]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/exec.c
fuse: fix READDIRPLUS skipping an entry
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <trace/events/fs.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71
72 #include <trace/events/task.h>
73 #include "internal.h"
74
75 #include <trace/events/sched.h>
76
77 int suid_dumpable = 0;
78
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 BUG_ON(!fmt);
85 if (WARN_ON(!fmt->load_binary))
86 return;
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 EXPORT_SYMBOL_GPL(path_noexec);
115
116 bool path_nosuid(const struct path *path)
117 {
118 return !mnt_may_suid(path->mnt) ||
119 (path->mnt->mnt_sb->s_iflags & SB_I_NOSUID);
120 }
121 EXPORT_SYMBOL(path_nosuid);
122
123 #ifdef CONFIG_USELIB
124 /*
125 * Note that a shared library must be both readable and executable due to
126 * security reasons.
127 *
128 * Also note that we take the address to load from from the file itself.
129 */
130 SYSCALL_DEFINE1(uselib, const char __user *, library)
131 {
132 struct linux_binfmt *fmt;
133 struct file *file;
134 struct filename *tmp = getname(library);
135 int error = PTR_ERR(tmp);
136 static const struct open_flags uselib_flags = {
137 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
138 .acc_mode = MAY_READ | MAY_EXEC,
139 .intent = LOOKUP_OPEN,
140 .lookup_flags = LOOKUP_FOLLOW,
141 };
142
143 if (IS_ERR(tmp))
144 goto out;
145
146 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
147 putname(tmp);
148 error = PTR_ERR(file);
149 if (IS_ERR(file))
150 goto out;
151
152 error = -EINVAL;
153 if (!S_ISREG(file_inode(file)->i_mode))
154 goto exit;
155
156 error = -EACCES;
157 if (path_noexec(&file->f_path))
158 goto exit;
159
160 fsnotify_open(file);
161
162 error = -ENOEXEC;
163
164 read_lock(&binfmt_lock);
165 list_for_each_entry(fmt, &formats, lh) {
166 if (!fmt->load_shlib)
167 continue;
168 if (!try_module_get(fmt->module))
169 continue;
170 read_unlock(&binfmt_lock);
171 error = fmt->load_shlib(file);
172 read_lock(&binfmt_lock);
173 put_binfmt(fmt);
174 if (error != -ENOEXEC)
175 break;
176 }
177 read_unlock(&binfmt_lock);
178 exit:
179 fput(file);
180 out:
181 return error;
182 }
183 #endif /* #ifdef CONFIG_USELIB */
184
185 #ifdef CONFIG_MMU
186 /*
187 * The nascent bprm->mm is not visible until exec_mmap() but it can
188 * use a lot of memory, account these pages in current->mm temporary
189 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
190 * change the counter back via acct_arg_size(0).
191 */
192 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
193 {
194 struct mm_struct *mm = current->mm;
195 long diff = (long)(pages - bprm->vma_pages);
196
197 if (!mm || !diff)
198 return;
199
200 bprm->vma_pages = pages;
201 add_mm_counter(mm, MM_ANONPAGES, diff);
202 }
203
204 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
205 int write)
206 {
207 struct page *page;
208 int ret;
209 unsigned int gup_flags = FOLL_FORCE;
210
211 #ifdef CONFIG_STACK_GROWSUP
212 if (write) {
213 ret = expand_downwards(bprm->vma, pos);
214 if (ret < 0)
215 return NULL;
216 }
217 #endif
218
219 if (write)
220 gup_flags |= FOLL_WRITE;
221
222 /*
223 * We are doing an exec(). 'current' is the process
224 * doing the exec and bprm->mm is the new process's mm.
225 */
226 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
227 &page, NULL, NULL);
228 if (ret <= 0)
229 return NULL;
230
231 if (write) {
232 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
233 unsigned long ptr_size, limit;
234
235 /*
236 * Since the stack will hold pointers to the strings, we
237 * must account for them as well.
238 *
239 * The size calculation is the entire vma while each arg page is
240 * built, so each time we get here it's calculating how far it
241 * is currently (rather than each call being just the newly
242 * added size from the arg page). As a result, we need to
243 * always add the entire size of the pointers, so that on the
244 * last call to get_arg_page() we'll actually have the entire
245 * correct size.
246 */
247 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
248 if (ptr_size > ULONG_MAX - size)
249 goto fail;
250 size += ptr_size;
251
252 acct_arg_size(bprm, size / PAGE_SIZE);
253
254 /*
255 * We've historically supported up to 32 pages (ARG_MAX)
256 * of argument strings even with small stacks
257 */
258 if (size <= ARG_MAX)
259 return page;
260
261 /*
262 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
263 * (whichever is smaller) for the argv+env strings.
264 * This ensures that:
265 * - the remaining binfmt code will not run out of stack space,
266 * - the program will have a reasonable amount of stack left
267 * to work from.
268 */
269 limit = _STK_LIM / 4 * 3;
270 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
271 if (size > limit)
272 goto fail;
273 }
274
275 return page;
276
277 fail:
278 put_page(page);
279 return NULL;
280 }
281
282 static void put_arg_page(struct page *page)
283 {
284 put_page(page);
285 }
286
287 static void free_arg_pages(struct linux_binprm *bprm)
288 {
289 }
290
291 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
292 struct page *page)
293 {
294 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
295 }
296
297 static int __bprm_mm_init(struct linux_binprm *bprm)
298 {
299 int err;
300 struct vm_area_struct *vma = NULL;
301 struct mm_struct *mm = bprm->mm;
302
303 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
304 if (!vma)
305 return -ENOMEM;
306
307 if (down_write_killable(&mm->mmap_sem)) {
308 err = -EINTR;
309 goto err_free;
310 }
311 vma->vm_mm = mm;
312
313 /*
314 * Place the stack at the largest stack address the architecture
315 * supports. Later, we'll move this to an appropriate place. We don't
316 * use STACK_TOP because that can depend on attributes which aren't
317 * configured yet.
318 */
319 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
320 vma->vm_end = STACK_TOP_MAX;
321 vma->vm_start = vma->vm_end - PAGE_SIZE;
322 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
323 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
324 INIT_LIST_HEAD(&vma->anon_vma_chain);
325
326 err = insert_vm_struct(mm, vma);
327 if (err)
328 goto err;
329
330 mm->stack_vm = mm->total_vm = 1;
331 arch_bprm_mm_init(mm, vma);
332 up_write(&mm->mmap_sem);
333 bprm->p = vma->vm_end - sizeof(void *);
334 return 0;
335 err:
336 up_write(&mm->mmap_sem);
337 err_free:
338 bprm->vma = NULL;
339 kmem_cache_free(vm_area_cachep, vma);
340 return err;
341 }
342
343 static bool valid_arg_len(struct linux_binprm *bprm, long len)
344 {
345 return len <= MAX_ARG_STRLEN;
346 }
347
348 #else
349
350 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
351 {
352 }
353
354 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
355 int write)
356 {
357 struct page *page;
358
359 page = bprm->page[pos / PAGE_SIZE];
360 if (!page && write) {
361 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
362 if (!page)
363 return NULL;
364 bprm->page[pos / PAGE_SIZE] = page;
365 }
366
367 return page;
368 }
369
370 static void put_arg_page(struct page *page)
371 {
372 }
373
374 static void free_arg_page(struct linux_binprm *bprm, int i)
375 {
376 if (bprm->page[i]) {
377 __free_page(bprm->page[i]);
378 bprm->page[i] = NULL;
379 }
380 }
381
382 static void free_arg_pages(struct linux_binprm *bprm)
383 {
384 int i;
385
386 for (i = 0; i < MAX_ARG_PAGES; i++)
387 free_arg_page(bprm, i);
388 }
389
390 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
391 struct page *page)
392 {
393 }
394
395 static int __bprm_mm_init(struct linux_binprm *bprm)
396 {
397 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
398 return 0;
399 }
400
401 static bool valid_arg_len(struct linux_binprm *bprm, long len)
402 {
403 return len <= bprm->p;
404 }
405
406 #endif /* CONFIG_MMU */
407
408 /*
409 * Create a new mm_struct and populate it with a temporary stack
410 * vm_area_struct. We don't have enough context at this point to set the stack
411 * flags, permissions, and offset, so we use temporary values. We'll update
412 * them later in setup_arg_pages().
413 */
414 static int bprm_mm_init(struct linux_binprm *bprm)
415 {
416 int err;
417 struct mm_struct *mm = NULL;
418
419 bprm->mm = mm = mm_alloc();
420 err = -ENOMEM;
421 if (!mm)
422 goto err;
423
424 err = __bprm_mm_init(bprm);
425 if (err)
426 goto err;
427
428 return 0;
429
430 err:
431 if (mm) {
432 bprm->mm = NULL;
433 mmdrop(mm);
434 }
435
436 return err;
437 }
438
439 struct user_arg_ptr {
440 #ifdef CONFIG_COMPAT
441 bool is_compat;
442 #endif
443 union {
444 const char __user *const __user *native;
445 #ifdef CONFIG_COMPAT
446 const compat_uptr_t __user *compat;
447 #endif
448 } ptr;
449 };
450
451 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
452 {
453 const char __user *native;
454
455 #ifdef CONFIG_COMPAT
456 if (unlikely(argv.is_compat)) {
457 compat_uptr_t compat;
458
459 if (get_user(compat, argv.ptr.compat + nr))
460 return ERR_PTR(-EFAULT);
461
462 return compat_ptr(compat);
463 }
464 #endif
465
466 if (get_user(native, argv.ptr.native + nr))
467 return ERR_PTR(-EFAULT);
468
469 return native;
470 }
471
472 /*
473 * count() counts the number of strings in array ARGV.
474 */
475 static int count(struct user_arg_ptr argv, int max)
476 {
477 int i = 0;
478
479 if (argv.ptr.native != NULL) {
480 for (;;) {
481 const char __user *p = get_user_arg_ptr(argv, i);
482
483 if (!p)
484 break;
485
486 if (IS_ERR(p))
487 return -EFAULT;
488
489 if (i >= max)
490 return -E2BIG;
491 ++i;
492
493 if (fatal_signal_pending(current))
494 return -ERESTARTNOHAND;
495 cond_resched();
496 }
497 }
498 return i;
499 }
500
501 /*
502 * 'copy_strings()' copies argument/environment strings from the old
503 * processes's memory to the new process's stack. The call to get_user_pages()
504 * ensures the destination page is created and not swapped out.
505 */
506 static int copy_strings(int argc, struct user_arg_ptr argv,
507 struct linux_binprm *bprm)
508 {
509 struct page *kmapped_page = NULL;
510 char *kaddr = NULL;
511 unsigned long kpos = 0;
512 int ret;
513
514 while (argc-- > 0) {
515 const char __user *str;
516 int len;
517 unsigned long pos;
518
519 ret = -EFAULT;
520 str = get_user_arg_ptr(argv, argc);
521 if (IS_ERR(str))
522 goto out;
523
524 len = strnlen_user(str, MAX_ARG_STRLEN);
525 if (!len)
526 goto out;
527
528 ret = -E2BIG;
529 if (!valid_arg_len(bprm, len))
530 goto out;
531
532 /* We're going to work our way backwords. */
533 pos = bprm->p;
534 str += len;
535 bprm->p -= len;
536
537 while (len > 0) {
538 int offset, bytes_to_copy;
539
540 if (fatal_signal_pending(current)) {
541 ret = -ERESTARTNOHAND;
542 goto out;
543 }
544 cond_resched();
545
546 offset = pos % PAGE_SIZE;
547 if (offset == 0)
548 offset = PAGE_SIZE;
549
550 bytes_to_copy = offset;
551 if (bytes_to_copy > len)
552 bytes_to_copy = len;
553
554 offset -= bytes_to_copy;
555 pos -= bytes_to_copy;
556 str -= bytes_to_copy;
557 len -= bytes_to_copy;
558
559 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
560 struct page *page;
561
562 page = get_arg_page(bprm, pos, 1);
563 if (!page) {
564 ret = -E2BIG;
565 goto out;
566 }
567
568 if (kmapped_page) {
569 flush_kernel_dcache_page(kmapped_page);
570 kunmap(kmapped_page);
571 put_arg_page(kmapped_page);
572 }
573 kmapped_page = page;
574 kaddr = kmap(kmapped_page);
575 kpos = pos & PAGE_MASK;
576 flush_arg_page(bprm, kpos, kmapped_page);
577 }
578 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
579 ret = -EFAULT;
580 goto out;
581 }
582 }
583 }
584 ret = 0;
585 out:
586 if (kmapped_page) {
587 flush_kernel_dcache_page(kmapped_page);
588 kunmap(kmapped_page);
589 put_arg_page(kmapped_page);
590 }
591 return ret;
592 }
593
594 /*
595 * Like copy_strings, but get argv and its values from kernel memory.
596 */
597 int copy_strings_kernel(int argc, const char *const *__argv,
598 struct linux_binprm *bprm)
599 {
600 int r;
601 mm_segment_t oldfs = get_fs();
602 struct user_arg_ptr argv = {
603 .ptr.native = (const char __user *const __user *)__argv,
604 };
605
606 set_fs(KERNEL_DS);
607 r = copy_strings(argc, argv, bprm);
608 set_fs(oldfs);
609
610 return r;
611 }
612 EXPORT_SYMBOL(copy_strings_kernel);
613
614 #ifdef CONFIG_MMU
615
616 /*
617 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
618 * the binfmt code determines where the new stack should reside, we shift it to
619 * its final location. The process proceeds as follows:
620 *
621 * 1) Use shift to calculate the new vma endpoints.
622 * 2) Extend vma to cover both the old and new ranges. This ensures the
623 * arguments passed to subsequent functions are consistent.
624 * 3) Move vma's page tables to the new range.
625 * 4) Free up any cleared pgd range.
626 * 5) Shrink the vma to cover only the new range.
627 */
628 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
629 {
630 struct mm_struct *mm = vma->vm_mm;
631 unsigned long old_start = vma->vm_start;
632 unsigned long old_end = vma->vm_end;
633 unsigned long length = old_end - old_start;
634 unsigned long new_start = old_start - shift;
635 unsigned long new_end = old_end - shift;
636 struct mmu_gather tlb;
637
638 BUG_ON(new_start > new_end);
639
640 /*
641 * ensure there are no vmas between where we want to go
642 * and where we are
643 */
644 if (vma != find_vma(mm, new_start))
645 return -EFAULT;
646
647 /*
648 * cover the whole range: [new_start, old_end)
649 */
650 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
651 return -ENOMEM;
652
653 /*
654 * move the page tables downwards, on failure we rely on
655 * process cleanup to remove whatever mess we made.
656 */
657 if (length != move_page_tables(vma, old_start,
658 vma, new_start, length, false))
659 return -ENOMEM;
660
661 lru_add_drain();
662 tlb_gather_mmu(&tlb, mm, old_start, old_end);
663 if (new_end > old_start) {
664 /*
665 * when the old and new regions overlap clear from new_end.
666 */
667 free_pgd_range(&tlb, new_end, old_end, new_end,
668 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
669 } else {
670 /*
671 * otherwise, clean from old_start; this is done to not touch
672 * the address space in [new_end, old_start) some architectures
673 * have constraints on va-space that make this illegal (IA64) -
674 * for the others its just a little faster.
675 */
676 free_pgd_range(&tlb, old_start, old_end, new_end,
677 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
678 }
679 tlb_finish_mmu(&tlb, old_start, old_end);
680
681 /*
682 * Shrink the vma to just the new range. Always succeeds.
683 */
684 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
685
686 return 0;
687 }
688
689 /*
690 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
691 * the stack is optionally relocated, and some extra space is added.
692 */
693 int setup_arg_pages(struct linux_binprm *bprm,
694 unsigned long stack_top,
695 int executable_stack)
696 {
697 unsigned long ret;
698 unsigned long stack_shift;
699 struct mm_struct *mm = current->mm;
700 struct vm_area_struct *vma = bprm->vma;
701 struct vm_area_struct *prev = NULL;
702 unsigned long vm_flags;
703 unsigned long stack_base;
704 unsigned long stack_size;
705 unsigned long stack_expand;
706 unsigned long rlim_stack;
707
708 #ifdef CONFIG_STACK_GROWSUP
709 /* Limit stack size */
710 stack_base = rlimit_max(RLIMIT_STACK);
711 if (stack_base > STACK_SIZE_MAX)
712 stack_base = STACK_SIZE_MAX;
713
714 /* Add space for stack randomization. */
715 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
716
717 /* Make sure we didn't let the argument array grow too large. */
718 if (vma->vm_end - vma->vm_start > stack_base)
719 return -ENOMEM;
720
721 stack_base = PAGE_ALIGN(stack_top - stack_base);
722
723 stack_shift = vma->vm_start - stack_base;
724 mm->arg_start = bprm->p - stack_shift;
725 bprm->p = vma->vm_end - stack_shift;
726 #else
727 stack_top = arch_align_stack(stack_top);
728 stack_top = PAGE_ALIGN(stack_top);
729
730 if (unlikely(stack_top < mmap_min_addr) ||
731 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
732 return -ENOMEM;
733
734 stack_shift = vma->vm_end - stack_top;
735
736 bprm->p -= stack_shift;
737 mm->arg_start = bprm->p;
738 #endif
739
740 if (bprm->loader)
741 bprm->loader -= stack_shift;
742 bprm->exec -= stack_shift;
743
744 if (down_write_killable(&mm->mmap_sem))
745 return -EINTR;
746
747 vm_flags = VM_STACK_FLAGS;
748
749 /*
750 * Adjust stack execute permissions; explicitly enable for
751 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
752 * (arch default) otherwise.
753 */
754 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
755 vm_flags |= VM_EXEC;
756 else if (executable_stack == EXSTACK_DISABLE_X)
757 vm_flags &= ~VM_EXEC;
758 vm_flags |= mm->def_flags;
759 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
760
761 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
762 vm_flags);
763 if (ret)
764 goto out_unlock;
765 BUG_ON(prev != vma);
766
767 /* Move stack pages down in memory. */
768 if (stack_shift) {
769 ret = shift_arg_pages(vma, stack_shift);
770 if (ret)
771 goto out_unlock;
772 }
773
774 /* mprotect_fixup is overkill to remove the temporary stack flags */
775 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
776
777 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
778 stack_size = vma->vm_end - vma->vm_start;
779 /*
780 * Align this down to a page boundary as expand_stack
781 * will align it up.
782 */
783 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
784 #ifdef CONFIG_STACK_GROWSUP
785 if (stack_size + stack_expand > rlim_stack)
786 stack_base = vma->vm_start + rlim_stack;
787 else
788 stack_base = vma->vm_end + stack_expand;
789 #else
790 if (stack_size + stack_expand > rlim_stack)
791 stack_base = vma->vm_end - rlim_stack;
792 else
793 stack_base = vma->vm_start - stack_expand;
794 #endif
795 current->mm->start_stack = bprm->p;
796 ret = expand_stack(vma, stack_base);
797 if (ret)
798 ret = -EFAULT;
799
800 out_unlock:
801 up_write(&mm->mmap_sem);
802 return ret;
803 }
804 EXPORT_SYMBOL(setup_arg_pages);
805
806 #else
807
808 /*
809 * Transfer the program arguments and environment from the holding pages
810 * onto the stack. The provided stack pointer is adjusted accordingly.
811 */
812 int transfer_args_to_stack(struct linux_binprm *bprm,
813 unsigned long *sp_location)
814 {
815 unsigned long index, stop, sp;
816 int ret = 0;
817
818 stop = bprm->p >> PAGE_SHIFT;
819 sp = *sp_location;
820
821 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
822 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
823 char *src = kmap(bprm->page[index]) + offset;
824 sp -= PAGE_SIZE - offset;
825 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
826 ret = -EFAULT;
827 kunmap(bprm->page[index]);
828 if (ret)
829 goto out;
830 }
831
832 *sp_location = sp;
833
834 out:
835 return ret;
836 }
837 EXPORT_SYMBOL(transfer_args_to_stack);
838
839 #endif /* CONFIG_MMU */
840
841 static struct file *do_open_execat(int fd, struct filename *name, int flags)
842 {
843 struct file *file;
844 int err;
845 struct open_flags open_exec_flags = {
846 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
847 .acc_mode = MAY_EXEC,
848 .intent = LOOKUP_OPEN,
849 .lookup_flags = LOOKUP_FOLLOW,
850 };
851
852 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
853 return ERR_PTR(-EINVAL);
854 if (flags & AT_SYMLINK_NOFOLLOW)
855 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
856 if (flags & AT_EMPTY_PATH)
857 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
858
859 file = do_filp_open(fd, name, &open_exec_flags);
860 if (IS_ERR(file))
861 goto out;
862
863 err = -EACCES;
864 if (!S_ISREG(file_inode(file)->i_mode))
865 goto exit;
866
867 if (path_noexec(&file->f_path))
868 goto exit;
869
870 err = deny_write_access(file);
871 if (err)
872 goto exit;
873
874 if (name->name[0] != '\0')
875 fsnotify_open(file);
876
877 trace_open_exec(name->name);
878
879 out:
880 return file;
881
882 exit:
883 fput(file);
884 return ERR_PTR(err);
885 }
886
887 struct file *open_exec(const char *name)
888 {
889 struct filename *filename = getname_kernel(name);
890 struct file *f = ERR_CAST(filename);
891
892 if (!IS_ERR(filename)) {
893 f = do_open_execat(AT_FDCWD, filename, 0);
894 putname(filename);
895 }
896 return f;
897 }
898 EXPORT_SYMBOL(open_exec);
899
900 int kernel_read(struct file *file, loff_t offset,
901 char *addr, unsigned long count)
902 {
903 mm_segment_t old_fs;
904 loff_t pos = offset;
905 int result;
906
907 old_fs = get_fs();
908 set_fs(get_ds());
909 /* The cast to a user pointer is valid due to the set_fs() */
910 result = vfs_read(file, (void __user *)addr, count, &pos);
911 set_fs(old_fs);
912 return result;
913 }
914
915 EXPORT_SYMBOL(kernel_read);
916
917 int kernel_read_file(struct file *file, void **buf, loff_t *size,
918 loff_t max_size, enum kernel_read_file_id id)
919 {
920 loff_t i_size, pos;
921 ssize_t bytes = 0;
922 int ret;
923
924 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
925 return -EINVAL;
926
927 ret = security_kernel_read_file(file, id);
928 if (ret)
929 return ret;
930
931 ret = deny_write_access(file);
932 if (ret)
933 return ret;
934
935 i_size = i_size_read(file_inode(file));
936 if (max_size > 0 && i_size > max_size) {
937 ret = -EFBIG;
938 goto out;
939 }
940 if (i_size <= 0) {
941 ret = -EINVAL;
942 goto out;
943 }
944
945 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
946 *buf = vmalloc(i_size);
947 if (!*buf) {
948 ret = -ENOMEM;
949 goto out;
950 }
951
952 pos = 0;
953 while (pos < i_size) {
954 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
955 i_size - pos);
956 if (bytes < 0) {
957 ret = bytes;
958 goto out;
959 }
960
961 if (bytes == 0)
962 break;
963 pos += bytes;
964 }
965
966 if (pos != i_size) {
967 ret = -EIO;
968 goto out_free;
969 }
970
971 ret = security_kernel_post_read_file(file, *buf, i_size, id);
972 if (!ret)
973 *size = pos;
974
975 out_free:
976 if (ret < 0) {
977 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
978 vfree(*buf);
979 *buf = NULL;
980 }
981 }
982
983 out:
984 allow_write_access(file);
985 return ret;
986 }
987 EXPORT_SYMBOL_GPL(kernel_read_file);
988
989 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
990 loff_t max_size, enum kernel_read_file_id id)
991 {
992 struct file *file;
993 int ret;
994
995 if (!path || !*path)
996 return -EINVAL;
997
998 file = filp_open(path, O_RDONLY, 0);
999 if (IS_ERR(file))
1000 return PTR_ERR(file);
1001
1002 ret = kernel_read_file(file, buf, size, max_size, id);
1003 fput(file);
1004 return ret;
1005 }
1006 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1007
1008 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1009 enum kernel_read_file_id id)
1010 {
1011 struct fd f = fdget(fd);
1012 int ret = -EBADF;
1013
1014 if (!f.file)
1015 goto out;
1016
1017 ret = kernel_read_file(f.file, buf, size, max_size, id);
1018 out:
1019 fdput(f);
1020 return ret;
1021 }
1022 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1023
1024 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1025 {
1026 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1027 if (res > 0)
1028 flush_icache_range(addr, addr + len);
1029 return res;
1030 }
1031 EXPORT_SYMBOL(read_code);
1032
1033 static int exec_mmap(struct mm_struct *mm)
1034 {
1035 struct task_struct *tsk;
1036 struct mm_struct *old_mm, *active_mm;
1037
1038 /* Notify parent that we're no longer interested in the old VM */
1039 tsk = current;
1040 old_mm = current->mm;
1041 mm_release(tsk, old_mm);
1042
1043 if (old_mm) {
1044 sync_mm_rss(old_mm);
1045 /*
1046 * Make sure that if there is a core dump in progress
1047 * for the old mm, we get out and die instead of going
1048 * through with the exec. We must hold mmap_sem around
1049 * checking core_state and changing tsk->mm.
1050 */
1051 down_read(&old_mm->mmap_sem);
1052 if (unlikely(old_mm->core_state)) {
1053 up_read(&old_mm->mmap_sem);
1054 return -EINTR;
1055 }
1056 }
1057 task_lock(tsk);
1058 active_mm = tsk->active_mm;
1059 tsk->mm = mm;
1060 tsk->active_mm = mm;
1061 activate_mm(active_mm, mm);
1062 tsk->mm->vmacache_seqnum = 0;
1063 vmacache_flush(tsk);
1064 task_unlock(tsk);
1065 if (old_mm) {
1066 up_read(&old_mm->mmap_sem);
1067 BUG_ON(active_mm != old_mm);
1068 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1069 mm_update_next_owner(old_mm);
1070 mmput(old_mm);
1071 return 0;
1072 }
1073 mmdrop(active_mm);
1074 return 0;
1075 }
1076
1077 /*
1078 * This function makes sure the current process has its own signal table,
1079 * so that flush_signal_handlers can later reset the handlers without
1080 * disturbing other processes. (Other processes might share the signal
1081 * table via the CLONE_SIGHAND option to clone().)
1082 */
1083 static int de_thread(struct task_struct *tsk)
1084 {
1085 struct signal_struct *sig = tsk->signal;
1086 struct sighand_struct *oldsighand = tsk->sighand;
1087 spinlock_t *lock = &oldsighand->siglock;
1088
1089 if (thread_group_empty(tsk))
1090 goto no_thread_group;
1091
1092 /*
1093 * Kill all other threads in the thread group.
1094 */
1095 spin_lock_irq(lock);
1096 if (signal_group_exit(sig)) {
1097 /*
1098 * Another group action in progress, just
1099 * return so that the signal is processed.
1100 */
1101 spin_unlock_irq(lock);
1102 return -EAGAIN;
1103 }
1104
1105 sig->group_exit_task = tsk;
1106 sig->notify_count = zap_other_threads(tsk);
1107 if (!thread_group_leader(tsk))
1108 sig->notify_count--;
1109
1110 while (sig->notify_count) {
1111 __set_current_state(TASK_KILLABLE);
1112 spin_unlock_irq(lock);
1113 schedule();
1114 if (unlikely(__fatal_signal_pending(tsk)))
1115 goto killed;
1116 spin_lock_irq(lock);
1117 }
1118 spin_unlock_irq(lock);
1119
1120 /*
1121 * At this point all other threads have exited, all we have to
1122 * do is to wait for the thread group leader to become inactive,
1123 * and to assume its PID:
1124 */
1125 if (!thread_group_leader(tsk)) {
1126 struct task_struct *leader = tsk->group_leader;
1127
1128 for (;;) {
1129 cgroup_threadgroup_change_begin(tsk);
1130 write_lock_irq(&tasklist_lock);
1131 /*
1132 * Do this under tasklist_lock to ensure that
1133 * exit_notify() can't miss ->group_exit_task
1134 */
1135 sig->notify_count = -1;
1136 if (likely(leader->exit_state))
1137 break;
1138 __set_current_state(TASK_KILLABLE);
1139 write_unlock_irq(&tasklist_lock);
1140 cgroup_threadgroup_change_end(tsk);
1141 schedule();
1142 if (unlikely(__fatal_signal_pending(tsk)))
1143 goto killed;
1144 }
1145
1146 /*
1147 * The only record we have of the real-time age of a
1148 * process, regardless of execs it's done, is start_time.
1149 * All the past CPU time is accumulated in signal_struct
1150 * from sister threads now dead. But in this non-leader
1151 * exec, nothing survives from the original leader thread,
1152 * whose birth marks the true age of this process now.
1153 * When we take on its identity by switching to its PID, we
1154 * also take its birthdate (always earlier than our own).
1155 */
1156 tsk->start_time = leader->start_time;
1157 tsk->real_start_time = leader->real_start_time;
1158
1159 BUG_ON(!same_thread_group(leader, tsk));
1160 BUG_ON(has_group_leader_pid(tsk));
1161 /*
1162 * An exec() starts a new thread group with the
1163 * TGID of the previous thread group. Rehash the
1164 * two threads with a switched PID, and release
1165 * the former thread group leader:
1166 */
1167
1168 /* Become a process group leader with the old leader's pid.
1169 * The old leader becomes a thread of the this thread group.
1170 * Note: The old leader also uses this pid until release_task
1171 * is called. Odd but simple and correct.
1172 */
1173 tsk->pid = leader->pid;
1174 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1175 transfer_pid(leader, tsk, PIDTYPE_PGID);
1176 transfer_pid(leader, tsk, PIDTYPE_SID);
1177
1178 list_replace_rcu(&leader->tasks, &tsk->tasks);
1179 list_replace_init(&leader->sibling, &tsk->sibling);
1180
1181 tsk->group_leader = tsk;
1182 leader->group_leader = tsk;
1183
1184 tsk->exit_signal = SIGCHLD;
1185 leader->exit_signal = -1;
1186
1187 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1188 leader->exit_state = EXIT_DEAD;
1189
1190 /*
1191 * We are going to release_task()->ptrace_unlink() silently,
1192 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1193 * the tracer wont't block again waiting for this thread.
1194 */
1195 if (unlikely(leader->ptrace))
1196 __wake_up_parent(leader, leader->parent);
1197 write_unlock_irq(&tasklist_lock);
1198 cgroup_threadgroup_change_end(tsk);
1199
1200 release_task(leader);
1201 }
1202
1203 sig->group_exit_task = NULL;
1204 sig->notify_count = 0;
1205
1206 no_thread_group:
1207 /* we have changed execution domain */
1208 tsk->exit_signal = SIGCHLD;
1209
1210 #ifdef CONFIG_POSIX_TIMERS
1211 exit_itimers(sig);
1212 flush_itimer_signals();
1213 #endif
1214
1215 if (atomic_read(&oldsighand->count) != 1) {
1216 struct sighand_struct *newsighand;
1217 /*
1218 * This ->sighand is shared with the CLONE_SIGHAND
1219 * but not CLONE_THREAD task, switch to the new one.
1220 */
1221 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1222 if (!newsighand)
1223 return -ENOMEM;
1224
1225 atomic_set(&newsighand->count, 1);
1226 memcpy(newsighand->action, oldsighand->action,
1227 sizeof(newsighand->action));
1228
1229 write_lock_irq(&tasklist_lock);
1230 spin_lock(&oldsighand->siglock);
1231 rcu_assign_pointer(tsk->sighand, newsighand);
1232 spin_unlock(&oldsighand->siglock);
1233 write_unlock_irq(&tasklist_lock);
1234
1235 __cleanup_sighand(oldsighand);
1236 }
1237
1238 BUG_ON(!thread_group_leader(tsk));
1239 return 0;
1240
1241 killed:
1242 /* protects against exit_notify() and __exit_signal() */
1243 read_lock(&tasklist_lock);
1244 sig->group_exit_task = NULL;
1245 sig->notify_count = 0;
1246 read_unlock(&tasklist_lock);
1247 return -EAGAIN;
1248 }
1249
1250 char *get_task_comm(char *buf, struct task_struct *tsk)
1251 {
1252 /* buf must be at least sizeof(tsk->comm) in size */
1253 task_lock(tsk);
1254 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1255 task_unlock(tsk);
1256 return buf;
1257 }
1258 EXPORT_SYMBOL_GPL(get_task_comm);
1259
1260 /*
1261 * These functions flushes out all traces of the currently running executable
1262 * so that a new one can be started
1263 */
1264
1265 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1266 {
1267 task_lock(tsk);
1268 trace_task_rename(tsk, buf);
1269 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1270 task_unlock(tsk);
1271 perf_event_comm(tsk, exec);
1272 }
1273
1274 int flush_old_exec(struct linux_binprm * bprm)
1275 {
1276 int retval;
1277
1278 /*
1279 * Make sure we have a private signal table and that
1280 * we are unassociated from the previous thread group.
1281 */
1282 retval = de_thread(current);
1283 if (retval)
1284 goto out;
1285
1286 /*
1287 * Must be called _before_ exec_mmap() as bprm->mm is
1288 * not visibile until then. This also enables the update
1289 * to be lockless.
1290 */
1291 set_mm_exe_file(bprm->mm, bprm->file);
1292
1293 /*
1294 * Release all of the old mmap stuff
1295 */
1296 acct_arg_size(bprm, 0);
1297 retval = exec_mmap(bprm->mm);
1298 if (retval)
1299 goto out;
1300
1301 bprm->mm = NULL; /* We're using it now */
1302
1303 set_fs(USER_DS);
1304 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1305 PF_NOFREEZE | PF_NO_SETAFFINITY);
1306 flush_thread();
1307 current->personality &= ~bprm->per_clear;
1308
1309 /*
1310 * We have to apply CLOEXEC before we change whether the process is
1311 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1312 * trying to access the should-be-closed file descriptors of a process
1313 * undergoing exec(2).
1314 */
1315 do_close_on_exec(current->files);
1316 return 0;
1317
1318 out:
1319 return retval;
1320 }
1321 EXPORT_SYMBOL(flush_old_exec);
1322
1323 void would_dump(struct linux_binprm *bprm, struct file *file)
1324 {
1325 struct inode *inode = file_inode(file);
1326 if (inode_permission(inode, MAY_READ) < 0) {
1327 struct user_namespace *old, *user_ns;
1328 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1329
1330 /* Ensure mm->user_ns contains the executable */
1331 user_ns = old = bprm->mm->user_ns;
1332 while ((user_ns != &init_user_ns) &&
1333 !privileged_wrt_inode_uidgid(user_ns, inode))
1334 user_ns = user_ns->parent;
1335
1336 if (old != user_ns) {
1337 bprm->mm->user_ns = get_user_ns(user_ns);
1338 put_user_ns(old);
1339 }
1340 }
1341 }
1342 EXPORT_SYMBOL(would_dump);
1343
1344 void setup_new_exec(struct linux_binprm * bprm)
1345 {
1346 arch_pick_mmap_layout(current->mm);
1347
1348 /* This is the point of no return */
1349 current->sas_ss_sp = current->sas_ss_size = 0;
1350
1351 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1352 set_dumpable(current->mm, SUID_DUMP_USER);
1353 else
1354 set_dumpable(current->mm, suid_dumpable);
1355
1356 arch_setup_new_exec();
1357 perf_event_exec();
1358 __set_task_comm(current, kbasename(bprm->filename), true);
1359
1360 /* Set the new mm task size. We have to do that late because it may
1361 * depend on TIF_32BIT which is only updated in flush_thread() on
1362 * some architectures like powerpc
1363 */
1364 current->mm->task_size = TASK_SIZE;
1365
1366 /* install the new credentials */
1367 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1368 !gid_eq(bprm->cred->gid, current_egid())) {
1369 current->pdeath_signal = 0;
1370 } else {
1371 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1372 set_dumpable(current->mm, suid_dumpable);
1373 }
1374
1375 /* An exec changes our domain. We are no longer part of the thread
1376 group */
1377 current->self_exec_id++;
1378 flush_signal_handlers(current, 0);
1379 }
1380 EXPORT_SYMBOL(setup_new_exec);
1381
1382 /*
1383 * Prepare credentials and lock ->cred_guard_mutex.
1384 * install_exec_creds() commits the new creds and drops the lock.
1385 * Or, if exec fails before, free_bprm() should release ->cred and
1386 * and unlock.
1387 */
1388 int prepare_bprm_creds(struct linux_binprm *bprm)
1389 {
1390 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1391 return -ERESTARTNOINTR;
1392
1393 bprm->cred = prepare_exec_creds();
1394 if (likely(bprm->cred))
1395 return 0;
1396
1397 mutex_unlock(&current->signal->cred_guard_mutex);
1398 return -ENOMEM;
1399 }
1400
1401 static void free_bprm(struct linux_binprm *bprm)
1402 {
1403 free_arg_pages(bprm);
1404 if (bprm->cred) {
1405 mutex_unlock(&current->signal->cred_guard_mutex);
1406 abort_creds(bprm->cred);
1407 }
1408 if (bprm->file) {
1409 allow_write_access(bprm->file);
1410 fput(bprm->file);
1411 }
1412 /* If a binfmt changed the interp, free it. */
1413 if (bprm->interp != bprm->filename)
1414 kfree(bprm->interp);
1415 kfree(bprm);
1416 }
1417
1418 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1419 {
1420 /* If a binfmt changed the interp, free it first. */
1421 if (bprm->interp != bprm->filename)
1422 kfree(bprm->interp);
1423 bprm->interp = kstrdup(interp, GFP_KERNEL);
1424 if (!bprm->interp)
1425 return -ENOMEM;
1426 return 0;
1427 }
1428 EXPORT_SYMBOL(bprm_change_interp);
1429
1430 /*
1431 * install the new credentials for this executable
1432 */
1433 void install_exec_creds(struct linux_binprm *bprm)
1434 {
1435 security_bprm_committing_creds(bprm);
1436
1437 commit_creds(bprm->cred);
1438 bprm->cred = NULL;
1439
1440 /*
1441 * Disable monitoring for regular users
1442 * when executing setuid binaries. Must
1443 * wait until new credentials are committed
1444 * by commit_creds() above
1445 */
1446 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1447 perf_event_exit_task(current);
1448 /*
1449 * cred_guard_mutex must be held at least to this point to prevent
1450 * ptrace_attach() from altering our determination of the task's
1451 * credentials; any time after this it may be unlocked.
1452 */
1453 security_bprm_committed_creds(bprm);
1454 mutex_unlock(&current->signal->cred_guard_mutex);
1455 }
1456 EXPORT_SYMBOL(install_exec_creds);
1457
1458 /*
1459 * determine how safe it is to execute the proposed program
1460 * - the caller must hold ->cred_guard_mutex to protect against
1461 * PTRACE_ATTACH or seccomp thread-sync
1462 */
1463 static void check_unsafe_exec(struct linux_binprm *bprm)
1464 {
1465 struct task_struct *p = current, *t;
1466 unsigned n_fs;
1467 bool fs_recheck;
1468
1469 if (p->ptrace)
1470 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1471
1472 /*
1473 * This isn't strictly necessary, but it makes it harder for LSMs to
1474 * mess up.
1475 */
1476 if (task_no_new_privs(current))
1477 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1478
1479 recheck:
1480 fs_recheck = false;
1481 t = p;
1482 n_fs = 1;
1483 spin_lock(&p->fs->lock);
1484 rcu_read_lock();
1485 while_each_thread(p, t) {
1486 if (t->fs == p->fs)
1487 n_fs++;
1488 if (t->flags & (PF_EXITING | PF_FORKNOEXEC))
1489 fs_recheck = true;
1490 }
1491 rcu_read_unlock();
1492
1493 if (p->fs->users > n_fs) {
1494 if (fs_recheck) {
1495 spin_unlock(&p->fs->lock);
1496 goto recheck;
1497 }
1498 bprm->unsafe |= LSM_UNSAFE_SHARE;
1499 } else
1500 p->fs->in_exec = 1;
1501 spin_unlock(&p->fs->lock);
1502 }
1503
1504 static void bprm_fill_uid(struct linux_binprm *bprm)
1505 {
1506 struct inode *inode;
1507 unsigned int mode;
1508 kuid_t uid;
1509 kgid_t gid;
1510
1511 /*
1512 * Since this can be called multiple times (via prepare_binprm),
1513 * we must clear any previous work done when setting set[ug]id
1514 * bits from any earlier bprm->file uses (for example when run
1515 * first for a setuid script then again for its interpreter).
1516 */
1517 bprm->cred->euid = current_euid();
1518 bprm->cred->egid = current_egid();
1519
1520 if (path_nosuid(&bprm->file->f_path))
1521 return;
1522
1523 if (task_no_new_privs(current))
1524 return;
1525
1526 inode = bprm->file->f_path.dentry->d_inode;
1527 mode = READ_ONCE(inode->i_mode);
1528 if (!(mode & (S_ISUID|S_ISGID)))
1529 return;
1530
1531 /* Be careful if suid/sgid is set */
1532 inode_lock(inode);
1533
1534 /* reload atomically mode/uid/gid now that lock held */
1535 mode = inode->i_mode;
1536 uid = inode->i_uid;
1537 gid = inode->i_gid;
1538 inode_unlock(inode);
1539
1540 /* We ignore suid/sgid if there are no mappings for them in the ns */
1541 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1542 !kgid_has_mapping(bprm->cred->user_ns, gid))
1543 return;
1544
1545 if (mode & S_ISUID) {
1546 bprm->per_clear |= PER_CLEAR_ON_SETID;
1547 bprm->cred->euid = uid;
1548 }
1549
1550 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1551 bprm->per_clear |= PER_CLEAR_ON_SETID;
1552 bprm->cred->egid = gid;
1553 }
1554 }
1555
1556 /*
1557 * Fill the binprm structure from the inode.
1558 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1559 *
1560 * This may be called multiple times for binary chains (scripts for example).
1561 */
1562 int prepare_binprm(struct linux_binprm *bprm)
1563 {
1564 int retval;
1565
1566 bprm_fill_uid(bprm);
1567
1568 /* fill in binprm security blob */
1569 retval = security_bprm_set_creds(bprm);
1570 if (retval)
1571 return retval;
1572 bprm->cred_prepared = 1;
1573
1574 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1575 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1576 }
1577
1578 EXPORT_SYMBOL(prepare_binprm);
1579
1580 /*
1581 * Arguments are '\0' separated strings found at the location bprm->p
1582 * points to; chop off the first by relocating brpm->p to right after
1583 * the first '\0' encountered.
1584 */
1585 int remove_arg_zero(struct linux_binprm *bprm)
1586 {
1587 int ret = 0;
1588 unsigned long offset;
1589 char *kaddr;
1590 struct page *page;
1591
1592 if (!bprm->argc)
1593 return 0;
1594
1595 do {
1596 offset = bprm->p & ~PAGE_MASK;
1597 page = get_arg_page(bprm, bprm->p, 0);
1598 if (!page) {
1599 ret = -EFAULT;
1600 goto out;
1601 }
1602 kaddr = kmap_atomic(page);
1603
1604 for (; offset < PAGE_SIZE && kaddr[offset];
1605 offset++, bprm->p++)
1606 ;
1607
1608 kunmap_atomic(kaddr);
1609 put_arg_page(page);
1610 } while (offset == PAGE_SIZE);
1611
1612 bprm->p++;
1613 bprm->argc--;
1614 ret = 0;
1615
1616 out:
1617 return ret;
1618 }
1619 EXPORT_SYMBOL(remove_arg_zero);
1620
1621 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1622 /*
1623 * cycle the list of binary formats handler, until one recognizes the image
1624 */
1625 int search_binary_handler(struct linux_binprm *bprm)
1626 {
1627 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1628 struct linux_binfmt *fmt;
1629 int retval;
1630
1631 /* This allows 4 levels of binfmt rewrites before failing hard. */
1632 if (bprm->recursion_depth > 5)
1633 return -ELOOP;
1634
1635 retval = security_bprm_check(bprm);
1636 if (retval)
1637 return retval;
1638
1639 retval = -ENOENT;
1640 retry:
1641 read_lock(&binfmt_lock);
1642 list_for_each_entry(fmt, &formats, lh) {
1643 if (!try_module_get(fmt->module))
1644 continue;
1645 read_unlock(&binfmt_lock);
1646 bprm->recursion_depth++;
1647 retval = fmt->load_binary(bprm);
1648 read_lock(&binfmt_lock);
1649 put_binfmt(fmt);
1650 bprm->recursion_depth--;
1651 if (retval < 0 && !bprm->mm) {
1652 /* we got to flush_old_exec() and failed after it */
1653 read_unlock(&binfmt_lock);
1654 force_sigsegv(SIGSEGV, current);
1655 return retval;
1656 }
1657 if (retval != -ENOEXEC || !bprm->file) {
1658 read_unlock(&binfmt_lock);
1659 return retval;
1660 }
1661 }
1662 read_unlock(&binfmt_lock);
1663
1664 if (need_retry) {
1665 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1666 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1667 return retval;
1668 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1669 return retval;
1670 need_retry = false;
1671 goto retry;
1672 }
1673
1674 return retval;
1675 }
1676 EXPORT_SYMBOL(search_binary_handler);
1677
1678 static int exec_binprm(struct linux_binprm *bprm)
1679 {
1680 pid_t old_pid, old_vpid;
1681 int ret;
1682
1683 /* Need to fetch pid before load_binary changes it */
1684 old_pid = current->pid;
1685 rcu_read_lock();
1686 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1687 rcu_read_unlock();
1688
1689 ret = search_binary_handler(bprm);
1690 if (ret >= 0) {
1691 audit_bprm(bprm);
1692 trace_sched_process_exec(current, old_pid, bprm);
1693 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1694 proc_exec_connector(current);
1695 }
1696
1697 return ret;
1698 }
1699
1700 /*
1701 * sys_execve() executes a new program.
1702 */
1703 static int do_execveat_common(int fd, struct filename *filename,
1704 struct user_arg_ptr argv,
1705 struct user_arg_ptr envp,
1706 int flags)
1707 {
1708 char *pathbuf = NULL;
1709 struct linux_binprm *bprm;
1710 struct file *file;
1711 struct files_struct *displaced;
1712 int retval;
1713
1714 if (IS_ERR(filename))
1715 return PTR_ERR(filename);
1716
1717 /*
1718 * We move the actual failure in case of RLIMIT_NPROC excess from
1719 * set*uid() to execve() because too many poorly written programs
1720 * don't check setuid() return code. Here we additionally recheck
1721 * whether NPROC limit is still exceeded.
1722 */
1723 if ((current->flags & PF_NPROC_EXCEEDED) &&
1724 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1725 retval = -EAGAIN;
1726 goto out_ret;
1727 }
1728
1729 /* We're below the limit (still or again), so we don't want to make
1730 * further execve() calls fail. */
1731 current->flags &= ~PF_NPROC_EXCEEDED;
1732
1733 retval = unshare_files(&displaced);
1734 if (retval)
1735 goto out_ret;
1736
1737 retval = -ENOMEM;
1738 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1739 if (!bprm)
1740 goto out_files;
1741
1742 retval = prepare_bprm_creds(bprm);
1743 if (retval)
1744 goto out_free;
1745
1746 check_unsafe_exec(bprm);
1747 current->in_execve = 1;
1748
1749 file = do_open_execat(fd, filename, flags);
1750 retval = PTR_ERR(file);
1751 if (IS_ERR(file))
1752 goto out_unmark;
1753
1754 sched_exec();
1755
1756 bprm->file = file;
1757 if (fd == AT_FDCWD || filename->name[0] == '/') {
1758 bprm->filename = filename->name;
1759 } else {
1760 if (filename->name[0] == '\0')
1761 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1762 else
1763 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1764 fd, filename->name);
1765 if (!pathbuf) {
1766 retval = -ENOMEM;
1767 goto out_unmark;
1768 }
1769 /*
1770 * Record that a name derived from an O_CLOEXEC fd will be
1771 * inaccessible after exec. Relies on having exclusive access to
1772 * current->files (due to unshare_files above).
1773 */
1774 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1775 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1776 bprm->filename = pathbuf;
1777 }
1778 bprm->interp = bprm->filename;
1779
1780 retval = bprm_mm_init(bprm);
1781 if (retval)
1782 goto out_unmark;
1783
1784 bprm->argc = count(argv, MAX_ARG_STRINGS);
1785 if ((retval = bprm->argc) < 0)
1786 goto out;
1787
1788 bprm->envc = count(envp, MAX_ARG_STRINGS);
1789 if ((retval = bprm->envc) < 0)
1790 goto out;
1791
1792 retval = prepare_binprm(bprm);
1793 if (retval < 0)
1794 goto out;
1795
1796 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1797 if (retval < 0)
1798 goto out;
1799
1800 bprm->exec = bprm->p;
1801 retval = copy_strings(bprm->envc, envp, bprm);
1802 if (retval < 0)
1803 goto out;
1804
1805 retval = copy_strings(bprm->argc, argv, bprm);
1806 if (retval < 0)
1807 goto out;
1808
1809 would_dump(bprm, bprm->file);
1810
1811 retval = exec_binprm(bprm);
1812 if (retval < 0)
1813 goto out;
1814
1815 /* execve succeeded */
1816 current->fs->in_exec = 0;
1817 current->in_execve = 0;
1818 acct_update_integrals(current);
1819 task_numa_free(current);
1820 free_bprm(bprm);
1821 kfree(pathbuf);
1822 putname(filename);
1823 if (displaced)
1824 put_files_struct(displaced);
1825 return retval;
1826
1827 out:
1828 if (bprm->mm) {
1829 acct_arg_size(bprm, 0);
1830 mmput(bprm->mm);
1831 }
1832
1833 out_unmark:
1834 current->fs->in_exec = 0;
1835 current->in_execve = 0;
1836
1837 out_free:
1838 free_bprm(bprm);
1839 kfree(pathbuf);
1840
1841 out_files:
1842 if (displaced)
1843 reset_files_struct(displaced);
1844 out_ret:
1845 putname(filename);
1846 return retval;
1847 }
1848
1849 int do_execve(struct filename *filename,
1850 const char __user *const __user *__argv,
1851 const char __user *const __user *__envp)
1852 {
1853 struct user_arg_ptr argv = { .ptr.native = __argv };
1854 struct user_arg_ptr envp = { .ptr.native = __envp };
1855 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1856 }
1857
1858 int do_execveat(int fd, struct filename *filename,
1859 const char __user *const __user *__argv,
1860 const char __user *const __user *__envp,
1861 int flags)
1862 {
1863 struct user_arg_ptr argv = { .ptr.native = __argv };
1864 struct user_arg_ptr envp = { .ptr.native = __envp };
1865
1866 return do_execveat_common(fd, filename, argv, envp, flags);
1867 }
1868
1869 #ifdef CONFIG_COMPAT
1870 static int compat_do_execve(struct filename *filename,
1871 const compat_uptr_t __user *__argv,
1872 const compat_uptr_t __user *__envp)
1873 {
1874 struct user_arg_ptr argv = {
1875 .is_compat = true,
1876 .ptr.compat = __argv,
1877 };
1878 struct user_arg_ptr envp = {
1879 .is_compat = true,
1880 .ptr.compat = __envp,
1881 };
1882 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1883 }
1884
1885 static int compat_do_execveat(int fd, struct filename *filename,
1886 const compat_uptr_t __user *__argv,
1887 const compat_uptr_t __user *__envp,
1888 int flags)
1889 {
1890 struct user_arg_ptr argv = {
1891 .is_compat = true,
1892 .ptr.compat = __argv,
1893 };
1894 struct user_arg_ptr envp = {
1895 .is_compat = true,
1896 .ptr.compat = __envp,
1897 };
1898 return do_execveat_common(fd, filename, argv, envp, flags);
1899 }
1900 #endif
1901
1902 void set_binfmt(struct linux_binfmt *new)
1903 {
1904 struct mm_struct *mm = current->mm;
1905
1906 if (mm->binfmt)
1907 module_put(mm->binfmt->module);
1908
1909 mm->binfmt = new;
1910 if (new)
1911 __module_get(new->module);
1912 }
1913 EXPORT_SYMBOL(set_binfmt);
1914
1915 /*
1916 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1917 */
1918 void set_dumpable(struct mm_struct *mm, int value)
1919 {
1920 unsigned long old, new;
1921
1922 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1923 return;
1924
1925 do {
1926 old = ACCESS_ONCE(mm->flags);
1927 new = (old & ~MMF_DUMPABLE_MASK) | value;
1928 } while (cmpxchg(&mm->flags, old, new) != old);
1929 }
1930
1931 SYSCALL_DEFINE3(execve,
1932 const char __user *, filename,
1933 const char __user *const __user *, argv,
1934 const char __user *const __user *, envp)
1935 {
1936 return do_execve(getname(filename), argv, envp);
1937 }
1938
1939 SYSCALL_DEFINE5(execveat,
1940 int, fd, const char __user *, filename,
1941 const char __user *const __user *, argv,
1942 const char __user *const __user *, envp,
1943 int, flags)
1944 {
1945 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1946
1947 return do_execveat(fd,
1948 getname_flags(filename, lookup_flags, NULL),
1949 argv, envp, flags);
1950 }
1951
1952 #ifdef CONFIG_COMPAT
1953 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1954 const compat_uptr_t __user *, argv,
1955 const compat_uptr_t __user *, envp)
1956 {
1957 return compat_do_execve(getname(filename), argv, envp);
1958 }
1959
1960 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1961 const char __user *, filename,
1962 const compat_uptr_t __user *, argv,
1963 const compat_uptr_t __user *, envp,
1964 int, flags)
1965 {
1966 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1967
1968 return compat_do_execveat(fd,
1969 getname_flags(filename, lookup_flags, NULL),
1970 argv, envp, flags);
1971 }
1972 #endif