]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/eventpoll.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46
47 /*
48 * LOCKING:
49 * There are three level of locking required by epoll :
50 *
51 * 1) epmutex (mutex)
52 * 2) ep->mtx (mutex)
53 * 3) ep->lock (spinlock)
54 *
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * and ep_free().
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
77 * going to.
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
86 * the lockdep subkey.
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
93 */
94
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97
98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
99
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111
112 struct epoll_filefd {
113 struct file *file;
114 int fd;
115 } __packed;
116
117 /*
118 * Structure used to track possible nested calls, for too deep recursions
119 * and loop cycles.
120 */
121 struct nested_call_node {
122 struct list_head llink;
123 void *cookie;
124 void *ctx;
125 };
126
127 /*
128 * This structure is used as collector for nested calls, to check for
129 * maximum recursion dept and loop cycles.
130 */
131 struct nested_calls {
132 struct list_head tasks_call_list;
133 spinlock_t lock;
134 };
135
136 /*
137 * Each file descriptor added to the eventpoll interface will
138 * have an entry of this type linked to the "rbr" RB tree.
139 * Avoid increasing the size of this struct, there can be many thousands
140 * of these on a server and we do not want this to take another cache line.
141 */
142 struct epitem {
143 union {
144 /* RB tree node links this structure to the eventpoll RB tree */
145 struct rb_node rbn;
146 /* Used to free the struct epitem */
147 struct rcu_head rcu;
148 };
149
150 /* List header used to link this structure to the eventpoll ready list */
151 struct list_head rdllink;
152
153 /*
154 * Works together "struct eventpoll"->ovflist in keeping the
155 * single linked chain of items.
156 */
157 struct epitem *next;
158
159 /* The file descriptor information this item refers to */
160 struct epoll_filefd ffd;
161
162 /* Number of active wait queue attached to poll operations */
163 int nwait;
164
165 /* List containing poll wait queues */
166 struct list_head pwqlist;
167
168 /* The "container" of this item */
169 struct eventpoll *ep;
170
171 /* List header used to link this item to the "struct file" items list */
172 struct list_head fllink;
173
174 /* wakeup_source used when EPOLLWAKEUP is set */
175 struct wakeup_source __rcu *ws;
176
177 /* The structure that describe the interested events and the source fd */
178 struct epoll_event event;
179 };
180
181 /*
182 * This structure is stored inside the "private_data" member of the file
183 * structure and represents the main data structure for the eventpoll
184 * interface.
185 */
186 struct eventpoll {
187 /* Protect the access to this structure */
188 spinlock_t lock;
189
190 /*
191 * This mutex is used to ensure that files are not removed
192 * while epoll is using them. This is held during the event
193 * collection loop, the file cleanup path, the epoll file exit
194 * code and the ctl operations.
195 */
196 struct mutex mtx;
197
198 /* Wait queue used by sys_epoll_wait() */
199 wait_queue_head_t wq;
200
201 /* Wait queue used by file->poll() */
202 wait_queue_head_t poll_wait;
203
204 /* List of ready file descriptors */
205 struct list_head rdllist;
206
207 /* RB tree root used to store monitored fd structs */
208 struct rb_root rbr;
209
210 /*
211 * This is a single linked list that chains all the "struct epitem" that
212 * happened while transferring ready events to userspace w/out
213 * holding ->lock.
214 */
215 struct epitem *ovflist;
216
217 /* wakeup_source used when ep_scan_ready_list is running */
218 struct wakeup_source *ws;
219
220 /* The user that created the eventpoll descriptor */
221 struct user_struct *user;
222
223 struct file *file;
224
225 /* used to optimize loop detection check */
226 int visited;
227 struct list_head visited_list_link;
228
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 /* used to track busy poll napi_id */
231 unsigned int napi_id;
232 #endif
233 };
234
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry {
237 /* List header used to link this structure to the "struct epitem" */
238 struct list_head llink;
239
240 /* The "base" pointer is set to the container "struct epitem" */
241 struct epitem *base;
242
243 /*
244 * Wait queue item that will be linked to the target file wait
245 * queue head.
246 */
247 wait_queue_entry_t wait;
248
249 /* The wait queue head that linked the "wait" wait queue item */
250 wait_queue_head_t *whead;
251 };
252
253 /* Wrapper struct used by poll queueing */
254 struct ep_pqueue {
255 poll_table pt;
256 struct epitem *epi;
257 };
258
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data {
261 int maxevents;
262 struct epoll_event __user *events;
263 };
264
265 /*
266 * Configuration options available inside /proc/sys/fs/epoll/
267 */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270
271 /*
272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
273 */
274 static DEFINE_MUTEX(epmutex);
275
276 /* Used to check for epoll file descriptor inclusion loops */
277 static struct nested_calls poll_loop_ncalls;
278
279 /* Used for safe wake up implementation */
280 static struct nested_calls poll_safewake_ncalls;
281
282 /* Used to call file's f_op->poll() under the nested calls boundaries */
283 static struct nested_calls poll_readywalk_ncalls;
284
285 /* Slab cache used to allocate "struct epitem" */
286 static struct kmem_cache *epi_cache __read_mostly;
287
288 /* Slab cache used to allocate "struct eppoll_entry" */
289 static struct kmem_cache *pwq_cache __read_mostly;
290
291 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
292 static LIST_HEAD(visited_list);
293
294 /*
295 * List of files with newly added links, where we may need to limit the number
296 * of emanating paths. Protected by the epmutex.
297 */
298 static LIST_HEAD(tfile_check_list);
299
300 #ifdef CONFIG_SYSCTL
301
302 #include <linux/sysctl.h>
303
304 static long zero;
305 static long long_max = LONG_MAX;
306
307 struct ctl_table epoll_table[] = {
308 {
309 .procname = "max_user_watches",
310 .data = &max_user_watches,
311 .maxlen = sizeof(max_user_watches),
312 .mode = 0644,
313 .proc_handler = proc_doulongvec_minmax,
314 .extra1 = &zero,
315 .extra2 = &long_max,
316 },
317 { }
318 };
319 #endif /* CONFIG_SYSCTL */
320
321 static const struct file_operations eventpoll_fops;
322
323 static inline int is_file_epoll(struct file *f)
324 {
325 return f->f_op == &eventpoll_fops;
326 }
327
328 /* Setup the structure that is used as key for the RB tree */
329 static inline void ep_set_ffd(struct epoll_filefd *ffd,
330 struct file *file, int fd)
331 {
332 ffd->file = file;
333 ffd->fd = fd;
334 }
335
336 /* Compare RB tree keys */
337 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
338 struct epoll_filefd *p2)
339 {
340 return (p1->file > p2->file ? +1:
341 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
342 }
343
344 /* Tells us if the item is currently linked */
345 static inline int ep_is_linked(struct list_head *p)
346 {
347 return !list_empty(p);
348 }
349
350 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
351 {
352 return container_of(p, struct eppoll_entry, wait);
353 }
354
355 /* Get the "struct epitem" from a wait queue pointer */
356 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
357 {
358 return container_of(p, struct eppoll_entry, wait)->base;
359 }
360
361 /* Get the "struct epitem" from an epoll queue wrapper */
362 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
363 {
364 return container_of(p, struct ep_pqueue, pt)->epi;
365 }
366
367 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
368 static inline int ep_op_has_event(int op)
369 {
370 return op != EPOLL_CTL_DEL;
371 }
372
373 /* Initialize the poll safe wake up structure */
374 static void ep_nested_calls_init(struct nested_calls *ncalls)
375 {
376 INIT_LIST_HEAD(&ncalls->tasks_call_list);
377 spin_lock_init(&ncalls->lock);
378 }
379
380 /**
381 * ep_events_available - Checks if ready events might be available.
382 *
383 * @ep: Pointer to the eventpoll context.
384 *
385 * Returns: Returns a value different than zero if ready events are available,
386 * or zero otherwise.
387 */
388 static inline int ep_events_available(struct eventpoll *ep)
389 {
390 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
391 }
392
393 #ifdef CONFIG_NET_RX_BUSY_POLL
394 static bool ep_busy_loop_end(void *p, unsigned long start_time)
395 {
396 struct eventpoll *ep = p;
397
398 return ep_events_available(ep) || busy_loop_timeout(start_time);
399 }
400 #endif /* CONFIG_NET_RX_BUSY_POLL */
401
402 /*
403 * Busy poll if globally on and supporting sockets found && no events,
404 * busy loop will return if need_resched or ep_events_available.
405 *
406 * we must do our busy polling with irqs enabled
407 */
408 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
409 {
410 #ifdef CONFIG_NET_RX_BUSY_POLL
411 unsigned int napi_id = READ_ONCE(ep->napi_id);
412
413 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
414 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
415 #endif
416 }
417
418 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
419 {
420 #ifdef CONFIG_NET_RX_BUSY_POLL
421 if (ep->napi_id)
422 ep->napi_id = 0;
423 #endif
424 }
425
426 /*
427 * Set epoll busy poll NAPI ID from sk.
428 */
429 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
430 {
431 #ifdef CONFIG_NET_RX_BUSY_POLL
432 struct eventpoll *ep;
433 unsigned int napi_id;
434 struct socket *sock;
435 struct sock *sk;
436 int err;
437
438 if (!net_busy_loop_on())
439 return;
440
441 sock = sock_from_file(epi->ffd.file, &err);
442 if (!sock)
443 return;
444
445 sk = sock->sk;
446 if (!sk)
447 return;
448
449 napi_id = READ_ONCE(sk->sk_napi_id);
450 ep = epi->ep;
451
452 /* Non-NAPI IDs can be rejected
453 * or
454 * Nothing to do if we already have this ID
455 */
456 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
457 return;
458
459 /* record NAPI ID for use in next busy poll */
460 ep->napi_id = napi_id;
461 #endif
462 }
463
464 /**
465 * ep_call_nested - Perform a bound (possibly) nested call, by checking
466 * that the recursion limit is not exceeded, and that
467 * the same nested call (by the meaning of same cookie) is
468 * no re-entered.
469 *
470 * @ncalls: Pointer to the nested_calls structure to be used for this call.
471 * @max_nests: Maximum number of allowed nesting calls.
472 * @nproc: Nested call core function pointer.
473 * @priv: Opaque data to be passed to the @nproc callback.
474 * @cookie: Cookie to be used to identify this nested call.
475 * @ctx: This instance context.
476 *
477 * Returns: Returns the code returned by the @nproc callback, or -1 if
478 * the maximum recursion limit has been exceeded.
479 */
480 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
481 int (*nproc)(void *, void *, int), void *priv,
482 void *cookie, void *ctx)
483 {
484 int error, call_nests = 0;
485 unsigned long flags;
486 struct list_head *lsthead = &ncalls->tasks_call_list;
487 struct nested_call_node *tncur;
488 struct nested_call_node tnode;
489
490 spin_lock_irqsave(&ncalls->lock, flags);
491
492 /*
493 * Try to see if the current task is already inside this wakeup call.
494 * We use a list here, since the population inside this set is always
495 * very much limited.
496 */
497 list_for_each_entry(tncur, lsthead, llink) {
498 if (tncur->ctx == ctx &&
499 (tncur->cookie == cookie || ++call_nests > max_nests)) {
500 /*
501 * Ops ... loop detected or maximum nest level reached.
502 * We abort this wake by breaking the cycle itself.
503 */
504 error = -1;
505 goto out_unlock;
506 }
507 }
508
509 /* Add the current task and cookie to the list */
510 tnode.ctx = ctx;
511 tnode.cookie = cookie;
512 list_add(&tnode.llink, lsthead);
513
514 spin_unlock_irqrestore(&ncalls->lock, flags);
515
516 /* Call the nested function */
517 error = (*nproc)(priv, cookie, call_nests);
518
519 /* Remove the current task from the list */
520 spin_lock_irqsave(&ncalls->lock, flags);
521 list_del(&tnode.llink);
522 out_unlock:
523 spin_unlock_irqrestore(&ncalls->lock, flags);
524
525 return error;
526 }
527
528 /*
529 * As described in commit 0ccf831cb lockdep: annotate epoll
530 * the use of wait queues used by epoll is done in a very controlled
531 * manner. Wake ups can nest inside each other, but are never done
532 * with the same locking. For example:
533 *
534 * dfd = socket(...);
535 * efd1 = epoll_create();
536 * efd2 = epoll_create();
537 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
538 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
539 *
540 * When a packet arrives to the device underneath "dfd", the net code will
541 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
542 * callback wakeup entry on that queue, and the wake_up() performed by the
543 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
544 * (efd1) notices that it may have some event ready, so it needs to wake up
545 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
546 * that ends up in another wake_up(), after having checked about the
547 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
548 * avoid stack blasting.
549 *
550 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
551 * this special case of epoll.
552 */
553 #ifdef CONFIG_DEBUG_LOCK_ALLOC
554 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
555 unsigned long events, int subclass)
556 {
557 unsigned long flags;
558
559 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
560 wake_up_locked_poll(wqueue, events);
561 spin_unlock_irqrestore(&wqueue->lock, flags);
562 }
563 #else
564 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
565 unsigned long events, int subclass)
566 {
567 wake_up_poll(wqueue, events);
568 }
569 #endif
570
571 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
572 {
573 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
574 1 + call_nests);
575 return 0;
576 }
577
578 /*
579 * Perform a safe wake up of the poll wait list. The problem is that
580 * with the new callback'd wake up system, it is possible that the
581 * poll callback is reentered from inside the call to wake_up() done
582 * on the poll wait queue head. The rule is that we cannot reenter the
583 * wake up code from the same task more than EP_MAX_NESTS times,
584 * and we cannot reenter the same wait queue head at all. This will
585 * enable to have a hierarchy of epoll file descriptor of no more than
586 * EP_MAX_NESTS deep.
587 */
588 static void ep_poll_safewake(wait_queue_head_t *wq)
589 {
590 int this_cpu = get_cpu();
591
592 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
593 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
594
595 put_cpu();
596 }
597
598 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
599 {
600 wait_queue_head_t *whead;
601
602 rcu_read_lock();
603 /* If it is cleared by POLLFREE, it should be rcu-safe */
604 whead = rcu_dereference(pwq->whead);
605 if (whead)
606 remove_wait_queue(whead, &pwq->wait);
607 rcu_read_unlock();
608 }
609
610 /*
611 * This function unregisters poll callbacks from the associated file
612 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
613 * ep_free).
614 */
615 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
616 {
617 struct list_head *lsthead = &epi->pwqlist;
618 struct eppoll_entry *pwq;
619
620 while (!list_empty(lsthead)) {
621 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
622
623 list_del(&pwq->llink);
624 ep_remove_wait_queue(pwq);
625 kmem_cache_free(pwq_cache, pwq);
626 }
627 }
628
629 /* call only when ep->mtx is held */
630 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
631 {
632 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
633 }
634
635 /* call only when ep->mtx is held */
636 static inline void ep_pm_stay_awake(struct epitem *epi)
637 {
638 struct wakeup_source *ws = ep_wakeup_source(epi);
639
640 if (ws)
641 __pm_stay_awake(ws);
642 }
643
644 static inline bool ep_has_wakeup_source(struct epitem *epi)
645 {
646 return rcu_access_pointer(epi->ws) ? true : false;
647 }
648
649 /* call when ep->mtx cannot be held (ep_poll_callback) */
650 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
651 {
652 struct wakeup_source *ws;
653
654 rcu_read_lock();
655 ws = rcu_dereference(epi->ws);
656 if (ws)
657 __pm_stay_awake(ws);
658 rcu_read_unlock();
659 }
660
661 /**
662 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
663 * the scan code, to call f_op->poll(). Also allows for
664 * O(NumReady) performance.
665 *
666 * @ep: Pointer to the epoll private data structure.
667 * @sproc: Pointer to the scan callback.
668 * @priv: Private opaque data passed to the @sproc callback.
669 * @depth: The current depth of recursive f_op->poll calls.
670 * @ep_locked: caller already holds ep->mtx
671 *
672 * Returns: The same integer error code returned by the @sproc callback.
673 */
674 static int ep_scan_ready_list(struct eventpoll *ep,
675 int (*sproc)(struct eventpoll *,
676 struct list_head *, void *),
677 void *priv, int depth, bool ep_locked)
678 {
679 int error, pwake = 0;
680 unsigned long flags;
681 struct epitem *epi, *nepi;
682 LIST_HEAD(txlist);
683
684 /*
685 * We need to lock this because we could be hit by
686 * eventpoll_release_file() and epoll_ctl().
687 */
688
689 if (!ep_locked)
690 mutex_lock_nested(&ep->mtx, depth);
691
692 /*
693 * Steal the ready list, and re-init the original one to the
694 * empty list. Also, set ep->ovflist to NULL so that events
695 * happening while looping w/out locks, are not lost. We cannot
696 * have the poll callback to queue directly on ep->rdllist,
697 * because we want the "sproc" callback to be able to do it
698 * in a lockless way.
699 */
700 spin_lock_irqsave(&ep->lock, flags);
701 list_splice_init(&ep->rdllist, &txlist);
702 ep->ovflist = NULL;
703 spin_unlock_irqrestore(&ep->lock, flags);
704
705 /*
706 * Now call the callback function.
707 */
708 error = (*sproc)(ep, &txlist, priv);
709
710 spin_lock_irqsave(&ep->lock, flags);
711 /*
712 * During the time we spent inside the "sproc" callback, some
713 * other events might have been queued by the poll callback.
714 * We re-insert them inside the main ready-list here.
715 */
716 for (nepi = ep->ovflist; (epi = nepi) != NULL;
717 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
718 /*
719 * We need to check if the item is already in the list.
720 * During the "sproc" callback execution time, items are
721 * queued into ->ovflist but the "txlist" might already
722 * contain them, and the list_splice() below takes care of them.
723 */
724 if (!ep_is_linked(&epi->rdllink)) {
725 list_add_tail(&epi->rdllink, &ep->rdllist);
726 ep_pm_stay_awake(epi);
727 }
728 }
729 /*
730 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
731 * releasing the lock, events will be queued in the normal way inside
732 * ep->rdllist.
733 */
734 ep->ovflist = EP_UNACTIVE_PTR;
735
736 /*
737 * Quickly re-inject items left on "txlist".
738 */
739 list_splice(&txlist, &ep->rdllist);
740 __pm_relax(ep->ws);
741
742 if (!list_empty(&ep->rdllist)) {
743 /*
744 * Wake up (if active) both the eventpoll wait list and
745 * the ->poll() wait list (delayed after we release the lock).
746 */
747 if (waitqueue_active(&ep->wq))
748 wake_up_locked(&ep->wq);
749 if (waitqueue_active(&ep->poll_wait))
750 pwake++;
751 }
752 spin_unlock_irqrestore(&ep->lock, flags);
753
754 if (!ep_locked)
755 mutex_unlock(&ep->mtx);
756
757 /* We have to call this outside the lock */
758 if (pwake)
759 ep_poll_safewake(&ep->poll_wait);
760
761 return error;
762 }
763
764 static void epi_rcu_free(struct rcu_head *head)
765 {
766 struct epitem *epi = container_of(head, struct epitem, rcu);
767 kmem_cache_free(epi_cache, epi);
768 }
769
770 /*
771 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
772 * all the associated resources. Must be called with "mtx" held.
773 */
774 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
775 {
776 unsigned long flags;
777 struct file *file = epi->ffd.file;
778
779 /*
780 * Removes poll wait queue hooks. We _have_ to do this without holding
781 * the "ep->lock" otherwise a deadlock might occur. This because of the
782 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
783 * queue head lock when unregistering the wait queue. The wakeup callback
784 * will run by holding the wait queue head lock and will call our callback
785 * that will try to get "ep->lock".
786 */
787 ep_unregister_pollwait(ep, epi);
788
789 /* Remove the current item from the list of epoll hooks */
790 spin_lock(&file->f_lock);
791 list_del_rcu(&epi->fllink);
792 spin_unlock(&file->f_lock);
793
794 rb_erase(&epi->rbn, &ep->rbr);
795
796 spin_lock_irqsave(&ep->lock, flags);
797 if (ep_is_linked(&epi->rdllink))
798 list_del_init(&epi->rdllink);
799 spin_unlock_irqrestore(&ep->lock, flags);
800
801 wakeup_source_unregister(ep_wakeup_source(epi));
802 /*
803 * At this point it is safe to free the eventpoll item. Use the union
804 * field epi->rcu, since we are trying to minimize the size of
805 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
806 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
807 * use of the rbn field.
808 */
809 call_rcu(&epi->rcu, epi_rcu_free);
810
811 atomic_long_dec(&ep->user->epoll_watches);
812
813 return 0;
814 }
815
816 static void ep_free(struct eventpoll *ep)
817 {
818 struct rb_node *rbp;
819 struct epitem *epi;
820
821 /* We need to release all tasks waiting for these file */
822 if (waitqueue_active(&ep->poll_wait))
823 ep_poll_safewake(&ep->poll_wait);
824
825 /*
826 * We need to lock this because we could be hit by
827 * eventpoll_release_file() while we're freeing the "struct eventpoll".
828 * We do not need to hold "ep->mtx" here because the epoll file
829 * is on the way to be removed and no one has references to it
830 * anymore. The only hit might come from eventpoll_release_file() but
831 * holding "epmutex" is sufficient here.
832 */
833 mutex_lock(&epmutex);
834
835 /*
836 * Walks through the whole tree by unregistering poll callbacks.
837 */
838 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
839 epi = rb_entry(rbp, struct epitem, rbn);
840
841 ep_unregister_pollwait(ep, epi);
842 cond_resched();
843 }
844
845 /*
846 * Walks through the whole tree by freeing each "struct epitem". At this
847 * point we are sure no poll callbacks will be lingering around, and also by
848 * holding "epmutex" we can be sure that no file cleanup code will hit
849 * us during this operation. So we can avoid the lock on "ep->lock".
850 * We do not need to lock ep->mtx, either, we only do it to prevent
851 * a lockdep warning.
852 */
853 mutex_lock(&ep->mtx);
854 while ((rbp = rb_first(&ep->rbr)) != NULL) {
855 epi = rb_entry(rbp, struct epitem, rbn);
856 ep_remove(ep, epi);
857 cond_resched();
858 }
859 mutex_unlock(&ep->mtx);
860
861 mutex_unlock(&epmutex);
862 mutex_destroy(&ep->mtx);
863 free_uid(ep->user);
864 wakeup_source_unregister(ep->ws);
865 kfree(ep);
866 }
867
868 static int ep_eventpoll_release(struct inode *inode, struct file *file)
869 {
870 struct eventpoll *ep = file->private_data;
871
872 if (ep)
873 ep_free(ep);
874
875 return 0;
876 }
877
878 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
879 {
880 pt->_key = epi->event.events;
881
882 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
883 }
884
885 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
886 void *priv)
887 {
888 struct epitem *epi, *tmp;
889 poll_table pt;
890
891 init_poll_funcptr(&pt, NULL);
892
893 list_for_each_entry_safe(epi, tmp, head, rdllink) {
894 if (ep_item_poll(epi, &pt))
895 return POLLIN | POLLRDNORM;
896 else {
897 /*
898 * Item has been dropped into the ready list by the poll
899 * callback, but it's not actually ready, as far as
900 * caller requested events goes. We can remove it here.
901 */
902 __pm_relax(ep_wakeup_source(epi));
903 list_del_init(&epi->rdllink);
904 }
905 }
906
907 return 0;
908 }
909
910 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
911 poll_table *pt);
912
913 struct readyevents_arg {
914 struct eventpoll *ep;
915 bool locked;
916 };
917
918 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
919 {
920 struct readyevents_arg *arg = priv;
921
922 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
923 call_nests + 1, arg->locked);
924 }
925
926 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
927 {
928 int pollflags;
929 struct eventpoll *ep = file->private_data;
930 struct readyevents_arg arg;
931
932 /*
933 * During ep_insert() we already hold the ep->mtx for the tfile.
934 * Prevent re-aquisition.
935 */
936 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
937 arg.ep = ep;
938
939 /* Insert inside our poll wait queue */
940 poll_wait(file, &ep->poll_wait, wait);
941
942 /*
943 * Proceed to find out if wanted events are really available inside
944 * the ready list. This need to be done under ep_call_nested()
945 * supervision, since the call to f_op->poll() done on listed files
946 * could re-enter here.
947 */
948 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
949 ep_poll_readyevents_proc, &arg, ep, current);
950
951 return pollflags != -1 ? pollflags : 0;
952 }
953
954 #ifdef CONFIG_PROC_FS
955 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
956 {
957 struct eventpoll *ep = f->private_data;
958 struct rb_node *rbp;
959
960 mutex_lock(&ep->mtx);
961 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
962 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
963 struct inode *inode = file_inode(epi->ffd.file);
964
965 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
966 " pos:%lli ino:%lx sdev:%x\n",
967 epi->ffd.fd, epi->event.events,
968 (long long)epi->event.data,
969 (long long)epi->ffd.file->f_pos,
970 inode->i_ino, inode->i_sb->s_dev);
971 if (seq_has_overflowed(m))
972 break;
973 }
974 mutex_unlock(&ep->mtx);
975 }
976 #endif
977
978 /* File callbacks that implement the eventpoll file behaviour */
979 static const struct file_operations eventpoll_fops = {
980 #ifdef CONFIG_PROC_FS
981 .show_fdinfo = ep_show_fdinfo,
982 #endif
983 .release = ep_eventpoll_release,
984 .poll = ep_eventpoll_poll,
985 .llseek = noop_llseek,
986 };
987
988 /*
989 * This is called from eventpoll_release() to unlink files from the eventpoll
990 * interface. We need to have this facility to cleanup correctly files that are
991 * closed without being removed from the eventpoll interface.
992 */
993 void eventpoll_release_file(struct file *file)
994 {
995 struct eventpoll *ep;
996 struct epitem *epi, *next;
997
998 /*
999 * We don't want to get "file->f_lock" because it is not
1000 * necessary. It is not necessary because we're in the "struct file"
1001 * cleanup path, and this means that no one is using this file anymore.
1002 * So, for example, epoll_ctl() cannot hit here since if we reach this
1003 * point, the file counter already went to zero and fget() would fail.
1004 * The only hit might come from ep_free() but by holding the mutex
1005 * will correctly serialize the operation. We do need to acquire
1006 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1007 * from anywhere but ep_free().
1008 *
1009 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1010 */
1011 mutex_lock(&epmutex);
1012 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1013 ep = epi->ep;
1014 mutex_lock_nested(&ep->mtx, 0);
1015 ep_remove(ep, epi);
1016 mutex_unlock(&ep->mtx);
1017 }
1018 mutex_unlock(&epmutex);
1019 }
1020
1021 static int ep_alloc(struct eventpoll **pep)
1022 {
1023 int error;
1024 struct user_struct *user;
1025 struct eventpoll *ep;
1026
1027 user = get_current_user();
1028 error = -ENOMEM;
1029 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1030 if (unlikely(!ep))
1031 goto free_uid;
1032
1033 spin_lock_init(&ep->lock);
1034 mutex_init(&ep->mtx);
1035 init_waitqueue_head(&ep->wq);
1036 init_waitqueue_head(&ep->poll_wait);
1037 INIT_LIST_HEAD(&ep->rdllist);
1038 ep->rbr = RB_ROOT;
1039 ep->ovflist = EP_UNACTIVE_PTR;
1040 ep->user = user;
1041
1042 *pep = ep;
1043
1044 return 0;
1045
1046 free_uid:
1047 free_uid(user);
1048 return error;
1049 }
1050
1051 /*
1052 * Search the file inside the eventpoll tree. The RB tree operations
1053 * are protected by the "mtx" mutex, and ep_find() must be called with
1054 * "mtx" held.
1055 */
1056 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1057 {
1058 int kcmp;
1059 struct rb_node *rbp;
1060 struct epitem *epi, *epir = NULL;
1061 struct epoll_filefd ffd;
1062
1063 ep_set_ffd(&ffd, file, fd);
1064 for (rbp = ep->rbr.rb_node; rbp; ) {
1065 epi = rb_entry(rbp, struct epitem, rbn);
1066 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1067 if (kcmp > 0)
1068 rbp = rbp->rb_right;
1069 else if (kcmp < 0)
1070 rbp = rbp->rb_left;
1071 else {
1072 epir = epi;
1073 break;
1074 }
1075 }
1076
1077 return epir;
1078 }
1079
1080 #ifdef CONFIG_CHECKPOINT_RESTORE
1081 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1082 {
1083 struct rb_node *rbp;
1084 struct epitem *epi;
1085
1086 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1087 epi = rb_entry(rbp, struct epitem, rbn);
1088 if (epi->ffd.fd == tfd) {
1089 if (toff == 0)
1090 return epi;
1091 else
1092 toff--;
1093 }
1094 cond_resched();
1095 }
1096
1097 return NULL;
1098 }
1099
1100 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1101 unsigned long toff)
1102 {
1103 struct file *file_raw;
1104 struct eventpoll *ep;
1105 struct epitem *epi;
1106
1107 if (!is_file_epoll(file))
1108 return ERR_PTR(-EINVAL);
1109
1110 ep = file->private_data;
1111
1112 mutex_lock(&ep->mtx);
1113 epi = ep_find_tfd(ep, tfd, toff);
1114 if (epi)
1115 file_raw = epi->ffd.file;
1116 else
1117 file_raw = ERR_PTR(-ENOENT);
1118 mutex_unlock(&ep->mtx);
1119
1120 return file_raw;
1121 }
1122 #endif /* CONFIG_CHECKPOINT_RESTORE */
1123
1124 /*
1125 * This is the callback that is passed to the wait queue wakeup
1126 * mechanism. It is called by the stored file descriptors when they
1127 * have events to report.
1128 */
1129 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1130 {
1131 int pwake = 0;
1132 unsigned long flags;
1133 struct epitem *epi = ep_item_from_wait(wait);
1134 struct eventpoll *ep = epi->ep;
1135 int ewake = 0;
1136
1137 if ((unsigned long)key & POLLFREE) {
1138 ep_pwq_from_wait(wait)->whead = NULL;
1139 /*
1140 * whead = NULL above can race with ep_remove_wait_queue()
1141 * which can do another remove_wait_queue() after us, so we
1142 * can't use __remove_wait_queue(). whead->lock is held by
1143 * the caller.
1144 */
1145 list_del_init(&wait->entry);
1146 }
1147
1148 spin_lock_irqsave(&ep->lock, flags);
1149
1150 ep_set_busy_poll_napi_id(epi);
1151
1152 /*
1153 * If the event mask does not contain any poll(2) event, we consider the
1154 * descriptor to be disabled. This condition is likely the effect of the
1155 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1156 * until the next EPOLL_CTL_MOD will be issued.
1157 */
1158 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1159 goto out_unlock;
1160
1161 /*
1162 * Check the events coming with the callback. At this stage, not
1163 * every device reports the events in the "key" parameter of the
1164 * callback. We need to be able to handle both cases here, hence the
1165 * test for "key" != NULL before the event match test.
1166 */
1167 if (key && !((unsigned long) key & epi->event.events))
1168 goto out_unlock;
1169
1170 /*
1171 * If we are transferring events to userspace, we can hold no locks
1172 * (because we're accessing user memory, and because of linux f_op->poll()
1173 * semantics). All the events that happen during that period of time are
1174 * chained in ep->ovflist and requeued later on.
1175 */
1176 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1177 if (epi->next == EP_UNACTIVE_PTR) {
1178 epi->next = ep->ovflist;
1179 ep->ovflist = epi;
1180 if (epi->ws) {
1181 /*
1182 * Activate ep->ws since epi->ws may get
1183 * deactivated at any time.
1184 */
1185 __pm_stay_awake(ep->ws);
1186 }
1187
1188 }
1189 goto out_unlock;
1190 }
1191
1192 /* If this file is already in the ready list we exit soon */
1193 if (!ep_is_linked(&epi->rdllink)) {
1194 list_add_tail(&epi->rdllink, &ep->rdllist);
1195 ep_pm_stay_awake_rcu(epi);
1196 }
1197
1198 /*
1199 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1200 * wait list.
1201 */
1202 if (waitqueue_active(&ep->wq)) {
1203 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1204 !((unsigned long)key & POLLFREE)) {
1205 switch ((unsigned long)key & EPOLLINOUT_BITS) {
1206 case POLLIN:
1207 if (epi->event.events & POLLIN)
1208 ewake = 1;
1209 break;
1210 case POLLOUT:
1211 if (epi->event.events & POLLOUT)
1212 ewake = 1;
1213 break;
1214 case 0:
1215 ewake = 1;
1216 break;
1217 }
1218 }
1219 wake_up_locked(&ep->wq);
1220 }
1221 if (waitqueue_active(&ep->poll_wait))
1222 pwake++;
1223
1224 out_unlock:
1225 spin_unlock_irqrestore(&ep->lock, flags);
1226
1227 /* We have to call this outside the lock */
1228 if (pwake)
1229 ep_poll_safewake(&ep->poll_wait);
1230
1231 if (epi->event.events & EPOLLEXCLUSIVE)
1232 return ewake;
1233
1234 return 1;
1235 }
1236
1237 /*
1238 * This is the callback that is used to add our wait queue to the
1239 * target file wakeup lists.
1240 */
1241 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1242 poll_table *pt)
1243 {
1244 struct epitem *epi = ep_item_from_epqueue(pt);
1245 struct eppoll_entry *pwq;
1246
1247 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1248 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1249 pwq->whead = whead;
1250 pwq->base = epi;
1251 if (epi->event.events & EPOLLEXCLUSIVE)
1252 add_wait_queue_exclusive(whead, &pwq->wait);
1253 else
1254 add_wait_queue(whead, &pwq->wait);
1255 list_add_tail(&pwq->llink, &epi->pwqlist);
1256 epi->nwait++;
1257 } else {
1258 /* We have to signal that an error occurred */
1259 epi->nwait = -1;
1260 }
1261 }
1262
1263 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1264 {
1265 int kcmp;
1266 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1267 struct epitem *epic;
1268
1269 while (*p) {
1270 parent = *p;
1271 epic = rb_entry(parent, struct epitem, rbn);
1272 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1273 if (kcmp > 0)
1274 p = &parent->rb_right;
1275 else
1276 p = &parent->rb_left;
1277 }
1278 rb_link_node(&epi->rbn, parent, p);
1279 rb_insert_color(&epi->rbn, &ep->rbr);
1280 }
1281
1282
1283
1284 #define PATH_ARR_SIZE 5
1285 /*
1286 * These are the number paths of length 1 to 5, that we are allowing to emanate
1287 * from a single file of interest. For example, we allow 1000 paths of length
1288 * 1, to emanate from each file of interest. This essentially represents the
1289 * potential wakeup paths, which need to be limited in order to avoid massive
1290 * uncontrolled wakeup storms. The common use case should be a single ep which
1291 * is connected to n file sources. In this case each file source has 1 path
1292 * of length 1. Thus, the numbers below should be more than sufficient. These
1293 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1294 * and delete can't add additional paths. Protected by the epmutex.
1295 */
1296 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1297 static int path_count[PATH_ARR_SIZE];
1298
1299 static int path_count_inc(int nests)
1300 {
1301 /* Allow an arbitrary number of depth 1 paths */
1302 if (nests == 0)
1303 return 0;
1304
1305 if (++path_count[nests] > path_limits[nests])
1306 return -1;
1307 return 0;
1308 }
1309
1310 static void path_count_init(void)
1311 {
1312 int i;
1313
1314 for (i = 0; i < PATH_ARR_SIZE; i++)
1315 path_count[i] = 0;
1316 }
1317
1318 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1319 {
1320 int error = 0;
1321 struct file *file = priv;
1322 struct file *child_file;
1323 struct epitem *epi;
1324
1325 /* CTL_DEL can remove links here, but that can't increase our count */
1326 rcu_read_lock();
1327 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1328 child_file = epi->ep->file;
1329 if (is_file_epoll(child_file)) {
1330 if (list_empty(&child_file->f_ep_links)) {
1331 if (path_count_inc(call_nests)) {
1332 error = -1;
1333 break;
1334 }
1335 } else {
1336 error = ep_call_nested(&poll_loop_ncalls,
1337 EP_MAX_NESTS,
1338 reverse_path_check_proc,
1339 child_file, child_file,
1340 current);
1341 }
1342 if (error != 0)
1343 break;
1344 } else {
1345 printk(KERN_ERR "reverse_path_check_proc: "
1346 "file is not an ep!\n");
1347 }
1348 }
1349 rcu_read_unlock();
1350 return error;
1351 }
1352
1353 /**
1354 * reverse_path_check - The tfile_check_list is list of file *, which have
1355 * links that are proposed to be newly added. We need to
1356 * make sure that those added links don't add too many
1357 * paths such that we will spend all our time waking up
1358 * eventpoll objects.
1359 *
1360 * Returns: Returns zero if the proposed links don't create too many paths,
1361 * -1 otherwise.
1362 */
1363 static int reverse_path_check(void)
1364 {
1365 int error = 0;
1366 struct file *current_file;
1367
1368 /* let's call this for all tfiles */
1369 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1370 path_count_init();
1371 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1372 reverse_path_check_proc, current_file,
1373 current_file, current);
1374 if (error)
1375 break;
1376 }
1377 return error;
1378 }
1379
1380 static int ep_create_wakeup_source(struct epitem *epi)
1381 {
1382 const char *name;
1383 struct wakeup_source *ws;
1384
1385 if (!epi->ep->ws) {
1386 epi->ep->ws = wakeup_source_register("eventpoll");
1387 if (!epi->ep->ws)
1388 return -ENOMEM;
1389 }
1390
1391 name = epi->ffd.file->f_path.dentry->d_name.name;
1392 ws = wakeup_source_register(name);
1393
1394 if (!ws)
1395 return -ENOMEM;
1396 rcu_assign_pointer(epi->ws, ws);
1397
1398 return 0;
1399 }
1400
1401 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1402 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1403 {
1404 struct wakeup_source *ws = ep_wakeup_source(epi);
1405
1406 RCU_INIT_POINTER(epi->ws, NULL);
1407
1408 /*
1409 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1410 * used internally by wakeup_source_remove, too (called by
1411 * wakeup_source_unregister), so we cannot use call_rcu
1412 */
1413 synchronize_rcu();
1414 wakeup_source_unregister(ws);
1415 }
1416
1417 /*
1418 * Must be called with "mtx" held.
1419 */
1420 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1421 struct file *tfile, int fd, int full_check)
1422 {
1423 int error, revents, pwake = 0;
1424 unsigned long flags;
1425 long user_watches;
1426 struct epitem *epi;
1427 struct ep_pqueue epq;
1428
1429 user_watches = atomic_long_read(&ep->user->epoll_watches);
1430 if (unlikely(user_watches >= max_user_watches))
1431 return -ENOSPC;
1432 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1433 return -ENOMEM;
1434
1435 /* Item initialization follow here ... */
1436 INIT_LIST_HEAD(&epi->rdllink);
1437 INIT_LIST_HEAD(&epi->fllink);
1438 INIT_LIST_HEAD(&epi->pwqlist);
1439 epi->ep = ep;
1440 ep_set_ffd(&epi->ffd, tfile, fd);
1441 epi->event = *event;
1442 epi->nwait = 0;
1443 epi->next = EP_UNACTIVE_PTR;
1444 if (epi->event.events & EPOLLWAKEUP) {
1445 error = ep_create_wakeup_source(epi);
1446 if (error)
1447 goto error_create_wakeup_source;
1448 } else {
1449 RCU_INIT_POINTER(epi->ws, NULL);
1450 }
1451
1452 /* Initialize the poll table using the queue callback */
1453 epq.epi = epi;
1454 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1455
1456 /*
1457 * Attach the item to the poll hooks and get current event bits.
1458 * We can safely use the file* here because its usage count has
1459 * been increased by the caller of this function. Note that after
1460 * this operation completes, the poll callback can start hitting
1461 * the new item.
1462 */
1463 revents = ep_item_poll(epi, &epq.pt);
1464
1465 /*
1466 * We have to check if something went wrong during the poll wait queue
1467 * install process. Namely an allocation for a wait queue failed due
1468 * high memory pressure.
1469 */
1470 error = -ENOMEM;
1471 if (epi->nwait < 0)
1472 goto error_unregister;
1473
1474 /* Add the current item to the list of active epoll hook for this file */
1475 spin_lock(&tfile->f_lock);
1476 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1477 spin_unlock(&tfile->f_lock);
1478
1479 /*
1480 * Add the current item to the RB tree. All RB tree operations are
1481 * protected by "mtx", and ep_insert() is called with "mtx" held.
1482 */
1483 ep_rbtree_insert(ep, epi);
1484
1485 /* now check if we've created too many backpaths */
1486 error = -EINVAL;
1487 if (full_check && reverse_path_check())
1488 goto error_remove_epi;
1489
1490 /* We have to drop the new item inside our item list to keep track of it */
1491 spin_lock_irqsave(&ep->lock, flags);
1492
1493 /* record NAPI ID of new item if present */
1494 ep_set_busy_poll_napi_id(epi);
1495
1496 /* If the file is already "ready" we drop it inside the ready list */
1497 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1498 list_add_tail(&epi->rdllink, &ep->rdllist);
1499 ep_pm_stay_awake(epi);
1500
1501 /* Notify waiting tasks that events are available */
1502 if (waitqueue_active(&ep->wq))
1503 wake_up_locked(&ep->wq);
1504 if (waitqueue_active(&ep->poll_wait))
1505 pwake++;
1506 }
1507
1508 spin_unlock_irqrestore(&ep->lock, flags);
1509
1510 atomic_long_inc(&ep->user->epoll_watches);
1511
1512 /* We have to call this outside the lock */
1513 if (pwake)
1514 ep_poll_safewake(&ep->poll_wait);
1515
1516 return 0;
1517
1518 error_remove_epi:
1519 spin_lock(&tfile->f_lock);
1520 list_del_rcu(&epi->fllink);
1521 spin_unlock(&tfile->f_lock);
1522
1523 rb_erase(&epi->rbn, &ep->rbr);
1524
1525 error_unregister:
1526 ep_unregister_pollwait(ep, epi);
1527
1528 /*
1529 * We need to do this because an event could have been arrived on some
1530 * allocated wait queue. Note that we don't care about the ep->ovflist
1531 * list, since that is used/cleaned only inside a section bound by "mtx".
1532 * And ep_insert() is called with "mtx" held.
1533 */
1534 spin_lock_irqsave(&ep->lock, flags);
1535 if (ep_is_linked(&epi->rdllink))
1536 list_del_init(&epi->rdllink);
1537 spin_unlock_irqrestore(&ep->lock, flags);
1538
1539 wakeup_source_unregister(ep_wakeup_source(epi));
1540
1541 error_create_wakeup_source:
1542 kmem_cache_free(epi_cache, epi);
1543
1544 return error;
1545 }
1546
1547 /*
1548 * Modify the interest event mask by dropping an event if the new mask
1549 * has a match in the current file status. Must be called with "mtx" held.
1550 */
1551 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1552 {
1553 int pwake = 0;
1554 unsigned int revents;
1555 poll_table pt;
1556
1557 init_poll_funcptr(&pt, NULL);
1558
1559 /*
1560 * Set the new event interest mask before calling f_op->poll();
1561 * otherwise we might miss an event that happens between the
1562 * f_op->poll() call and the new event set registering.
1563 */
1564 epi->event.events = event->events; /* need barrier below */
1565 epi->event.data = event->data; /* protected by mtx */
1566 if (epi->event.events & EPOLLWAKEUP) {
1567 if (!ep_has_wakeup_source(epi))
1568 ep_create_wakeup_source(epi);
1569 } else if (ep_has_wakeup_source(epi)) {
1570 ep_destroy_wakeup_source(epi);
1571 }
1572
1573 /*
1574 * The following barrier has two effects:
1575 *
1576 * 1) Flush epi changes above to other CPUs. This ensures
1577 * we do not miss events from ep_poll_callback if an
1578 * event occurs immediately after we call f_op->poll().
1579 * We need this because we did not take ep->lock while
1580 * changing epi above (but ep_poll_callback does take
1581 * ep->lock).
1582 *
1583 * 2) We also need to ensure we do not miss _past_ events
1584 * when calling f_op->poll(). This barrier also
1585 * pairs with the barrier in wq_has_sleeper (see
1586 * comments for wq_has_sleeper).
1587 *
1588 * This barrier will now guarantee ep_poll_callback or f_op->poll
1589 * (or both) will notice the readiness of an item.
1590 */
1591 smp_mb();
1592
1593 /*
1594 * Get current event bits. We can safely use the file* here because
1595 * its usage count has been increased by the caller of this function.
1596 */
1597 revents = ep_item_poll(epi, &pt);
1598
1599 /*
1600 * If the item is "hot" and it is not registered inside the ready
1601 * list, push it inside.
1602 */
1603 if (revents & event->events) {
1604 spin_lock_irq(&ep->lock);
1605 if (!ep_is_linked(&epi->rdllink)) {
1606 list_add_tail(&epi->rdllink, &ep->rdllist);
1607 ep_pm_stay_awake(epi);
1608
1609 /* Notify waiting tasks that events are available */
1610 if (waitqueue_active(&ep->wq))
1611 wake_up_locked(&ep->wq);
1612 if (waitqueue_active(&ep->poll_wait))
1613 pwake++;
1614 }
1615 spin_unlock_irq(&ep->lock);
1616 }
1617
1618 /* We have to call this outside the lock */
1619 if (pwake)
1620 ep_poll_safewake(&ep->poll_wait);
1621
1622 return 0;
1623 }
1624
1625 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1626 void *priv)
1627 {
1628 struct ep_send_events_data *esed = priv;
1629 int eventcnt;
1630 unsigned int revents;
1631 struct epitem *epi;
1632 struct epoll_event __user *uevent;
1633 struct wakeup_source *ws;
1634 poll_table pt;
1635
1636 init_poll_funcptr(&pt, NULL);
1637
1638 /*
1639 * We can loop without lock because we are passed a task private list.
1640 * Items cannot vanish during the loop because ep_scan_ready_list() is
1641 * holding "mtx" during this call.
1642 */
1643 for (eventcnt = 0, uevent = esed->events;
1644 !list_empty(head) && eventcnt < esed->maxevents;) {
1645 epi = list_first_entry(head, struct epitem, rdllink);
1646
1647 /*
1648 * Activate ep->ws before deactivating epi->ws to prevent
1649 * triggering auto-suspend here (in case we reactive epi->ws
1650 * below).
1651 *
1652 * This could be rearranged to delay the deactivation of epi->ws
1653 * instead, but then epi->ws would temporarily be out of sync
1654 * with ep_is_linked().
1655 */
1656 ws = ep_wakeup_source(epi);
1657 if (ws) {
1658 if (ws->active)
1659 __pm_stay_awake(ep->ws);
1660 __pm_relax(ws);
1661 }
1662
1663 list_del_init(&epi->rdllink);
1664
1665 revents = ep_item_poll(epi, &pt);
1666
1667 /*
1668 * If the event mask intersect the caller-requested one,
1669 * deliver the event to userspace. Again, ep_scan_ready_list()
1670 * is holding "mtx", so no operations coming from userspace
1671 * can change the item.
1672 */
1673 if (revents) {
1674 if (__put_user(revents, &uevent->events) ||
1675 __put_user(epi->event.data, &uevent->data)) {
1676 list_add(&epi->rdllink, head);
1677 ep_pm_stay_awake(epi);
1678 return eventcnt ? eventcnt : -EFAULT;
1679 }
1680 eventcnt++;
1681 uevent++;
1682 if (epi->event.events & EPOLLONESHOT)
1683 epi->event.events &= EP_PRIVATE_BITS;
1684 else if (!(epi->event.events & EPOLLET)) {
1685 /*
1686 * If this file has been added with Level
1687 * Trigger mode, we need to insert back inside
1688 * the ready list, so that the next call to
1689 * epoll_wait() will check again the events
1690 * availability. At this point, no one can insert
1691 * into ep->rdllist besides us. The epoll_ctl()
1692 * callers are locked out by
1693 * ep_scan_ready_list() holding "mtx" and the
1694 * poll callback will queue them in ep->ovflist.
1695 */
1696 list_add_tail(&epi->rdllink, &ep->rdllist);
1697 ep_pm_stay_awake(epi);
1698 }
1699 }
1700 }
1701
1702 return eventcnt;
1703 }
1704
1705 static int ep_send_events(struct eventpoll *ep,
1706 struct epoll_event __user *events, int maxevents)
1707 {
1708 struct ep_send_events_data esed;
1709
1710 esed.maxevents = maxevents;
1711 esed.events = events;
1712
1713 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1714 }
1715
1716 static inline struct timespec64 ep_set_mstimeout(long ms)
1717 {
1718 struct timespec64 now, ts = {
1719 .tv_sec = ms / MSEC_PER_SEC,
1720 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1721 };
1722
1723 ktime_get_ts64(&now);
1724 return timespec64_add_safe(now, ts);
1725 }
1726
1727 /**
1728 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1729 * event buffer.
1730 *
1731 * @ep: Pointer to the eventpoll context.
1732 * @events: Pointer to the userspace buffer where the ready events should be
1733 * stored.
1734 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1735 * @timeout: Maximum timeout for the ready events fetch operation, in
1736 * milliseconds. If the @timeout is zero, the function will not block,
1737 * while if the @timeout is less than zero, the function will block
1738 * until at least one event has been retrieved (or an error
1739 * occurred).
1740 *
1741 * Returns: Returns the number of ready events which have been fetched, or an
1742 * error code, in case of error.
1743 */
1744 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1745 int maxevents, long timeout)
1746 {
1747 int res = 0, eavail, timed_out = 0;
1748 unsigned long flags;
1749 u64 slack = 0;
1750 wait_queue_entry_t wait;
1751 ktime_t expires, *to = NULL;
1752
1753 if (timeout > 0) {
1754 struct timespec64 end_time = ep_set_mstimeout(timeout);
1755
1756 slack = select_estimate_accuracy(&end_time);
1757 to = &expires;
1758 *to = timespec64_to_ktime(end_time);
1759 } else if (timeout == 0) {
1760 /*
1761 * Avoid the unnecessary trip to the wait queue loop, if the
1762 * caller specified a non blocking operation.
1763 */
1764 timed_out = 1;
1765 spin_lock_irqsave(&ep->lock, flags);
1766 goto check_events;
1767 }
1768
1769 fetch_events:
1770
1771 if (!ep_events_available(ep))
1772 ep_busy_loop(ep, timed_out);
1773
1774 spin_lock_irqsave(&ep->lock, flags);
1775
1776 if (!ep_events_available(ep)) {
1777 /*
1778 * Busy poll timed out. Drop NAPI ID for now, we can add
1779 * it back in when we have moved a socket with a valid NAPI
1780 * ID onto the ready list.
1781 */
1782 ep_reset_busy_poll_napi_id(ep);
1783
1784 /*
1785 * We don't have any available event to return to the caller.
1786 * We need to sleep here, and we will be wake up by
1787 * ep_poll_callback() when events will become available.
1788 */
1789 init_waitqueue_entry(&wait, current);
1790 __add_wait_queue_exclusive(&ep->wq, &wait);
1791
1792 for (;;) {
1793 /*
1794 * We don't want to sleep if the ep_poll_callback() sends us
1795 * a wakeup in between. That's why we set the task state
1796 * to TASK_INTERRUPTIBLE before doing the checks.
1797 */
1798 set_current_state(TASK_INTERRUPTIBLE);
1799 /*
1800 * Always short-circuit for fatal signals to allow
1801 * threads to make a timely exit without the chance of
1802 * finding more events available and fetching
1803 * repeatedly.
1804 */
1805 if (fatal_signal_pending(current)) {
1806 res = -EINTR;
1807 break;
1808 }
1809 if (ep_events_available(ep) || timed_out)
1810 break;
1811 if (signal_pending(current)) {
1812 res = -EINTR;
1813 break;
1814 }
1815
1816 spin_unlock_irqrestore(&ep->lock, flags);
1817 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1818 timed_out = 1;
1819
1820 spin_lock_irqsave(&ep->lock, flags);
1821 }
1822
1823 __remove_wait_queue(&ep->wq, &wait);
1824 __set_current_state(TASK_RUNNING);
1825 }
1826 check_events:
1827 /* Is it worth to try to dig for events ? */
1828 eavail = ep_events_available(ep);
1829
1830 spin_unlock_irqrestore(&ep->lock, flags);
1831
1832 /*
1833 * Try to transfer events to user space. In case we get 0 events and
1834 * there's still timeout left over, we go trying again in search of
1835 * more luck.
1836 */
1837 if (!res && eavail &&
1838 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1839 goto fetch_events;
1840
1841 return res;
1842 }
1843
1844 /**
1845 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1846 * API, to verify that adding an epoll file inside another
1847 * epoll structure, does not violate the constraints, in
1848 * terms of closed loops, or too deep chains (which can
1849 * result in excessive stack usage).
1850 *
1851 * @priv: Pointer to the epoll file to be currently checked.
1852 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1853 * data structure pointer.
1854 * @call_nests: Current dept of the @ep_call_nested() call stack.
1855 *
1856 * Returns: Returns zero if adding the epoll @file inside current epoll
1857 * structure @ep does not violate the constraints, or -1 otherwise.
1858 */
1859 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1860 {
1861 int error = 0;
1862 struct file *file = priv;
1863 struct eventpoll *ep = file->private_data;
1864 struct eventpoll *ep_tovisit;
1865 struct rb_node *rbp;
1866 struct epitem *epi;
1867
1868 mutex_lock_nested(&ep->mtx, call_nests + 1);
1869 ep->visited = 1;
1870 list_add(&ep->visited_list_link, &visited_list);
1871 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1872 epi = rb_entry(rbp, struct epitem, rbn);
1873 if (unlikely(is_file_epoll(epi->ffd.file))) {
1874 ep_tovisit = epi->ffd.file->private_data;
1875 if (ep_tovisit->visited)
1876 continue;
1877 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1878 ep_loop_check_proc, epi->ffd.file,
1879 ep_tovisit, current);
1880 if (error != 0)
1881 break;
1882 } else {
1883 /*
1884 * If we've reached a file that is not associated with
1885 * an ep, then we need to check if the newly added
1886 * links are going to add too many wakeup paths. We do
1887 * this by adding it to the tfile_check_list, if it's
1888 * not already there, and calling reverse_path_check()
1889 * during ep_insert().
1890 */
1891 if (list_empty(&epi->ffd.file->f_tfile_llink))
1892 list_add(&epi->ffd.file->f_tfile_llink,
1893 &tfile_check_list);
1894 }
1895 }
1896 mutex_unlock(&ep->mtx);
1897
1898 return error;
1899 }
1900
1901 /**
1902 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1903 * another epoll file (represented by @ep) does not create
1904 * closed loops or too deep chains.
1905 *
1906 * @ep: Pointer to the epoll private data structure.
1907 * @file: Pointer to the epoll file to be checked.
1908 *
1909 * Returns: Returns zero if adding the epoll @file inside current epoll
1910 * structure @ep does not violate the constraints, or -1 otherwise.
1911 */
1912 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1913 {
1914 int ret;
1915 struct eventpoll *ep_cur, *ep_next;
1916
1917 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1918 ep_loop_check_proc, file, ep, current);
1919 /* clear visited list */
1920 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1921 visited_list_link) {
1922 ep_cur->visited = 0;
1923 list_del(&ep_cur->visited_list_link);
1924 }
1925 return ret;
1926 }
1927
1928 static void clear_tfile_check_list(void)
1929 {
1930 struct file *file;
1931
1932 /* first clear the tfile_check_list */
1933 while (!list_empty(&tfile_check_list)) {
1934 file = list_first_entry(&tfile_check_list, struct file,
1935 f_tfile_llink);
1936 list_del_init(&file->f_tfile_llink);
1937 }
1938 INIT_LIST_HEAD(&tfile_check_list);
1939 }
1940
1941 /*
1942 * Open an eventpoll file descriptor.
1943 */
1944 SYSCALL_DEFINE1(epoll_create1, int, flags)
1945 {
1946 int error, fd;
1947 struct eventpoll *ep = NULL;
1948 struct file *file;
1949
1950 /* Check the EPOLL_* constant for consistency. */
1951 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1952
1953 if (flags & ~EPOLL_CLOEXEC)
1954 return -EINVAL;
1955 /*
1956 * Create the internal data structure ("struct eventpoll").
1957 */
1958 error = ep_alloc(&ep);
1959 if (error < 0)
1960 return error;
1961 /*
1962 * Creates all the items needed to setup an eventpoll file. That is,
1963 * a file structure and a free file descriptor.
1964 */
1965 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1966 if (fd < 0) {
1967 error = fd;
1968 goto out_free_ep;
1969 }
1970 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1971 O_RDWR | (flags & O_CLOEXEC));
1972 if (IS_ERR(file)) {
1973 error = PTR_ERR(file);
1974 goto out_free_fd;
1975 }
1976 ep->file = file;
1977 fd_install(fd, file);
1978 return fd;
1979
1980 out_free_fd:
1981 put_unused_fd(fd);
1982 out_free_ep:
1983 ep_free(ep);
1984 return error;
1985 }
1986
1987 SYSCALL_DEFINE1(epoll_create, int, size)
1988 {
1989 if (size <= 0)
1990 return -EINVAL;
1991
1992 return sys_epoll_create1(0);
1993 }
1994
1995 /*
1996 * The following function implements the controller interface for
1997 * the eventpoll file that enables the insertion/removal/change of
1998 * file descriptors inside the interest set.
1999 */
2000 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2001 struct epoll_event __user *, event)
2002 {
2003 int error;
2004 int full_check = 0;
2005 struct fd f, tf;
2006 struct eventpoll *ep;
2007 struct epitem *epi;
2008 struct epoll_event epds;
2009 struct eventpoll *tep = NULL;
2010
2011 error = -EFAULT;
2012 if (ep_op_has_event(op) &&
2013 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2014 goto error_return;
2015
2016 error = -EBADF;
2017 f = fdget(epfd);
2018 if (!f.file)
2019 goto error_return;
2020
2021 /* Get the "struct file *" for the target file */
2022 tf = fdget(fd);
2023 if (!tf.file)
2024 goto error_fput;
2025
2026 /* The target file descriptor must support poll */
2027 error = -EPERM;
2028 if (!tf.file->f_op->poll)
2029 goto error_tgt_fput;
2030
2031 /* Check if EPOLLWAKEUP is allowed */
2032 if (ep_op_has_event(op))
2033 ep_take_care_of_epollwakeup(&epds);
2034
2035 /*
2036 * We have to check that the file structure underneath the file descriptor
2037 * the user passed to us _is_ an eventpoll file. And also we do not permit
2038 * adding an epoll file descriptor inside itself.
2039 */
2040 error = -EINVAL;
2041 if (f.file == tf.file || !is_file_epoll(f.file))
2042 goto error_tgt_fput;
2043
2044 /*
2045 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2046 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2047 * Also, we do not currently supported nested exclusive wakeups.
2048 */
2049 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2050 if (op == EPOLL_CTL_MOD)
2051 goto error_tgt_fput;
2052 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2053 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2054 goto error_tgt_fput;
2055 }
2056
2057 /*
2058 * At this point it is safe to assume that the "private_data" contains
2059 * our own data structure.
2060 */
2061 ep = f.file->private_data;
2062
2063 /*
2064 * When we insert an epoll file descriptor, inside another epoll file
2065 * descriptor, there is the change of creating closed loops, which are
2066 * better be handled here, than in more critical paths. While we are
2067 * checking for loops we also determine the list of files reachable
2068 * and hang them on the tfile_check_list, so we can check that we
2069 * haven't created too many possible wakeup paths.
2070 *
2071 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2072 * the epoll file descriptor is attaching directly to a wakeup source,
2073 * unless the epoll file descriptor is nested. The purpose of taking the
2074 * 'epmutex' on add is to prevent complex toplogies such as loops and
2075 * deep wakeup paths from forming in parallel through multiple
2076 * EPOLL_CTL_ADD operations.
2077 */
2078 mutex_lock_nested(&ep->mtx, 0);
2079 if (op == EPOLL_CTL_ADD) {
2080 if (!list_empty(&f.file->f_ep_links) ||
2081 is_file_epoll(tf.file)) {
2082 full_check = 1;
2083 mutex_unlock(&ep->mtx);
2084 mutex_lock(&epmutex);
2085 if (is_file_epoll(tf.file)) {
2086 error = -ELOOP;
2087 if (ep_loop_check(ep, tf.file) != 0) {
2088 clear_tfile_check_list();
2089 goto error_tgt_fput;
2090 }
2091 } else
2092 list_add(&tf.file->f_tfile_llink,
2093 &tfile_check_list);
2094 mutex_lock_nested(&ep->mtx, 0);
2095 if (is_file_epoll(tf.file)) {
2096 tep = tf.file->private_data;
2097 mutex_lock_nested(&tep->mtx, 1);
2098 }
2099 }
2100 }
2101
2102 /*
2103 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2104 * above, we can be sure to be able to use the item looked up by
2105 * ep_find() till we release the mutex.
2106 */
2107 epi = ep_find(ep, tf.file, fd);
2108
2109 error = -EINVAL;
2110 switch (op) {
2111 case EPOLL_CTL_ADD:
2112 if (!epi) {
2113 epds.events |= POLLERR | POLLHUP;
2114 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2115 } else
2116 error = -EEXIST;
2117 if (full_check)
2118 clear_tfile_check_list();
2119 break;
2120 case EPOLL_CTL_DEL:
2121 if (epi)
2122 error = ep_remove(ep, epi);
2123 else
2124 error = -ENOENT;
2125 break;
2126 case EPOLL_CTL_MOD:
2127 if (epi) {
2128 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2129 epds.events |= POLLERR | POLLHUP;
2130 error = ep_modify(ep, epi, &epds);
2131 }
2132 } else
2133 error = -ENOENT;
2134 break;
2135 }
2136 if (tep != NULL)
2137 mutex_unlock(&tep->mtx);
2138 mutex_unlock(&ep->mtx);
2139
2140 error_tgt_fput:
2141 if (full_check)
2142 mutex_unlock(&epmutex);
2143
2144 fdput(tf);
2145 error_fput:
2146 fdput(f);
2147 error_return:
2148
2149 return error;
2150 }
2151
2152 /*
2153 * Implement the event wait interface for the eventpoll file. It is the kernel
2154 * part of the user space epoll_wait(2).
2155 */
2156 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2157 int, maxevents, int, timeout)
2158 {
2159 int error;
2160 struct fd f;
2161 struct eventpoll *ep;
2162
2163 /* The maximum number of event must be greater than zero */
2164 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2165 return -EINVAL;
2166
2167 /* Verify that the area passed by the user is writeable */
2168 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2169 return -EFAULT;
2170
2171 /* Get the "struct file *" for the eventpoll file */
2172 f = fdget(epfd);
2173 if (!f.file)
2174 return -EBADF;
2175
2176 /*
2177 * We have to check that the file structure underneath the fd
2178 * the user passed to us _is_ an eventpoll file.
2179 */
2180 error = -EINVAL;
2181 if (!is_file_epoll(f.file))
2182 goto error_fput;
2183
2184 /*
2185 * At this point it is safe to assume that the "private_data" contains
2186 * our own data structure.
2187 */
2188 ep = f.file->private_data;
2189
2190 /* Time to fish for events ... */
2191 error = ep_poll(ep, events, maxevents, timeout);
2192
2193 error_fput:
2194 fdput(f);
2195 return error;
2196 }
2197
2198 /*
2199 * Implement the event wait interface for the eventpoll file. It is the kernel
2200 * part of the user space epoll_pwait(2).
2201 */
2202 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2203 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2204 size_t, sigsetsize)
2205 {
2206 int error;
2207 sigset_t ksigmask, sigsaved;
2208
2209 /*
2210 * If the caller wants a certain signal mask to be set during the wait,
2211 * we apply it here.
2212 */
2213 if (sigmask) {
2214 if (sigsetsize != sizeof(sigset_t))
2215 return -EINVAL;
2216 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2217 return -EFAULT;
2218 sigsaved = current->blocked;
2219 set_current_blocked(&ksigmask);
2220 }
2221
2222 error = sys_epoll_wait(epfd, events, maxevents, timeout);
2223
2224 /*
2225 * If we changed the signal mask, we need to restore the original one.
2226 * In case we've got a signal while waiting, we do not restore the
2227 * signal mask yet, and we allow do_signal() to deliver the signal on
2228 * the way back to userspace, before the signal mask is restored.
2229 */
2230 if (sigmask) {
2231 if (error == -EINTR) {
2232 memcpy(&current->saved_sigmask, &sigsaved,
2233 sizeof(sigsaved));
2234 set_restore_sigmask();
2235 } else
2236 set_current_blocked(&sigsaved);
2237 }
2238
2239 return error;
2240 }
2241
2242 #ifdef CONFIG_COMPAT
2243 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2244 struct epoll_event __user *, events,
2245 int, maxevents, int, timeout,
2246 const compat_sigset_t __user *, sigmask,
2247 compat_size_t, sigsetsize)
2248 {
2249 long err;
2250 compat_sigset_t csigmask;
2251 sigset_t ksigmask, sigsaved;
2252
2253 /*
2254 * If the caller wants a certain signal mask to be set during the wait,
2255 * we apply it here.
2256 */
2257 if (sigmask) {
2258 if (sigsetsize != sizeof(compat_sigset_t))
2259 return -EINVAL;
2260 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2261 return -EFAULT;
2262 sigset_from_compat(&ksigmask, &csigmask);
2263 sigsaved = current->blocked;
2264 set_current_blocked(&ksigmask);
2265 }
2266
2267 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2268
2269 /*
2270 * If we changed the signal mask, we need to restore the original one.
2271 * In case we've got a signal while waiting, we do not restore the
2272 * signal mask yet, and we allow do_signal() to deliver the signal on
2273 * the way back to userspace, before the signal mask is restored.
2274 */
2275 if (sigmask) {
2276 if (err == -EINTR) {
2277 memcpy(&current->saved_sigmask, &sigsaved,
2278 sizeof(sigsaved));
2279 set_restore_sigmask();
2280 } else
2281 set_current_blocked(&sigsaved);
2282 }
2283
2284 return err;
2285 }
2286 #endif
2287
2288 static int __init eventpoll_init(void)
2289 {
2290 struct sysinfo si;
2291
2292 si_meminfo(&si);
2293 /*
2294 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2295 */
2296 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2297 EP_ITEM_COST;
2298 BUG_ON(max_user_watches < 0);
2299
2300 /*
2301 * Initialize the structure used to perform epoll file descriptor
2302 * inclusion loops checks.
2303 */
2304 ep_nested_calls_init(&poll_loop_ncalls);
2305
2306 /* Initialize the structure used to perform safe poll wait head wake ups */
2307 ep_nested_calls_init(&poll_safewake_ncalls);
2308
2309 /* Initialize the structure used to perform file's f_op->poll() calls */
2310 ep_nested_calls_init(&poll_readywalk_ncalls);
2311
2312 /*
2313 * We can have many thousands of epitems, so prevent this from
2314 * using an extra cache line on 64-bit (and smaller) CPUs
2315 */
2316 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2317
2318 /* Allocates slab cache used to allocate "struct epitem" items */
2319 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2320 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2321
2322 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2323 pwq_cache = kmem_cache_create("eventpoll_pwq",
2324 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2325
2326 return 0;
2327 }
2328 fs_initcall(eventpoll_init);