in front of current buffer pointer
3035 * @buffer: buffer pointer
3036 * @buflen: allocated length of the buffer
3037 * @name: name string and length qstr structure
3038 *
3039 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3040 * make sure that either the old or the new name pointer and length are
3041 * fetched. However, there may be mismatch between length and pointer.
3042 * The length cannot be trusted, we need to copy it byte-by-byte until
3043 * the length is reached or a null byte is found. It also prepends "/" at
3044 * the beginning of the name. The sequence number check at the caller will
3045 * retry it again when a d_move() does happen. So any garbage in the buffer
3046 * due to mismatched pointer and length will be discarded.
3047 *
3048 * Data dependency barrier is needed to make sure that we see that terminating
3049 * NUL. Alpha strikes again, film at 11...
3050 */
3051 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3052 {
3053 const char *dname = ACCESS_ONCE(name->name);
3054 u32 dlen = ACCESS_ONCE(name->len);
3055 char *p;
3056
3057 smp_read_barrier_depends();
3058
3059 *buflen -= dlen + 1;
3060 if (*buflen < 0)
3061 return -ENAMETOOLONG;
3062 p = *buffer -= dlen + 1;
3063 *p++ = '/';
3064 while (dlen--) {
3065 char c = *dname++;
3066 if (!c)
3067 break;
3068 *p++ = c;
3069 }
3070 return 0;
3071 }
3072
3073 /**
3074 * prepend_path - Prepend path string to a buffer
3075 * @path: the dentry/vfsmount to report
3076 * @root: root vfsmnt/dentry
3077 * @buffer: pointer to the end of the buffer
3078 * @buflen: pointer to buffer length
3079 *
3080 * The function will first try to write out the pathname without taking any
3081 * lock other than the RCU read lock to make sure that dentries won't go away.
3082 * It only checks the sequence number of the global rename_lock as any change
3083 * in the dentry's d_seq will be preceded by changes in the rename_lock
3084 * sequence number. If the sequence number had been changed, it will restart
3085 * the whole pathname back-tracing sequence again by taking the rename_lock.
3086 * In this case, there is no need to take the RCU read lock as the recursive
3087 * parent pointer references will keep the dentry chain alive as long as no
3088 * rename operation is performed.
3089 */
3090 static int prepend_path(const struct path *path,
3091 const struct path *root,
3092 char **buffer, int *buflen)
3093 {
3094 struct dentry *dentry;
3095 struct vfsmount *vfsmnt;
3096 struct mount *mnt;
3097 int error = 0;
3098 unsigned seq, m_seq = 0;
3099 char *bptr;
3100 int blen;
3101
3102 rcu_read_lock();
3103 restart_mnt:
3104 read_seqbegin_or_lock(&mount_lock, &m_seq);
3105 seq = 0;
3106 rcu_read_lock();
3107 restart:
3108 bptr = *buffer;
3109 blen = *buflen;
3110 error = 0;
3111 dentry = path->dentry;
3112 vfsmnt = path->mnt;
3113 mnt = real_mount(vfsmnt);
3114 read_seqbegin_or_lock(&rename_lock, &seq);
3115 while (dentry != root->dentry || vfsmnt != root->mnt) {
3116 struct dentry * parent;
3117
3118 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3119 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3120 /* Escaped? */
3121 if (dentry != vfsmnt->mnt_root) {
3122 bptr = *buffer;
3123 blen = *buflen;
3124 error = 3;
3125 break;
3126 }
3127 /* Global root? */
3128 if (mnt != parent) {
3129 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3130 mnt = parent;
3131 vfsmnt = &mnt->mnt;
3132 continue;
3133 }
3134 if (!error)
3135 error = is_mounted(vfsmnt) ? 1 : 2;
3136 break;
3137 }
3138 parent = dentry->d_parent;
3139 prefetch(parent);
3140 error = prepend_name(&bptr, &blen, &dentry->d_name);
3141 if (error)
3142 break;
3143
3144 dentry = parent;
3145 }
3146 if (!(seq & 1))
3147 rcu_read_unlock();
3148 if (need_seqretry(&rename_lock, seq)) {
3149 seq = 1;
3150 goto restart;
3151 }
3152 done_seqretry(&rename_lock, seq);
3153
3154 if (!(m_seq & 1))
3155 rcu_read_unlock();
3156 if (need_seqretry(&mount_lock, m_seq)) {
3157 m_seq = 1;
3158 goto restart_mnt;
3159 }
3160 done_seqretry(&mount_lock, m_seq);
3161
3162 if (error >= 0 && bptr == *buffer) {
3163 if (--blen < 0)
3164 error = -ENAMETOOLONG;
3165 else
3166 *--bptr = '/';
3167 }
3168 *buffer = bptr;
3169 *buflen = blen;
3170 return error;
3171 }
3172
3173 /**
3174 * __d_path - return the path of a dentry
3175 * @path: the dentry/vfsmount to report
3176 * @root: root vfsmnt/dentry
3177 * @buf: buffer to return value in
3178 * @buflen: buffer length
3179 *
3180 * Convert a dentry into an ASCII path name.
3181 *
3182 * Returns a pointer into the buffer or an error code if the
3183 * path was too long.
3184 *
3185 * "buflen" should be positive.
3186 *
3187 * If the path is not reachable from the supplied root, return %NULL.
3188 */
3189 char *__d_path(const struct path *path,
3190 const struct path *root,
3191 char *buf, int buflen)
3192 {
3193 char *res = buf + buflen;
3194 int error;
3195
3196 prepend(&res, &buflen, "\0", 1);
3197 error = prepend_path(path, root, &res, &buflen);
3198
3199 if (error < 0)
3200 return ERR_PTR(error);
3201 if (error > 0)
3202 return NULL;
3203 return res;
3204 }
3205
3206 char *d_absolute_path(const struct path *path,
3207 char *buf, int buflen)
3208 {
3209 struct path root = {};
3210 char *res = buf + buflen;
3211 int error;
3212
3213 prepend(&res, &buflen, "\0", 1);
3214 error = prepend_path(path, &root, &res, &buflen);
3215
3216 if (error > 1)
3217 error = -EINVAL;
3218 if (error < 0)
3219 return ERR_PTR(error);
3220 return res;
3221 }
3222
3223 /*
3224 * same as __d_path but appends "(deleted)" for unlinked files.
3225 */
3226 static int path_with_deleted(const struct path *path,
3227 const struct path *root,
3228 char **buf, int *buflen)
3229 {
3230 prepend(buf, buflen, "\0", 1);
3231 if (d_unlinked(path->dentry)) {
3232 int error = prepend(buf, buflen, " (deleted)", 10);
3233 if (error)
3234 return error;
3235 }
3236
3237 return prepend_path(path, root, buf, buflen);
3238 }
3239
3240 static int prepend_unreachable(char **buffer, int *buflen)
3241 {
3242 return prepend(buffer, buflen, "(unreachable)", 13);
3243 }
3244
3245 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3246 {
3247 unsigned seq;
3248
3249 do {
3250 seq = read_seqcount_begin(&fs->seq);
3251 *root = fs->root;
3252 } while (read_seqcount_retry(&fs->seq, seq));
3253 }
3254
3255 /**
3256 * d_path - return the path of a dentry
3257 * @path: path to report
3258 * @buf: buffer to return value in
3259 * @buflen: buffer length
3260 *
3261 * Convert a dentry into an ASCII path name. If the entry has been deleted
3262 * the string " (deleted)" is appended. Note that this is ambiguous.
3263 *
3264 * Returns a pointer into the buffer or an error code if the path was
3265 * too long. Note: Callers should use the returned pointer, not the passed
3266 * in buffer, to use the name! The implementation often starts at an offset
3267 * into the buffer, and may leave 0 bytes at the start.
3268 *
3269 * "buflen" should be positive.
3270 */
3271 char *d_path(const struct path *path, char *buf, int buflen)
3272 {
3273 char *res = buf + buflen;
3274 struct path root;
3275 int error;
3276
3277 /*
3278 * We have various synthetic filesystems that never get mounted. On
3279 * these filesystems dentries are never used for lookup purposes, and
3280 * thus don't need to be hashed. They also don't need a name until a
3281 * user wants to identify the object in /proc/pid/fd/. The little hack
3282 * below allows us to generate a name for these objects on demand:
3283 *
3284 * Some pseudo inodes are mountable. When they are mounted
3285 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3286 * and instead have d_path return the mounted path.
3287 */
3288 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3289 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3290 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3291
3292 rcu_read_lock();
3293 get_fs_root_rcu(current->fs, &root);
3294 error = path_with_deleted(path, &root, &res, &buflen);
3295 rcu_read_unlock();
3296
3297 if (error < 0)
3298 res = ERR_PTR(error);
3299 return res;
3300 }
3301 EXPORT_SYMBOL(d_path);
3302
3303 /*
3304 * Helper function for dentry_operations.d_dname() members
3305 */
3306 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3307 const char *fmt, ...)
3308 {
3309 va_list args;
3310 char temp[64];
3311 int sz;
3312
3313 va_start(args, fmt);
3314 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3315 va_end(args);
3316
3317 if (sz > sizeof(temp) || sz > buflen)
3318 return ERR_PTR(-ENAMETOOLONG);
3319
3320 buffer += buflen - sz;
3321 return memcpy(buffer, temp, sz);
3322 }
3323
3324 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3325 {
3326 char *end = buffer + buflen;
3327 /* these dentries are never renamed, so d_lock is not needed */
3328 if (prepend(&end, &buflen, " (deleted)", 11) ||
3329 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3330 prepend(&end, &buflen, "/", 1))
3331 end = ERR_PTR(-ENAMETOOLONG);
3332 return end;
3333 }
3334 EXPORT_SYMBOL(simple_dname);
3335
3336 /*
3337 * Write full pathname from the root of the filesystem into the buffer.
3338 */
3339 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3340 {
3341 struct dentry *dentry;
3342 char *end, *retval;
3343 int len, seq = 0;
3344 int error = 0;
3345
3346 if (buflen < 2)
3347 goto Elong;
3348
3349 rcu_read_lock();
3350 restart:
3351 dentry = d;
3352 end = buf + buflen;
3353 len = buflen;
3354 prepend(&end, &len, "\0", 1);
3355 /* Get '/' right */
3356 retval = end-1;
3357 *retval = '/';
3358 read_seqbegin_or_lock(&rename_lock, &seq);
3359 while (!IS_ROOT(dentry)) {
3360 struct dentry *parent = dentry->d_parent;
3361
3362 prefetch(parent);
3363 error = prepend_name(&end, &len, &dentry->d_name);
3364 if (error)
3365 break;
3366
3367 retval = end;
3368 dentry = parent;
3369 }
3370 if (!(seq & 1))
3371 rcu_read_unlock();
3372 if (need_seqretry(&rename_lock, seq)) {
3373 seq = 1;
3374 goto restart;
3375 }
3376 done_seqretry(&rename_lock, seq);
3377 if (error)
3378 goto Elong;
3379 return retval;
3380 Elong:
3381 return ERR_PTR(-ENAMETOOLONG);
3382 }
3383
3384 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3385 {
3386 return __dentry_path(dentry, buf, buflen);
3387 }
3388 EXPORT_SYMBOL(dentry_path_raw);
3389
3390 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3391 {
3392 char *p = NULL;
3393 char *retval;
3394
3395 if (d_unlinked(dentry)) {
3396 p = buf + buflen;
3397 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3398 goto Elong;
3399 buflen++;
3400 }
3401 retval = __dentry_path(dentry, buf, buflen);
3402 if (!IS_ERR(retval) && p)
3403 *p = '/'; /* restore '/' overriden with '\0' */
3404 return retval;
3405 Elong:
3406 return ERR_PTR(-ENAMETOOLONG);
3407 }
3408
3409 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3410 struct path *pwd)
3411 {
3412 unsigned seq;
3413
3414 do {
3415 seq = read_seqcount_begin(&fs->seq);
3416 *root = fs->root;
3417 *pwd = fs->pwd;
3418 } while (read_seqcount_retry(&fs->seq, seq));
3419 }
3420
3421 /*
3422 * NOTE! The user-level library version returns a
3423 * character pointer. The kernel system call just
3424 * returns the length of the buffer filled (which
3425 * includes the ending '\0' character), or a negative
3426 * error value. So libc would do something like
3427 *
3428 * char *getcwd(char * buf, size_t size)
3429 * {
3430 * int retval;
3431 *
3432 * retval = sys_getcwd(buf, size);
3433 * if (retval >= 0)
3434 * return buf;
3435 * errno = -retval;
3436 * return NULL;
3437 * }
3438 */
3439 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3440 {
3441 int error;
3442 struct path pwd, root;
3443 char *page = __getname();
3444
3445 if (!page)
3446 return -ENOMEM;
3447
3448 rcu_read_lock();
3449 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3450
3451 error = -ENOENT;
3452 if (!d_unlinked(pwd.dentry)) {
3453 unsigned long len;
3454 char *cwd = page + PATH_MAX;
3455 int buflen = PATH_MAX;
3456
3457 prepend(&cwd, &buflen, "\0", 1);
3458 error = prepend_path(&pwd, &root, &cwd, &buflen);
3459 rcu_read_unlock();
3460
3461 if (error < 0)
3462 goto out;
3463
3464 /* Unreachable from current root */
3465 if (error > 0) {
3466 error = prepend_unreachable(&cwd, &buflen);
3467 if (error)
3468 goto out;
3469 }
3470
3471 error = -ERANGE;
3472 len = PATH_MAX + page - cwd;
3473 if (len <= size) {
3474 error = len;
3475 if (copy_to_user(buf, cwd, len))
3476 error = -EFAULT;
3477 }
3478 } else {
3479 rcu_read_unlock();
3480 }
3481
3482 out:
3483 __putname(page);
3484 return error;
3485 }
3486
3487 /*
3488 * Test whether new_dentry is a subdirectory of old_dentry.
3489 *
3490 * Trivially implemented using the dcache structure
3491 */
3492
3493 /**
3494 * is_subdir - is new dentry a subdirectory of old_dentry
3495 * @new_dentry: new dentry
3496 * @old_dentry: old dentry
3497 *
3498 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3499 * Returns false otherwise.
3500 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3501 */
3502
3503 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3504 {
3505 bool result;
3506 unsigned seq;
3507
3508 if (new_dentry == old_dentry)
3509 return true;
3510
3511 do {
3512 /* for restarting inner loop in case of seq retry */
3513 seq = read_seqbegin(&rename_lock);
3514 /*
3515 * Need rcu_readlock to protect against the d_parent trashing
3516 * due to d_move
3517 */
3518 rcu_read_lock();
3519 if (d_ancestor(old_dentry, new_dentry))
3520 result = true;
3521 else
3522 result = false;
3523 rcu_read_unlock();
3524 } while (read_seqretry(&rename_lock, seq));
3525
3526 return result;
3527 }
3528
3529 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3530 {
3531 struct dentry *root = data;
3532 if (dentry != root) {
3533 if (d_unhashed(dentry) || !dentry->d_inode)
3534 return D_WALK_SKIP;
3535
3536 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3537 dentry->d_flags |= DCACHE_GENOCIDE;
3538 dentry->d_lockref.count--;
3539 }
3540 }
3541 return D_WALK_CONTINUE;
3542 }
3543
3544 void d_genocide(struct dentry *parent)
3545 {
3546 d_walk(parent, parent, d_genocide_kill, NULL);
3547 }
3548
3549 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3550 {
3551 inode_dec_link_count(inode);
3552 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3553 !hlist_unhashed(&dentry->d_u.d_alias) ||
3554 !d_unlinked(dentry));
3555 spin_lock(&dentry->d_parent->d_lock);
3556 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3557 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3558 (unsigned long long)inode->i_ino);
3559 spin_unlock(&dentry->d_lock);
3560 spin_unlock(&dentry->d_parent->d_lock);
3561 d_instantiate(dentry, inode);
3562 }
3563 EXPORT_SYMBOL(d_tmpfile);
3564
3565 static __initdata unsigned long dhash_entries;
3566 static int __init set_dhash_entries(char *str)
3567 {
3568 if (!str)
3569 return 0;
3570 dhash_entries = simple_strtoul(str, &str, 0);
3571 return 1;
3572 }
3573 __setup("dhash_entries=", set_dhash_entries);
3574
3575 static void __init dcache_init_early(void)
3576 {
3577 /* If hashes are distributed across NUMA nodes, defer
3578 * hash allocation until vmalloc space is available.
3579 */
3580 if (hashdist)
3581 return;
3582
3583 dentry_hashtable =
3584 alloc_large_system_hash("Dentry cache",
3585 sizeof(struct hlist_bl_head),
3586 dhash_entries,
3587 13,
3588 HASH_EARLY | HASH_ZERO,
3589 &d_hash_shift,
3590 &d_hash_mask,
3591 0,
3592 0);
3593 }
3594
3595 static void __init dcache_init(void)
3596 {
3597 /*
3598 * A constructor could be added for stable state like the lists,
3599 * but it is probably not worth it because of the cache nature
3600 * of the dcache.
3601 */
3602 dentry_cache = KMEM_CACHE(dentry,
3603 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3604
3605 /* Hash may have been set up in dcache_init_early */
3606 if (!hashdist)
3607 return;
3608
3609 dentry_hashtable =
3610 alloc_large_system_hash("Dentry cache",
3611 sizeof(struct hlist_bl_head),
3612 dhash_entries,
3613 13,
3614 HASH_ZERO,
3615 &d_hash_shift,
3616 &d_hash_mask,
3617 0,
3618 0);
3619 }
3620
3621 /* SLAB cache for __getname() consumers */
3622 struct kmem_cache *names_cachep __read_mostly;
3623 EXPORT_SYMBOL(names_cachep);
3624
3625 EXPORT_SYMBOL(d_genocide);
3626
3627 void __init vfs_caches_init_early(void)
3628 {
3629 int i;
3630
3631 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3632 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3633
3634 dcache_init_early();
3635 inode_init_early();
3636 }
3637
3638 void __init vfs_caches_init(void)
3639 {
3640 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3641 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3642
3643 dcache_init();
3644 inode_init();
3645 files_init();
3646 files_maxfiles_init();
3647 mnt_init();
3648 bdev_cache_init();
3649 chrdev_init();
3650 }