]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/exec.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 int suid_dumpable = 0;
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 BUG_ON(!fmt);
83 if (WARN_ON(!fmt->load_binary))
84 return;
85 write_lock(&binfmt_lock);
86 insert ? list_add(&fmt->lh, &formats) :
87 list_add_tail(&fmt->lh, &formats);
88 write_unlock(&binfmt_lock);
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 module_put(fmt->module);
105 }
106
107 bool path_noexec(const struct path *path)
108 {
109 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112
113 #ifdef CONFIG_USELIB
114 /*
115 * Note that a shared library must be both readable and executable due to
116 * security reasons.
117 *
118 * Also note that we take the address to load from from the file itself.
119 */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 struct linux_binfmt *fmt;
123 struct file *file;
124 struct filename *tmp = getname(library);
125 int error = PTR_ERR(tmp);
126 static const struct open_flags uselib_flags = {
127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 .acc_mode = MAY_READ | MAY_EXEC,
129 .intent = LOOKUP_OPEN,
130 .lookup_flags = LOOKUP_FOLLOW,
131 };
132
133 if (IS_ERR(tmp))
134 goto out;
135
136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 putname(tmp);
138 error = PTR_ERR(file);
139 if (IS_ERR(file))
140 goto out;
141
142 error = -EINVAL;
143 if (!S_ISREG(file_inode(file)->i_mode))
144 goto exit;
145
146 error = -EACCES;
147 if (path_noexec(&file->f_path))
148 goto exit;
149
150 fsnotify_open(file);
151
152 error = -ENOEXEC;
153
154 read_lock(&binfmt_lock);
155 list_for_each_entry(fmt, &formats, lh) {
156 if (!fmt->load_shlib)
157 continue;
158 if (!try_module_get(fmt->module))
159 continue;
160 read_unlock(&binfmt_lock);
161 error = fmt->load_shlib(file);
162 read_lock(&binfmt_lock);
163 put_binfmt(fmt);
164 if (error != -ENOEXEC)
165 break;
166 }
167 read_unlock(&binfmt_lock);
168 exit:
169 fput(file);
170 out:
171 return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174
175 #ifdef CONFIG_MMU
176 /*
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
181 */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 struct mm_struct *mm = current->mm;
185 long diff = (long)(pages - bprm->vma_pages);
186
187 if (!mm || !diff)
188 return;
189
190 bprm->vma_pages = pages;
191 add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 int write)
196 {
197 struct page *page;
198 int ret;
199 unsigned int gup_flags = FOLL_FORCE;
200
201 #ifdef CONFIG_STACK_GROWSUP
202 if (write) {
203 ret = expand_downwards(bprm->vma, pos);
204 if (ret < 0)
205 return NULL;
206 }
207 #endif
208
209 if (write)
210 gup_flags |= FOLL_WRITE;
211
212 /*
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
215 */
216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 &page, NULL, NULL);
218 if (ret <= 0)
219 return NULL;
220
221 if (write) {
222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 unsigned long ptr_size, limit;
224
225 /*
226 * Since the stack will hold pointers to the strings, we
227 * must account for them as well.
228 *
229 * The size calculation is the entire vma while each arg page is
230 * built, so each time we get here it's calculating how far it
231 * is currently (rather than each call being just the newly
232 * added size from the arg page). As a result, we need to
233 * always add the entire size of the pointers, so that on the
234 * last call to get_arg_page() we'll actually have the entire
235 * correct size.
236 */
237 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238 if (ptr_size > ULONG_MAX - size)
239 goto fail;
240 size += ptr_size;
241
242 acct_arg_size(bprm, size / PAGE_SIZE);
243
244 /*
245 * We've historically supported up to 32 pages (ARG_MAX)
246 * of argument strings even with small stacks
247 */
248 if (size <= ARG_MAX)
249 return page;
250
251 /*
252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 * (whichever is smaller) for the argv+env strings.
254 * This ensures that:
255 * - the remaining binfmt code will not run out of stack space,
256 * - the program will have a reasonable amount of stack left
257 * to work from.
258 */
259 limit = _STK_LIM / 4 * 3;
260 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
261 if (size > limit)
262 goto fail;
263 }
264
265 return page;
266
267 fail:
268 put_page(page);
269 return NULL;
270 }
271
272 static void put_arg_page(struct page *page)
273 {
274 put_page(page);
275 }
276
277 static void free_arg_pages(struct linux_binprm *bprm)
278 {
279 }
280
281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
282 struct page *page)
283 {
284 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
285 }
286
287 static int __bprm_mm_init(struct linux_binprm *bprm)
288 {
289 int err;
290 struct vm_area_struct *vma = NULL;
291 struct mm_struct *mm = bprm->mm;
292
293 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
294 if (!vma)
295 return -ENOMEM;
296
297 if (down_write_killable(&mm->mmap_sem)) {
298 err = -EINTR;
299 goto err_free;
300 }
301 vma->vm_mm = mm;
302
303 /*
304 * Place the stack at the largest stack address the architecture
305 * supports. Later, we'll move this to an appropriate place. We don't
306 * use STACK_TOP because that can depend on attributes which aren't
307 * configured yet.
308 */
309 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
310 vma->vm_end = STACK_TOP_MAX;
311 vma->vm_start = vma->vm_end - PAGE_SIZE;
312 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
313 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
314 INIT_LIST_HEAD(&vma->anon_vma_chain);
315
316 err = insert_vm_struct(mm, vma);
317 if (err)
318 goto err;
319
320 mm->stack_vm = mm->total_vm = 1;
321 arch_bprm_mm_init(mm, vma);
322 up_write(&mm->mmap_sem);
323 bprm->p = vma->vm_end - sizeof(void *);
324 return 0;
325 err:
326 up_write(&mm->mmap_sem);
327 err_free:
328 bprm->vma = NULL;
329 kmem_cache_free(vm_area_cachep, vma);
330 return err;
331 }
332
333 static bool valid_arg_len(struct linux_binprm *bprm, long len)
334 {
335 return len <= MAX_ARG_STRLEN;
336 }
337
338 #else
339
340 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
341 {
342 }
343
344 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 int write)
346 {
347 struct page *page;
348
349 page = bprm->page[pos / PAGE_SIZE];
350 if (!page && write) {
351 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
352 if (!page)
353 return NULL;
354 bprm->page[pos / PAGE_SIZE] = page;
355 }
356
357 return page;
358 }
359
360 static void put_arg_page(struct page *page)
361 {
362 }
363
364 static void free_arg_page(struct linux_binprm *bprm, int i)
365 {
366 if (bprm->page[i]) {
367 __free_page(bprm->page[i]);
368 bprm->page[i] = NULL;
369 }
370 }
371
372 static void free_arg_pages(struct linux_binprm *bprm)
373 {
374 int i;
375
376 for (i = 0; i < MAX_ARG_PAGES; i++)
377 free_arg_page(bprm, i);
378 }
379
380 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
381 struct page *page)
382 {
383 }
384
385 static int __bprm_mm_init(struct linux_binprm *bprm)
386 {
387 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
388 return 0;
389 }
390
391 static bool valid_arg_len(struct linux_binprm *bprm, long len)
392 {
393 return len <= bprm->p;
394 }
395
396 #endif /* CONFIG_MMU */
397
398 /*
399 * Create a new mm_struct and populate it with a temporary stack
400 * vm_area_struct. We don't have enough context at this point to set the stack
401 * flags, permissions, and offset, so we use temporary values. We'll update
402 * them later in setup_arg_pages().
403 */
404 static int bprm_mm_init(struct linux_binprm *bprm)
405 {
406 int err;
407 struct mm_struct *mm = NULL;
408
409 bprm->mm = mm = mm_alloc();
410 err = -ENOMEM;
411 if (!mm)
412 goto err;
413
414 err = __bprm_mm_init(bprm);
415 if (err)
416 goto err;
417
418 return 0;
419
420 err:
421 if (mm) {
422 bprm->mm = NULL;
423 mmdrop(mm);
424 }
425
426 return err;
427 }
428
429 struct user_arg_ptr {
430 #ifdef CONFIG_COMPAT
431 bool is_compat;
432 #endif
433 union {
434 const char __user *const __user *native;
435 #ifdef CONFIG_COMPAT
436 const compat_uptr_t __user *compat;
437 #endif
438 } ptr;
439 };
440
441 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
442 {
443 const char __user *native;
444
445 #ifdef CONFIG_COMPAT
446 if (unlikely(argv.is_compat)) {
447 compat_uptr_t compat;
448
449 if (get_user(compat, argv.ptr.compat + nr))
450 return ERR_PTR(-EFAULT);
451
452 return compat_ptr(compat);
453 }
454 #endif
455
456 if (get_user(native, argv.ptr.native + nr))
457 return ERR_PTR(-EFAULT);
458
459 return native;
460 }
461
462 /*
463 * count() counts the number of strings in array ARGV.
464 */
465 static int count(struct user_arg_ptr argv, int max)
466 {
467 int i = 0;
468
469 if (argv.ptr.native != NULL) {
470 for (;;) {
471 const char __user *p = get_user_arg_ptr(argv, i);
472
473 if (!p)
474 break;
475
476 if (IS_ERR(p))
477 return -EFAULT;
478
479 if (i >= max)
480 return -E2BIG;
481 ++i;
482
483 if (fatal_signal_pending(current))
484 return -ERESTARTNOHAND;
485 cond_resched();
486 }
487 }
488 return i;
489 }
490
491 /*
492 * 'copy_strings()' copies argument/environment strings from the old
493 * processes's memory to the new process's stack. The call to get_user_pages()
494 * ensures the destination page is created and not swapped out.
495 */
496 static int copy_strings(int argc, struct user_arg_ptr argv,
497 struct linux_binprm *bprm)
498 {
499 struct page *kmapped_page = NULL;
500 char *kaddr = NULL;
501 unsigned long kpos = 0;
502 int ret;
503
504 while (argc-- > 0) {
505 const char __user *str;
506 int len;
507 unsigned long pos;
508
509 ret = -EFAULT;
510 str = get_user_arg_ptr(argv, argc);
511 if (IS_ERR(str))
512 goto out;
513
514 len = strnlen_user(str, MAX_ARG_STRLEN);
515 if (!len)
516 goto out;
517
518 ret = -E2BIG;
519 if (!valid_arg_len(bprm, len))
520 goto out;
521
522 /* We're going to work our way backwords. */
523 pos = bprm->p;
524 str += len;
525 bprm->p -= len;
526
527 while (len > 0) {
528 int offset, bytes_to_copy;
529
530 if (fatal_signal_pending(current)) {
531 ret = -ERESTARTNOHAND;
532 goto out;
533 }
534 cond_resched();
535
536 offset = pos % PAGE_SIZE;
537 if (offset == 0)
538 offset = PAGE_SIZE;
539
540 bytes_to_copy = offset;
541 if (bytes_to_copy > len)
542 bytes_to_copy = len;
543
544 offset -= bytes_to_copy;
545 pos -= bytes_to_copy;
546 str -= bytes_to_copy;
547 len -= bytes_to_copy;
548
549 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
550 struct page *page;
551
552 page = get_arg_page(bprm, pos, 1);
553 if (!page) {
554 ret = -E2BIG;
555 goto out;
556 }
557
558 if (kmapped_page) {
559 flush_kernel_dcache_page(kmapped_page);
560 kunmap(kmapped_page);
561 put_arg_page(kmapped_page);
562 }
563 kmapped_page = page;
564 kaddr = kmap(kmapped_page);
565 kpos = pos & PAGE_MASK;
566 flush_arg_page(bprm, kpos, kmapped_page);
567 }
568 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
569 ret = -EFAULT;
570 goto out;
571 }
572 }
573 }
574 ret = 0;
575 out:
576 if (kmapped_page) {
577 flush_kernel_dcache_page(kmapped_page);
578 kunmap(kmapped_page);
579 put_arg_page(kmapped_page);
580 }
581 return ret;
582 }
583
584 /*
585 * Like copy_strings, but get argv and its values from kernel memory.
586 */
587 int copy_strings_kernel(int argc, const char *const *__argv,
588 struct linux_binprm *bprm)
589 {
590 int r;
591 mm_segment_t oldfs = get_fs();
592 struct user_arg_ptr argv = {
593 .ptr.native = (const char __user *const __user *)__argv,
594 };
595
596 set_fs(KERNEL_DS);
597 r = copy_strings(argc, argv, bprm);
598 set_fs(oldfs);
599
600 return r;
601 }
602 EXPORT_SYMBOL(copy_strings_kernel);
603
604 #ifdef CONFIG_MMU
605
606 /*
607 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
608 * the binfmt code determines where the new stack should reside, we shift it to
609 * its final location. The process proceeds as follows:
610 *
611 * 1) Use shift to calculate the new vma endpoints.
612 * 2) Extend vma to cover both the old and new ranges. This ensures the
613 * arguments passed to subsequent functions are consistent.
614 * 3) Move vma's page tables to the new range.
615 * 4) Free up any cleared pgd range.
616 * 5) Shrink the vma to cover only the new range.
617 */
618 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
619 {
620 struct mm_struct *mm = vma->vm_mm;
621 unsigned long old_start = vma->vm_start;
622 unsigned long old_end = vma->vm_end;
623 unsigned long length = old_end - old_start;
624 unsigned long new_start = old_start - shift;
625 unsigned long new_end = old_end - shift;
626 struct mmu_gather tlb;
627
628 BUG_ON(new_start > new_end);
629
630 /*
631 * ensure there are no vmas between where we want to go
632 * and where we are
633 */
634 if (vma != find_vma(mm, new_start))
635 return -EFAULT;
636
637 /*
638 * cover the whole range: [new_start, old_end)
639 */
640 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
641 return -ENOMEM;
642
643 /*
644 * move the page tables downwards, on failure we rely on
645 * process cleanup to remove whatever mess we made.
646 */
647 if (length != move_page_tables(vma, old_start,
648 vma, new_start, length, false))
649 return -ENOMEM;
650
651 lru_add_drain();
652 tlb_gather_mmu(&tlb, mm, old_start, old_end);
653 if (new_end > old_start) {
654 /*
655 * when the old and new regions overlap clear from new_end.
656 */
657 free_pgd_range(&tlb, new_end, old_end, new_end,
658 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
659 } else {
660 /*
661 * otherwise, clean from old_start; this is done to not touch
662 * the address space in [new_end, old_start) some architectures
663 * have constraints on va-space that make this illegal (IA64) -
664 * for the others its just a little faster.
665 */
666 free_pgd_range(&tlb, old_start, old_end, new_end,
667 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
668 }
669 tlb_finish_mmu(&tlb, old_start, old_end);
670
671 /*
672 * Shrink the vma to just the new range. Always succeeds.
673 */
674 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
675
676 return 0;
677 }
678
679 /*
680 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
681 * the stack is optionally relocated, and some extra space is added.
682 */
683 int setup_arg_pages(struct linux_binprm *bprm,
684 unsigned long stack_top,
685 int executable_stack)
686 {
687 unsigned long ret;
688 unsigned long stack_shift;
689 struct mm_struct *mm = current->mm;
690 struct vm_area_struct *vma = bprm->vma;
691 struct vm_area_struct *prev = NULL;
692 unsigned long vm_flags;
693 unsigned long stack_base;
694 unsigned long stack_size;
695 unsigned long stack_expand;
696 unsigned long rlim_stack;
697
698 #ifdef CONFIG_STACK_GROWSUP
699 /* Limit stack size */
700 stack_base = rlimit_max(RLIMIT_STACK);
701 if (stack_base > STACK_SIZE_MAX)
702 stack_base = STACK_SIZE_MAX;
703
704 /* Add space for stack randomization. */
705 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
706
707 /* Make sure we didn't let the argument array grow too large. */
708 if (vma->vm_end - vma->vm_start > stack_base)
709 return -ENOMEM;
710
711 stack_base = PAGE_ALIGN(stack_top - stack_base);
712
713 stack_shift = vma->vm_start - stack_base;
714 mm->arg_start = bprm->p - stack_shift;
715 bprm->p = vma->vm_end - stack_shift;
716 #else
717 stack_top = arch_align_stack(stack_top);
718 stack_top = PAGE_ALIGN(stack_top);
719
720 if (unlikely(stack_top < mmap_min_addr) ||
721 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
722 return -ENOMEM;
723
724 stack_shift = vma->vm_end - stack_top;
725
726 bprm->p -= stack_shift;
727 mm->arg_start = bprm->p;
728 #endif
729
730 if (bprm->loader)
731 bprm->loader -= stack_shift;
732 bprm->exec -= stack_shift;
733
734 if (down_write_killable(&mm->mmap_sem))
735 return -EINTR;
736
737 vm_flags = VM_STACK_FLAGS;
738
739 /*
740 * Adjust stack execute permissions; explicitly enable for
741 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
742 * (arch default) otherwise.
743 */
744 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
745 vm_flags |= VM_EXEC;
746 else if (executable_stack == EXSTACK_DISABLE_X)
747 vm_flags &= ~VM_EXEC;
748 vm_flags |= mm->def_flags;
749 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
750
751 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
752 vm_flags);
753 if (ret)
754 goto out_unlock;
755 BUG_ON(prev != vma);
756
757 /* Move stack pages down in memory. */
758 if (stack_shift) {
759 ret = shift_arg_pages(vma, stack_shift);
760 if (ret)
761 goto out_unlock;
762 }
763
764 /* mprotect_fixup is overkill to remove the temporary stack flags */
765 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
766
767 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
768 stack_size = vma->vm_end - vma->vm_start;
769 /*
770 * Align this down to a page boundary as expand_stack
771 * will align it up.
772 */
773 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
774 #ifdef CONFIG_STACK_GROWSUP
775 if (stack_size + stack_expand > rlim_stack)
776 stack_base = vma->vm_start + rlim_stack;
777 else
778 stack_base = vma->vm_end + stack_expand;
779 #else
780 if (stack_size + stack_expand > rlim_stack)
781 stack_base = vma->vm_end - rlim_stack;
782 else
783 stack_base = vma->vm_start - stack_expand;
784 #endif
785 current->mm->start_stack = bprm->p;
786 ret = expand_stack(vma, stack_base);
787 if (ret)
788 ret = -EFAULT;
789
790 out_unlock:
791 up_write(&mm->mmap_sem);
792 return ret;
793 }
794 EXPORT_SYMBOL(setup_arg_pages);
795
796 #else
797
798 /*
799 * Transfer the program arguments and environment from the holding pages
800 * onto the stack. The provided stack pointer is adjusted accordingly.
801 */
802 int transfer_args_to_stack(struct linux_binprm *bprm,
803 unsigned long *sp_location)
804 {
805 unsigned long index, stop, sp;
806 int ret = 0;
807
808 stop = bprm->p >> PAGE_SHIFT;
809 sp = *sp_location;
810
811 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
812 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
813 char *src = kmap(bprm->page[index]) + offset;
814 sp -= PAGE_SIZE - offset;
815 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
816 ret = -EFAULT;
817 kunmap(bprm->page[index]);
818 if (ret)
819 goto out;
820 }
821
822 *sp_location = sp;
823
824 out:
825 return ret;
826 }
827 EXPORT_SYMBOL(transfer_args_to_stack);
828
829 #endif /* CONFIG_MMU */
830
831 static struct file *do_open_execat(int fd, struct filename *name, int flags)
832 {
833 struct file *file;
834 int err;
835 struct open_flags open_exec_flags = {
836 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
837 .acc_mode = MAY_EXEC,
838 .intent = LOOKUP_OPEN,
839 .lookup_flags = LOOKUP_FOLLOW,
840 };
841
842 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
843 return ERR_PTR(-EINVAL);
844 if (flags & AT_SYMLINK_NOFOLLOW)
845 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
846 if (flags & AT_EMPTY_PATH)
847 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
848
849 file = do_filp_open(fd, name, &open_exec_flags);
850 if (IS_ERR(file))
851 goto out;
852
853 err = -EACCES;
854 if (!S_ISREG(file_inode(file)->i_mode))
855 goto exit;
856
857 if (path_noexec(&file->f_path))
858 goto exit;
859
860 err = deny_write_access(file);
861 if (err)
862 goto exit;
863
864 if (name->name[0] != '\0')
865 fsnotify_open(file);
866
867 out:
868 return file;
869
870 exit:
871 fput(file);
872 return ERR_PTR(err);
873 }
874
875 struct file *open_exec(const char *name)
876 {
877 struct filename *filename = getname_kernel(name);
878 struct file *f = ERR_CAST(filename);
879
880 if (!IS_ERR(filename)) {
881 f = do_open_execat(AT_FDCWD, filename, 0);
882 putname(filename);
883 }
884 return f;
885 }
886 EXPORT_SYMBOL(open_exec);
887
888 int kernel_read(struct file *file, loff_t offset,
889 char *addr, unsigned long count)
890 {
891 mm_segment_t old_fs;
892 loff_t pos = offset;
893 int result;
894
895 old_fs = get_fs();
896 set_fs(get_ds());
897 /* The cast to a user pointer is valid due to the set_fs() */
898 result = vfs_read(file, (void __user *)addr, count, &pos);
899 set_fs(old_fs);
900 return result;
901 }
902
903 EXPORT_SYMBOL(kernel_read);
904
905 int kernel_read_file(struct file *file, void **buf, loff_t *size,
906 loff_t max_size, enum kernel_read_file_id id)
907 {
908 loff_t i_size, pos;
909 ssize_t bytes = 0;
910 int ret;
911
912 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
913 return -EINVAL;
914
915 ret = security_kernel_read_file(file, id);
916 if (ret)
917 return ret;
918
919 ret = deny_write_access(file);
920 if (ret)
921 return ret;
922
923 i_size = i_size_read(file_inode(file));
924 if (max_size > 0 && i_size > max_size) {
925 ret = -EFBIG;
926 goto out;
927 }
928 if (i_size <= 0) {
929 ret = -EINVAL;
930 goto out;
931 }
932
933 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
934 *buf = vmalloc(i_size);
935 if (!*buf) {
936 ret = -ENOMEM;
937 goto out;
938 }
939
940 pos = 0;
941 while (pos < i_size) {
942 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
943 i_size - pos);
944 if (bytes < 0) {
945 ret = bytes;
946 goto out;
947 }
948
949 if (bytes == 0)
950 break;
951 pos += bytes;
952 }
953
954 if (pos != i_size) {
955 ret = -EIO;
956 goto out_free;
957 }
958
959 ret = security_kernel_post_read_file(file, *buf, i_size, id);
960 if (!ret)
961 *size = pos;
962
963 out_free:
964 if (ret < 0) {
965 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
966 vfree(*buf);
967 *buf = NULL;
968 }
969 }
970
971 out:
972 allow_write_access(file);
973 return ret;
974 }
975 EXPORT_SYMBOL_GPL(kernel_read_file);
976
977 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
978 loff_t max_size, enum kernel_read_file_id id)
979 {
980 struct file *file;
981 int ret;
982
983 if (!path || !*path)
984 return -EINVAL;
985
986 file = filp_open(path, O_RDONLY, 0);
987 if (IS_ERR(file))
988 return PTR_ERR(file);
989
990 ret = kernel_read_file(file, buf, size, max_size, id);
991 fput(file);
992 return ret;
993 }
994 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
995
996 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
997 enum kernel_read_file_id id)
998 {
999 struct fd f = fdget(fd);
1000 int ret = -EBADF;
1001
1002 if (!f.file)
1003 goto out;
1004
1005 ret = kernel_read_file(f.file, buf, size, max_size, id);
1006 out:
1007 fdput(f);
1008 return ret;
1009 }
1010 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1011
1012 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1013 {
1014 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1015 if (res > 0)
1016 flush_icache_range(addr, addr + len);
1017 return res;
1018 }
1019 EXPORT_SYMBOL(read_code);
1020
1021 static int exec_mmap(struct mm_struct *mm)
1022 {
1023 struct task_struct *tsk;
1024 struct mm_struct *old_mm, *active_mm;
1025
1026 /* Notify parent that we're no longer interested in the old VM */
1027 tsk = current;
1028 old_mm = current->mm;
1029 mm_release(tsk, old_mm);
1030
1031 if (old_mm) {
1032 sync_mm_rss(old_mm);
1033 /*
1034 * Make sure that if there is a core dump in progress
1035 * for the old mm, we get out and die instead of going
1036 * through with the exec. We must hold mmap_sem around
1037 * checking core_state and changing tsk->mm.
1038 */
1039 down_read(&old_mm->mmap_sem);
1040 if (unlikely(old_mm->core_state)) {
1041 up_read(&old_mm->mmap_sem);
1042 return -EINTR;
1043 }
1044 }
1045 task_lock(tsk);
1046 active_mm = tsk->active_mm;
1047 tsk->mm = mm;
1048 tsk->active_mm = mm;
1049 activate_mm(active_mm, mm);
1050 tsk->mm->vmacache_seqnum = 0;
1051 vmacache_flush(tsk);
1052 task_unlock(tsk);
1053 if (old_mm) {
1054 up_read(&old_mm->mmap_sem);
1055 BUG_ON(active_mm != old_mm);
1056 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1057 mm_update_next_owner(old_mm);
1058 mmput(old_mm);
1059 return 0;
1060 }
1061 mmdrop(active_mm);
1062 return 0;
1063 }
1064
1065 /*
1066 * This function makes sure the current process has its own signal table,
1067 * so that flush_signal_handlers can later reset the handlers without
1068 * disturbing other processes. (Other processes might share the signal
1069 * table via the CLONE_SIGHAND option to clone().)
1070 */
1071 static int de_thread(struct task_struct *tsk)
1072 {
1073 struct signal_struct *sig = tsk->signal;
1074 struct sighand_struct *oldsighand = tsk->sighand;
1075 spinlock_t *lock = &oldsighand->siglock;
1076
1077 if (thread_group_empty(tsk))
1078 goto no_thread_group;
1079
1080 /*
1081 * Kill all other threads in the thread group.
1082 */
1083 spin_lock_irq(lock);
1084 if (signal_group_exit(sig)) {
1085 /*
1086 * Another group action in progress, just
1087 * return so that the signal is processed.
1088 */
1089 spin_unlock_irq(lock);
1090 return -EAGAIN;
1091 }
1092
1093 sig->group_exit_task = tsk;
1094 sig->notify_count = zap_other_threads(tsk);
1095 if (!thread_group_leader(tsk))
1096 sig->notify_count--;
1097
1098 while (sig->notify_count) {
1099 __set_current_state(TASK_KILLABLE);
1100 spin_unlock_irq(lock);
1101 schedule();
1102 if (unlikely(__fatal_signal_pending(tsk)))
1103 goto killed;
1104 spin_lock_irq(lock);
1105 }
1106 spin_unlock_irq(lock);
1107
1108 /*
1109 * At this point all other threads have exited, all we have to
1110 * do is to wait for the thread group leader to become inactive,
1111 * and to assume its PID:
1112 */
1113 if (!thread_group_leader(tsk)) {
1114 struct task_struct *leader = tsk->group_leader;
1115
1116 for (;;) {
1117 cgroup_threadgroup_change_begin(tsk);
1118 write_lock_irq(&tasklist_lock);
1119 /*
1120 * Do this under tasklist_lock to ensure that
1121 * exit_notify() can't miss ->group_exit_task
1122 */
1123 sig->notify_count = -1;
1124 if (likely(leader->exit_state))
1125 break;
1126 __set_current_state(TASK_KILLABLE);
1127 write_unlock_irq(&tasklist_lock);
1128 cgroup_threadgroup_change_end(tsk);
1129 schedule();
1130 if (unlikely(__fatal_signal_pending(tsk)))
1131 goto killed;
1132 }
1133
1134 /*
1135 * The only record we have of the real-time age of a
1136 * process, regardless of execs it's done, is start_time.
1137 * All the past CPU time is accumulated in signal_struct
1138 * from sister threads now dead. But in this non-leader
1139 * exec, nothing survives from the original leader thread,
1140 * whose birth marks the true age of this process now.
1141 * When we take on its identity by switching to its PID, we
1142 * also take its birthdate (always earlier than our own).
1143 */
1144 tsk->start_time = leader->start_time;
1145 tsk->real_start_time = leader->real_start_time;
1146
1147 BUG_ON(!same_thread_group(leader, tsk));
1148 BUG_ON(has_group_leader_pid(tsk));
1149 /*
1150 * An exec() starts a new thread group with the
1151 * TGID of the previous thread group. Rehash the
1152 * two threads with a switched PID, and release
1153 * the former thread group leader:
1154 */
1155
1156 /* Become a process group leader with the old leader's pid.
1157 * The old leader becomes a thread of the this thread group.
1158 * Note: The old leader also uses this pid until release_task
1159 * is called. Odd but simple and correct.
1160 */
1161 tsk->pid = leader->pid;
1162 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1163 transfer_pid(leader, tsk, PIDTYPE_PGID);
1164 transfer_pid(leader, tsk, PIDTYPE_SID);
1165
1166 list_replace_rcu(&leader->tasks, &tsk->tasks);
1167 list_replace_init(&leader->sibling, &tsk->sibling);
1168
1169 tsk->group_leader = tsk;
1170 leader->group_leader = tsk;
1171
1172 tsk->exit_signal = SIGCHLD;
1173 leader->exit_signal = -1;
1174
1175 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1176 leader->exit_state = EXIT_DEAD;
1177
1178 /*
1179 * We are going to release_task()->ptrace_unlink() silently,
1180 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1181 * the tracer wont't block again waiting for this thread.
1182 */
1183 if (unlikely(leader->ptrace))
1184 __wake_up_parent(leader, leader->parent);
1185 write_unlock_irq(&tasklist_lock);
1186 cgroup_threadgroup_change_end(tsk);
1187
1188 release_task(leader);
1189 }
1190
1191 sig->group_exit_task = NULL;
1192 sig->notify_count = 0;
1193
1194 no_thread_group:
1195 /* we have changed execution domain */
1196 tsk->exit_signal = SIGCHLD;
1197
1198 #ifdef CONFIG_POSIX_TIMERS
1199 exit_itimers(sig);
1200 flush_itimer_signals();
1201 #endif
1202
1203 if (atomic_read(&oldsighand->count) != 1) {
1204 struct sighand_struct *newsighand;
1205 /*
1206 * This ->sighand is shared with the CLONE_SIGHAND
1207 * but not CLONE_THREAD task, switch to the new one.
1208 */
1209 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1210 if (!newsighand)
1211 return -ENOMEM;
1212
1213 atomic_set(&newsighand->count, 1);
1214 memcpy(newsighand->action, oldsighand->action,
1215 sizeof(newsighand->action));
1216
1217 write_lock_irq(&tasklist_lock);
1218 spin_lock(&oldsighand->siglock);
1219 rcu_assign_pointer(tsk->sighand, newsighand);
1220 spin_unlock(&oldsighand->siglock);
1221 write_unlock_irq(&tasklist_lock);
1222
1223 __cleanup_sighand(oldsighand);
1224 }
1225
1226 BUG_ON(!thread_group_leader(tsk));
1227 return 0;
1228
1229 killed:
1230 /* protects against exit_notify() and __exit_signal() */
1231 read_lock(&tasklist_lock);
1232 sig->group_exit_task = NULL;
1233 sig->notify_count = 0;
1234 read_unlock(&tasklist_lock);
1235 return -EAGAIN;
1236 }
1237
1238 char *get_task_comm(char *buf, struct task_struct *tsk)
1239 {
1240 /* buf must be at least sizeof(tsk->comm) in size */
1241 task_lock(tsk);
1242 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1243 task_unlock(tsk);
1244 return buf;
1245 }
1246 EXPORT_SYMBOL_GPL(get_task_comm);
1247
1248 /*
1249 * These functions flushes out all traces of the currently running executable
1250 * so that a new one can be started
1251 */
1252
1253 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1254 {
1255 task_lock(tsk);
1256 trace_task_rename(tsk, buf);
1257 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1258 task_unlock(tsk);
1259 perf_event_comm(tsk, exec);
1260 }
1261
1262 int flush_old_exec(struct linux_binprm * bprm)
1263 {
1264 int retval;
1265
1266 /*
1267 * Make sure we have a private signal table and that
1268 * we are unassociated from the previous thread group.
1269 */
1270 retval = de_thread(current);
1271 if (retval)
1272 goto out;
1273
1274 /*
1275 * Must be called _before_ exec_mmap() as bprm->mm is
1276 * not visibile until then. This also enables the update
1277 * to be lockless.
1278 */
1279 set_mm_exe_file(bprm->mm, bprm->file);
1280
1281 /*
1282 * Release all of the old mmap stuff
1283 */
1284 acct_arg_size(bprm, 0);
1285 retval = exec_mmap(bprm->mm);
1286 if (retval)
1287 goto out;
1288
1289 bprm->mm = NULL; /* We're using it now */
1290
1291 set_fs(USER_DS);
1292 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1293 PF_NOFREEZE | PF_NO_SETAFFINITY);
1294 flush_thread();
1295 current->personality &= ~bprm->per_clear;
1296
1297 /*
1298 * We have to apply CLOEXEC before we change whether the process is
1299 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1300 * trying to access the should-be-closed file descriptors of a process
1301 * undergoing exec(2).
1302 */
1303 do_close_on_exec(current->files);
1304 return 0;
1305
1306 out:
1307 return retval;
1308 }
1309 EXPORT_SYMBOL(flush_old_exec);
1310
1311 void would_dump(struct linux_binprm *bprm, struct file *file)
1312 {
1313 struct inode *inode = file_inode(file);
1314 if (inode_permission(inode, MAY_READ) < 0) {
1315 struct user_namespace *old, *user_ns;
1316 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1317
1318 /* Ensure mm->user_ns contains the executable */
1319 user_ns = old = bprm->mm->user_ns;
1320 while ((user_ns != &init_user_ns) &&
1321 !privileged_wrt_inode_uidgid(user_ns, inode))
1322 user_ns = user_ns->parent;
1323
1324 if (old != user_ns) {
1325 bprm->mm->user_ns = get_user_ns(user_ns);
1326 put_user_ns(old);
1327 }
1328 }
1329 }
1330 EXPORT_SYMBOL(would_dump);
1331
1332 void setup_new_exec(struct linux_binprm * bprm)
1333 {
1334 arch_pick_mmap_layout(current->mm);
1335
1336 /* This is the point of no return */
1337 current->sas_ss_sp = current->sas_ss_size = 0;
1338
1339 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1340 set_dumpable(current->mm, SUID_DUMP_USER);
1341 else
1342 set_dumpable(current->mm, suid_dumpable);
1343
1344 arch_setup_new_exec();
1345 perf_event_exec();
1346 __set_task_comm(current, kbasename(bprm->filename), true);
1347
1348 /* Set the new mm task size. We have to do that late because it may
1349 * depend on TIF_32BIT which is only updated in flush_thread() on
1350 * some architectures like powerpc
1351 */
1352 current->mm->task_size = TASK_SIZE;
1353
1354 /* install the new credentials */
1355 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1356 !gid_eq(bprm->cred->gid, current_egid())) {
1357 current->pdeath_signal = 0;
1358 } else {
1359 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1360 set_dumpable(current->mm, suid_dumpable);
1361 }
1362
1363 /* An exec changes our domain. We are no longer part of the thread
1364 group */
1365 current->self_exec_id++;
1366 flush_signal_handlers(current, 0);
1367 }
1368 EXPORT_SYMBOL(setup_new_exec);
1369
1370 /*
1371 * Prepare credentials and lock ->cred_guard_mutex.
1372 * install_exec_creds() commits the new creds and drops the lock.
1373 * Or, if exec fails before, free_bprm() should release ->cred and
1374 * and unlock.
1375 */
1376 int prepare_bprm_creds(struct linux_binprm *bprm)
1377 {
1378 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1379 return -ERESTARTNOINTR;
1380
1381 bprm->cred = prepare_exec_creds();
1382 if (likely(bprm->cred))
1383 return 0;
1384
1385 mutex_unlock(&current->signal->cred_guard_mutex);
1386 return -ENOMEM;
1387 }
1388
1389 static void free_bprm(struct linux_binprm *bprm)
1390 {
1391 free_arg_pages(bprm);
1392 if (bprm->cred) {
1393 mutex_unlock(&current->signal->cred_guard_mutex);
1394 abort_creds(bprm->cred);
1395 }
1396 if (bprm->file) {
1397 allow_write_access(bprm->file);
1398 fput(bprm->file);
1399 }
1400 /* If a binfmt changed the interp, free it. */
1401 if (bprm->interp != bprm->filename)
1402 kfree(bprm->interp);
1403 kfree(bprm);
1404 }
1405
1406 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1407 {
1408 /* If a binfmt changed the interp, free it first. */
1409 if (bprm->interp != bprm->filename)
1410 kfree(bprm->interp);
1411 bprm->interp = kstrdup(interp, GFP_KERNEL);
1412 if (!bprm->interp)
1413 return -ENOMEM;
1414 return 0;
1415 }
1416 EXPORT_SYMBOL(bprm_change_interp);
1417
1418 /*
1419 * install the new credentials for this executable
1420 */
1421 void install_exec_creds(struct linux_binprm *bprm)
1422 {
1423 security_bprm_committing_creds(bprm);
1424
1425 commit_creds(bprm->cred);
1426 bprm->cred = NULL;
1427
1428 /*
1429 * Disable monitoring for regular users
1430 * when executing setuid binaries. Must
1431 * wait until new credentials are committed
1432 * by commit_creds() above
1433 */
1434 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1435 perf_event_exit_task(current);
1436 /*
1437 * cred_guard_mutex must be held at least to this point to prevent
1438 * ptrace_attach() from altering our determination of the task's
1439 * credentials; any time after this it may be unlocked.
1440 */
1441 security_bprm_committed_creds(bprm);
1442 mutex_unlock(&current->signal->cred_guard_mutex);
1443 }
1444 EXPORT_SYMBOL(install_exec_creds);
1445
1446 /*
1447 * determine how safe it is to execute the proposed program
1448 * - the caller must hold ->cred_guard_mutex to protect against
1449 * PTRACE_ATTACH or seccomp thread-sync
1450 */
1451 static void check_unsafe_exec(struct linux_binprm *bprm)
1452 {
1453 struct task_struct *p = current, *t;
1454 unsigned n_fs;
1455
1456 if (p->ptrace)
1457 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1458
1459 /*
1460 * This isn't strictly necessary, but it makes it harder for LSMs to
1461 * mess up.
1462 */
1463 if (task_no_new_privs(current))
1464 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1465
1466 t = p;
1467 n_fs = 1;
1468 spin_lock(&p->fs->lock);
1469 rcu_read_lock();
1470 while_each_thread(p, t) {
1471 if (t->fs == p->fs)
1472 n_fs++;
1473 }
1474 rcu_read_unlock();
1475
1476 if (p->fs->users > n_fs)
1477 bprm->unsafe |= LSM_UNSAFE_SHARE;
1478 else
1479 p->fs->in_exec = 1;
1480 spin_unlock(&p->fs->lock);
1481 }
1482
1483 static void bprm_fill_uid(struct linux_binprm *bprm)
1484 {
1485 struct inode *inode;
1486 unsigned int mode;
1487 kuid_t uid;
1488 kgid_t gid;
1489
1490 /*
1491 * Since this can be called multiple times (via prepare_binprm),
1492 * we must clear any previous work done when setting set[ug]id
1493 * bits from any earlier bprm->file uses (for example when run
1494 * first for a setuid script then again for its interpreter).
1495 */
1496 bprm->cred->euid = current_euid();
1497 bprm->cred->egid = current_egid();
1498
1499 if (!mnt_may_suid(bprm->file->f_path.mnt))
1500 return;
1501
1502 if (task_no_new_privs(current))
1503 return;
1504
1505 inode = bprm->file->f_path.dentry->d_inode;
1506 mode = READ_ONCE(inode->i_mode);
1507 if (!(mode & (S_ISUID|S_ISGID)))
1508 return;
1509
1510 /* Be careful if suid/sgid is set */
1511 inode_lock(inode);
1512
1513 /* reload atomically mode/uid/gid now that lock held */
1514 mode = inode->i_mode;
1515 uid = inode->i_uid;
1516 gid = inode->i_gid;
1517 inode_unlock(inode);
1518
1519 /* We ignore suid/sgid if there are no mappings for them in the ns */
1520 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1521 !kgid_has_mapping(bprm->cred->user_ns, gid))
1522 return;
1523
1524 if (mode & S_ISUID) {
1525 bprm->per_clear |= PER_CLEAR_ON_SETID;
1526 bprm->cred->euid = uid;
1527 }
1528
1529 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1530 bprm->per_clear |= PER_CLEAR_ON_SETID;
1531 bprm->cred->egid = gid;
1532 }
1533 }
1534
1535 /*
1536 * Fill the binprm structure from the inode.
1537 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1538 *
1539 * This may be called multiple times for binary chains (scripts for example).
1540 */
1541 int prepare_binprm(struct linux_binprm *bprm)
1542 {
1543 int retval;
1544
1545 bprm_fill_uid(bprm);
1546
1547 /* fill in binprm security blob */
1548 retval = security_bprm_set_creds(bprm);
1549 if (retval)
1550 return retval;
1551 bprm->cred_prepared = 1;
1552
1553 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1554 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1555 }
1556
1557 EXPORT_SYMBOL(prepare_binprm);
1558
1559 /*
1560 * Arguments are '\0' separated strings found at the location bprm->p
1561 * points to; chop off the first by relocating brpm->p to right after
1562 * the first '\0' encountered.
1563 */
1564 int remove_arg_zero(struct linux_binprm *bprm)
1565 {
1566 int ret = 0;
1567 unsigned long offset;
1568 char *kaddr;
1569 struct page *page;
1570
1571 if (!bprm->argc)
1572 return 0;
1573
1574 do {
1575 offset = bprm->p & ~PAGE_MASK;
1576 page = get_arg_page(bprm, bprm->p, 0);
1577 if (!page) {
1578 ret = -EFAULT;
1579 goto out;
1580 }
1581 kaddr = kmap_atomic(page);
1582
1583 for (; offset < PAGE_SIZE && kaddr[offset];
1584 offset++, bprm->p++)
1585 ;
1586
1587 kunmap_atomic(kaddr);
1588 put_arg_page(page);
1589 } while (offset == PAGE_SIZE);
1590
1591 bprm->p++;
1592 bprm->argc--;
1593 ret = 0;
1594
1595 out:
1596 return ret;
1597 }
1598 EXPORT_SYMBOL(remove_arg_zero);
1599
1600 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1601 /*
1602 * cycle the list of binary formats handler, until one recognizes the image
1603 */
1604 int search_binary_handler(struct linux_binprm *bprm)
1605 {
1606 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1607 struct linux_binfmt *fmt;
1608 int retval;
1609
1610 /* This allows 4 levels of binfmt rewrites before failing hard. */
1611 if (bprm->recursion_depth > 5)
1612 return -ELOOP;
1613
1614 retval = security_bprm_check(bprm);
1615 if (retval)
1616 return retval;
1617
1618 retval = -ENOENT;
1619 retry:
1620 read_lock(&binfmt_lock);
1621 list_for_each_entry(fmt, &formats, lh) {
1622 if (!try_module_get(fmt->module))
1623 continue;
1624 read_unlock(&binfmt_lock);
1625 bprm->recursion_depth++;
1626 retval = fmt->load_binary(bprm);
1627 read_lock(&binfmt_lock);
1628 put_binfmt(fmt);
1629 bprm->recursion_depth--;
1630 if (retval < 0 && !bprm->mm) {
1631 /* we got to flush_old_exec() and failed after it */
1632 read_unlock(&binfmt_lock);
1633 force_sigsegv(SIGSEGV, current);
1634 return retval;
1635 }
1636 if (retval != -ENOEXEC || !bprm->file) {
1637 read_unlock(&binfmt_lock);
1638 return retval;
1639 }
1640 }
1641 read_unlock(&binfmt_lock);
1642
1643 if (need_retry) {
1644 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1645 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1646 return retval;
1647 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1648 return retval;
1649 need_retry = false;
1650 goto retry;
1651 }
1652
1653 return retval;
1654 }
1655 EXPORT_SYMBOL(search_binary_handler);
1656
1657 static int exec_binprm(struct linux_binprm *bprm)
1658 {
1659 pid_t old_pid, old_vpid;
1660 int ret;
1661
1662 /* Need to fetch pid before load_binary changes it */
1663 old_pid = current->pid;
1664 rcu_read_lock();
1665 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1666 rcu_read_unlock();
1667
1668 ret = search_binary_handler(bprm);
1669 if (ret >= 0) {
1670 audit_bprm(bprm);
1671 trace_sched_process_exec(current, old_pid, bprm);
1672 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1673 proc_exec_connector(current);
1674 }
1675
1676 return ret;
1677 }
1678
1679 /*
1680 * sys_execve() executes a new program.
1681 */
1682 static int do_execveat_common(int fd, struct filename *filename,
1683 struct user_arg_ptr argv,
1684 struct user_arg_ptr envp,
1685 int flags)
1686 {
1687 char *pathbuf = NULL;
1688 struct linux_binprm *bprm;
1689 struct file *file;
1690 struct files_struct *displaced;
1691 int retval;
1692
1693 if (IS_ERR(filename))
1694 return PTR_ERR(filename);
1695
1696 /*
1697 * We move the actual failure in case of RLIMIT_NPROC excess from
1698 * set*uid() to execve() because too many poorly written programs
1699 * don't check setuid() return code. Here we additionally recheck
1700 * whether NPROC limit is still exceeded.
1701 */
1702 if ((current->flags & PF_NPROC_EXCEEDED) &&
1703 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1704 retval = -EAGAIN;
1705 goto out_ret;
1706 }
1707
1708 /* We're below the limit (still or again), so we don't want to make
1709 * further execve() calls fail. */
1710 current->flags &= ~PF_NPROC_EXCEEDED;
1711
1712 retval = unshare_files(&displaced);
1713 if (retval)
1714 goto out_ret;
1715
1716 retval = -ENOMEM;
1717 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1718 if (!bprm)
1719 goto out_files;
1720
1721 retval = prepare_bprm_creds(bprm);
1722 if (retval)
1723 goto out_free;
1724
1725 check_unsafe_exec(bprm);
1726 current->in_execve = 1;
1727
1728 file = do_open_execat(fd, filename, flags);
1729 retval = PTR_ERR(file);
1730 if (IS_ERR(file))
1731 goto out_unmark;
1732
1733 sched_exec();
1734
1735 bprm->file = file;
1736 if (fd == AT_FDCWD || filename->name[0] == '/') {
1737 bprm->filename = filename->name;
1738 } else {
1739 if (filename->name[0] == '\0')
1740 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1741 else
1742 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1743 fd, filename->name);
1744 if (!pathbuf) {
1745 retval = -ENOMEM;
1746 goto out_unmark;
1747 }
1748 /*
1749 * Record that a name derived from an O_CLOEXEC fd will be
1750 * inaccessible after exec. Relies on having exclusive access to
1751 * current->files (due to unshare_files above).
1752 */
1753 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1754 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1755 bprm->filename = pathbuf;
1756 }
1757 bprm->interp = bprm->filename;
1758
1759 retval = bprm_mm_init(bprm);
1760 if (retval)
1761 goto out_unmark;
1762
1763 bprm->argc = count(argv, MAX_ARG_STRINGS);
1764 if ((retval = bprm->argc) < 0)
1765 goto out;
1766
1767 bprm->envc = count(envp, MAX_ARG_STRINGS);
1768 if ((retval = bprm->envc) < 0)
1769 goto out;
1770
1771 retval = prepare_binprm(bprm);
1772 if (retval < 0)
1773 goto out;
1774
1775 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1776 if (retval < 0)
1777 goto out;
1778
1779 bprm->exec = bprm->p;
1780 retval = copy_strings(bprm->envc, envp, bprm);
1781 if (retval < 0)
1782 goto out;
1783
1784 retval = copy_strings(bprm->argc, argv, bprm);
1785 if (retval < 0)
1786 goto out;
1787
1788 would_dump(bprm, bprm->file);
1789
1790 retval = exec_binprm(bprm);
1791 if (retval < 0)
1792 goto out;
1793
1794 /* execve succeeded */
1795 current->fs->in_exec = 0;
1796 current->in_execve = 0;
1797 acct_update_integrals(current);
1798 task_numa_free(current);
1799 free_bprm(bprm);
1800 kfree(pathbuf);
1801 putname(filename);
1802 if (displaced)
1803 put_files_struct(displaced);
1804 return retval;
1805
1806 out:
1807 if (bprm->mm) {
1808 acct_arg_size(bprm, 0);
1809 mmput(bprm->mm);
1810 }
1811
1812 out_unmark:
1813 current->fs->in_exec = 0;
1814 current->in_execve = 0;
1815
1816 out_free:
1817 free_bprm(bprm);
1818 kfree(pathbuf);
1819
1820 out_files:
1821 if (displaced)
1822 reset_files_struct(displaced);
1823 out_ret:
1824 putname(filename);
1825 return retval;
1826 }
1827
1828 int do_execve(struct filename *filename,
1829 const char __user *const __user *__argv,
1830 const char __user *const __user *__envp)
1831 {
1832 struct user_arg_ptr argv = { .ptr.native = __argv };
1833 struct user_arg_ptr envp = { .ptr.native = __envp };
1834 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1835 }
1836
1837 int do_execveat(int fd, struct filename *filename,
1838 const char __user *const __user *__argv,
1839 const char __user *const __user *__envp,
1840 int flags)
1841 {
1842 struct user_arg_ptr argv = { .ptr.native = __argv };
1843 struct user_arg_ptr envp = { .ptr.native = __envp };
1844
1845 return do_execveat_common(fd, filename, argv, envp, flags);
1846 }
1847
1848 #ifdef CONFIG_COMPAT
1849 static int compat_do_execve(struct filename *filename,
1850 const compat_uptr_t __user *__argv,
1851 const compat_uptr_t __user *__envp)
1852 {
1853 struct user_arg_ptr argv = {
1854 .is_compat = true,
1855 .ptr.compat = __argv,
1856 };
1857 struct user_arg_ptr envp = {
1858 .is_compat = true,
1859 .ptr.compat = __envp,
1860 };
1861 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1862 }
1863
1864 static int compat_do_execveat(int fd, struct filename *filename,
1865 const compat_uptr_t __user *__argv,
1866 const compat_uptr_t __user *__envp,
1867 int flags)
1868 {
1869 struct user_arg_ptr argv = {
1870 .is_compat = true,
1871 .ptr.compat = __argv,
1872 };
1873 struct user_arg_ptr envp = {
1874 .is_compat = true,
1875 .ptr.compat = __envp,
1876 };
1877 return do_execveat_common(fd, filename, argv, envp, flags);
1878 }
1879 #endif
1880
1881 void set_binfmt(struct linux_binfmt *new)
1882 {
1883 struct mm_struct *mm = current->mm;
1884
1885 if (mm->binfmt)
1886 module_put(mm->binfmt->module);
1887
1888 mm->binfmt = new;
1889 if (new)
1890 __module_get(new->module);
1891 }
1892 EXPORT_SYMBOL(set_binfmt);
1893
1894 /*
1895 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1896 */
1897 void set_dumpable(struct mm_struct *mm, int value)
1898 {
1899 unsigned long old, new;
1900
1901 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1902 return;
1903
1904 do {
1905 old = ACCESS_ONCE(mm->flags);
1906 new = (old & ~MMF_DUMPABLE_MASK) | value;
1907 } while (cmpxchg(&mm->flags, old, new) != old);
1908 }
1909
1910 SYSCALL_DEFINE3(execve,
1911 const char __user *, filename,
1912 const char __user *const __user *, argv,
1913 const char __user *const __user *, envp)
1914 {
1915 return do_execve(getname(filename), argv, envp);
1916 }
1917
1918 SYSCALL_DEFINE5(execveat,
1919 int, fd, const char __user *, filename,
1920 const char __user *const __user *, argv,
1921 const char __user *const __user *, envp,
1922 int, flags)
1923 {
1924 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1925
1926 return do_execveat(fd,
1927 getname_flags(filename, lookup_flags, NULL),
1928 argv, envp, flags);
1929 }
1930
1931 #ifdef CONFIG_COMPAT
1932 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1933 const compat_uptr_t __user *, argv,
1934 const compat_uptr_t __user *, envp)
1935 {
1936 return compat_do_execve(getname(filename), argv, envp);
1937 }
1938
1939 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1940 const char __user *, filename,
1941 const compat_uptr_t __user *, argv,
1942 const compat_uptr_t __user *, envp,
1943 int, flags)
1944 {
1945 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1946
1947 return compat_do_execveat(fd,
1948 getname_flags(filename, lookup_flags, NULL),
1949 argv, envp, flags);
1950 }
1951 #endif