]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
ext4: fail ext4_iget for root directory if unallocated
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148 */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 return S_ISLNK(inode->i_mode) && inode->i_size &&
152 (inode->i_size < EXT4_N_BLOCKS * 4);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188 int extra_credits = 3;
189 struct ext4_xattr_inode_array *ea_inode_array = NULL;
190
191 trace_ext4_evict_inode(inode);
192
193 if (inode->i_nlink) {
194 /*
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
208 *
209 * Note that directories do not have this problem because they
210 * don't use page cache.
211 */
212 if (inode->i_ino != EXT4_JOURNAL_INO &&
213 ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215 inode->i_data.nrpages) {
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218
219 jbd2_complete_transaction(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
222 truncate_inode_pages_final(&inode->i_data);
223
224 goto no_delete;
225 }
226
227 if (is_bad_inode(inode))
228 goto no_delete;
229 dquot_initialize(inode);
230
231 if (ext4_should_order_data(inode))
232 ext4_begin_ordered_truncate(inode, 0);
233 truncate_inode_pages_final(&inode->i_data);
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240
241 if (!IS_NOQUOTA(inode))
242 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243
244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 ext4_blocks_for_truncate(inode)+extra_credits);
246 if (IS_ERR(handle)) {
247 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 /*
249 * If we're going to skip the normal cleanup, we still need to
250 * make sure that the in-core orphan linked list is properly
251 * cleaned up.
252 */
253 ext4_orphan_del(NULL, inode);
254 sb_end_intwrite(inode->i_sb);
255 goto no_delete;
256 }
257
258 if (IS_SYNC(inode))
259 ext4_handle_sync(handle);
260
261 /*
262 * Set inode->i_size to 0 before calling ext4_truncate(). We need
263 * special handling of symlinks here because i_size is used to
264 * determine whether ext4_inode_info->i_data contains symlink data or
265 * block mappings. Setting i_size to 0 will remove its fast symlink
266 * status. Erase i_data so that it becomes a valid empty block map.
267 */
268 if (ext4_inode_is_fast_symlink(inode))
269 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
270 inode->i_size = 0;
271 err = ext4_mark_inode_dirty(handle, inode);
272 if (err) {
273 ext4_warning(inode->i_sb,
274 "couldn't mark inode dirty (err %d)", err);
275 goto stop_handle;
276 }
277 if (inode->i_blocks) {
278 err = ext4_truncate(inode);
279 if (err) {
280 ext4_error(inode->i_sb,
281 "couldn't truncate inode %lu (err %d)",
282 inode->i_ino, err);
283 goto stop_handle;
284 }
285 }
286
287 /* Remove xattr references. */
288 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
289 extra_credits);
290 if (err) {
291 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
292 stop_handle:
293 ext4_journal_stop(handle);
294 ext4_orphan_del(NULL, inode);
295 sb_end_intwrite(inode->i_sb);
296 ext4_xattr_inode_array_free(ea_inode_array);
297 goto no_delete;
298 }
299
300 /*
301 * Kill off the orphan record which ext4_truncate created.
302 * AKPM: I think this can be inside the above `if'.
303 * Note that ext4_orphan_del() has to be able to cope with the
304 * deletion of a non-existent orphan - this is because we don't
305 * know if ext4_truncate() actually created an orphan record.
306 * (Well, we could do this if we need to, but heck - it works)
307 */
308 ext4_orphan_del(handle, inode);
309 EXT4_I(inode)->i_dtime = get_seconds();
310
311 /*
312 * One subtle ordering requirement: if anything has gone wrong
313 * (transaction abort, IO errors, whatever), then we can still
314 * do these next steps (the fs will already have been marked as
315 * having errors), but we can't free the inode if the mark_dirty
316 * fails.
317 */
318 if (ext4_mark_inode_dirty(handle, inode))
319 /* If that failed, just do the required in-core inode clear. */
320 ext4_clear_inode(inode);
321 else
322 ext4_free_inode(handle, inode);
323 ext4_journal_stop(handle);
324 sb_end_intwrite(inode->i_sb);
325 ext4_xattr_inode_array_free(ea_inode_array);
326 return;
327 no_delete:
328 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
329 }
330
331 #ifdef CONFIG_QUOTA
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
333 {
334 return &EXT4_I(inode)->i_reserved_quota;
335 }
336 #endif
337
338 /*
339 * Called with i_data_sem down, which is important since we can call
340 * ext4_discard_preallocations() from here.
341 */
342 void ext4_da_update_reserve_space(struct inode *inode,
343 int used, int quota_claim)
344 {
345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346 struct ext4_inode_info *ei = EXT4_I(inode);
347
348 spin_lock(&ei->i_block_reservation_lock);
349 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350 if (unlikely(used > ei->i_reserved_data_blocks)) {
351 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352 "with only %d reserved data blocks",
353 __func__, inode->i_ino, used,
354 ei->i_reserved_data_blocks);
355 WARN_ON(1);
356 used = ei->i_reserved_data_blocks;
357 }
358
359 /* Update per-inode reservations */
360 ei->i_reserved_data_blocks -= used;
361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
362
363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
364
365 /* Update quota subsystem for data blocks */
366 if (quota_claim)
367 dquot_claim_block(inode, EXT4_C2B(sbi, used));
368 else {
369 /*
370 * We did fallocate with an offset that is already delayed
371 * allocated. So on delayed allocated writeback we should
372 * not re-claim the quota for fallocated blocks.
373 */
374 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
375 }
376
377 /*
378 * If we have done all the pending block allocations and if
379 * there aren't any writers on the inode, we can discard the
380 * inode's preallocations.
381 */
382 if ((ei->i_reserved_data_blocks == 0) &&
383 (atomic_read(&inode->i_writecount) == 0))
384 ext4_discard_preallocations(inode);
385 }
386
387 static int __check_block_validity(struct inode *inode, const char *func,
388 unsigned int line,
389 struct ext4_map_blocks *map)
390 {
391 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
392 map->m_len)) {
393 ext4_error_inode(inode, func, line, map->m_pblk,
394 "lblock %lu mapped to illegal pblock "
395 "(length %d)", (unsigned long) map->m_lblk,
396 map->m_len);
397 return -EFSCORRUPTED;
398 }
399 return 0;
400 }
401
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403 ext4_lblk_t len)
404 {
405 int ret;
406
407 if (ext4_encrypted_inode(inode))
408 return fscrypt_zeroout_range(inode, lblk, pblk, len);
409
410 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411 if (ret > 0)
412 ret = 0;
413
414 return ret;
415 }
416
417 #define check_block_validity(inode, map) \
418 __check_block_validity((inode), __func__, __LINE__, (map))
419
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
422 struct inode *inode,
423 struct ext4_map_blocks *es_map,
424 struct ext4_map_blocks *map,
425 int flags)
426 {
427 int retval;
428
429 map->m_flags = 0;
430 /*
431 * There is a race window that the result is not the same.
432 * e.g. xfstests #223 when dioread_nolock enables. The reason
433 * is that we lookup a block mapping in extent status tree with
434 * out taking i_data_sem. So at the time the unwritten extent
435 * could be converted.
436 */
437 down_read(&EXT4_I(inode)->i_data_sem);
438 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 retval = ext4_ext_map_blocks(handle, inode, map, flags &
440 EXT4_GET_BLOCKS_KEEP_SIZE);
441 } else {
442 retval = ext4_ind_map_blocks(handle, inode, map, flags &
443 EXT4_GET_BLOCKS_KEEP_SIZE);
444 }
445 up_read((&EXT4_I(inode)->i_data_sem));
446
447 /*
448 * We don't check m_len because extent will be collpased in status
449 * tree. So the m_len might not equal.
450 */
451 if (es_map->m_lblk != map->m_lblk ||
452 es_map->m_flags != map->m_flags ||
453 es_map->m_pblk != map->m_pblk) {
454 printk("ES cache assertion failed for inode: %lu "
455 "es_cached ex [%d/%d/%llu/%x] != "
456 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 inode->i_ino, es_map->m_lblk, es_map->m_len,
458 es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 map->m_len, map->m_pblk, map->m_flags,
460 retval, flags);
461 }
462 }
463 #endif /* ES_AGGRESSIVE_TEST */
464
465 /*
466 * The ext4_map_blocks() function tries to look up the requested blocks,
467 * and returns if the blocks are already mapped.
468 *
469 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470 * and store the allocated blocks in the result buffer head and mark it
471 * mapped.
472 *
473 * If file type is extents based, it will call ext4_ext_map_blocks(),
474 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
475 * based files
476 *
477 * On success, it returns the number of blocks being mapped or allocated. if
478 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480 *
481 * It returns 0 if plain look up failed (blocks have not been allocated), in
482 * that case, @map is returned as unmapped but we still do fill map->m_len to
483 * indicate the length of a hole starting at map->m_lblk.
484 *
485 * It returns the error in case of allocation failure.
486 */
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488 struct ext4_map_blocks *map, int flags)
489 {
490 struct extent_status es;
491 int retval;
492 int ret = 0;
493 #ifdef ES_AGGRESSIVE_TEST
494 struct ext4_map_blocks orig_map;
495
496 memcpy(&orig_map, map, sizeof(*map));
497 #endif
498
499 map->m_flags = 0;
500 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501 "logical block %lu\n", inode->i_ino, flags, map->m_len,
502 (unsigned long) map->m_lblk);
503
504 /*
505 * ext4_map_blocks returns an int, and m_len is an unsigned int
506 */
507 if (unlikely(map->m_len > INT_MAX))
508 map->m_len = INT_MAX;
509
510 /* We can handle the block number less than EXT_MAX_BLOCKS */
511 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512 return -EFSCORRUPTED;
513
514 /* Lookup extent status tree firstly */
515 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 map->m_pblk = ext4_es_pblock(&es) +
518 map->m_lblk - es.es_lblk;
519 map->m_flags |= ext4_es_is_written(&es) ?
520 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526 map->m_pblk = 0;
527 retval = es.es_len - (map->m_lblk - es.es_lblk);
528 if (retval > map->m_len)
529 retval = map->m_len;
530 map->m_len = retval;
531 retval = 0;
532 } else {
533 BUG_ON(1);
534 }
535 #ifdef ES_AGGRESSIVE_TEST
536 ext4_map_blocks_es_recheck(handle, inode, map,
537 &orig_map, flags);
538 #endif
539 goto found;
540 }
541
542 /*
543 * Try to see if we can get the block without requesting a new
544 * file system block.
545 */
546 down_read(&EXT4_I(inode)->i_data_sem);
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
550 } else {
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
553 }
554 if (retval > 0) {
555 unsigned int status;
556
557 if (unlikely(retval != map->m_len)) {
558 ext4_warning(inode->i_sb,
559 "ES len assertion failed for inode "
560 "%lu: retval %d != map->m_len %d",
561 inode->i_ino, retval, map->m_len);
562 WARN_ON(1);
563 }
564
565 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 !(status & EXTENT_STATUS_WRITTEN) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
577 up_read((&EXT4_I(inode)->i_data_sem));
578
579 found:
580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 ret = check_block_validity(inode, map);
582 if (ret != 0)
583 return ret;
584 }
585
586 /* If it is only a block(s) look up */
587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588 return retval;
589
590 /*
591 * Returns if the blocks have already allocated
592 *
593 * Note that if blocks have been preallocated
594 * ext4_ext_get_block() returns the create = 0
595 * with buffer head unmapped.
596 */
597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598 /*
599 * If we need to convert extent to unwritten
600 * we continue and do the actual work in
601 * ext4_ext_map_blocks()
602 */
603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604 return retval;
605
606 /*
607 * Here we clear m_flags because after allocating an new extent,
608 * it will be set again.
609 */
610 map->m_flags &= ~EXT4_MAP_FLAGS;
611
612 /*
613 * New blocks allocate and/or writing to unwritten extent
614 * will possibly result in updating i_data, so we take
615 * the write lock of i_data_sem, and call get_block()
616 * with create == 1 flag.
617 */
618 down_write(&EXT4_I(inode)->i_data_sem);
619
620 /*
621 * We need to check for EXT4 here because migrate
622 * could have changed the inode type in between
623 */
624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 retval = ext4_ext_map_blocks(handle, inode, map, flags);
626 } else {
627 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628
629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630 /*
631 * We allocated new blocks which will result in
632 * i_data's format changing. Force the migrate
633 * to fail by clearing migrate flags
634 */
635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636 }
637
638 /*
639 * Update reserved blocks/metadata blocks after successful
640 * block allocation which had been deferred till now. We don't
641 * support fallocate for non extent files. So we can update
642 * reserve space here.
643 */
644 if ((retval > 0) &&
645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 ext4_da_update_reserve_space(inode, retval, 1);
647 }
648
649 if (retval > 0) {
650 unsigned int status;
651
652 if (unlikely(retval != map->m_len)) {
653 ext4_warning(inode->i_sb,
654 "ES len assertion failed for inode "
655 "%lu: retval %d != map->m_len %d",
656 inode->i_ino, retval, map->m_len);
657 WARN_ON(1);
658 }
659
660 /*
661 * We have to zeroout blocks before inserting them into extent
662 * status tree. Otherwise someone could look them up there and
663 * use them before they are really zeroed. We also have to
664 * unmap metadata before zeroing as otherwise writeback can
665 * overwrite zeros with stale data from block device.
666 */
667 if (flags & EXT4_GET_BLOCKS_ZERO &&
668 map->m_flags & EXT4_MAP_MAPPED &&
669 map->m_flags & EXT4_MAP_NEW) {
670 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
671 map->m_len);
672 ret = ext4_issue_zeroout(inode, map->m_lblk,
673 map->m_pblk, map->m_len);
674 if (ret) {
675 retval = ret;
676 goto out_sem;
677 }
678 }
679
680 /*
681 * If the extent has been zeroed out, we don't need to update
682 * extent status tree.
683 */
684 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686 if (ext4_es_is_written(&es))
687 goto out_sem;
688 }
689 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692 !(status & EXTENT_STATUS_WRITTEN) &&
693 ext4_find_delalloc_range(inode, map->m_lblk,
694 map->m_lblk + map->m_len - 1))
695 status |= EXTENT_STATUS_DELAYED;
696 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697 map->m_pblk, status);
698 if (ret < 0) {
699 retval = ret;
700 goto out_sem;
701 }
702 }
703
704 out_sem:
705 up_write((&EXT4_I(inode)->i_data_sem));
706 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707 ret = check_block_validity(inode, map);
708 if (ret != 0)
709 return ret;
710
711 /*
712 * Inodes with freshly allocated blocks where contents will be
713 * visible after transaction commit must be on transaction's
714 * ordered data list.
715 */
716 if (map->m_flags & EXT4_MAP_NEW &&
717 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 !(flags & EXT4_GET_BLOCKS_ZERO) &&
719 !ext4_is_quota_file(inode) &&
720 ext4_should_order_data(inode)) {
721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 ret = ext4_jbd2_inode_add_wait(handle, inode);
723 else
724 ret = ext4_jbd2_inode_add_write(handle, inode);
725 if (ret)
726 return ret;
727 }
728 }
729 return retval;
730 }
731
732 /*
733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734 * we have to be careful as someone else may be manipulating b_state as well.
735 */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738 unsigned long old_state;
739 unsigned long new_state;
740
741 flags &= EXT4_MAP_FLAGS;
742
743 /* Dummy buffer_head? Set non-atomically. */
744 if (!bh->b_page) {
745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746 return;
747 }
748 /*
749 * Someone else may be modifying b_state. Be careful! This is ugly but
750 * once we get rid of using bh as a container for mapping information
751 * to pass to / from get_block functions, this can go away.
752 */
753 do {
754 old_state = READ_ONCE(bh->b_state);
755 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756 } while (unlikely(
757 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
762 {
763 struct ext4_map_blocks map;
764 int ret = 0;
765
766 if (ext4_has_inline_data(inode))
767 return -ERANGE;
768
769 map.m_lblk = iblock;
770 map.m_len = bh->b_size >> inode->i_blkbits;
771
772 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773 flags);
774 if (ret > 0) {
775 map_bh(bh, inode->i_sb, map.m_pblk);
776 ext4_update_bh_state(bh, map.m_flags);
777 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778 ret = 0;
779 } else if (ret == 0) {
780 /* hole case, need to fill in bh->b_size */
781 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782 }
783 return ret;
784 }
785
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh, int create)
788 {
789 return _ext4_get_block(inode, iblock, bh,
790 create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792
793 /*
794 * Get block function used when preparing for buffered write if we require
795 * creating an unwritten extent if blocks haven't been allocated. The extent
796 * will be converted to written after the IO is complete.
797 */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh_result, int create)
800 {
801 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 inode->i_ino, create);
803 return _ext4_get_block(inode, iblock, bh_result,
804 EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809
810 /*
811 * Get blocks function for the cases that need to start a transaction -
812 * generally difference cases of direct IO and DAX IO. It also handles retries
813 * in case of ENOSPC.
814 */
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh_result, int flags)
817 {
818 int dio_credits;
819 handle_t *handle;
820 int retries = 0;
821 int ret;
822
823 /* Trim mapping request to maximum we can map at once for DIO */
824 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826 dio_credits = ext4_chunk_trans_blocks(inode,
827 bh_result->b_size >> inode->i_blkbits);
828 retry:
829 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
830 if (IS_ERR(handle))
831 return PTR_ERR(handle);
832
833 ret = _ext4_get_block(inode, iblock, bh_result, flags);
834 ext4_journal_stop(handle);
835
836 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
837 goto retry;
838 return ret;
839 }
840
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843 struct buffer_head *bh, int create)
844 {
845 /* We don't expect handle for direct IO */
846 WARN_ON_ONCE(ext4_journal_current_handle());
847
848 if (!create)
849 return _ext4_get_block(inode, iblock, bh, 0);
850 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
851 }
852
853 /*
854 * Get block function for AIO DIO writes when we create unwritten extent if
855 * blocks are not allocated yet. The extent will be converted to written
856 * after IO is complete.
857 */
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859 sector_t iblock, struct buffer_head *bh_result, int create)
860 {
861 int ret;
862
863 /* We don't expect handle for direct IO */
864 WARN_ON_ONCE(ext4_journal_current_handle());
865
866 ret = ext4_get_block_trans(inode, iblock, bh_result,
867 EXT4_GET_BLOCKS_IO_CREATE_EXT);
868
869 /*
870 * When doing DIO using unwritten extents, we need io_end to convert
871 * unwritten extents to written on IO completion. We allocate io_end
872 * once we spot unwritten extent and store it in b_private. Generic
873 * DIO code keeps b_private set and furthermore passes the value to
874 * our completion callback in 'private' argument.
875 */
876 if (!ret && buffer_unwritten(bh_result)) {
877 if (!bh_result->b_private) {
878 ext4_io_end_t *io_end;
879
880 io_end = ext4_init_io_end(inode, GFP_KERNEL);
881 if (!io_end)
882 return -ENOMEM;
883 bh_result->b_private = io_end;
884 ext4_set_io_unwritten_flag(inode, io_end);
885 }
886 set_buffer_defer_completion(bh_result);
887 }
888
889 return ret;
890 }
891
892 /*
893 * Get block function for non-AIO DIO writes when we create unwritten extent if
894 * blocks are not allocated yet. The extent will be converted to written
895 * after IO is complete by ext4_direct_IO_write().
896 */
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898 sector_t iblock, struct buffer_head *bh_result, int create)
899 {
900 int ret;
901
902 /* We don't expect handle for direct IO */
903 WARN_ON_ONCE(ext4_journal_current_handle());
904
905 ret = ext4_get_block_trans(inode, iblock, bh_result,
906 EXT4_GET_BLOCKS_IO_CREATE_EXT);
907
908 /*
909 * Mark inode as having pending DIO writes to unwritten extents.
910 * ext4_direct_IO_write() checks this flag and converts extents to
911 * written.
912 */
913 if (!ret && buffer_unwritten(bh_result))
914 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
915
916 return ret;
917 }
918
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920 struct buffer_head *bh_result, int create)
921 {
922 int ret;
923
924 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925 inode->i_ino, create);
926 /* We don't expect handle for direct IO */
927 WARN_ON_ONCE(ext4_journal_current_handle());
928
929 ret = _ext4_get_block(inode, iblock, bh_result, 0);
930 /*
931 * Blocks should have been preallocated! ext4_file_write_iter() checks
932 * that.
933 */
934 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
935
936 return ret;
937 }
938
939
940 /*
941 * `handle' can be NULL if create is zero
942 */
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944 ext4_lblk_t block, int map_flags)
945 {
946 struct ext4_map_blocks map;
947 struct buffer_head *bh;
948 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
949 int err;
950
951 J_ASSERT(handle != NULL || create == 0);
952
953 map.m_lblk = block;
954 map.m_len = 1;
955 err = ext4_map_blocks(handle, inode, &map, map_flags);
956
957 if (err == 0)
958 return create ? ERR_PTR(-ENOSPC) : NULL;
959 if (err < 0)
960 return ERR_PTR(err);
961
962 bh = sb_getblk(inode->i_sb, map.m_pblk);
963 if (unlikely(!bh))
964 return ERR_PTR(-ENOMEM);
965 if (map.m_flags & EXT4_MAP_NEW) {
966 J_ASSERT(create != 0);
967 J_ASSERT(handle != NULL);
968
969 /*
970 * Now that we do not always journal data, we should
971 * keep in mind whether this should always journal the
972 * new buffer as metadata. For now, regular file
973 * writes use ext4_get_block instead, so it's not a
974 * problem.
975 */
976 lock_buffer(bh);
977 BUFFER_TRACE(bh, "call get_create_access");
978 err = ext4_journal_get_create_access(handle, bh);
979 if (unlikely(err)) {
980 unlock_buffer(bh);
981 goto errout;
982 }
983 if (!buffer_uptodate(bh)) {
984 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985 set_buffer_uptodate(bh);
986 }
987 unlock_buffer(bh);
988 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989 err = ext4_handle_dirty_metadata(handle, inode, bh);
990 if (unlikely(err))
991 goto errout;
992 } else
993 BUFFER_TRACE(bh, "not a new buffer");
994 return bh;
995 errout:
996 brelse(bh);
997 return ERR_PTR(err);
998 }
999
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001 ext4_lblk_t block, int map_flags)
1002 {
1003 struct buffer_head *bh;
1004
1005 bh = ext4_getblk(handle, inode, block, map_flags);
1006 if (IS_ERR(bh))
1007 return bh;
1008 if (!bh || buffer_uptodate(bh))
1009 return bh;
1010 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1011 wait_on_buffer(bh);
1012 if (buffer_uptodate(bh))
1013 return bh;
1014 put_bh(bh);
1015 return ERR_PTR(-EIO);
1016 }
1017
1018 /* Read a contiguous batch of blocks. */
1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1020 bool wait, struct buffer_head **bhs)
1021 {
1022 int i, err;
1023
1024 for (i = 0; i < bh_count; i++) {
1025 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1026 if (IS_ERR(bhs[i])) {
1027 err = PTR_ERR(bhs[i]);
1028 bh_count = i;
1029 goto out_brelse;
1030 }
1031 }
1032
1033 for (i = 0; i < bh_count; i++)
1034 /* Note that NULL bhs[i] is valid because of holes. */
1035 if (bhs[i] && !buffer_uptodate(bhs[i]))
1036 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1037 &bhs[i]);
1038
1039 if (!wait)
1040 return 0;
1041
1042 for (i = 0; i < bh_count; i++)
1043 if (bhs[i])
1044 wait_on_buffer(bhs[i]);
1045
1046 for (i = 0; i < bh_count; i++) {
1047 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1048 err = -EIO;
1049 goto out_brelse;
1050 }
1051 }
1052 return 0;
1053
1054 out_brelse:
1055 for (i = 0; i < bh_count; i++) {
1056 brelse(bhs[i]);
1057 bhs[i] = NULL;
1058 }
1059 return err;
1060 }
1061
1062 int ext4_walk_page_buffers(handle_t *handle,
1063 struct buffer_head *head,
1064 unsigned from,
1065 unsigned to,
1066 int *partial,
1067 int (*fn)(handle_t *handle,
1068 struct buffer_head *bh))
1069 {
1070 struct buffer_head *bh;
1071 unsigned block_start, block_end;
1072 unsigned blocksize = head->b_size;
1073 int err, ret = 0;
1074 struct buffer_head *next;
1075
1076 for (bh = head, block_start = 0;
1077 ret == 0 && (bh != head || !block_start);
1078 block_start = block_end, bh = next) {
1079 next = bh->b_this_page;
1080 block_end = block_start + blocksize;
1081 if (block_end <= from || block_start >= to) {
1082 if (partial && !buffer_uptodate(bh))
1083 *partial = 1;
1084 continue;
1085 }
1086 err = (*fn)(handle, bh);
1087 if (!ret)
1088 ret = err;
1089 }
1090 return ret;
1091 }
1092
1093 /*
1094 * To preserve ordering, it is essential that the hole instantiation and
1095 * the data write be encapsulated in a single transaction. We cannot
1096 * close off a transaction and start a new one between the ext4_get_block()
1097 * and the commit_write(). So doing the jbd2_journal_start at the start of
1098 * prepare_write() is the right place.
1099 *
1100 * Also, this function can nest inside ext4_writepage(). In that case, we
1101 * *know* that ext4_writepage() has generated enough buffer credits to do the
1102 * whole page. So we won't block on the journal in that case, which is good,
1103 * because the caller may be PF_MEMALLOC.
1104 *
1105 * By accident, ext4 can be reentered when a transaction is open via
1106 * quota file writes. If we were to commit the transaction while thus
1107 * reentered, there can be a deadlock - we would be holding a quota
1108 * lock, and the commit would never complete if another thread had a
1109 * transaction open and was blocking on the quota lock - a ranking
1110 * violation.
1111 *
1112 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1113 * will _not_ run commit under these circumstances because handle->h_ref
1114 * is elevated. We'll still have enough credits for the tiny quotafile
1115 * write.
1116 */
1117 int do_journal_get_write_access(handle_t *handle,
1118 struct buffer_head *bh)
1119 {
1120 int dirty = buffer_dirty(bh);
1121 int ret;
1122
1123 if (!buffer_mapped(bh) || buffer_freed(bh))
1124 return 0;
1125 /*
1126 * __block_write_begin() could have dirtied some buffers. Clean
1127 * the dirty bit as jbd2_journal_get_write_access() could complain
1128 * otherwise about fs integrity issues. Setting of the dirty bit
1129 * by __block_write_begin() isn't a real problem here as we clear
1130 * the bit before releasing a page lock and thus writeback cannot
1131 * ever write the buffer.
1132 */
1133 if (dirty)
1134 clear_buffer_dirty(bh);
1135 BUFFER_TRACE(bh, "get write access");
1136 ret = ext4_journal_get_write_access(handle, bh);
1137 if (!ret && dirty)
1138 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1139 return ret;
1140 }
1141
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1144 get_block_t *get_block)
1145 {
1146 unsigned from = pos & (PAGE_SIZE - 1);
1147 unsigned to = from + len;
1148 struct inode *inode = page->mapping->host;
1149 unsigned block_start, block_end;
1150 sector_t block;
1151 int err = 0;
1152 unsigned blocksize = inode->i_sb->s_blocksize;
1153 unsigned bbits;
1154 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1155 bool decrypt = false;
1156
1157 BUG_ON(!PageLocked(page));
1158 BUG_ON(from > PAGE_SIZE);
1159 BUG_ON(to > PAGE_SIZE);
1160 BUG_ON(from > to);
1161
1162 if (!page_has_buffers(page))
1163 create_empty_buffers(page, blocksize, 0);
1164 head = page_buffers(page);
1165 bbits = ilog2(blocksize);
1166 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1167
1168 for (bh = head, block_start = 0; bh != head || !block_start;
1169 block++, block_start = block_end, bh = bh->b_this_page) {
1170 block_end = block_start + blocksize;
1171 if (block_end <= from || block_start >= to) {
1172 if (PageUptodate(page)) {
1173 if (!buffer_uptodate(bh))
1174 set_buffer_uptodate(bh);
1175 }
1176 continue;
1177 }
1178 if (buffer_new(bh))
1179 clear_buffer_new(bh);
1180 if (!buffer_mapped(bh)) {
1181 WARN_ON(bh->b_size != blocksize);
1182 err = get_block(inode, block, bh, 1);
1183 if (err)
1184 break;
1185 if (buffer_new(bh)) {
1186 clean_bdev_bh_alias(bh);
1187 if (PageUptodate(page)) {
1188 clear_buffer_new(bh);
1189 set_buffer_uptodate(bh);
1190 mark_buffer_dirty(bh);
1191 continue;
1192 }
1193 if (block_end > to || block_start < from)
1194 zero_user_segments(page, to, block_end,
1195 block_start, from);
1196 continue;
1197 }
1198 }
1199 if (PageUptodate(page)) {
1200 if (!buffer_uptodate(bh))
1201 set_buffer_uptodate(bh);
1202 continue;
1203 }
1204 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1205 !buffer_unwritten(bh) &&
1206 (block_start < from || block_end > to)) {
1207 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1208 *wait_bh++ = bh;
1209 decrypt = ext4_encrypted_inode(inode) &&
1210 S_ISREG(inode->i_mode);
1211 }
1212 }
1213 /*
1214 * If we issued read requests, let them complete.
1215 */
1216 while (wait_bh > wait) {
1217 wait_on_buffer(*--wait_bh);
1218 if (!buffer_uptodate(*wait_bh))
1219 err = -EIO;
1220 }
1221 if (unlikely(err))
1222 page_zero_new_buffers(page, from, to);
1223 else if (decrypt)
1224 err = fscrypt_decrypt_page(page->mapping->host, page,
1225 PAGE_SIZE, 0, page->index);
1226 return err;
1227 }
1228 #endif
1229
1230 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1231 loff_t pos, unsigned len, unsigned flags,
1232 struct page **pagep, void **fsdata)
1233 {
1234 struct inode *inode = mapping->host;
1235 int ret, needed_blocks;
1236 handle_t *handle;
1237 int retries = 0;
1238 struct page *page;
1239 pgoff_t index;
1240 unsigned from, to;
1241
1242 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1243 return -EIO;
1244
1245 trace_ext4_write_begin(inode, pos, len, flags);
1246 /*
1247 * Reserve one block more for addition to orphan list in case
1248 * we allocate blocks but write fails for some reason
1249 */
1250 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1251 index = pos >> PAGE_SHIFT;
1252 from = pos & (PAGE_SIZE - 1);
1253 to = from + len;
1254
1255 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1256 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1257 flags, pagep);
1258 if (ret < 0)
1259 return ret;
1260 if (ret == 1)
1261 return 0;
1262 }
1263
1264 /*
1265 * grab_cache_page_write_begin() can take a long time if the
1266 * system is thrashing due to memory pressure, or if the page
1267 * is being written back. So grab it first before we start
1268 * the transaction handle. This also allows us to allocate
1269 * the page (if needed) without using GFP_NOFS.
1270 */
1271 retry_grab:
1272 page = grab_cache_page_write_begin(mapping, index, flags);
1273 if (!page)
1274 return -ENOMEM;
1275 unlock_page(page);
1276
1277 retry_journal:
1278 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1279 if (IS_ERR(handle)) {
1280 put_page(page);
1281 return PTR_ERR(handle);
1282 }
1283
1284 lock_page(page);
1285 if (page->mapping != mapping) {
1286 /* The page got truncated from under us */
1287 unlock_page(page);
1288 put_page(page);
1289 ext4_journal_stop(handle);
1290 goto retry_grab;
1291 }
1292 /* In case writeback began while the page was unlocked */
1293 wait_for_stable_page(page);
1294
1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1296 if (ext4_should_dioread_nolock(inode))
1297 ret = ext4_block_write_begin(page, pos, len,
1298 ext4_get_block_unwritten);
1299 else
1300 ret = ext4_block_write_begin(page, pos, len,
1301 ext4_get_block);
1302 #else
1303 if (ext4_should_dioread_nolock(inode))
1304 ret = __block_write_begin(page, pos, len,
1305 ext4_get_block_unwritten);
1306 else
1307 ret = __block_write_begin(page, pos, len, ext4_get_block);
1308 #endif
1309 if (!ret && ext4_should_journal_data(inode)) {
1310 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1311 from, to, NULL,
1312 do_journal_get_write_access);
1313 }
1314
1315 if (ret) {
1316 unlock_page(page);
1317 /*
1318 * __block_write_begin may have instantiated a few blocks
1319 * outside i_size. Trim these off again. Don't need
1320 * i_size_read because we hold i_mutex.
1321 *
1322 * Add inode to orphan list in case we crash before
1323 * truncate finishes
1324 */
1325 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1326 ext4_orphan_add(handle, inode);
1327
1328 ext4_journal_stop(handle);
1329 if (pos + len > inode->i_size) {
1330 ext4_truncate_failed_write(inode);
1331 /*
1332 * If truncate failed early the inode might
1333 * still be on the orphan list; we need to
1334 * make sure the inode is removed from the
1335 * orphan list in that case.
1336 */
1337 if (inode->i_nlink)
1338 ext4_orphan_del(NULL, inode);
1339 }
1340
1341 if (ret == -ENOSPC &&
1342 ext4_should_retry_alloc(inode->i_sb, &retries))
1343 goto retry_journal;
1344 put_page(page);
1345 return ret;
1346 }
1347 *pagep = page;
1348 return ret;
1349 }
1350
1351 /* For write_end() in data=journal mode */
1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1353 {
1354 int ret;
1355 if (!buffer_mapped(bh) || buffer_freed(bh))
1356 return 0;
1357 set_buffer_uptodate(bh);
1358 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1359 clear_buffer_meta(bh);
1360 clear_buffer_prio(bh);
1361 return ret;
1362 }
1363
1364 /*
1365 * We need to pick up the new inode size which generic_commit_write gave us
1366 * `file' can be NULL - eg, when called from page_symlink().
1367 *
1368 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1369 * buffers are managed internally.
1370 */
1371 static int ext4_write_end(struct file *file,
1372 struct address_space *mapping,
1373 loff_t pos, unsigned len, unsigned copied,
1374 struct page *page, void *fsdata)
1375 {
1376 handle_t *handle = ext4_journal_current_handle();
1377 struct inode *inode = mapping->host;
1378 loff_t old_size = inode->i_size;
1379 int ret = 0, ret2;
1380 int i_size_changed = 0;
1381
1382 trace_ext4_write_end(inode, pos, len, copied);
1383 if (ext4_has_inline_data(inode)) {
1384 ret = ext4_write_inline_data_end(inode, pos, len,
1385 copied, page);
1386 if (ret < 0) {
1387 unlock_page(page);
1388 put_page(page);
1389 goto errout;
1390 }
1391 copied = ret;
1392 } else
1393 copied = block_write_end(file, mapping, pos,
1394 len, copied, page, fsdata);
1395 /*
1396 * it's important to update i_size while still holding page lock:
1397 * page writeout could otherwise come in and zero beyond i_size.
1398 */
1399 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1400 unlock_page(page);
1401 put_page(page);
1402
1403 if (old_size < pos)
1404 pagecache_isize_extended(inode, old_size, pos);
1405 /*
1406 * Don't mark the inode dirty under page lock. First, it unnecessarily
1407 * makes the holding time of page lock longer. Second, it forces lock
1408 * ordering of page lock and transaction start for journaling
1409 * filesystems.
1410 */
1411 if (i_size_changed)
1412 ext4_mark_inode_dirty(handle, inode);
1413
1414 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1415 /* if we have allocated more blocks and copied
1416 * less. We will have blocks allocated outside
1417 * inode->i_size. So truncate them
1418 */
1419 ext4_orphan_add(handle, inode);
1420 errout:
1421 ret2 = ext4_journal_stop(handle);
1422 if (!ret)
1423 ret = ret2;
1424
1425 if (pos + len > inode->i_size) {
1426 ext4_truncate_failed_write(inode);
1427 /*
1428 * If truncate failed early the inode might still be
1429 * on the orphan list; we need to make sure the inode
1430 * is removed from the orphan list in that case.
1431 */
1432 if (inode->i_nlink)
1433 ext4_orphan_del(NULL, inode);
1434 }
1435
1436 return ret ? ret : copied;
1437 }
1438
1439 /*
1440 * This is a private version of page_zero_new_buffers() which doesn't
1441 * set the buffer to be dirty, since in data=journalled mode we need
1442 * to call ext4_handle_dirty_metadata() instead.
1443 */
1444 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1445 struct page *page,
1446 unsigned from, unsigned to)
1447 {
1448 unsigned int block_start = 0, block_end;
1449 struct buffer_head *head, *bh;
1450
1451 bh = head = page_buffers(page);
1452 do {
1453 block_end = block_start + bh->b_size;
1454 if (buffer_new(bh)) {
1455 if (block_end > from && block_start < to) {
1456 if (!PageUptodate(page)) {
1457 unsigned start, size;
1458
1459 start = max(from, block_start);
1460 size = min(to, block_end) - start;
1461
1462 zero_user(page, start, size);
1463 write_end_fn(handle, bh);
1464 }
1465 clear_buffer_new(bh);
1466 }
1467 }
1468 block_start = block_end;
1469 bh = bh->b_this_page;
1470 } while (bh != head);
1471 }
1472
1473 static int ext4_journalled_write_end(struct file *file,
1474 struct address_space *mapping,
1475 loff_t pos, unsigned len, unsigned copied,
1476 struct page *page, void *fsdata)
1477 {
1478 handle_t *handle = ext4_journal_current_handle();
1479 struct inode *inode = mapping->host;
1480 loff_t old_size = inode->i_size;
1481 int ret = 0, ret2;
1482 int partial = 0;
1483 unsigned from, to;
1484 int size_changed = 0;
1485
1486 trace_ext4_journalled_write_end(inode, pos, len, copied);
1487 from = pos & (PAGE_SIZE - 1);
1488 to = from + len;
1489
1490 BUG_ON(!ext4_handle_valid(handle));
1491
1492 if (ext4_has_inline_data(inode)) {
1493 ret = ext4_write_inline_data_end(inode, pos, len,
1494 copied, page);
1495 if (ret < 0) {
1496 unlock_page(page);
1497 put_page(page);
1498 goto errout;
1499 }
1500 copied = ret;
1501 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1502 copied = 0;
1503 ext4_journalled_zero_new_buffers(handle, page, from, to);
1504 } else {
1505 if (unlikely(copied < len))
1506 ext4_journalled_zero_new_buffers(handle, page,
1507 from + copied, to);
1508 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1509 from + copied, &partial,
1510 write_end_fn);
1511 if (!partial)
1512 SetPageUptodate(page);
1513 }
1514 size_changed = ext4_update_inode_size(inode, pos + copied);
1515 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1516 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1517 unlock_page(page);
1518 put_page(page);
1519
1520 if (old_size < pos)
1521 pagecache_isize_extended(inode, old_size, pos);
1522
1523 if (size_changed) {
1524 ret2 = ext4_mark_inode_dirty(handle, inode);
1525 if (!ret)
1526 ret = ret2;
1527 }
1528
1529 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1530 /* if we have allocated more blocks and copied
1531 * less. We will have blocks allocated outside
1532 * inode->i_size. So truncate them
1533 */
1534 ext4_orphan_add(handle, inode);
1535
1536 errout:
1537 ret2 = ext4_journal_stop(handle);
1538 if (!ret)
1539 ret = ret2;
1540 if (pos + len > inode->i_size) {
1541 ext4_truncate_failed_write(inode);
1542 /*
1543 * If truncate failed early the inode might still be
1544 * on the orphan list; we need to make sure the inode
1545 * is removed from the orphan list in that case.
1546 */
1547 if (inode->i_nlink)
1548 ext4_orphan_del(NULL, inode);
1549 }
1550
1551 return ret ? ret : copied;
1552 }
1553
1554 /*
1555 * Reserve space for a single cluster
1556 */
1557 static int ext4_da_reserve_space(struct inode *inode)
1558 {
1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 struct ext4_inode_info *ei = EXT4_I(inode);
1561 int ret;
1562
1563 /*
1564 * We will charge metadata quota at writeout time; this saves
1565 * us from metadata over-estimation, though we may go over by
1566 * a small amount in the end. Here we just reserve for data.
1567 */
1568 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1569 if (ret)
1570 return ret;
1571
1572 spin_lock(&ei->i_block_reservation_lock);
1573 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1574 spin_unlock(&ei->i_block_reservation_lock);
1575 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1576 return -ENOSPC;
1577 }
1578 ei->i_reserved_data_blocks++;
1579 trace_ext4_da_reserve_space(inode);
1580 spin_unlock(&ei->i_block_reservation_lock);
1581
1582 return 0; /* success */
1583 }
1584
1585 static void ext4_da_release_space(struct inode *inode, int to_free)
1586 {
1587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588 struct ext4_inode_info *ei = EXT4_I(inode);
1589
1590 if (!to_free)
1591 return; /* Nothing to release, exit */
1592
1593 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1594
1595 trace_ext4_da_release_space(inode, to_free);
1596 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1597 /*
1598 * if there aren't enough reserved blocks, then the
1599 * counter is messed up somewhere. Since this
1600 * function is called from invalidate page, it's
1601 * harmless to return without any action.
1602 */
1603 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1604 "ino %lu, to_free %d with only %d reserved "
1605 "data blocks", inode->i_ino, to_free,
1606 ei->i_reserved_data_blocks);
1607 WARN_ON(1);
1608 to_free = ei->i_reserved_data_blocks;
1609 }
1610 ei->i_reserved_data_blocks -= to_free;
1611
1612 /* update fs dirty data blocks counter */
1613 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1614
1615 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1616
1617 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1618 }
1619
1620 static void ext4_da_page_release_reservation(struct page *page,
1621 unsigned int offset,
1622 unsigned int length)
1623 {
1624 int to_release = 0, contiguous_blks = 0;
1625 struct buffer_head *head, *bh;
1626 unsigned int curr_off = 0;
1627 struct inode *inode = page->mapping->host;
1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629 unsigned int stop = offset + length;
1630 int num_clusters;
1631 ext4_fsblk_t lblk;
1632
1633 BUG_ON(stop > PAGE_SIZE || stop < length);
1634
1635 head = page_buffers(page);
1636 bh = head;
1637 do {
1638 unsigned int next_off = curr_off + bh->b_size;
1639
1640 if (next_off > stop)
1641 break;
1642
1643 if ((offset <= curr_off) && (buffer_delay(bh))) {
1644 to_release++;
1645 contiguous_blks++;
1646 clear_buffer_delay(bh);
1647 } else if (contiguous_blks) {
1648 lblk = page->index <<
1649 (PAGE_SHIFT - inode->i_blkbits);
1650 lblk += (curr_off >> inode->i_blkbits) -
1651 contiguous_blks;
1652 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1653 contiguous_blks = 0;
1654 }
1655 curr_off = next_off;
1656 } while ((bh = bh->b_this_page) != head);
1657
1658 if (contiguous_blks) {
1659 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1660 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1661 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1662 }
1663
1664 /* If we have released all the blocks belonging to a cluster, then we
1665 * need to release the reserved space for that cluster. */
1666 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1667 while (num_clusters > 0) {
1668 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1669 ((num_clusters - 1) << sbi->s_cluster_bits);
1670 if (sbi->s_cluster_ratio == 1 ||
1671 !ext4_find_delalloc_cluster(inode, lblk))
1672 ext4_da_release_space(inode, 1);
1673
1674 num_clusters--;
1675 }
1676 }
1677
1678 /*
1679 * Delayed allocation stuff
1680 */
1681
1682 struct mpage_da_data {
1683 struct inode *inode;
1684 struct writeback_control *wbc;
1685
1686 pgoff_t first_page; /* The first page to write */
1687 pgoff_t next_page; /* Current page to examine */
1688 pgoff_t last_page; /* Last page to examine */
1689 /*
1690 * Extent to map - this can be after first_page because that can be
1691 * fully mapped. We somewhat abuse m_flags to store whether the extent
1692 * is delalloc or unwritten.
1693 */
1694 struct ext4_map_blocks map;
1695 struct ext4_io_submit io_submit; /* IO submission data */
1696 unsigned int do_map:1;
1697 };
1698
1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1700 bool invalidate)
1701 {
1702 int nr_pages, i;
1703 pgoff_t index, end;
1704 struct pagevec pvec;
1705 struct inode *inode = mpd->inode;
1706 struct address_space *mapping = inode->i_mapping;
1707
1708 /* This is necessary when next_page == 0. */
1709 if (mpd->first_page >= mpd->next_page)
1710 return;
1711
1712 index = mpd->first_page;
1713 end = mpd->next_page - 1;
1714 if (invalidate) {
1715 ext4_lblk_t start, last;
1716 start = index << (PAGE_SHIFT - inode->i_blkbits);
1717 last = end << (PAGE_SHIFT - inode->i_blkbits);
1718 ext4_es_remove_extent(inode, start, last - start + 1);
1719 }
1720
1721 pagevec_init(&pvec, 0);
1722 while (index <= end) {
1723 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1724 if (nr_pages == 0)
1725 break;
1726 for (i = 0; i < nr_pages; i++) {
1727 struct page *page = pvec.pages[i];
1728 if (page->index > end)
1729 break;
1730 BUG_ON(!PageLocked(page));
1731 BUG_ON(PageWriteback(page));
1732 if (invalidate) {
1733 if (page_mapped(page))
1734 clear_page_dirty_for_io(page);
1735 block_invalidatepage(page, 0, PAGE_SIZE);
1736 ClearPageUptodate(page);
1737 }
1738 unlock_page(page);
1739 }
1740 index = pvec.pages[nr_pages - 1]->index + 1;
1741 pagevec_release(&pvec);
1742 }
1743 }
1744
1745 static void ext4_print_free_blocks(struct inode *inode)
1746 {
1747 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1748 struct super_block *sb = inode->i_sb;
1749 struct ext4_inode_info *ei = EXT4_I(inode);
1750
1751 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1752 EXT4_C2B(EXT4_SB(inode->i_sb),
1753 ext4_count_free_clusters(sb)));
1754 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1755 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1756 (long long) EXT4_C2B(EXT4_SB(sb),
1757 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1758 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1759 (long long) EXT4_C2B(EXT4_SB(sb),
1760 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1761 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1762 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1763 ei->i_reserved_data_blocks);
1764 return;
1765 }
1766
1767 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1768 {
1769 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1770 }
1771
1772 /*
1773 * This function is grabs code from the very beginning of
1774 * ext4_map_blocks, but assumes that the caller is from delayed write
1775 * time. This function looks up the requested blocks and sets the
1776 * buffer delay bit under the protection of i_data_sem.
1777 */
1778 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1779 struct ext4_map_blocks *map,
1780 struct buffer_head *bh)
1781 {
1782 struct extent_status es;
1783 int retval;
1784 sector_t invalid_block = ~((sector_t) 0xffff);
1785 #ifdef ES_AGGRESSIVE_TEST
1786 struct ext4_map_blocks orig_map;
1787
1788 memcpy(&orig_map, map, sizeof(*map));
1789 #endif
1790
1791 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1792 invalid_block = ~0;
1793
1794 map->m_flags = 0;
1795 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1796 "logical block %lu\n", inode->i_ino, map->m_len,
1797 (unsigned long) map->m_lblk);
1798
1799 /* Lookup extent status tree firstly */
1800 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1801 if (ext4_es_is_hole(&es)) {
1802 retval = 0;
1803 down_read(&EXT4_I(inode)->i_data_sem);
1804 goto add_delayed;
1805 }
1806
1807 /*
1808 * Delayed extent could be allocated by fallocate.
1809 * So we need to check it.
1810 */
1811 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1812 map_bh(bh, inode->i_sb, invalid_block);
1813 set_buffer_new(bh);
1814 set_buffer_delay(bh);
1815 return 0;
1816 }
1817
1818 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1819 retval = es.es_len - (iblock - es.es_lblk);
1820 if (retval > map->m_len)
1821 retval = map->m_len;
1822 map->m_len = retval;
1823 if (ext4_es_is_written(&es))
1824 map->m_flags |= EXT4_MAP_MAPPED;
1825 else if (ext4_es_is_unwritten(&es))
1826 map->m_flags |= EXT4_MAP_UNWRITTEN;
1827 else
1828 BUG_ON(1);
1829
1830 #ifdef ES_AGGRESSIVE_TEST
1831 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1832 #endif
1833 return retval;
1834 }
1835
1836 /*
1837 * Try to see if we can get the block without requesting a new
1838 * file system block.
1839 */
1840 down_read(&EXT4_I(inode)->i_data_sem);
1841 if (ext4_has_inline_data(inode))
1842 retval = 0;
1843 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1844 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1845 else
1846 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1847
1848 add_delayed:
1849 if (retval == 0) {
1850 int ret;
1851 /*
1852 * XXX: __block_prepare_write() unmaps passed block,
1853 * is it OK?
1854 */
1855 /*
1856 * If the block was allocated from previously allocated cluster,
1857 * then we don't need to reserve it again. However we still need
1858 * to reserve metadata for every block we're going to write.
1859 */
1860 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1861 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1862 ret = ext4_da_reserve_space(inode);
1863 if (ret) {
1864 /* not enough space to reserve */
1865 retval = ret;
1866 goto out_unlock;
1867 }
1868 }
1869
1870 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1871 ~0, EXTENT_STATUS_DELAYED);
1872 if (ret) {
1873 retval = ret;
1874 goto out_unlock;
1875 }
1876
1877 map_bh(bh, inode->i_sb, invalid_block);
1878 set_buffer_new(bh);
1879 set_buffer_delay(bh);
1880 } else if (retval > 0) {
1881 int ret;
1882 unsigned int status;
1883
1884 if (unlikely(retval != map->m_len)) {
1885 ext4_warning(inode->i_sb,
1886 "ES len assertion failed for inode "
1887 "%lu: retval %d != map->m_len %d",
1888 inode->i_ino, retval, map->m_len);
1889 WARN_ON(1);
1890 }
1891
1892 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1893 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1894 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1895 map->m_pblk, status);
1896 if (ret != 0)
1897 retval = ret;
1898 }
1899
1900 out_unlock:
1901 up_read((&EXT4_I(inode)->i_data_sem));
1902
1903 return retval;
1904 }
1905
1906 /*
1907 * This is a special get_block_t callback which is used by
1908 * ext4_da_write_begin(). It will either return mapped block or
1909 * reserve space for a single block.
1910 *
1911 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1912 * We also have b_blocknr = -1 and b_bdev initialized properly
1913 *
1914 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1915 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1916 * initialized properly.
1917 */
1918 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1919 struct buffer_head *bh, int create)
1920 {
1921 struct ext4_map_blocks map;
1922 int ret = 0;
1923
1924 BUG_ON(create == 0);
1925 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1926
1927 map.m_lblk = iblock;
1928 map.m_len = 1;
1929
1930 /*
1931 * first, we need to know whether the block is allocated already
1932 * preallocated blocks are unmapped but should treated
1933 * the same as allocated blocks.
1934 */
1935 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1936 if (ret <= 0)
1937 return ret;
1938
1939 map_bh(bh, inode->i_sb, map.m_pblk);
1940 ext4_update_bh_state(bh, map.m_flags);
1941
1942 if (buffer_unwritten(bh)) {
1943 /* A delayed write to unwritten bh should be marked
1944 * new and mapped. Mapped ensures that we don't do
1945 * get_block multiple times when we write to the same
1946 * offset and new ensures that we do proper zero out
1947 * for partial write.
1948 */
1949 set_buffer_new(bh);
1950 set_buffer_mapped(bh);
1951 }
1952 return 0;
1953 }
1954
1955 static int bget_one(handle_t *handle, struct buffer_head *bh)
1956 {
1957 get_bh(bh);
1958 return 0;
1959 }
1960
1961 static int bput_one(handle_t *handle, struct buffer_head *bh)
1962 {
1963 put_bh(bh);
1964 return 0;
1965 }
1966
1967 static int __ext4_journalled_writepage(struct page *page,
1968 unsigned int len)
1969 {
1970 struct address_space *mapping = page->mapping;
1971 struct inode *inode = mapping->host;
1972 struct buffer_head *page_bufs = NULL;
1973 handle_t *handle = NULL;
1974 int ret = 0, err = 0;
1975 int inline_data = ext4_has_inline_data(inode);
1976 struct buffer_head *inode_bh = NULL;
1977
1978 ClearPageChecked(page);
1979
1980 if (inline_data) {
1981 BUG_ON(page->index != 0);
1982 BUG_ON(len > ext4_get_max_inline_size(inode));
1983 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1984 if (inode_bh == NULL)
1985 goto out;
1986 } else {
1987 page_bufs = page_buffers(page);
1988 if (!page_bufs) {
1989 BUG();
1990 goto out;
1991 }
1992 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1993 NULL, bget_one);
1994 }
1995 /*
1996 * We need to release the page lock before we start the
1997 * journal, so grab a reference so the page won't disappear
1998 * out from under us.
1999 */
2000 get_page(page);
2001 unlock_page(page);
2002
2003 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2004 ext4_writepage_trans_blocks(inode));
2005 if (IS_ERR(handle)) {
2006 ret = PTR_ERR(handle);
2007 put_page(page);
2008 goto out_no_pagelock;
2009 }
2010 BUG_ON(!ext4_handle_valid(handle));
2011
2012 lock_page(page);
2013 put_page(page);
2014 if (page->mapping != mapping) {
2015 /* The page got truncated from under us */
2016 ext4_journal_stop(handle);
2017 ret = 0;
2018 goto out;
2019 }
2020
2021 if (inline_data) {
2022 BUFFER_TRACE(inode_bh, "get write access");
2023 ret = ext4_journal_get_write_access(handle, inode_bh);
2024
2025 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2026
2027 } else {
2028 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2029 do_journal_get_write_access);
2030
2031 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2032 write_end_fn);
2033 }
2034 if (ret == 0)
2035 ret = err;
2036 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2037 err = ext4_journal_stop(handle);
2038 if (!ret)
2039 ret = err;
2040
2041 if (!ext4_has_inline_data(inode))
2042 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2043 NULL, bput_one);
2044 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2045 out:
2046 unlock_page(page);
2047 out_no_pagelock:
2048 brelse(inode_bh);
2049 return ret;
2050 }
2051
2052 /*
2053 * Note that we don't need to start a transaction unless we're journaling data
2054 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2055 * need to file the inode to the transaction's list in ordered mode because if
2056 * we are writing back data added by write(), the inode is already there and if
2057 * we are writing back data modified via mmap(), no one guarantees in which
2058 * transaction the data will hit the disk. In case we are journaling data, we
2059 * cannot start transaction directly because transaction start ranks above page
2060 * lock so we have to do some magic.
2061 *
2062 * This function can get called via...
2063 * - ext4_writepages after taking page lock (have journal handle)
2064 * - journal_submit_inode_data_buffers (no journal handle)
2065 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2066 * - grab_page_cache when doing write_begin (have journal handle)
2067 *
2068 * We don't do any block allocation in this function. If we have page with
2069 * multiple blocks we need to write those buffer_heads that are mapped. This
2070 * is important for mmaped based write. So if we do with blocksize 1K
2071 * truncate(f, 1024);
2072 * a = mmap(f, 0, 4096);
2073 * a[0] = 'a';
2074 * truncate(f, 4096);
2075 * we have in the page first buffer_head mapped via page_mkwrite call back
2076 * but other buffer_heads would be unmapped but dirty (dirty done via the
2077 * do_wp_page). So writepage should write the first block. If we modify
2078 * the mmap area beyond 1024 we will again get a page_fault and the
2079 * page_mkwrite callback will do the block allocation and mark the
2080 * buffer_heads mapped.
2081 *
2082 * We redirty the page if we have any buffer_heads that is either delay or
2083 * unwritten in the page.
2084 *
2085 * We can get recursively called as show below.
2086 *
2087 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2088 * ext4_writepage()
2089 *
2090 * But since we don't do any block allocation we should not deadlock.
2091 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2092 */
2093 static int ext4_writepage(struct page *page,
2094 struct writeback_control *wbc)
2095 {
2096 int ret = 0;
2097 loff_t size;
2098 unsigned int len;
2099 struct buffer_head *page_bufs = NULL;
2100 struct inode *inode = page->mapping->host;
2101 struct ext4_io_submit io_submit;
2102 bool keep_towrite = false;
2103
2104 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2105 ext4_invalidatepage(page, 0, PAGE_SIZE);
2106 unlock_page(page);
2107 return -EIO;
2108 }
2109
2110 trace_ext4_writepage(page);
2111 size = i_size_read(inode);
2112 if (page->index == size >> PAGE_SHIFT)
2113 len = size & ~PAGE_MASK;
2114 else
2115 len = PAGE_SIZE;
2116
2117 page_bufs = page_buffers(page);
2118 /*
2119 * We cannot do block allocation or other extent handling in this
2120 * function. If there are buffers needing that, we have to redirty
2121 * the page. But we may reach here when we do a journal commit via
2122 * journal_submit_inode_data_buffers() and in that case we must write
2123 * allocated buffers to achieve data=ordered mode guarantees.
2124 *
2125 * Also, if there is only one buffer per page (the fs block
2126 * size == the page size), if one buffer needs block
2127 * allocation or needs to modify the extent tree to clear the
2128 * unwritten flag, we know that the page can't be written at
2129 * all, so we might as well refuse the write immediately.
2130 * Unfortunately if the block size != page size, we can't as
2131 * easily detect this case using ext4_walk_page_buffers(), but
2132 * for the extremely common case, this is an optimization that
2133 * skips a useless round trip through ext4_bio_write_page().
2134 */
2135 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2136 ext4_bh_delay_or_unwritten)) {
2137 redirty_page_for_writepage(wbc, page);
2138 if ((current->flags & PF_MEMALLOC) ||
2139 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2140 /*
2141 * For memory cleaning there's no point in writing only
2142 * some buffers. So just bail out. Warn if we came here
2143 * from direct reclaim.
2144 */
2145 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2146 == PF_MEMALLOC);
2147 unlock_page(page);
2148 return 0;
2149 }
2150 keep_towrite = true;
2151 }
2152
2153 if (PageChecked(page) && ext4_should_journal_data(inode))
2154 /*
2155 * It's mmapped pagecache. Add buffers and journal it. There
2156 * doesn't seem much point in redirtying the page here.
2157 */
2158 return __ext4_journalled_writepage(page, len);
2159
2160 ext4_io_submit_init(&io_submit, wbc);
2161 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2162 if (!io_submit.io_end) {
2163 redirty_page_for_writepage(wbc, page);
2164 unlock_page(page);
2165 return -ENOMEM;
2166 }
2167 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2168 ext4_io_submit(&io_submit);
2169 /* Drop io_end reference we got from init */
2170 ext4_put_io_end_defer(io_submit.io_end);
2171 return ret;
2172 }
2173
2174 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2175 {
2176 int len;
2177 loff_t size;
2178 int err;
2179
2180 BUG_ON(page->index != mpd->first_page);
2181 clear_page_dirty_for_io(page);
2182 /*
2183 * We have to be very careful here! Nothing protects writeback path
2184 * against i_size changes and the page can be writeably mapped into
2185 * page tables. So an application can be growing i_size and writing
2186 * data through mmap while writeback runs. clear_page_dirty_for_io()
2187 * write-protects our page in page tables and the page cannot get
2188 * written to again until we release page lock. So only after
2189 * clear_page_dirty_for_io() we are safe to sample i_size for
2190 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2191 * on the barrier provided by TestClearPageDirty in
2192 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2193 * after page tables are updated.
2194 */
2195 size = i_size_read(mpd->inode);
2196 if (page->index == size >> PAGE_SHIFT)
2197 len = size & ~PAGE_MASK;
2198 else
2199 len = PAGE_SIZE;
2200 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2201 if (!err)
2202 mpd->wbc->nr_to_write--;
2203 mpd->first_page++;
2204
2205 return err;
2206 }
2207
2208 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2209
2210 /*
2211 * mballoc gives us at most this number of blocks...
2212 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2213 * The rest of mballoc seems to handle chunks up to full group size.
2214 */
2215 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2216
2217 /*
2218 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2219 *
2220 * @mpd - extent of blocks
2221 * @lblk - logical number of the block in the file
2222 * @bh - buffer head we want to add to the extent
2223 *
2224 * The function is used to collect contig. blocks in the same state. If the
2225 * buffer doesn't require mapping for writeback and we haven't started the
2226 * extent of buffers to map yet, the function returns 'true' immediately - the
2227 * caller can write the buffer right away. Otherwise the function returns true
2228 * if the block has been added to the extent, false if the block couldn't be
2229 * added.
2230 */
2231 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2232 struct buffer_head *bh)
2233 {
2234 struct ext4_map_blocks *map = &mpd->map;
2235
2236 /* Buffer that doesn't need mapping for writeback? */
2237 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2238 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2239 /* So far no extent to map => we write the buffer right away */
2240 if (map->m_len == 0)
2241 return true;
2242 return false;
2243 }
2244
2245 /* First block in the extent? */
2246 if (map->m_len == 0) {
2247 /* We cannot map unless handle is started... */
2248 if (!mpd->do_map)
2249 return false;
2250 map->m_lblk = lblk;
2251 map->m_len = 1;
2252 map->m_flags = bh->b_state & BH_FLAGS;
2253 return true;
2254 }
2255
2256 /* Don't go larger than mballoc is willing to allocate */
2257 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2258 return false;
2259
2260 /* Can we merge the block to our big extent? */
2261 if (lblk == map->m_lblk + map->m_len &&
2262 (bh->b_state & BH_FLAGS) == map->m_flags) {
2263 map->m_len++;
2264 return true;
2265 }
2266 return false;
2267 }
2268
2269 /*
2270 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2271 *
2272 * @mpd - extent of blocks for mapping
2273 * @head - the first buffer in the page
2274 * @bh - buffer we should start processing from
2275 * @lblk - logical number of the block in the file corresponding to @bh
2276 *
2277 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2278 * the page for IO if all buffers in this page were mapped and there's no
2279 * accumulated extent of buffers to map or add buffers in the page to the
2280 * extent of buffers to map. The function returns 1 if the caller can continue
2281 * by processing the next page, 0 if it should stop adding buffers to the
2282 * extent to map because we cannot extend it anymore. It can also return value
2283 * < 0 in case of error during IO submission.
2284 */
2285 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2286 struct buffer_head *head,
2287 struct buffer_head *bh,
2288 ext4_lblk_t lblk)
2289 {
2290 struct inode *inode = mpd->inode;
2291 int err;
2292 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2293 >> inode->i_blkbits;
2294
2295 do {
2296 BUG_ON(buffer_locked(bh));
2297
2298 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2299 /* Found extent to map? */
2300 if (mpd->map.m_len)
2301 return 0;
2302 /* Buffer needs mapping and handle is not started? */
2303 if (!mpd->do_map)
2304 return 0;
2305 /* Everything mapped so far and we hit EOF */
2306 break;
2307 }
2308 } while (lblk++, (bh = bh->b_this_page) != head);
2309 /* So far everything mapped? Submit the page for IO. */
2310 if (mpd->map.m_len == 0) {
2311 err = mpage_submit_page(mpd, head->b_page);
2312 if (err < 0)
2313 return err;
2314 }
2315 return lblk < blocks;
2316 }
2317
2318 /*
2319 * mpage_map_buffers - update buffers corresponding to changed extent and
2320 * submit fully mapped pages for IO
2321 *
2322 * @mpd - description of extent to map, on return next extent to map
2323 *
2324 * Scan buffers corresponding to changed extent (we expect corresponding pages
2325 * to be already locked) and update buffer state according to new extent state.
2326 * We map delalloc buffers to their physical location, clear unwritten bits,
2327 * and mark buffers as uninit when we perform writes to unwritten extents
2328 * and do extent conversion after IO is finished. If the last page is not fully
2329 * mapped, we update @map to the next extent in the last page that needs
2330 * mapping. Otherwise we submit the page for IO.
2331 */
2332 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2333 {
2334 struct pagevec pvec;
2335 int nr_pages, i;
2336 struct inode *inode = mpd->inode;
2337 struct buffer_head *head, *bh;
2338 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2339 pgoff_t start, end;
2340 ext4_lblk_t lblk;
2341 sector_t pblock;
2342 int err;
2343
2344 start = mpd->map.m_lblk >> bpp_bits;
2345 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2346 lblk = start << bpp_bits;
2347 pblock = mpd->map.m_pblk;
2348
2349 pagevec_init(&pvec, 0);
2350 while (start <= end) {
2351 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2352 PAGEVEC_SIZE);
2353 if (nr_pages == 0)
2354 break;
2355 for (i = 0; i < nr_pages; i++) {
2356 struct page *page = pvec.pages[i];
2357
2358 if (page->index > end)
2359 break;
2360 /* Up to 'end' pages must be contiguous */
2361 BUG_ON(page->index != start);
2362 bh = head = page_buffers(page);
2363 do {
2364 if (lblk < mpd->map.m_lblk)
2365 continue;
2366 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2367 /*
2368 * Buffer after end of mapped extent.
2369 * Find next buffer in the page to map.
2370 */
2371 mpd->map.m_len = 0;
2372 mpd->map.m_flags = 0;
2373 /*
2374 * FIXME: If dioread_nolock supports
2375 * blocksize < pagesize, we need to make
2376 * sure we add size mapped so far to
2377 * io_end->size as the following call
2378 * can submit the page for IO.
2379 */
2380 err = mpage_process_page_bufs(mpd, head,
2381 bh, lblk);
2382 pagevec_release(&pvec);
2383 if (err > 0)
2384 err = 0;
2385 return err;
2386 }
2387 if (buffer_delay(bh)) {
2388 clear_buffer_delay(bh);
2389 bh->b_blocknr = pblock++;
2390 }
2391 clear_buffer_unwritten(bh);
2392 } while (lblk++, (bh = bh->b_this_page) != head);
2393
2394 /*
2395 * FIXME: This is going to break if dioread_nolock
2396 * supports blocksize < pagesize as we will try to
2397 * convert potentially unmapped parts of inode.
2398 */
2399 mpd->io_submit.io_end->size += PAGE_SIZE;
2400 /* Page fully mapped - let IO run! */
2401 err = mpage_submit_page(mpd, page);
2402 if (err < 0) {
2403 pagevec_release(&pvec);
2404 return err;
2405 }
2406 start++;
2407 }
2408 pagevec_release(&pvec);
2409 }
2410 /* Extent fully mapped and matches with page boundary. We are done. */
2411 mpd->map.m_len = 0;
2412 mpd->map.m_flags = 0;
2413 return 0;
2414 }
2415
2416 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2417 {
2418 struct inode *inode = mpd->inode;
2419 struct ext4_map_blocks *map = &mpd->map;
2420 int get_blocks_flags;
2421 int err, dioread_nolock;
2422
2423 trace_ext4_da_write_pages_extent(inode, map);
2424 /*
2425 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2426 * to convert an unwritten extent to be initialized (in the case
2427 * where we have written into one or more preallocated blocks). It is
2428 * possible that we're going to need more metadata blocks than
2429 * previously reserved. However we must not fail because we're in
2430 * writeback and there is nothing we can do about it so it might result
2431 * in data loss. So use reserved blocks to allocate metadata if
2432 * possible.
2433 *
2434 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2435 * the blocks in question are delalloc blocks. This indicates
2436 * that the blocks and quotas has already been checked when
2437 * the data was copied into the page cache.
2438 */
2439 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2440 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2441 EXT4_GET_BLOCKS_IO_SUBMIT;
2442 dioread_nolock = ext4_should_dioread_nolock(inode);
2443 if (dioread_nolock)
2444 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2445 if (map->m_flags & (1 << BH_Delay))
2446 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2447
2448 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2449 if (err < 0)
2450 return err;
2451 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2452 if (!mpd->io_submit.io_end->handle &&
2453 ext4_handle_valid(handle)) {
2454 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2455 handle->h_rsv_handle = NULL;
2456 }
2457 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2458 }
2459
2460 BUG_ON(map->m_len == 0);
2461 if (map->m_flags & EXT4_MAP_NEW) {
2462 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2463 map->m_len);
2464 }
2465 return 0;
2466 }
2467
2468 /*
2469 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2470 * mpd->len and submit pages underlying it for IO
2471 *
2472 * @handle - handle for journal operations
2473 * @mpd - extent to map
2474 * @give_up_on_write - we set this to true iff there is a fatal error and there
2475 * is no hope of writing the data. The caller should discard
2476 * dirty pages to avoid infinite loops.
2477 *
2478 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2479 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2480 * them to initialized or split the described range from larger unwritten
2481 * extent. Note that we need not map all the described range since allocation
2482 * can return less blocks or the range is covered by more unwritten extents. We
2483 * cannot map more because we are limited by reserved transaction credits. On
2484 * the other hand we always make sure that the last touched page is fully
2485 * mapped so that it can be written out (and thus forward progress is
2486 * guaranteed). After mapping we submit all mapped pages for IO.
2487 */
2488 static int mpage_map_and_submit_extent(handle_t *handle,
2489 struct mpage_da_data *mpd,
2490 bool *give_up_on_write)
2491 {
2492 struct inode *inode = mpd->inode;
2493 struct ext4_map_blocks *map = &mpd->map;
2494 int err;
2495 loff_t disksize;
2496 int progress = 0;
2497
2498 mpd->io_submit.io_end->offset =
2499 ((loff_t)map->m_lblk) << inode->i_blkbits;
2500 do {
2501 err = mpage_map_one_extent(handle, mpd);
2502 if (err < 0) {
2503 struct super_block *sb = inode->i_sb;
2504
2505 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2506 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2507 goto invalidate_dirty_pages;
2508 /*
2509 * Let the uper layers retry transient errors.
2510 * In the case of ENOSPC, if ext4_count_free_blocks()
2511 * is non-zero, a commit should free up blocks.
2512 */
2513 if ((err == -ENOMEM) ||
2514 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2515 if (progress)
2516 goto update_disksize;
2517 return err;
2518 }
2519 ext4_msg(sb, KERN_CRIT,
2520 "Delayed block allocation failed for "
2521 "inode %lu at logical offset %llu with"
2522 " max blocks %u with error %d",
2523 inode->i_ino,
2524 (unsigned long long)map->m_lblk,
2525 (unsigned)map->m_len, -err);
2526 ext4_msg(sb, KERN_CRIT,
2527 "This should not happen!! Data will "
2528 "be lost\n");
2529 if (err == -ENOSPC)
2530 ext4_print_free_blocks(inode);
2531 invalidate_dirty_pages:
2532 *give_up_on_write = true;
2533 return err;
2534 }
2535 progress = 1;
2536 /*
2537 * Update buffer state, submit mapped pages, and get us new
2538 * extent to map
2539 */
2540 err = mpage_map_and_submit_buffers(mpd);
2541 if (err < 0)
2542 goto update_disksize;
2543 } while (map->m_len);
2544
2545 update_disksize:
2546 /*
2547 * Update on-disk size after IO is submitted. Races with
2548 * truncate are avoided by checking i_size under i_data_sem.
2549 */
2550 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2551 if (disksize > EXT4_I(inode)->i_disksize) {
2552 int err2;
2553 loff_t i_size;
2554
2555 down_write(&EXT4_I(inode)->i_data_sem);
2556 i_size = i_size_read(inode);
2557 if (disksize > i_size)
2558 disksize = i_size;
2559 if (disksize > EXT4_I(inode)->i_disksize)
2560 EXT4_I(inode)->i_disksize = disksize;
2561 up_write(&EXT4_I(inode)->i_data_sem);
2562 err2 = ext4_mark_inode_dirty(handle, inode);
2563 if (err2)
2564 ext4_error(inode->i_sb,
2565 "Failed to mark inode %lu dirty",
2566 inode->i_ino);
2567 if (!err)
2568 err = err2;
2569 }
2570 return err;
2571 }
2572
2573 /*
2574 * Calculate the total number of credits to reserve for one writepages
2575 * iteration. This is called from ext4_writepages(). We map an extent of
2576 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2577 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2578 * bpp - 1 blocks in bpp different extents.
2579 */
2580 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2581 {
2582 int bpp = ext4_journal_blocks_per_page(inode);
2583
2584 return ext4_meta_trans_blocks(inode,
2585 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2586 }
2587
2588 /*
2589 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2590 * and underlying extent to map
2591 *
2592 * @mpd - where to look for pages
2593 *
2594 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2595 * IO immediately. When we find a page which isn't mapped we start accumulating
2596 * extent of buffers underlying these pages that needs mapping (formed by
2597 * either delayed or unwritten buffers). We also lock the pages containing
2598 * these buffers. The extent found is returned in @mpd structure (starting at
2599 * mpd->lblk with length mpd->len blocks).
2600 *
2601 * Note that this function can attach bios to one io_end structure which are
2602 * neither logically nor physically contiguous. Although it may seem as an
2603 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2604 * case as we need to track IO to all buffers underlying a page in one io_end.
2605 */
2606 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2607 {
2608 struct address_space *mapping = mpd->inode->i_mapping;
2609 struct pagevec pvec;
2610 unsigned int nr_pages;
2611 long left = mpd->wbc->nr_to_write;
2612 pgoff_t index = mpd->first_page;
2613 pgoff_t end = mpd->last_page;
2614 int tag;
2615 int i, err = 0;
2616 int blkbits = mpd->inode->i_blkbits;
2617 ext4_lblk_t lblk;
2618 struct buffer_head *head;
2619
2620 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2621 tag = PAGECACHE_TAG_TOWRITE;
2622 else
2623 tag = PAGECACHE_TAG_DIRTY;
2624
2625 pagevec_init(&pvec, 0);
2626 mpd->map.m_len = 0;
2627 mpd->next_page = index;
2628 while (index <= end) {
2629 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2630 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2631 if (nr_pages == 0)
2632 goto out;
2633
2634 for (i = 0; i < nr_pages; i++) {
2635 struct page *page = pvec.pages[i];
2636
2637 /*
2638 * At this point, the page may be truncated or
2639 * invalidated (changing page->mapping to NULL), or
2640 * even swizzled back from swapper_space to tmpfs file
2641 * mapping. However, page->index will not change
2642 * because we have a reference on the page.
2643 */
2644 if (page->index > end)
2645 goto out;
2646
2647 /*
2648 * Accumulated enough dirty pages? This doesn't apply
2649 * to WB_SYNC_ALL mode. For integrity sync we have to
2650 * keep going because someone may be concurrently
2651 * dirtying pages, and we might have synced a lot of
2652 * newly appeared dirty pages, but have not synced all
2653 * of the old dirty pages.
2654 */
2655 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2656 goto out;
2657
2658 /* If we can't merge this page, we are done. */
2659 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2660 goto out;
2661
2662 lock_page(page);
2663 /*
2664 * If the page is no longer dirty, or its mapping no
2665 * longer corresponds to inode we are writing (which
2666 * means it has been truncated or invalidated), or the
2667 * page is already under writeback and we are not doing
2668 * a data integrity writeback, skip the page
2669 */
2670 if (!PageDirty(page) ||
2671 (PageWriteback(page) &&
2672 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2673 unlikely(page->mapping != mapping)) {
2674 unlock_page(page);
2675 continue;
2676 }
2677
2678 wait_on_page_writeback(page);
2679 BUG_ON(PageWriteback(page));
2680
2681 if (mpd->map.m_len == 0)
2682 mpd->first_page = page->index;
2683 mpd->next_page = page->index + 1;
2684 /* Add all dirty buffers to mpd */
2685 lblk = ((ext4_lblk_t)page->index) <<
2686 (PAGE_SHIFT - blkbits);
2687 head = page_buffers(page);
2688 err = mpage_process_page_bufs(mpd, head, head, lblk);
2689 if (err <= 0)
2690 goto out;
2691 err = 0;
2692 left--;
2693 }
2694 pagevec_release(&pvec);
2695 cond_resched();
2696 }
2697 return 0;
2698 out:
2699 pagevec_release(&pvec);
2700 return err;
2701 }
2702
2703 static int __writepage(struct page *page, struct writeback_control *wbc,
2704 void *data)
2705 {
2706 struct address_space *mapping = data;
2707 int ret = ext4_writepage(page, wbc);
2708 mapping_set_error(mapping, ret);
2709 return ret;
2710 }
2711
2712 static int ext4_writepages(struct address_space *mapping,
2713 struct writeback_control *wbc)
2714 {
2715 pgoff_t writeback_index = 0;
2716 long nr_to_write = wbc->nr_to_write;
2717 int range_whole = 0;
2718 int cycled = 1;
2719 handle_t *handle = NULL;
2720 struct mpage_da_data mpd;
2721 struct inode *inode = mapping->host;
2722 int needed_blocks, rsv_blocks = 0, ret = 0;
2723 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2724 bool done;
2725 struct blk_plug plug;
2726 bool give_up_on_write = false;
2727
2728 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2729 return -EIO;
2730
2731 percpu_down_read(&sbi->s_journal_flag_rwsem);
2732 trace_ext4_writepages(inode, wbc);
2733
2734 if (dax_mapping(mapping)) {
2735 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2736 wbc);
2737 goto out_writepages;
2738 }
2739
2740 /*
2741 * No pages to write? This is mainly a kludge to avoid starting
2742 * a transaction for special inodes like journal inode on last iput()
2743 * because that could violate lock ordering on umount
2744 */
2745 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2746 goto out_writepages;
2747
2748 if (ext4_should_journal_data(inode)) {
2749 struct blk_plug plug;
2750
2751 blk_start_plug(&plug);
2752 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2753 blk_finish_plug(&plug);
2754 goto out_writepages;
2755 }
2756
2757 /*
2758 * If the filesystem has aborted, it is read-only, so return
2759 * right away instead of dumping stack traces later on that
2760 * will obscure the real source of the problem. We test
2761 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2762 * the latter could be true if the filesystem is mounted
2763 * read-only, and in that case, ext4_writepages should
2764 * *never* be called, so if that ever happens, we would want
2765 * the stack trace.
2766 */
2767 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2768 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2769 ret = -EROFS;
2770 goto out_writepages;
2771 }
2772
2773 if (ext4_should_dioread_nolock(inode)) {
2774 /*
2775 * We may need to convert up to one extent per block in
2776 * the page and we may dirty the inode.
2777 */
2778 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2779 }
2780
2781 /*
2782 * If we have inline data and arrive here, it means that
2783 * we will soon create the block for the 1st page, so
2784 * we'd better clear the inline data here.
2785 */
2786 if (ext4_has_inline_data(inode)) {
2787 /* Just inode will be modified... */
2788 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2789 if (IS_ERR(handle)) {
2790 ret = PTR_ERR(handle);
2791 goto out_writepages;
2792 }
2793 BUG_ON(ext4_test_inode_state(inode,
2794 EXT4_STATE_MAY_INLINE_DATA));
2795 ext4_destroy_inline_data(handle, inode);
2796 ext4_journal_stop(handle);
2797 }
2798
2799 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2800 range_whole = 1;
2801
2802 if (wbc->range_cyclic) {
2803 writeback_index = mapping->writeback_index;
2804 if (writeback_index)
2805 cycled = 0;
2806 mpd.first_page = writeback_index;
2807 mpd.last_page = -1;
2808 } else {
2809 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2810 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2811 }
2812
2813 mpd.inode = inode;
2814 mpd.wbc = wbc;
2815 ext4_io_submit_init(&mpd.io_submit, wbc);
2816 retry:
2817 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2818 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2819 done = false;
2820 blk_start_plug(&plug);
2821
2822 /*
2823 * First writeback pages that don't need mapping - we can avoid
2824 * starting a transaction unnecessarily and also avoid being blocked
2825 * in the block layer on device congestion while having transaction
2826 * started.
2827 */
2828 mpd.do_map = 0;
2829 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2830 if (!mpd.io_submit.io_end) {
2831 ret = -ENOMEM;
2832 goto unplug;
2833 }
2834 ret = mpage_prepare_extent_to_map(&mpd);
2835 /* Submit prepared bio */
2836 ext4_io_submit(&mpd.io_submit);
2837 ext4_put_io_end_defer(mpd.io_submit.io_end);
2838 mpd.io_submit.io_end = NULL;
2839 /* Unlock pages we didn't use */
2840 mpage_release_unused_pages(&mpd, false);
2841 if (ret < 0)
2842 goto unplug;
2843
2844 while (!done && mpd.first_page <= mpd.last_page) {
2845 /* For each extent of pages we use new io_end */
2846 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2847 if (!mpd.io_submit.io_end) {
2848 ret = -ENOMEM;
2849 break;
2850 }
2851
2852 /*
2853 * We have two constraints: We find one extent to map and we
2854 * must always write out whole page (makes a difference when
2855 * blocksize < pagesize) so that we don't block on IO when we
2856 * try to write out the rest of the page. Journalled mode is
2857 * not supported by delalloc.
2858 */
2859 BUG_ON(ext4_should_journal_data(inode));
2860 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2861
2862 /* start a new transaction */
2863 handle = ext4_journal_start_with_reserve(inode,
2864 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2865 if (IS_ERR(handle)) {
2866 ret = PTR_ERR(handle);
2867 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2868 "%ld pages, ino %lu; err %d", __func__,
2869 wbc->nr_to_write, inode->i_ino, ret);
2870 /* Release allocated io_end */
2871 ext4_put_io_end(mpd.io_submit.io_end);
2872 mpd.io_submit.io_end = NULL;
2873 break;
2874 }
2875 mpd.do_map = 1;
2876
2877 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2878 ret = mpage_prepare_extent_to_map(&mpd);
2879 if (!ret) {
2880 if (mpd.map.m_len)
2881 ret = mpage_map_and_submit_extent(handle, &mpd,
2882 &give_up_on_write);
2883 else {
2884 /*
2885 * We scanned the whole range (or exhausted
2886 * nr_to_write), submitted what was mapped and
2887 * didn't find anything needing mapping. We are
2888 * done.
2889 */
2890 done = true;
2891 }
2892 }
2893 /*
2894 * Caution: If the handle is synchronous,
2895 * ext4_journal_stop() can wait for transaction commit
2896 * to finish which may depend on writeback of pages to
2897 * complete or on page lock to be released. In that
2898 * case, we have to wait until after after we have
2899 * submitted all the IO, released page locks we hold,
2900 * and dropped io_end reference (for extent conversion
2901 * to be able to complete) before stopping the handle.
2902 */
2903 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2904 ext4_journal_stop(handle);
2905 handle = NULL;
2906 mpd.do_map = 0;
2907 }
2908 /* Submit prepared bio */
2909 ext4_io_submit(&mpd.io_submit);
2910 /* Unlock pages we didn't use */
2911 mpage_release_unused_pages(&mpd, give_up_on_write);
2912 /*
2913 * Drop our io_end reference we got from init. We have
2914 * to be careful and use deferred io_end finishing if
2915 * we are still holding the transaction as we can
2916 * release the last reference to io_end which may end
2917 * up doing unwritten extent conversion.
2918 */
2919 if (handle) {
2920 ext4_put_io_end_defer(mpd.io_submit.io_end);
2921 ext4_journal_stop(handle);
2922 } else
2923 ext4_put_io_end(mpd.io_submit.io_end);
2924 mpd.io_submit.io_end = NULL;
2925
2926 if (ret == -ENOSPC && sbi->s_journal) {
2927 /*
2928 * Commit the transaction which would
2929 * free blocks released in the transaction
2930 * and try again
2931 */
2932 jbd2_journal_force_commit_nested(sbi->s_journal);
2933 ret = 0;
2934 continue;
2935 }
2936 /* Fatal error - ENOMEM, EIO... */
2937 if (ret)
2938 break;
2939 }
2940 unplug:
2941 blk_finish_plug(&plug);
2942 if (!ret && !cycled && wbc->nr_to_write > 0) {
2943 cycled = 1;
2944 mpd.last_page = writeback_index - 1;
2945 mpd.first_page = 0;
2946 goto retry;
2947 }
2948
2949 /* Update index */
2950 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2951 /*
2952 * Set the writeback_index so that range_cyclic
2953 * mode will write it back later
2954 */
2955 mapping->writeback_index = mpd.first_page;
2956
2957 out_writepages:
2958 trace_ext4_writepages_result(inode, wbc, ret,
2959 nr_to_write - wbc->nr_to_write);
2960 percpu_up_read(&sbi->s_journal_flag_rwsem);
2961 return ret;
2962 }
2963
2964 static int ext4_nonda_switch(struct super_block *sb)
2965 {
2966 s64 free_clusters, dirty_clusters;
2967 struct ext4_sb_info *sbi = EXT4_SB(sb);
2968
2969 /*
2970 * switch to non delalloc mode if we are running low
2971 * on free block. The free block accounting via percpu
2972 * counters can get slightly wrong with percpu_counter_batch getting
2973 * accumulated on each CPU without updating global counters
2974 * Delalloc need an accurate free block accounting. So switch
2975 * to non delalloc when we are near to error range.
2976 */
2977 free_clusters =
2978 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2979 dirty_clusters =
2980 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2981 /*
2982 * Start pushing delalloc when 1/2 of free blocks are dirty.
2983 */
2984 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2985 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2986
2987 if (2 * free_clusters < 3 * dirty_clusters ||
2988 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2989 /*
2990 * free block count is less than 150% of dirty blocks
2991 * or free blocks is less than watermark
2992 */
2993 return 1;
2994 }
2995 return 0;
2996 }
2997
2998 /* We always reserve for an inode update; the superblock could be there too */
2999 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3000 {
3001 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3002 return 1;
3003
3004 if (pos + len <= 0x7fffffffULL)
3005 return 1;
3006
3007 /* We might need to update the superblock to set LARGE_FILE */
3008 return 2;
3009 }
3010
3011 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3012 loff_t pos, unsigned len, unsigned flags,
3013 struct page **pagep, void **fsdata)
3014 {
3015 int ret, retries = 0;
3016 struct page *page;
3017 pgoff_t index;
3018 struct inode *inode = mapping->host;
3019 handle_t *handle;
3020
3021 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3022 return -EIO;
3023
3024 index = pos >> PAGE_SHIFT;
3025
3026 if (ext4_nonda_switch(inode->i_sb) ||
3027 S_ISLNK(inode->i_mode)) {
3028 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3029 return ext4_write_begin(file, mapping, pos,
3030 len, flags, pagep, fsdata);
3031 }
3032 *fsdata = (void *)0;
3033 trace_ext4_da_write_begin(inode, pos, len, flags);
3034
3035 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3036 ret = ext4_da_write_inline_data_begin(mapping, inode,
3037 pos, len, flags,
3038 pagep, fsdata);
3039 if (ret < 0)
3040 return ret;
3041 if (ret == 1)
3042 return 0;
3043 }
3044
3045 /*
3046 * grab_cache_page_write_begin() can take a long time if the
3047 * system is thrashing due to memory pressure, or if the page
3048 * is being written back. So grab it first before we start
3049 * the transaction handle. This also allows us to allocate
3050 * the page (if needed) without using GFP_NOFS.
3051 */
3052 retry_grab:
3053 page = grab_cache_page_write_begin(mapping, index, flags);
3054 if (!page)
3055 return -ENOMEM;
3056 unlock_page(page);
3057
3058 /*
3059 * With delayed allocation, we don't log the i_disksize update
3060 * if there is delayed block allocation. But we still need
3061 * to journalling the i_disksize update if writes to the end
3062 * of file which has an already mapped buffer.
3063 */
3064 retry_journal:
3065 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3066 ext4_da_write_credits(inode, pos, len));
3067 if (IS_ERR(handle)) {
3068 put_page(page);
3069 return PTR_ERR(handle);
3070 }
3071
3072 lock_page(page);
3073 if (page->mapping != mapping) {
3074 /* The page got truncated from under us */
3075 unlock_page(page);
3076 put_page(page);
3077 ext4_journal_stop(handle);
3078 goto retry_grab;
3079 }
3080 /* In case writeback began while the page was unlocked */
3081 wait_for_stable_page(page);
3082
3083 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3084 ret = ext4_block_write_begin(page, pos, len,
3085 ext4_da_get_block_prep);
3086 #else
3087 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3088 #endif
3089 if (ret < 0) {
3090 unlock_page(page);
3091 ext4_journal_stop(handle);
3092 /*
3093 * block_write_begin may have instantiated a few blocks
3094 * outside i_size. Trim these off again. Don't need
3095 * i_size_read because we hold i_mutex.
3096 */
3097 if (pos + len > inode->i_size)
3098 ext4_truncate_failed_write(inode);
3099
3100 if (ret == -ENOSPC &&
3101 ext4_should_retry_alloc(inode->i_sb, &retries))
3102 goto retry_journal;
3103
3104 put_page(page);
3105 return ret;
3106 }
3107
3108 *pagep = page;
3109 return ret;
3110 }
3111
3112 /*
3113 * Check if we should update i_disksize
3114 * when write to the end of file but not require block allocation
3115 */
3116 static int ext4_da_should_update_i_disksize(struct page *page,
3117 unsigned long offset)
3118 {
3119 struct buffer_head *bh;
3120 struct inode *inode = page->mapping->host;
3121 unsigned int idx;
3122 int i;
3123
3124 bh = page_buffers(page);
3125 idx = offset >> inode->i_blkbits;
3126
3127 for (i = 0; i < idx; i++)
3128 bh = bh->b_this_page;
3129
3130 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3131 return 0;
3132 return 1;
3133 }
3134
3135 static int ext4_da_write_end(struct file *file,
3136 struct address_space *mapping,
3137 loff_t pos, unsigned len, unsigned copied,
3138 struct page *page, void *fsdata)
3139 {
3140 struct inode *inode = mapping->host;
3141 int ret = 0, ret2;
3142 handle_t *handle = ext4_journal_current_handle();
3143 loff_t new_i_size;
3144 unsigned long start, end;
3145 int write_mode = (int)(unsigned long)fsdata;
3146
3147 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3148 return ext4_write_end(file, mapping, pos,
3149 len, copied, page, fsdata);
3150
3151 trace_ext4_da_write_end(inode, pos, len, copied);
3152 start = pos & (PAGE_SIZE - 1);
3153 end = start + copied - 1;
3154
3155 /*
3156 * generic_write_end() will run mark_inode_dirty() if i_size
3157 * changes. So let's piggyback the i_disksize mark_inode_dirty
3158 * into that.
3159 */
3160 new_i_size = pos + copied;
3161 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3162 if (ext4_has_inline_data(inode) ||
3163 ext4_da_should_update_i_disksize(page, end)) {
3164 ext4_update_i_disksize(inode, new_i_size);
3165 /* We need to mark inode dirty even if
3166 * new_i_size is less that inode->i_size
3167 * bu greater than i_disksize.(hint delalloc)
3168 */
3169 ext4_mark_inode_dirty(handle, inode);
3170 }
3171 }
3172
3173 if (write_mode != CONVERT_INLINE_DATA &&
3174 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3175 ext4_has_inline_data(inode))
3176 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3177 page);
3178 else
3179 ret2 = generic_write_end(file, mapping, pos, len, copied,
3180 page, fsdata);
3181
3182 copied = ret2;
3183 if (ret2 < 0)
3184 ret = ret2;
3185 ret2 = ext4_journal_stop(handle);
3186 if (!ret)
3187 ret = ret2;
3188
3189 return ret ? ret : copied;
3190 }
3191
3192 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3193 unsigned int length)
3194 {
3195 /*
3196 * Drop reserved blocks
3197 */
3198 BUG_ON(!PageLocked(page));
3199 if (!page_has_buffers(page))
3200 goto out;
3201
3202 ext4_da_page_release_reservation(page, offset, length);
3203
3204 out:
3205 ext4_invalidatepage(page, offset, length);
3206
3207 return;
3208 }
3209
3210 /*
3211 * Force all delayed allocation blocks to be allocated for a given inode.
3212 */
3213 int ext4_alloc_da_blocks(struct inode *inode)
3214 {
3215 trace_ext4_alloc_da_blocks(inode);
3216
3217 if (!EXT4_I(inode)->i_reserved_data_blocks)
3218 return 0;
3219
3220 /*
3221 * We do something simple for now. The filemap_flush() will
3222 * also start triggering a write of the data blocks, which is
3223 * not strictly speaking necessary (and for users of
3224 * laptop_mode, not even desirable). However, to do otherwise
3225 * would require replicating code paths in:
3226 *
3227 * ext4_writepages() ->
3228 * write_cache_pages() ---> (via passed in callback function)
3229 * __mpage_da_writepage() -->
3230 * mpage_add_bh_to_extent()
3231 * mpage_da_map_blocks()
3232 *
3233 * The problem is that write_cache_pages(), located in
3234 * mm/page-writeback.c, marks pages clean in preparation for
3235 * doing I/O, which is not desirable if we're not planning on
3236 * doing I/O at all.
3237 *
3238 * We could call write_cache_pages(), and then redirty all of
3239 * the pages by calling redirty_page_for_writepage() but that
3240 * would be ugly in the extreme. So instead we would need to
3241 * replicate parts of the code in the above functions,
3242 * simplifying them because we wouldn't actually intend to
3243 * write out the pages, but rather only collect contiguous
3244 * logical block extents, call the multi-block allocator, and
3245 * then update the buffer heads with the block allocations.
3246 *
3247 * For now, though, we'll cheat by calling filemap_flush(),
3248 * which will map the blocks, and start the I/O, but not
3249 * actually wait for the I/O to complete.
3250 */
3251 return filemap_flush(inode->i_mapping);
3252 }
3253
3254 /*
3255 * bmap() is special. It gets used by applications such as lilo and by
3256 * the swapper to find the on-disk block of a specific piece of data.
3257 *
3258 * Naturally, this is dangerous if the block concerned is still in the
3259 * journal. If somebody makes a swapfile on an ext4 data-journaling
3260 * filesystem and enables swap, then they may get a nasty shock when the
3261 * data getting swapped to that swapfile suddenly gets overwritten by
3262 * the original zero's written out previously to the journal and
3263 * awaiting writeback in the kernel's buffer cache.
3264 *
3265 * So, if we see any bmap calls here on a modified, data-journaled file,
3266 * take extra steps to flush any blocks which might be in the cache.
3267 */
3268 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3269 {
3270 struct inode *inode = mapping->host;
3271 journal_t *journal;
3272 int err;
3273
3274 /*
3275 * We can get here for an inline file via the FIBMAP ioctl
3276 */
3277 if (ext4_has_inline_data(inode))
3278 return 0;
3279
3280 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3281 test_opt(inode->i_sb, DELALLOC)) {
3282 /*
3283 * With delalloc we want to sync the file
3284 * so that we can make sure we allocate
3285 * blocks for file
3286 */
3287 filemap_write_and_wait(mapping);
3288 }
3289
3290 if (EXT4_JOURNAL(inode) &&
3291 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3292 /*
3293 * This is a REALLY heavyweight approach, but the use of
3294 * bmap on dirty files is expected to be extremely rare:
3295 * only if we run lilo or swapon on a freshly made file
3296 * do we expect this to happen.
3297 *
3298 * (bmap requires CAP_SYS_RAWIO so this does not
3299 * represent an unprivileged user DOS attack --- we'd be
3300 * in trouble if mortal users could trigger this path at
3301 * will.)
3302 *
3303 * NB. EXT4_STATE_JDATA is not set on files other than
3304 * regular files. If somebody wants to bmap a directory
3305 * or symlink and gets confused because the buffer
3306 * hasn't yet been flushed to disk, they deserve
3307 * everything they get.
3308 */
3309
3310 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3311 journal = EXT4_JOURNAL(inode);
3312 jbd2_journal_lock_updates(journal);
3313 err = jbd2_journal_flush(journal);
3314 jbd2_journal_unlock_updates(journal);
3315
3316 if (err)
3317 return 0;
3318 }
3319
3320 return generic_block_bmap(mapping, block, ext4_get_block);
3321 }
3322
3323 static int ext4_readpage(struct file *file, struct page *page)
3324 {
3325 int ret = -EAGAIN;
3326 struct inode *inode = page->mapping->host;
3327
3328 trace_ext4_readpage(page);
3329
3330 if (ext4_has_inline_data(inode))
3331 ret = ext4_readpage_inline(inode, page);
3332
3333 if (ret == -EAGAIN)
3334 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3335
3336 return ret;
3337 }
3338
3339 static int
3340 ext4_readpages(struct file *file, struct address_space *mapping,
3341 struct list_head *pages, unsigned nr_pages)
3342 {
3343 struct inode *inode = mapping->host;
3344
3345 /* If the file has inline data, no need to do readpages. */
3346 if (ext4_has_inline_data(inode))
3347 return 0;
3348
3349 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3350 }
3351
3352 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3353 unsigned int length)
3354 {
3355 trace_ext4_invalidatepage(page, offset, length);
3356
3357 /* No journalling happens on data buffers when this function is used */
3358 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3359
3360 block_invalidatepage(page, offset, length);
3361 }
3362
3363 static int __ext4_journalled_invalidatepage(struct page *page,
3364 unsigned int offset,
3365 unsigned int length)
3366 {
3367 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3368
3369 trace_ext4_journalled_invalidatepage(page, offset, length);
3370
3371 /*
3372 * If it's a full truncate we just forget about the pending dirtying
3373 */
3374 if (offset == 0 && length == PAGE_SIZE)
3375 ClearPageChecked(page);
3376
3377 return jbd2_journal_invalidatepage(journal, page, offset, length);
3378 }
3379
3380 /* Wrapper for aops... */
3381 static void ext4_journalled_invalidatepage(struct page *page,
3382 unsigned int offset,
3383 unsigned int length)
3384 {
3385 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3386 }
3387
3388 static int ext4_releasepage(struct page *page, gfp_t wait)
3389 {
3390 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3391
3392 trace_ext4_releasepage(page);
3393
3394 /* Page has dirty journalled data -> cannot release */
3395 if (PageChecked(page))
3396 return 0;
3397 if (journal)
3398 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3399 else
3400 return try_to_free_buffers(page);
3401 }
3402
3403 #ifdef CONFIG_FS_DAX
3404 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3405 unsigned flags, struct iomap *iomap)
3406 {
3407 struct block_device *bdev;
3408 unsigned int blkbits = inode->i_blkbits;
3409 unsigned long first_block = offset >> blkbits;
3410 unsigned long last_block = (offset + length - 1) >> blkbits;
3411 struct ext4_map_blocks map;
3412 int ret;
3413
3414 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3415 return -ERANGE;
3416
3417 map.m_lblk = first_block;
3418 map.m_len = last_block - first_block + 1;
3419
3420 if (!(flags & IOMAP_WRITE)) {
3421 ret = ext4_map_blocks(NULL, inode, &map, 0);
3422 } else {
3423 int dio_credits;
3424 handle_t *handle;
3425 int retries = 0;
3426
3427 /* Trim mapping request to maximum we can map at once for DIO */
3428 if (map.m_len > DIO_MAX_BLOCKS)
3429 map.m_len = DIO_MAX_BLOCKS;
3430 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3431 retry:
3432 /*
3433 * Either we allocate blocks and then we don't get unwritten
3434 * extent so we have reserved enough credits, or the blocks
3435 * are already allocated and unwritten and in that case
3436 * extent conversion fits in the credits as well.
3437 */
3438 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3439 dio_credits);
3440 if (IS_ERR(handle))
3441 return PTR_ERR(handle);
3442
3443 ret = ext4_map_blocks(handle, inode, &map,
3444 EXT4_GET_BLOCKS_CREATE_ZERO);
3445 if (ret < 0) {
3446 ext4_journal_stop(handle);
3447 if (ret == -ENOSPC &&
3448 ext4_should_retry_alloc(inode->i_sb, &retries))
3449 goto retry;
3450 return ret;
3451 }
3452
3453 /*
3454 * If we added blocks beyond i_size, we need to make sure they
3455 * will get truncated if we crash before updating i_size in
3456 * ext4_iomap_end(). For faults we don't need to do that (and
3457 * even cannot because for orphan list operations inode_lock is
3458 * required) - if we happen to instantiate block beyond i_size,
3459 * it is because we race with truncate which has already added
3460 * the inode to the orphan list.
3461 */
3462 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3463 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3464 int err;
3465
3466 err = ext4_orphan_add(handle, inode);
3467 if (err < 0) {
3468 ext4_journal_stop(handle);
3469 return err;
3470 }
3471 }
3472 ext4_journal_stop(handle);
3473 }
3474
3475 iomap->flags = 0;
3476 bdev = inode->i_sb->s_bdev;
3477 iomap->bdev = bdev;
3478 if (blk_queue_dax(bdev->bd_queue))
3479 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3480 else
3481 iomap->dax_dev = NULL;
3482 iomap->offset = first_block << blkbits;
3483
3484 if (ret == 0) {
3485 iomap->type = IOMAP_HOLE;
3486 iomap->blkno = IOMAP_NULL_BLOCK;
3487 iomap->length = (u64)map.m_len << blkbits;
3488 } else {
3489 if (map.m_flags & EXT4_MAP_MAPPED) {
3490 iomap->type = IOMAP_MAPPED;
3491 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3492 iomap->type = IOMAP_UNWRITTEN;
3493 } else {
3494 WARN_ON_ONCE(1);
3495 return -EIO;
3496 }
3497 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3498 iomap->length = (u64)map.m_len << blkbits;
3499 }
3500
3501 if (map.m_flags & EXT4_MAP_NEW)
3502 iomap->flags |= IOMAP_F_NEW;
3503 return 0;
3504 }
3505
3506 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3507 ssize_t written, unsigned flags, struct iomap *iomap)
3508 {
3509 int ret = 0;
3510 handle_t *handle;
3511 int blkbits = inode->i_blkbits;
3512 bool truncate = false;
3513
3514 fs_put_dax(iomap->dax_dev);
3515 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3516 return 0;
3517
3518 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3519 if (IS_ERR(handle)) {
3520 ret = PTR_ERR(handle);
3521 goto orphan_del;
3522 }
3523 if (ext4_update_inode_size(inode, offset + written))
3524 ext4_mark_inode_dirty(handle, inode);
3525 /*
3526 * We may need to truncate allocated but not written blocks beyond EOF.
3527 */
3528 if (iomap->offset + iomap->length >
3529 ALIGN(inode->i_size, 1 << blkbits)) {
3530 ext4_lblk_t written_blk, end_blk;
3531
3532 written_blk = (offset + written) >> blkbits;
3533 end_blk = (offset + length) >> blkbits;
3534 if (written_blk < end_blk && ext4_can_truncate(inode))
3535 truncate = true;
3536 }
3537 /*
3538 * Remove inode from orphan list if we were extending a inode and
3539 * everything went fine.
3540 */
3541 if (!truncate && inode->i_nlink &&
3542 !list_empty(&EXT4_I(inode)->i_orphan))
3543 ext4_orphan_del(handle, inode);
3544 ext4_journal_stop(handle);
3545 if (truncate) {
3546 ext4_truncate_failed_write(inode);
3547 orphan_del:
3548 /*
3549 * If truncate failed early the inode might still be on the
3550 * orphan list; we need to make sure the inode is removed from
3551 * the orphan list in that case.
3552 */
3553 if (inode->i_nlink)
3554 ext4_orphan_del(NULL, inode);
3555 }
3556 return ret;
3557 }
3558
3559 const struct iomap_ops ext4_iomap_ops = {
3560 .iomap_begin = ext4_iomap_begin,
3561 .iomap_end = ext4_iomap_end,
3562 };
3563
3564 #endif
3565
3566 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3567 ssize_t size, void *private)
3568 {
3569 ext4_io_end_t *io_end = private;
3570
3571 /* if not async direct IO just return */
3572 if (!io_end)
3573 return 0;
3574
3575 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3576 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3577 io_end, io_end->inode->i_ino, iocb, offset, size);
3578
3579 /*
3580 * Error during AIO DIO. We cannot convert unwritten extents as the
3581 * data was not written. Just clear the unwritten flag and drop io_end.
3582 */
3583 if (size <= 0) {
3584 ext4_clear_io_unwritten_flag(io_end);
3585 size = 0;
3586 }
3587 io_end->offset = offset;
3588 io_end->size = size;
3589 ext4_put_io_end(io_end);
3590
3591 return 0;
3592 }
3593
3594 /*
3595 * Handling of direct IO writes.
3596 *
3597 * For ext4 extent files, ext4 will do direct-io write even to holes,
3598 * preallocated extents, and those write extend the file, no need to
3599 * fall back to buffered IO.
3600 *
3601 * For holes, we fallocate those blocks, mark them as unwritten
3602 * If those blocks were preallocated, we mark sure they are split, but
3603 * still keep the range to write as unwritten.
3604 *
3605 * The unwritten extents will be converted to written when DIO is completed.
3606 * For async direct IO, since the IO may still pending when return, we
3607 * set up an end_io call back function, which will do the conversion
3608 * when async direct IO completed.
3609 *
3610 * If the O_DIRECT write will extend the file then add this inode to the
3611 * orphan list. So recovery will truncate it back to the original size
3612 * if the machine crashes during the write.
3613 *
3614 */
3615 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3616 {
3617 struct file *file = iocb->ki_filp;
3618 struct inode *inode = file->f_mapping->host;
3619 struct ext4_inode_info *ei = EXT4_I(inode);
3620 ssize_t ret;
3621 loff_t offset = iocb->ki_pos;
3622 size_t count = iov_iter_count(iter);
3623 int overwrite = 0;
3624 get_block_t *get_block_func = NULL;
3625 int dio_flags = 0;
3626 loff_t final_size = offset + count;
3627 int orphan = 0;
3628 handle_t *handle;
3629
3630 if (final_size > inode->i_size) {
3631 /* Credits for sb + inode write */
3632 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3633 if (IS_ERR(handle)) {
3634 ret = PTR_ERR(handle);
3635 goto out;
3636 }
3637 ret = ext4_orphan_add(handle, inode);
3638 if (ret) {
3639 ext4_journal_stop(handle);
3640 goto out;
3641 }
3642 orphan = 1;
3643 ei->i_disksize = inode->i_size;
3644 ext4_journal_stop(handle);
3645 }
3646
3647 BUG_ON(iocb->private == NULL);
3648
3649 /*
3650 * Make all waiters for direct IO properly wait also for extent
3651 * conversion. This also disallows race between truncate() and
3652 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3653 */
3654 inode_dio_begin(inode);
3655
3656 /* If we do a overwrite dio, i_mutex locking can be released */
3657 overwrite = *((int *)iocb->private);
3658
3659 if (overwrite)
3660 inode_unlock(inode);
3661
3662 /*
3663 * For extent mapped files we could direct write to holes and fallocate.
3664 *
3665 * Allocated blocks to fill the hole are marked as unwritten to prevent
3666 * parallel buffered read to expose the stale data before DIO complete
3667 * the data IO.
3668 *
3669 * As to previously fallocated extents, ext4 get_block will just simply
3670 * mark the buffer mapped but still keep the extents unwritten.
3671 *
3672 * For non AIO case, we will convert those unwritten extents to written
3673 * after return back from blockdev_direct_IO. That way we save us from
3674 * allocating io_end structure and also the overhead of offloading
3675 * the extent convertion to a workqueue.
3676 *
3677 * For async DIO, the conversion needs to be deferred when the
3678 * IO is completed. The ext4 end_io callback function will be
3679 * called to take care of the conversion work. Here for async
3680 * case, we allocate an io_end structure to hook to the iocb.
3681 */
3682 iocb->private = NULL;
3683 if (overwrite)
3684 get_block_func = ext4_dio_get_block_overwrite;
3685 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3686 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3687 get_block_func = ext4_dio_get_block;
3688 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3689 } else if (is_sync_kiocb(iocb)) {
3690 get_block_func = ext4_dio_get_block_unwritten_sync;
3691 dio_flags = DIO_LOCKING;
3692 } else {
3693 get_block_func = ext4_dio_get_block_unwritten_async;
3694 dio_flags = DIO_LOCKING;
3695 }
3696 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3697 get_block_func, ext4_end_io_dio, NULL,
3698 dio_flags);
3699
3700 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3701 EXT4_STATE_DIO_UNWRITTEN)) {
3702 int err;
3703 /*
3704 * for non AIO case, since the IO is already
3705 * completed, we could do the conversion right here
3706 */
3707 err = ext4_convert_unwritten_extents(NULL, inode,
3708 offset, ret);
3709 if (err < 0)
3710 ret = err;
3711 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3712 }
3713
3714 inode_dio_end(inode);
3715 /* take i_mutex locking again if we do a ovewrite dio */
3716 if (overwrite)
3717 inode_lock(inode);
3718
3719 if (ret < 0 && final_size > inode->i_size)
3720 ext4_truncate_failed_write(inode);
3721
3722 /* Handle extending of i_size after direct IO write */
3723 if (orphan) {
3724 int err;
3725
3726 /* Credits for sb + inode write */
3727 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3728 if (IS_ERR(handle)) {
3729 /* This is really bad luck. We've written the data
3730 * but cannot extend i_size. Bail out and pretend
3731 * the write failed... */
3732 ret = PTR_ERR(handle);
3733 if (inode->i_nlink)
3734 ext4_orphan_del(NULL, inode);
3735
3736 goto out;
3737 }
3738 if (inode->i_nlink)
3739 ext4_orphan_del(handle, inode);
3740 if (ret > 0) {
3741 loff_t end = offset + ret;
3742 if (end > inode->i_size) {
3743 ei->i_disksize = end;
3744 i_size_write(inode, end);
3745 /*
3746 * We're going to return a positive `ret'
3747 * here due to non-zero-length I/O, so there's
3748 * no way of reporting error returns from
3749 * ext4_mark_inode_dirty() to userspace. So
3750 * ignore it.
3751 */
3752 ext4_mark_inode_dirty(handle, inode);
3753 }
3754 }
3755 err = ext4_journal_stop(handle);
3756 if (ret == 0)
3757 ret = err;
3758 }
3759 out:
3760 return ret;
3761 }
3762
3763 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3764 {
3765 struct address_space *mapping = iocb->ki_filp->f_mapping;
3766 struct inode *inode = mapping->host;
3767 size_t count = iov_iter_count(iter);
3768 ssize_t ret;
3769
3770 /*
3771 * Shared inode_lock is enough for us - it protects against concurrent
3772 * writes & truncates and since we take care of writing back page cache,
3773 * we are protected against page writeback as well.
3774 */
3775 inode_lock_shared(inode);
3776 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3777 iocb->ki_pos + count - 1);
3778 if (ret)
3779 goto out_unlock;
3780 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3781 iter, ext4_dio_get_block, NULL, NULL, 0);
3782 out_unlock:
3783 inode_unlock_shared(inode);
3784 return ret;
3785 }
3786
3787 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3788 {
3789 struct file *file = iocb->ki_filp;
3790 struct inode *inode = file->f_mapping->host;
3791 size_t count = iov_iter_count(iter);
3792 loff_t offset = iocb->ki_pos;
3793 ssize_t ret;
3794
3795 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3796 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3797 return 0;
3798 #endif
3799
3800 /*
3801 * If we are doing data journalling we don't support O_DIRECT
3802 */
3803 if (ext4_should_journal_data(inode))
3804 return 0;
3805
3806 /* Let buffer I/O handle the inline data case. */
3807 if (ext4_has_inline_data(inode))
3808 return 0;
3809
3810 /* DAX uses iomap path now */
3811 if (WARN_ON_ONCE(IS_DAX(inode)))
3812 return 0;
3813
3814 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3815 if (iov_iter_rw(iter) == READ)
3816 ret = ext4_direct_IO_read(iocb, iter);
3817 else
3818 ret = ext4_direct_IO_write(iocb, iter);
3819 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3820 return ret;
3821 }
3822
3823 /*
3824 * Pages can be marked dirty completely asynchronously from ext4's journalling
3825 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3826 * much here because ->set_page_dirty is called under VFS locks. The page is
3827 * not necessarily locked.
3828 *
3829 * We cannot just dirty the page and leave attached buffers clean, because the
3830 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3831 * or jbddirty because all the journalling code will explode.
3832 *
3833 * So what we do is to mark the page "pending dirty" and next time writepage
3834 * is called, propagate that into the buffers appropriately.
3835 */
3836 static int ext4_journalled_set_page_dirty(struct page *page)
3837 {
3838 SetPageChecked(page);
3839 return __set_page_dirty_nobuffers(page);
3840 }
3841
3842 static int ext4_set_page_dirty(struct page *page)
3843 {
3844 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3845 WARN_ON_ONCE(!page_has_buffers(page));
3846 return __set_page_dirty_buffers(page);
3847 }
3848
3849 static const struct address_space_operations ext4_aops = {
3850 .readpage = ext4_readpage,
3851 .readpages = ext4_readpages,
3852 .writepage = ext4_writepage,
3853 .writepages = ext4_writepages,
3854 .write_begin = ext4_write_begin,
3855 .write_end = ext4_write_end,
3856 .set_page_dirty = ext4_set_page_dirty,
3857 .bmap = ext4_bmap,
3858 .invalidatepage = ext4_invalidatepage,
3859 .releasepage = ext4_releasepage,
3860 .direct_IO = ext4_direct_IO,
3861 .migratepage = buffer_migrate_page,
3862 .is_partially_uptodate = block_is_partially_uptodate,
3863 .error_remove_page = generic_error_remove_page,
3864 };
3865
3866 static const struct address_space_operations ext4_journalled_aops = {
3867 .readpage = ext4_readpage,
3868 .readpages = ext4_readpages,
3869 .writepage = ext4_writepage,
3870 .writepages = ext4_writepages,
3871 .write_begin = ext4_write_begin,
3872 .write_end = ext4_journalled_write_end,
3873 .set_page_dirty = ext4_journalled_set_page_dirty,
3874 .bmap = ext4_bmap,
3875 .invalidatepage = ext4_journalled_invalidatepage,
3876 .releasepage = ext4_releasepage,
3877 .direct_IO = ext4_direct_IO,
3878 .is_partially_uptodate = block_is_partially_uptodate,
3879 .error_remove_page = generic_error_remove_page,
3880 };
3881
3882 static const struct address_space_operations ext4_da_aops = {
3883 .readpage = ext4_readpage,
3884 .readpages = ext4_readpages,
3885 .writepage = ext4_writepage,
3886 .writepages = ext4_writepages,
3887 .write_begin = ext4_da_write_begin,
3888 .write_end = ext4_da_write_end,
3889 .set_page_dirty = ext4_set_page_dirty,
3890 .bmap = ext4_bmap,
3891 .invalidatepage = ext4_da_invalidatepage,
3892 .releasepage = ext4_releasepage,
3893 .direct_IO = ext4_direct_IO,
3894 .migratepage = buffer_migrate_page,
3895 .is_partially_uptodate = block_is_partially_uptodate,
3896 .error_remove_page = generic_error_remove_page,
3897 };
3898
3899 void ext4_set_aops(struct inode *inode)
3900 {
3901 switch (ext4_inode_journal_mode(inode)) {
3902 case EXT4_INODE_ORDERED_DATA_MODE:
3903 case EXT4_INODE_WRITEBACK_DATA_MODE:
3904 break;
3905 case EXT4_INODE_JOURNAL_DATA_MODE:
3906 inode->i_mapping->a_ops = &ext4_journalled_aops;
3907 return;
3908 default:
3909 BUG();
3910 }
3911 if (test_opt(inode->i_sb, DELALLOC))
3912 inode->i_mapping->a_ops = &ext4_da_aops;
3913 else
3914 inode->i_mapping->a_ops = &ext4_aops;
3915 }
3916
3917 static int __ext4_block_zero_page_range(handle_t *handle,
3918 struct address_space *mapping, loff_t from, loff_t length)
3919 {
3920 ext4_fsblk_t index = from >> PAGE_SHIFT;
3921 unsigned offset = from & (PAGE_SIZE-1);
3922 unsigned blocksize, pos;
3923 ext4_lblk_t iblock;
3924 struct inode *inode = mapping->host;
3925 struct buffer_head *bh;
3926 struct page *page;
3927 int err = 0;
3928
3929 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3930 mapping_gfp_constraint(mapping, ~__GFP_FS));
3931 if (!page)
3932 return -ENOMEM;
3933
3934 blocksize = inode->i_sb->s_blocksize;
3935
3936 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3937
3938 if (!page_has_buffers(page))
3939 create_empty_buffers(page, blocksize, 0);
3940
3941 /* Find the buffer that contains "offset" */
3942 bh = page_buffers(page);
3943 pos = blocksize;
3944 while (offset >= pos) {
3945 bh = bh->b_this_page;
3946 iblock++;
3947 pos += blocksize;
3948 }
3949 if (buffer_freed(bh)) {
3950 BUFFER_TRACE(bh, "freed: skip");
3951 goto unlock;
3952 }
3953 if (!buffer_mapped(bh)) {
3954 BUFFER_TRACE(bh, "unmapped");
3955 ext4_get_block(inode, iblock, bh, 0);
3956 /* unmapped? It's a hole - nothing to do */
3957 if (!buffer_mapped(bh)) {
3958 BUFFER_TRACE(bh, "still unmapped");
3959 goto unlock;
3960 }
3961 }
3962
3963 /* Ok, it's mapped. Make sure it's up-to-date */
3964 if (PageUptodate(page))
3965 set_buffer_uptodate(bh);
3966
3967 if (!buffer_uptodate(bh)) {
3968 err = -EIO;
3969 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3970 wait_on_buffer(bh);
3971 /* Uhhuh. Read error. Complain and punt. */
3972 if (!buffer_uptodate(bh))
3973 goto unlock;
3974 if (S_ISREG(inode->i_mode) &&
3975 ext4_encrypted_inode(inode)) {
3976 /* We expect the key to be set. */
3977 BUG_ON(!fscrypt_has_encryption_key(inode));
3978 BUG_ON(blocksize != PAGE_SIZE);
3979 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3980 page, PAGE_SIZE, 0, page->index));
3981 }
3982 }
3983 if (ext4_should_journal_data(inode)) {
3984 BUFFER_TRACE(bh, "get write access");
3985 err = ext4_journal_get_write_access(handle, bh);
3986 if (err)
3987 goto unlock;
3988 }
3989 zero_user(page, offset, length);
3990 BUFFER_TRACE(bh, "zeroed end of block");
3991
3992 if (ext4_should_journal_data(inode)) {
3993 err = ext4_handle_dirty_metadata(handle, inode, bh);
3994 } else {
3995 err = 0;
3996 mark_buffer_dirty(bh);
3997 if (ext4_should_order_data(inode))
3998 err = ext4_jbd2_inode_add_write(handle, inode);
3999 }
4000
4001 unlock:
4002 unlock_page(page);
4003 put_page(page);
4004 return err;
4005 }
4006
4007 /*
4008 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4009 * starting from file offset 'from'. The range to be zero'd must
4010 * be contained with in one block. If the specified range exceeds
4011 * the end of the block it will be shortened to end of the block
4012 * that cooresponds to 'from'
4013 */
4014 static int ext4_block_zero_page_range(handle_t *handle,
4015 struct address_space *mapping, loff_t from, loff_t length)
4016 {
4017 struct inode *inode = mapping->host;
4018 unsigned offset = from & (PAGE_SIZE-1);
4019 unsigned blocksize = inode->i_sb->s_blocksize;
4020 unsigned max = blocksize - (offset & (blocksize - 1));
4021
4022 /*
4023 * correct length if it does not fall between
4024 * 'from' and the end of the block
4025 */
4026 if (length > max || length < 0)
4027 length = max;
4028
4029 if (IS_DAX(inode)) {
4030 return iomap_zero_range(inode, from, length, NULL,
4031 &ext4_iomap_ops);
4032 }
4033 return __ext4_block_zero_page_range(handle, mapping, from, length);
4034 }
4035
4036 /*
4037 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4038 * up to the end of the block which corresponds to `from'.
4039 * This required during truncate. We need to physically zero the tail end
4040 * of that block so it doesn't yield old data if the file is later grown.
4041 */
4042 static int ext4_block_truncate_page(handle_t *handle,
4043 struct address_space *mapping, loff_t from)
4044 {
4045 unsigned offset = from & (PAGE_SIZE-1);
4046 unsigned length;
4047 unsigned blocksize;
4048 struct inode *inode = mapping->host;
4049
4050 /* If we are processing an encrypted inode during orphan list handling */
4051 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4052 return 0;
4053
4054 blocksize = inode->i_sb->s_blocksize;
4055 length = blocksize - (offset & (blocksize - 1));
4056
4057 return ext4_block_zero_page_range(handle, mapping, from, length);
4058 }
4059
4060 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4061 loff_t lstart, loff_t length)
4062 {
4063 struct super_block *sb = inode->i_sb;
4064 struct address_space *mapping = inode->i_mapping;
4065 unsigned partial_start, partial_end;
4066 ext4_fsblk_t start, end;
4067 loff_t byte_end = (lstart + length - 1);
4068 int err = 0;
4069
4070 partial_start = lstart & (sb->s_blocksize - 1);
4071 partial_end = byte_end & (sb->s_blocksize - 1);
4072
4073 start = lstart >> sb->s_blocksize_bits;
4074 end = byte_end >> sb->s_blocksize_bits;
4075
4076 /* Handle partial zero within the single block */
4077 if (start == end &&
4078 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4079 err = ext4_block_zero_page_range(handle, mapping,
4080 lstart, length);
4081 return err;
4082 }
4083 /* Handle partial zero out on the start of the range */
4084 if (partial_start) {
4085 err = ext4_block_zero_page_range(handle, mapping,
4086 lstart, sb->s_blocksize);
4087 if (err)
4088 return err;
4089 }
4090 /* Handle partial zero out on the end of the range */
4091 if (partial_end != sb->s_blocksize - 1)
4092 err = ext4_block_zero_page_range(handle, mapping,
4093 byte_end - partial_end,
4094 partial_end + 1);
4095 return err;
4096 }
4097
4098 int ext4_can_truncate(struct inode *inode)
4099 {
4100 if (S_ISREG(inode->i_mode))
4101 return 1;
4102 if (S_ISDIR(inode->i_mode))
4103 return 1;
4104 if (S_ISLNK(inode->i_mode))
4105 return !ext4_inode_is_fast_symlink(inode);
4106 return 0;
4107 }
4108
4109 /*
4110 * We have to make sure i_disksize gets properly updated before we truncate
4111 * page cache due to hole punching or zero range. Otherwise i_disksize update
4112 * can get lost as it may have been postponed to submission of writeback but
4113 * that will never happen after we truncate page cache.
4114 */
4115 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4116 loff_t len)
4117 {
4118 handle_t *handle;
4119 loff_t size = i_size_read(inode);
4120
4121 WARN_ON(!inode_is_locked(inode));
4122 if (offset > size || offset + len < size)
4123 return 0;
4124
4125 if (EXT4_I(inode)->i_disksize >= size)
4126 return 0;
4127
4128 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4129 if (IS_ERR(handle))
4130 return PTR_ERR(handle);
4131 ext4_update_i_disksize(inode, size);
4132 ext4_mark_inode_dirty(handle, inode);
4133 ext4_journal_stop(handle);
4134
4135 return 0;
4136 }
4137
4138 /*
4139 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4140 * associated with the given offset and length
4141 *
4142 * @inode: File inode
4143 * @offset: The offset where the hole will begin
4144 * @len: The length of the hole
4145 *
4146 * Returns: 0 on success or negative on failure
4147 */
4148
4149 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4150 {
4151 struct super_block *sb = inode->i_sb;
4152 ext4_lblk_t first_block, stop_block;
4153 struct address_space *mapping = inode->i_mapping;
4154 loff_t first_block_offset, last_block_offset;
4155 handle_t *handle;
4156 unsigned int credits;
4157 int ret = 0;
4158
4159 if (!S_ISREG(inode->i_mode))
4160 return -EOPNOTSUPP;
4161
4162 trace_ext4_punch_hole(inode, offset, length, 0);
4163
4164 /*
4165 * Write out all dirty pages to avoid race conditions
4166 * Then release them.
4167 */
4168 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4169 ret = filemap_write_and_wait_range(mapping, offset,
4170 offset + length - 1);
4171 if (ret)
4172 return ret;
4173 }
4174
4175 inode_lock(inode);
4176
4177 /* No need to punch hole beyond i_size */
4178 if (offset >= inode->i_size)
4179 goto out_mutex;
4180
4181 /*
4182 * If the hole extends beyond i_size, set the hole
4183 * to end after the page that contains i_size
4184 */
4185 if (offset + length > inode->i_size) {
4186 length = inode->i_size +
4187 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4188 offset;
4189 }
4190
4191 if (offset & (sb->s_blocksize - 1) ||
4192 (offset + length) & (sb->s_blocksize - 1)) {
4193 /*
4194 * Attach jinode to inode for jbd2 if we do any zeroing of
4195 * partial block
4196 */
4197 ret = ext4_inode_attach_jinode(inode);
4198 if (ret < 0)
4199 goto out_mutex;
4200
4201 }
4202
4203 /* Wait all existing dio workers, newcomers will block on i_mutex */
4204 ext4_inode_block_unlocked_dio(inode);
4205 inode_dio_wait(inode);
4206
4207 /*
4208 * Prevent page faults from reinstantiating pages we have released from
4209 * page cache.
4210 */
4211 down_write(&EXT4_I(inode)->i_mmap_sem);
4212 first_block_offset = round_up(offset, sb->s_blocksize);
4213 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4214
4215 /* Now release the pages and zero block aligned part of pages*/
4216 if (last_block_offset > first_block_offset) {
4217 ret = ext4_update_disksize_before_punch(inode, offset, length);
4218 if (ret)
4219 goto out_dio;
4220 truncate_pagecache_range(inode, first_block_offset,
4221 last_block_offset);
4222 }
4223
4224 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4225 credits = ext4_writepage_trans_blocks(inode);
4226 else
4227 credits = ext4_blocks_for_truncate(inode);
4228 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4229 if (IS_ERR(handle)) {
4230 ret = PTR_ERR(handle);
4231 ext4_std_error(sb, ret);
4232 goto out_dio;
4233 }
4234
4235 ret = ext4_zero_partial_blocks(handle, inode, offset,
4236 length);
4237 if (ret)
4238 goto out_stop;
4239
4240 first_block = (offset + sb->s_blocksize - 1) >>
4241 EXT4_BLOCK_SIZE_BITS(sb);
4242 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4243
4244 /* If there are no blocks to remove, return now */
4245 if (first_block >= stop_block)
4246 goto out_stop;
4247
4248 down_write(&EXT4_I(inode)->i_data_sem);
4249 ext4_discard_preallocations(inode);
4250
4251 ret = ext4_es_remove_extent(inode, first_block,
4252 stop_block - first_block);
4253 if (ret) {
4254 up_write(&EXT4_I(inode)->i_data_sem);
4255 goto out_stop;
4256 }
4257
4258 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4259 ret = ext4_ext_remove_space(inode, first_block,
4260 stop_block - 1);
4261 else
4262 ret = ext4_ind_remove_space(handle, inode, first_block,
4263 stop_block);
4264
4265 up_write(&EXT4_I(inode)->i_data_sem);
4266 if (IS_SYNC(inode))
4267 ext4_handle_sync(handle);
4268
4269 inode->i_mtime = inode->i_ctime = current_time(inode);
4270 ext4_mark_inode_dirty(handle, inode);
4271 if (ret >= 0)
4272 ext4_update_inode_fsync_trans(handle, inode, 1);
4273 out_stop:
4274 ext4_journal_stop(handle);
4275 out_dio:
4276 up_write(&EXT4_I(inode)->i_mmap_sem);
4277 ext4_inode_resume_unlocked_dio(inode);
4278 out_mutex:
4279 inode_unlock(inode);
4280 return ret;
4281 }
4282
4283 int ext4_inode_attach_jinode(struct inode *inode)
4284 {
4285 struct ext4_inode_info *ei = EXT4_I(inode);
4286 struct jbd2_inode *jinode;
4287
4288 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4289 return 0;
4290
4291 jinode = jbd2_alloc_inode(GFP_KERNEL);
4292 spin_lock(&inode->i_lock);
4293 if (!ei->jinode) {
4294 if (!jinode) {
4295 spin_unlock(&inode->i_lock);
4296 return -ENOMEM;
4297 }
4298 ei->jinode = jinode;
4299 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4300 jinode = NULL;
4301 }
4302 spin_unlock(&inode->i_lock);
4303 if (unlikely(jinode != NULL))
4304 jbd2_free_inode(jinode);
4305 return 0;
4306 }
4307
4308 /*
4309 * ext4_truncate()
4310 *
4311 * We block out ext4_get_block() block instantiations across the entire
4312 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4313 * simultaneously on behalf of the same inode.
4314 *
4315 * As we work through the truncate and commit bits of it to the journal there
4316 * is one core, guiding principle: the file's tree must always be consistent on
4317 * disk. We must be able to restart the truncate after a crash.
4318 *
4319 * The file's tree may be transiently inconsistent in memory (although it
4320 * probably isn't), but whenever we close off and commit a journal transaction,
4321 * the contents of (the filesystem + the journal) must be consistent and
4322 * restartable. It's pretty simple, really: bottom up, right to left (although
4323 * left-to-right works OK too).
4324 *
4325 * Note that at recovery time, journal replay occurs *before* the restart of
4326 * truncate against the orphan inode list.
4327 *
4328 * The committed inode has the new, desired i_size (which is the same as
4329 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4330 * that this inode's truncate did not complete and it will again call
4331 * ext4_truncate() to have another go. So there will be instantiated blocks
4332 * to the right of the truncation point in a crashed ext4 filesystem. But
4333 * that's fine - as long as they are linked from the inode, the post-crash
4334 * ext4_truncate() run will find them and release them.
4335 */
4336 int ext4_truncate(struct inode *inode)
4337 {
4338 struct ext4_inode_info *ei = EXT4_I(inode);
4339 unsigned int credits;
4340 int err = 0;
4341 handle_t *handle;
4342 struct address_space *mapping = inode->i_mapping;
4343
4344 /*
4345 * There is a possibility that we're either freeing the inode
4346 * or it's a completely new inode. In those cases we might not
4347 * have i_mutex locked because it's not necessary.
4348 */
4349 if (!(inode->i_state & (I_NEW|I_FREEING)))
4350 WARN_ON(!inode_is_locked(inode));
4351 trace_ext4_truncate_enter(inode);
4352
4353 if (!ext4_can_truncate(inode))
4354 return 0;
4355
4356 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4357
4358 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4359 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4360
4361 if (ext4_has_inline_data(inode)) {
4362 int has_inline = 1;
4363
4364 err = ext4_inline_data_truncate(inode, &has_inline);
4365 if (err)
4366 return err;
4367 if (has_inline)
4368 return 0;
4369 }
4370
4371 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4372 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4373 if (ext4_inode_attach_jinode(inode) < 0)
4374 return 0;
4375 }
4376
4377 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4378 credits = ext4_writepage_trans_blocks(inode);
4379 else
4380 credits = ext4_blocks_for_truncate(inode);
4381
4382 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4383 if (IS_ERR(handle))
4384 return PTR_ERR(handle);
4385
4386 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4387 ext4_block_truncate_page(handle, mapping, inode->i_size);
4388
4389 /*
4390 * We add the inode to the orphan list, so that if this
4391 * truncate spans multiple transactions, and we crash, we will
4392 * resume the truncate when the filesystem recovers. It also
4393 * marks the inode dirty, to catch the new size.
4394 *
4395 * Implication: the file must always be in a sane, consistent
4396 * truncatable state while each transaction commits.
4397 */
4398 err = ext4_orphan_add(handle, inode);
4399 if (err)
4400 goto out_stop;
4401
4402 down_write(&EXT4_I(inode)->i_data_sem);
4403
4404 ext4_discard_preallocations(inode);
4405
4406 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4407 err = ext4_ext_truncate(handle, inode);
4408 else
4409 ext4_ind_truncate(handle, inode);
4410
4411 up_write(&ei->i_data_sem);
4412 if (err)
4413 goto out_stop;
4414
4415 if (IS_SYNC(inode))
4416 ext4_handle_sync(handle);
4417
4418 out_stop:
4419 /*
4420 * If this was a simple ftruncate() and the file will remain alive,
4421 * then we need to clear up the orphan record which we created above.
4422 * However, if this was a real unlink then we were called by
4423 * ext4_evict_inode(), and we allow that function to clean up the
4424 * orphan info for us.
4425 */
4426 if (inode->i_nlink)
4427 ext4_orphan_del(handle, inode);
4428
4429 inode->i_mtime = inode->i_ctime = current_time(inode);
4430 ext4_mark_inode_dirty(handle, inode);
4431 ext4_journal_stop(handle);
4432
4433 trace_ext4_truncate_exit(inode);
4434 return err;
4435 }
4436
4437 /*
4438 * ext4_get_inode_loc returns with an extra refcount against the inode's
4439 * underlying buffer_head on success. If 'in_mem' is true, we have all
4440 * data in memory that is needed to recreate the on-disk version of this
4441 * inode.
4442 */
4443 static int __ext4_get_inode_loc(struct inode *inode,
4444 struct ext4_iloc *iloc, int in_mem)
4445 {
4446 struct ext4_group_desc *gdp;
4447 struct buffer_head *bh;
4448 struct super_block *sb = inode->i_sb;
4449 ext4_fsblk_t block;
4450 int inodes_per_block, inode_offset;
4451
4452 iloc->bh = NULL;
4453 if (!ext4_valid_inum(sb, inode->i_ino))
4454 return -EFSCORRUPTED;
4455
4456 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4457 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4458 if (!gdp)
4459 return -EIO;
4460
4461 /*
4462 * Figure out the offset within the block group inode table
4463 */
4464 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4465 inode_offset = ((inode->i_ino - 1) %
4466 EXT4_INODES_PER_GROUP(sb));
4467 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4468 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4469
4470 bh = sb_getblk(sb, block);
4471 if (unlikely(!bh))
4472 return -ENOMEM;
4473 if (!buffer_uptodate(bh)) {
4474 lock_buffer(bh);
4475
4476 /*
4477 * If the buffer has the write error flag, we have failed
4478 * to write out another inode in the same block. In this
4479 * case, we don't have to read the block because we may
4480 * read the old inode data successfully.
4481 */
4482 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4483 set_buffer_uptodate(bh);
4484
4485 if (buffer_uptodate(bh)) {
4486 /* someone brought it uptodate while we waited */
4487 unlock_buffer(bh);
4488 goto has_buffer;
4489 }
4490
4491 /*
4492 * If we have all information of the inode in memory and this
4493 * is the only valid inode in the block, we need not read the
4494 * block.
4495 */
4496 if (in_mem) {
4497 struct buffer_head *bitmap_bh;
4498 int i, start;
4499
4500 start = inode_offset & ~(inodes_per_block - 1);
4501
4502 /* Is the inode bitmap in cache? */
4503 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4504 if (unlikely(!bitmap_bh))
4505 goto make_io;
4506
4507 /*
4508 * If the inode bitmap isn't in cache then the
4509 * optimisation may end up performing two reads instead
4510 * of one, so skip it.
4511 */
4512 if (!buffer_uptodate(bitmap_bh)) {
4513 brelse(bitmap_bh);
4514 goto make_io;
4515 }
4516 for (i = start; i < start + inodes_per_block; i++) {
4517 if (i == inode_offset)
4518 continue;
4519 if (ext4_test_bit(i, bitmap_bh->b_data))
4520 break;
4521 }
4522 brelse(bitmap_bh);
4523 if (i == start + inodes_per_block) {
4524 /* all other inodes are free, so skip I/O */
4525 memset(bh->b_data, 0, bh->b_size);
4526 set_buffer_uptodate(bh);
4527 unlock_buffer(bh);
4528 goto has_buffer;
4529 }
4530 }
4531
4532 make_io:
4533 /*
4534 * If we need to do any I/O, try to pre-readahead extra
4535 * blocks from the inode table.
4536 */
4537 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4538 ext4_fsblk_t b, end, table;
4539 unsigned num;
4540 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4541
4542 table = ext4_inode_table(sb, gdp);
4543 /* s_inode_readahead_blks is always a power of 2 */
4544 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4545 if (table > b)
4546 b = table;
4547 end = b + ra_blks;
4548 num = EXT4_INODES_PER_GROUP(sb);
4549 if (ext4_has_group_desc_csum(sb))
4550 num -= ext4_itable_unused_count(sb, gdp);
4551 table += num / inodes_per_block;
4552 if (end > table)
4553 end = table;
4554 while (b <= end)
4555 sb_breadahead(sb, b++);
4556 }
4557
4558 /*
4559 * There are other valid inodes in the buffer, this inode
4560 * has in-inode xattrs, or we don't have this inode in memory.
4561 * Read the block from disk.
4562 */
4563 trace_ext4_load_inode(inode);
4564 get_bh(bh);
4565 bh->b_end_io = end_buffer_read_sync;
4566 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4567 wait_on_buffer(bh);
4568 if (!buffer_uptodate(bh)) {
4569 EXT4_ERROR_INODE_BLOCK(inode, block,
4570 "unable to read itable block");
4571 brelse(bh);
4572 return -EIO;
4573 }
4574 }
4575 has_buffer:
4576 iloc->bh = bh;
4577 return 0;
4578 }
4579
4580 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4581 {
4582 /* We have all inode data except xattrs in memory here. */
4583 return __ext4_get_inode_loc(inode, iloc,
4584 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4585 }
4586
4587 void ext4_set_inode_flags(struct inode *inode)
4588 {
4589 unsigned int flags = EXT4_I(inode)->i_flags;
4590 unsigned int new_fl = 0;
4591
4592 if (flags & EXT4_SYNC_FL)
4593 new_fl |= S_SYNC;
4594 if (flags & EXT4_APPEND_FL)
4595 new_fl |= S_APPEND;
4596 if (flags & EXT4_IMMUTABLE_FL)
4597 new_fl |= S_IMMUTABLE;
4598 if (flags & EXT4_NOATIME_FL)
4599 new_fl |= S_NOATIME;
4600 if (flags & EXT4_DIRSYNC_FL)
4601 new_fl |= S_DIRSYNC;
4602 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4603 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4604 !ext4_encrypted_inode(inode))
4605 new_fl |= S_DAX;
4606 inode_set_flags(inode, new_fl,
4607 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4608 }
4609
4610 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4611 struct ext4_inode_info *ei)
4612 {
4613 blkcnt_t i_blocks ;
4614 struct inode *inode = &(ei->vfs_inode);
4615 struct super_block *sb = inode->i_sb;
4616
4617 if (ext4_has_feature_huge_file(sb)) {
4618 /* we are using combined 48 bit field */
4619 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4620 le32_to_cpu(raw_inode->i_blocks_lo);
4621 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4622 /* i_blocks represent file system block size */
4623 return i_blocks << (inode->i_blkbits - 9);
4624 } else {
4625 return i_blocks;
4626 }
4627 } else {
4628 return le32_to_cpu(raw_inode->i_blocks_lo);
4629 }
4630 }
4631
4632 static inline void ext4_iget_extra_inode(struct inode *inode,
4633 struct ext4_inode *raw_inode,
4634 struct ext4_inode_info *ei)
4635 {
4636 __le32 *magic = (void *)raw_inode +
4637 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4638 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4639 EXT4_INODE_SIZE(inode->i_sb) &&
4640 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4641 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4642 ext4_find_inline_data_nolock(inode);
4643 } else
4644 EXT4_I(inode)->i_inline_off = 0;
4645 }
4646
4647 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4648 {
4649 if (!ext4_has_feature_project(inode->i_sb))
4650 return -EOPNOTSUPP;
4651 *projid = EXT4_I(inode)->i_projid;
4652 return 0;
4653 }
4654
4655 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4656 {
4657 struct ext4_iloc iloc;
4658 struct ext4_inode *raw_inode;
4659 struct ext4_inode_info *ei;
4660 struct inode *inode;
4661 journal_t *journal = EXT4_SB(sb)->s_journal;
4662 long ret;
4663 loff_t size;
4664 int block;
4665 uid_t i_uid;
4666 gid_t i_gid;
4667 projid_t i_projid;
4668
4669 inode = iget_locked(sb, ino);
4670 if (!inode)
4671 return ERR_PTR(-ENOMEM);
4672 if (!(inode->i_state & I_NEW))
4673 return inode;
4674
4675 ei = EXT4_I(inode);
4676 iloc.bh = NULL;
4677
4678 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4679 if (ret < 0)
4680 goto bad_inode;
4681 raw_inode = ext4_raw_inode(&iloc);
4682
4683 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4684 EXT4_ERROR_INODE(inode, "root inode unallocated");
4685 ret = -EFSCORRUPTED;
4686 goto bad_inode;
4687 }
4688
4689 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4690 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4691 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4692 EXT4_INODE_SIZE(inode->i_sb) ||
4693 (ei->i_extra_isize & 3)) {
4694 EXT4_ERROR_INODE(inode,
4695 "bad extra_isize %u (inode size %u)",
4696 ei->i_extra_isize,
4697 EXT4_INODE_SIZE(inode->i_sb));
4698 ret = -EFSCORRUPTED;
4699 goto bad_inode;
4700 }
4701 } else
4702 ei->i_extra_isize = 0;
4703
4704 /* Precompute checksum seed for inode metadata */
4705 if (ext4_has_metadata_csum(sb)) {
4706 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4707 __u32 csum;
4708 __le32 inum = cpu_to_le32(inode->i_ino);
4709 __le32 gen = raw_inode->i_generation;
4710 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4711 sizeof(inum));
4712 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4713 sizeof(gen));
4714 }
4715
4716 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4717 EXT4_ERROR_INODE(inode, "checksum invalid");
4718 ret = -EFSBADCRC;
4719 goto bad_inode;
4720 }
4721
4722 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4723 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4724 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4725 if (ext4_has_feature_project(sb) &&
4726 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4727 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4728 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4729 else
4730 i_projid = EXT4_DEF_PROJID;
4731
4732 if (!(test_opt(inode->i_sb, NO_UID32))) {
4733 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4734 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4735 }
4736 i_uid_write(inode, i_uid);
4737 i_gid_write(inode, i_gid);
4738 ei->i_projid = make_kprojid(sb->s_user_ns, i_projid);
4739 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4740
4741 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4742 ei->i_inline_off = 0;
4743 ei->i_dir_start_lookup = 0;
4744 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4745 /* We now have enough fields to check if the inode was active or not.
4746 * This is needed because nfsd might try to access dead inodes
4747 * the test is that same one that e2fsck uses
4748 * NeilBrown 1999oct15
4749 */
4750 if (inode->i_nlink == 0) {
4751 if ((inode->i_mode == 0 ||
4752 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4753 ino != EXT4_BOOT_LOADER_INO) {
4754 /* this inode is deleted */
4755 ret = -ESTALE;
4756 goto bad_inode;
4757 }
4758 /* The only unlinked inodes we let through here have
4759 * valid i_mode and are being read by the orphan
4760 * recovery code: that's fine, we're about to complete
4761 * the process of deleting those.
4762 * OR it is the EXT4_BOOT_LOADER_INO which is
4763 * not initialized on a new filesystem. */
4764 }
4765 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4766 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4767 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4768 if (ext4_has_feature_64bit(sb))
4769 ei->i_file_acl |=
4770 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4771 inode->i_size = ext4_isize(sb, raw_inode);
4772 if ((size = i_size_read(inode)) < 0) {
4773 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4774 ret = -EFSCORRUPTED;
4775 goto bad_inode;
4776 }
4777 ei->i_disksize = inode->i_size;
4778 #ifdef CONFIG_QUOTA
4779 ei->i_reserved_quota = 0;
4780 #endif
4781 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4782 ei->i_block_group = iloc.block_group;
4783 ei->i_last_alloc_group = ~0;
4784 /*
4785 * NOTE! The in-memory inode i_data array is in little-endian order
4786 * even on big-endian machines: we do NOT byteswap the block numbers!
4787 */
4788 for (block = 0; block < EXT4_N_BLOCKS; block++)
4789 ei->i_data[block] = raw_inode->i_block[block];
4790 INIT_LIST_HEAD(&ei->i_orphan);
4791
4792 /*
4793 * Set transaction id's of transactions that have to be committed
4794 * to finish f[data]sync. We set them to currently running transaction
4795 * as we cannot be sure that the inode or some of its metadata isn't
4796 * part of the transaction - the inode could have been reclaimed and
4797 * now it is reread from disk.
4798 */
4799 if (journal) {
4800 transaction_t *transaction;
4801 tid_t tid;
4802
4803 read_lock(&journal->j_state_lock);
4804 if (journal->j_running_transaction)
4805 transaction = journal->j_running_transaction;
4806 else
4807 transaction = journal->j_committing_transaction;
4808 if (transaction)
4809 tid = transaction->t_tid;
4810 else
4811 tid = journal->j_commit_sequence;
4812 read_unlock(&journal->j_state_lock);
4813 ei->i_sync_tid = tid;
4814 ei->i_datasync_tid = tid;
4815 }
4816
4817 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4818 if (ei->i_extra_isize == 0) {
4819 /* The extra space is currently unused. Use it. */
4820 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4821 ei->i_extra_isize = sizeof(struct ext4_inode) -
4822 EXT4_GOOD_OLD_INODE_SIZE;
4823 } else {
4824 ext4_iget_extra_inode(inode, raw_inode, ei);
4825 }
4826 }
4827
4828 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4829 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4830 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4831 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4832
4833 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4834 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4835 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4836 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4837 inode->i_version |=
4838 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4839 }
4840 }
4841
4842 ret = 0;
4843 if (ei->i_file_acl &&
4844 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4845 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4846 ei->i_file_acl);
4847 ret = -EFSCORRUPTED;
4848 goto bad_inode;
4849 } else if (!ext4_has_inline_data(inode)) {
4850 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4851 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4852 (S_ISLNK(inode->i_mode) &&
4853 !ext4_inode_is_fast_symlink(inode))))
4854 /* Validate extent which is part of inode */
4855 ret = ext4_ext_check_inode(inode);
4856 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4857 (S_ISLNK(inode->i_mode) &&
4858 !ext4_inode_is_fast_symlink(inode))) {
4859 /* Validate block references which are part of inode */
4860 ret = ext4_ind_check_inode(inode);
4861 }
4862 }
4863 if (ret)
4864 goto bad_inode;
4865
4866 if (S_ISREG(inode->i_mode)) {
4867 inode->i_op = &ext4_file_inode_operations;
4868 inode->i_fop = &ext4_file_operations;
4869 ext4_set_aops(inode);
4870 } else if (S_ISDIR(inode->i_mode)) {
4871 inode->i_op = &ext4_dir_inode_operations;
4872 inode->i_fop = &ext4_dir_operations;
4873 } else if (S_ISLNK(inode->i_mode)) {
4874 if (ext4_encrypted_inode(inode)) {
4875 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4876 ext4_set_aops(inode);
4877 } else if (ext4_inode_is_fast_symlink(inode)) {
4878 inode->i_link = (char *)ei->i_data;
4879 inode->i_op = &ext4_fast_symlink_inode_operations;
4880 nd_terminate_link(ei->i_data, inode->i_size,
4881 sizeof(ei->i_data) - 1);
4882 } else {
4883 inode->i_op = &ext4_symlink_inode_operations;
4884 ext4_set_aops(inode);
4885 }
4886 inode_nohighmem(inode);
4887 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4888 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4889 inode->i_op = &ext4_special_inode_operations;
4890 if (raw_inode->i_block[0])
4891 init_special_inode(inode, inode->i_mode,
4892 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4893 else
4894 init_special_inode(inode, inode->i_mode,
4895 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4896 } else if (ino == EXT4_BOOT_LOADER_INO) {
4897 make_bad_inode(inode);
4898 } else {
4899 ret = -EFSCORRUPTED;
4900 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4901 goto bad_inode;
4902 }
4903 brelse(iloc.bh);
4904 ext4_set_inode_flags(inode);
4905
4906 if (ei->i_flags & EXT4_EA_INODE_FL) {
4907 ext4_xattr_inode_set_class(inode);
4908
4909 inode_lock(inode);
4910 inode->i_flags |= S_NOQUOTA;
4911 inode_unlock(inode);
4912 }
4913
4914 unlock_new_inode(inode);
4915 return inode;
4916
4917 bad_inode:
4918 brelse(iloc.bh);
4919 iget_failed(inode);
4920 return ERR_PTR(ret);
4921 }
4922
4923 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4924 {
4925 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4926 return ERR_PTR(-EFSCORRUPTED);
4927 return ext4_iget(sb, ino);
4928 }
4929
4930 static int ext4_inode_blocks_set(handle_t *handle,
4931 struct ext4_inode *raw_inode,
4932 struct ext4_inode_info *ei)
4933 {
4934 struct inode *inode = &(ei->vfs_inode);
4935 u64 i_blocks = inode->i_blocks;
4936 struct super_block *sb = inode->i_sb;
4937
4938 if (i_blocks <= ~0U) {
4939 /*
4940 * i_blocks can be represented in a 32 bit variable
4941 * as multiple of 512 bytes
4942 */
4943 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4944 raw_inode->i_blocks_high = 0;
4945 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4946 return 0;
4947 }
4948 if (!ext4_has_feature_huge_file(sb))
4949 return -EFBIG;
4950
4951 if (i_blocks <= 0xffffffffffffULL) {
4952 /*
4953 * i_blocks can be represented in a 48 bit variable
4954 * as multiple of 512 bytes
4955 */
4956 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4957 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4958 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4959 } else {
4960 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4961 /* i_block is stored in file system block size */
4962 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4963 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4964 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4965 }
4966 return 0;
4967 }
4968
4969 struct other_inode {
4970 unsigned long orig_ino;
4971 struct ext4_inode *raw_inode;
4972 };
4973
4974 static int other_inode_match(struct inode * inode, unsigned long ino,
4975 void *data)
4976 {
4977 struct other_inode *oi = (struct other_inode *) data;
4978
4979 if ((inode->i_ino != ino) ||
4980 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4981 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4982 ((inode->i_state & I_DIRTY_TIME) == 0))
4983 return 0;
4984 spin_lock(&inode->i_lock);
4985 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4986 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4987 (inode->i_state & I_DIRTY_TIME)) {
4988 struct ext4_inode_info *ei = EXT4_I(inode);
4989
4990 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4991 spin_unlock(&inode->i_lock);
4992
4993 spin_lock(&ei->i_raw_lock);
4994 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4995 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4996 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4997 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4998 spin_unlock(&ei->i_raw_lock);
4999 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5000 return -1;
5001 }
5002 spin_unlock(&inode->i_lock);
5003 return -1;
5004 }
5005
5006 /*
5007 * Opportunistically update the other time fields for other inodes in
5008 * the same inode table block.
5009 */
5010 static void ext4_update_other_inodes_time(struct super_block *sb,
5011 unsigned long orig_ino, char *buf)
5012 {
5013 struct other_inode oi;
5014 unsigned long ino;
5015 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5016 int inode_size = EXT4_INODE_SIZE(sb);
5017
5018 oi.orig_ino = orig_ino;
5019 /*
5020 * Calculate the first inode in the inode table block. Inode
5021 * numbers are one-based. That is, the first inode in a block
5022 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5023 */
5024 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5025 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5026 if (ino == orig_ino)
5027 continue;
5028 oi.raw_inode = (struct ext4_inode *) buf;
5029 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5030 }
5031 }
5032
5033 /*
5034 * Post the struct inode info into an on-disk inode location in the
5035 * buffer-cache. This gobbles the caller's reference to the
5036 * buffer_head in the inode location struct.
5037 *
5038 * The caller must have write access to iloc->bh.
5039 */
5040 static int ext4_do_update_inode(handle_t *handle,
5041 struct inode *inode,
5042 struct ext4_iloc *iloc)
5043 {
5044 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5045 struct ext4_inode_info *ei = EXT4_I(inode);
5046 struct buffer_head *bh = iloc->bh;
5047 struct super_block *sb = inode->i_sb;
5048 int err = 0, rc, block;
5049 int need_datasync = 0, set_large_file = 0;
5050 uid_t i_uid;
5051 gid_t i_gid;
5052 projid_t i_projid;
5053
5054 spin_lock(&ei->i_raw_lock);
5055
5056 /* For fields not tracked in the in-memory inode,
5057 * initialise them to zero for new inodes. */
5058 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5059 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5060
5061 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5062 i_uid = i_uid_read(inode);
5063 i_gid = i_gid_read(inode);
5064 i_projid = from_kprojid(sb->s_user_ns, ei->i_projid);
5065 if (!(test_opt(inode->i_sb, NO_UID32))) {
5066 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5067 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5068 /*
5069 * Fix up interoperability with old kernels. Otherwise, old inodes get
5070 * re-used with the upper 16 bits of the uid/gid intact
5071 */
5072 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5073 raw_inode->i_uid_high = 0;
5074 raw_inode->i_gid_high = 0;
5075 } else {
5076 raw_inode->i_uid_high =
5077 cpu_to_le16(high_16_bits(i_uid));
5078 raw_inode->i_gid_high =
5079 cpu_to_le16(high_16_bits(i_gid));
5080 }
5081 } else {
5082 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5083 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5084 raw_inode->i_uid_high = 0;
5085 raw_inode->i_gid_high = 0;
5086 }
5087 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5088
5089 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5090 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5091 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5092 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5093
5094 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5095 if (err) {
5096 spin_unlock(&ei->i_raw_lock);
5097 goto out_brelse;
5098 }
5099 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5100 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5101 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5102 raw_inode->i_file_acl_high =
5103 cpu_to_le16(ei->i_file_acl >> 32);
5104 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5105 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5106 ext4_isize_set(raw_inode, ei->i_disksize);
5107 need_datasync = 1;
5108 }
5109 if (ei->i_disksize > 0x7fffffffULL) {
5110 if (!ext4_has_feature_large_file(sb) ||
5111 EXT4_SB(sb)->s_es->s_rev_level ==
5112 cpu_to_le32(EXT4_GOOD_OLD_REV))
5113 set_large_file = 1;
5114 }
5115 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5116 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5117 if (old_valid_dev(inode->i_rdev)) {
5118 raw_inode->i_block[0] =
5119 cpu_to_le32(old_encode_dev(inode->i_rdev));
5120 raw_inode->i_block[1] = 0;
5121 } else {
5122 raw_inode->i_block[0] = 0;
5123 raw_inode->i_block[1] =
5124 cpu_to_le32(new_encode_dev(inode->i_rdev));
5125 raw_inode->i_block[2] = 0;
5126 }
5127 } else if (!ext4_has_inline_data(inode)) {
5128 for (block = 0; block < EXT4_N_BLOCKS; block++)
5129 raw_inode->i_block[block] = ei->i_data[block];
5130 }
5131
5132 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5133 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5134 if (ei->i_extra_isize) {
5135 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5136 raw_inode->i_version_hi =
5137 cpu_to_le32(inode->i_version >> 32);
5138 raw_inode->i_extra_isize =
5139 cpu_to_le16(ei->i_extra_isize);
5140 }
5141 }
5142
5143 if (i_projid != (projid_t)-1) {
5144 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5145 i_projid != EXT4_DEF_PROJID);
5146
5147 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5148 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5149 raw_inode->i_projid = cpu_to_le32(i_projid);
5150 }
5151
5152 ext4_inode_csum_set(inode, raw_inode, ei);
5153 spin_unlock(&ei->i_raw_lock);
5154 if (inode->i_sb->s_flags & MS_LAZYTIME)
5155 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5156 bh->b_data);
5157
5158 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5159 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5160 if (!err)
5161 err = rc;
5162 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5163 if (set_large_file) {
5164 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5165 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5166 if (err)
5167 goto out_brelse;
5168 ext4_update_dynamic_rev(sb);
5169 ext4_set_feature_large_file(sb);
5170 ext4_handle_sync(handle);
5171 err = ext4_handle_dirty_super(handle, sb);
5172 }
5173 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5174 out_brelse:
5175 brelse(bh);
5176 ext4_std_error(inode->i_sb, err);
5177 return err;
5178 }
5179
5180 /*
5181 * ext4_write_inode()
5182 *
5183 * We are called from a few places:
5184 *
5185 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5186 * Here, there will be no transaction running. We wait for any running
5187 * transaction to commit.
5188 *
5189 * - Within flush work (sys_sync(), kupdate and such).
5190 * We wait on commit, if told to.
5191 *
5192 * - Within iput_final() -> write_inode_now()
5193 * We wait on commit, if told to.
5194 *
5195 * In all cases it is actually safe for us to return without doing anything,
5196 * because the inode has been copied into a raw inode buffer in
5197 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5198 * writeback.
5199 *
5200 * Note that we are absolutely dependent upon all inode dirtiers doing the
5201 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5202 * which we are interested.
5203 *
5204 * It would be a bug for them to not do this. The code:
5205 *
5206 * mark_inode_dirty(inode)
5207 * stuff();
5208 * inode->i_size = expr;
5209 *
5210 * is in error because write_inode() could occur while `stuff()' is running,
5211 * and the new i_size will be lost. Plus the inode will no longer be on the
5212 * superblock's dirty inode list.
5213 */
5214 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5215 {
5216 int err;
5217
5218 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5219 return 0;
5220
5221 if (EXT4_SB(inode->i_sb)->s_journal) {
5222 if (ext4_journal_current_handle()) {
5223 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5224 dump_stack();
5225 return -EIO;
5226 }
5227
5228 /*
5229 * No need to force transaction in WB_SYNC_NONE mode. Also
5230 * ext4_sync_fs() will force the commit after everything is
5231 * written.
5232 */
5233 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5234 return 0;
5235
5236 err = ext4_force_commit(inode->i_sb);
5237 } else {
5238 struct ext4_iloc iloc;
5239
5240 err = __ext4_get_inode_loc(inode, &iloc, 0);
5241 if (err)
5242 return err;
5243 /*
5244 * sync(2) will flush the whole buffer cache. No need to do
5245 * it here separately for each inode.
5246 */
5247 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5248 sync_dirty_buffer(iloc.bh);
5249 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5250 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5251 "IO error syncing inode");
5252 err = -EIO;
5253 }
5254 brelse(iloc.bh);
5255 }
5256 return err;
5257 }
5258
5259 /*
5260 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5261 * buffers that are attached to a page stradding i_size and are undergoing
5262 * commit. In that case we have to wait for commit to finish and try again.
5263 */
5264 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5265 {
5266 struct page *page;
5267 unsigned offset;
5268 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5269 tid_t commit_tid = 0;
5270 int ret;
5271
5272 offset = inode->i_size & (PAGE_SIZE - 1);
5273 /*
5274 * All buffers in the last page remain valid? Then there's nothing to
5275 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5276 * blocksize case
5277 */
5278 if (offset > PAGE_SIZE - i_blocksize(inode))
5279 return;
5280 while (1) {
5281 page = find_lock_page(inode->i_mapping,
5282 inode->i_size >> PAGE_SHIFT);
5283 if (!page)
5284 return;
5285 ret = __ext4_journalled_invalidatepage(page, offset,
5286 PAGE_SIZE - offset);
5287 unlock_page(page);
5288 put_page(page);
5289 if (ret != -EBUSY)
5290 return;
5291 commit_tid = 0;
5292 read_lock(&journal->j_state_lock);
5293 if (journal->j_committing_transaction)
5294 commit_tid = journal->j_committing_transaction->t_tid;
5295 read_unlock(&journal->j_state_lock);
5296 if (commit_tid)
5297 jbd2_log_wait_commit(journal, commit_tid);
5298 }
5299 }
5300
5301 /*
5302 * ext4_setattr()
5303 *
5304 * Called from notify_change.
5305 *
5306 * We want to trap VFS attempts to truncate the file as soon as
5307 * possible. In particular, we want to make sure that when the VFS
5308 * shrinks i_size, we put the inode on the orphan list and modify
5309 * i_disksize immediately, so that during the subsequent flushing of
5310 * dirty pages and freeing of disk blocks, we can guarantee that any
5311 * commit will leave the blocks being flushed in an unused state on
5312 * disk. (On recovery, the inode will get truncated and the blocks will
5313 * be freed, so we have a strong guarantee that no future commit will
5314 * leave these blocks visible to the user.)
5315 *
5316 * Another thing we have to assure is that if we are in ordered mode
5317 * and inode is still attached to the committing transaction, we must
5318 * we start writeout of all the dirty pages which are being truncated.
5319 * This way we are sure that all the data written in the previous
5320 * transaction are already on disk (truncate waits for pages under
5321 * writeback).
5322 *
5323 * Called with inode->i_mutex down.
5324 */
5325 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5326 {
5327 struct inode *inode = d_inode(dentry);
5328 int error, rc = 0;
5329 int orphan = 0;
5330 const unsigned int ia_valid = attr->ia_valid;
5331
5332 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5333 return -EIO;
5334
5335 error = setattr_prepare(dentry, attr);
5336 if (error)
5337 return error;
5338
5339 if (is_quota_modification(inode, attr)) {
5340 error = dquot_initialize(inode);
5341 if (error)
5342 return error;
5343 }
5344 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5345 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5346 handle_t *handle;
5347
5348 /* (user+group)*(old+new) structure, inode write (sb,
5349 * inode block, ? - but truncate inode update has it) */
5350 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5351 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5352 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5353 if (IS_ERR(handle)) {
5354 error = PTR_ERR(handle);
5355 goto err_out;
5356 }
5357
5358 /* dquot_transfer() calls back ext4_get_inode_usage() which
5359 * counts xattr inode references.
5360 */
5361 down_read(&EXT4_I(inode)->xattr_sem);
5362 error = dquot_transfer(inode, attr);
5363 up_read(&EXT4_I(inode)->xattr_sem);
5364
5365 if (error) {
5366 ext4_journal_stop(handle);
5367 return error;
5368 }
5369 /* Update corresponding info in inode so that everything is in
5370 * one transaction */
5371 if (attr->ia_valid & ATTR_UID)
5372 inode->i_uid = attr->ia_uid;
5373 if (attr->ia_valid & ATTR_GID)
5374 inode->i_gid = attr->ia_gid;
5375 error = ext4_mark_inode_dirty(handle, inode);
5376 ext4_journal_stop(handle);
5377 }
5378
5379 if (attr->ia_valid & ATTR_SIZE) {
5380 handle_t *handle;
5381 loff_t oldsize = inode->i_size;
5382 int shrink = (attr->ia_size <= inode->i_size);
5383
5384 if (ext4_encrypted_inode(inode)) {
5385 error = fscrypt_get_encryption_info(inode);
5386 if (error)
5387 return error;
5388 if (!fscrypt_has_encryption_key(inode))
5389 return -ENOKEY;
5390 }
5391
5392 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5393 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5394
5395 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5396 return -EFBIG;
5397 }
5398 if (!S_ISREG(inode->i_mode))
5399 return -EINVAL;
5400
5401 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5402 inode_inc_iversion(inode);
5403
5404 if (ext4_should_order_data(inode) &&
5405 (attr->ia_size < inode->i_size)) {
5406 error = ext4_begin_ordered_truncate(inode,
5407 attr->ia_size);
5408 if (error)
5409 goto err_out;
5410 }
5411 if (attr->ia_size != inode->i_size) {
5412 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5413 if (IS_ERR(handle)) {
5414 error = PTR_ERR(handle);
5415 goto err_out;
5416 }
5417 if (ext4_handle_valid(handle) && shrink) {
5418 error = ext4_orphan_add(handle, inode);
5419 orphan = 1;
5420 }
5421 /*
5422 * Update c/mtime on truncate up, ext4_truncate() will
5423 * update c/mtime in shrink case below
5424 */
5425 if (!shrink) {
5426 inode->i_mtime = current_time(inode);
5427 inode->i_ctime = inode->i_mtime;
5428 }
5429 down_write(&EXT4_I(inode)->i_data_sem);
5430 EXT4_I(inode)->i_disksize = attr->ia_size;
5431 rc = ext4_mark_inode_dirty(handle, inode);
5432 if (!error)
5433 error = rc;
5434 /*
5435 * We have to update i_size under i_data_sem together
5436 * with i_disksize to avoid races with writeback code
5437 * running ext4_wb_update_i_disksize().
5438 */
5439 if (!error)
5440 i_size_write(inode, attr->ia_size);
5441 up_write(&EXT4_I(inode)->i_data_sem);
5442 ext4_journal_stop(handle);
5443 if (error) {
5444 if (orphan)
5445 ext4_orphan_del(NULL, inode);
5446 goto err_out;
5447 }
5448 }
5449 if (!shrink)
5450 pagecache_isize_extended(inode, oldsize, inode->i_size);
5451
5452 /*
5453 * Blocks are going to be removed from the inode. Wait
5454 * for dio in flight. Temporarily disable
5455 * dioread_nolock to prevent livelock.
5456 */
5457 if (orphan) {
5458 if (!ext4_should_journal_data(inode)) {
5459 ext4_inode_block_unlocked_dio(inode);
5460 inode_dio_wait(inode);
5461 ext4_inode_resume_unlocked_dio(inode);
5462 } else
5463 ext4_wait_for_tail_page_commit(inode);
5464 }
5465 down_write(&EXT4_I(inode)->i_mmap_sem);
5466 /*
5467 * Truncate pagecache after we've waited for commit
5468 * in data=journal mode to make pages freeable.
5469 */
5470 truncate_pagecache(inode, inode->i_size);
5471 if (shrink) {
5472 rc = ext4_truncate(inode);
5473 if (rc)
5474 error = rc;
5475 }
5476 up_write(&EXT4_I(inode)->i_mmap_sem);
5477 }
5478
5479 if (!error) {
5480 setattr_copy(inode, attr);
5481 mark_inode_dirty(inode);
5482 }
5483
5484 /*
5485 * If the call to ext4_truncate failed to get a transaction handle at
5486 * all, we need to clean up the in-core orphan list manually.
5487 */
5488 if (orphan && inode->i_nlink)
5489 ext4_orphan_del(NULL, inode);
5490
5491 if (!error && (ia_valid & ATTR_MODE))
5492 rc = posix_acl_chmod(inode, inode->i_mode);
5493
5494 err_out:
5495 ext4_std_error(inode->i_sb, error);
5496 if (!error)
5497 error = rc;
5498 return error;
5499 }
5500
5501 int ext4_getattr(const struct path *path, struct kstat *stat,
5502 u32 request_mask, unsigned int query_flags)
5503 {
5504 struct inode *inode = d_inode(path->dentry);
5505 struct ext4_inode *raw_inode;
5506 struct ext4_inode_info *ei = EXT4_I(inode);
5507 unsigned int flags;
5508
5509 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5510 stat->result_mask |= STATX_BTIME;
5511 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5512 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5513 }
5514
5515 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5516 if (flags & EXT4_APPEND_FL)
5517 stat->attributes |= STATX_ATTR_APPEND;
5518 if (flags & EXT4_COMPR_FL)
5519 stat->attributes |= STATX_ATTR_COMPRESSED;
5520 if (flags & EXT4_ENCRYPT_FL)
5521 stat->attributes |= STATX_ATTR_ENCRYPTED;
5522 if (flags & EXT4_IMMUTABLE_FL)
5523 stat->attributes |= STATX_ATTR_IMMUTABLE;
5524 if (flags & EXT4_NODUMP_FL)
5525 stat->attributes |= STATX_ATTR_NODUMP;
5526
5527 stat->attributes_mask |= (STATX_ATTR_APPEND |
5528 STATX_ATTR_COMPRESSED |
5529 STATX_ATTR_ENCRYPTED |
5530 STATX_ATTR_IMMUTABLE |
5531 STATX_ATTR_NODUMP);
5532
5533 generic_fillattr(inode, stat);
5534 return 0;
5535 }
5536
5537 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5538 u32 request_mask, unsigned int query_flags)
5539 {
5540 struct inode *inode = d_inode(path->dentry);
5541 u64 delalloc_blocks;
5542
5543 ext4_getattr(path, stat, request_mask, query_flags);
5544
5545 /*
5546 * If there is inline data in the inode, the inode will normally not
5547 * have data blocks allocated (it may have an external xattr block).
5548 * Report at least one sector for such files, so tools like tar, rsync,
5549 * others don't incorrectly think the file is completely sparse.
5550 */
5551 if (unlikely(ext4_has_inline_data(inode)))
5552 stat->blocks += (stat->size + 511) >> 9;
5553
5554 /*
5555 * We can't update i_blocks if the block allocation is delayed
5556 * otherwise in the case of system crash before the real block
5557 * allocation is done, we will have i_blocks inconsistent with
5558 * on-disk file blocks.
5559 * We always keep i_blocks updated together with real
5560 * allocation. But to not confuse with user, stat
5561 * will return the blocks that include the delayed allocation
5562 * blocks for this file.
5563 */
5564 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5565 EXT4_I(inode)->i_reserved_data_blocks);
5566 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5567 return 0;
5568 }
5569
5570 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5571 int pextents)
5572 {
5573 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5574 return ext4_ind_trans_blocks(inode, lblocks);
5575 return ext4_ext_index_trans_blocks(inode, pextents);
5576 }
5577
5578 /*
5579 * Account for index blocks, block groups bitmaps and block group
5580 * descriptor blocks if modify datablocks and index blocks
5581 * worse case, the indexs blocks spread over different block groups
5582 *
5583 * If datablocks are discontiguous, they are possible to spread over
5584 * different block groups too. If they are contiguous, with flexbg,
5585 * they could still across block group boundary.
5586 *
5587 * Also account for superblock, inode, quota and xattr blocks
5588 */
5589 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5590 int pextents)
5591 {
5592 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5593 int gdpblocks;
5594 int idxblocks;
5595 int ret = 0;
5596
5597 /*
5598 * How many index blocks need to touch to map @lblocks logical blocks
5599 * to @pextents physical extents?
5600 */
5601 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5602
5603 ret = idxblocks;
5604
5605 /*
5606 * Now let's see how many group bitmaps and group descriptors need
5607 * to account
5608 */
5609 groups = idxblocks + pextents;
5610 gdpblocks = groups;
5611 if (groups > ngroups)
5612 groups = ngroups;
5613 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5614 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5615
5616 /* bitmaps and block group descriptor blocks */
5617 ret += groups + gdpblocks;
5618
5619 /* Blocks for super block, inode, quota and xattr blocks */
5620 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5621
5622 return ret;
5623 }
5624
5625 /*
5626 * Calculate the total number of credits to reserve to fit
5627 * the modification of a single pages into a single transaction,
5628 * which may include multiple chunks of block allocations.
5629 *
5630 * This could be called via ext4_write_begin()
5631 *
5632 * We need to consider the worse case, when
5633 * one new block per extent.
5634 */
5635 int ext4_writepage_trans_blocks(struct inode *inode)
5636 {
5637 int bpp = ext4_journal_blocks_per_page(inode);
5638 int ret;
5639
5640 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5641
5642 /* Account for data blocks for journalled mode */
5643 if (ext4_should_journal_data(inode))
5644 ret += bpp;
5645 return ret;
5646 }
5647
5648 /*
5649 * Calculate the journal credits for a chunk of data modification.
5650 *
5651 * This is called from DIO, fallocate or whoever calling
5652 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5653 *
5654 * journal buffers for data blocks are not included here, as DIO
5655 * and fallocate do no need to journal data buffers.
5656 */
5657 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5658 {
5659 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5660 }
5661
5662 /*
5663 * The caller must have previously called ext4_reserve_inode_write().
5664 * Give this, we know that the caller already has write access to iloc->bh.
5665 */
5666 int ext4_mark_iloc_dirty(handle_t *handle,
5667 struct inode *inode, struct ext4_iloc *iloc)
5668 {
5669 int err = 0;
5670
5671 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5672 return -EIO;
5673
5674 if (IS_I_VERSION(inode))
5675 inode_inc_iversion(inode);
5676
5677 /* the do_update_inode consumes one bh->b_count */
5678 get_bh(iloc->bh);
5679
5680 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5681 err = ext4_do_update_inode(handle, inode, iloc);
5682 put_bh(iloc->bh);
5683 return err;
5684 }
5685
5686 /*
5687 * On success, We end up with an outstanding reference count against
5688 * iloc->bh. This _must_ be cleaned up later.
5689 */
5690
5691 int
5692 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5693 struct ext4_iloc *iloc)
5694 {
5695 int err;
5696
5697 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5698 return -EIO;
5699
5700 err = ext4_get_inode_loc(inode, iloc);
5701 if (!err) {
5702 BUFFER_TRACE(iloc->bh, "get_write_access");
5703 err = ext4_journal_get_write_access(handle, iloc->bh);
5704 if (err) {
5705 brelse(iloc->bh);
5706 iloc->bh = NULL;
5707 }
5708 }
5709 ext4_std_error(inode->i_sb, err);
5710 return err;
5711 }
5712
5713 static int __ext4_expand_extra_isize(struct inode *inode,
5714 unsigned int new_extra_isize,
5715 struct ext4_iloc *iloc,
5716 handle_t *handle, int *no_expand)
5717 {
5718 struct ext4_inode *raw_inode;
5719 struct ext4_xattr_ibody_header *header;
5720 int error;
5721
5722 raw_inode = ext4_raw_inode(iloc);
5723
5724 header = IHDR(inode, raw_inode);
5725
5726 /* No extended attributes present */
5727 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5728 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5729 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5730 EXT4_I(inode)->i_extra_isize, 0,
5731 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5732 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5733 return 0;
5734 }
5735
5736 /* try to expand with EAs present */
5737 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5738 raw_inode, handle);
5739 if (error) {
5740 /*
5741 * Inode size expansion failed; don't try again
5742 */
5743 *no_expand = 1;
5744 }
5745
5746 return error;
5747 }
5748
5749 /*
5750 * Expand an inode by new_extra_isize bytes.
5751 * Returns 0 on success or negative error number on failure.
5752 */
5753 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5754 unsigned int new_extra_isize,
5755 struct ext4_iloc iloc,
5756 handle_t *handle)
5757 {
5758 int no_expand;
5759 int error;
5760
5761 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5762 return -EOVERFLOW;
5763
5764 /*
5765 * In nojournal mode, we can immediately attempt to expand
5766 * the inode. When journaled, we first need to obtain extra
5767 * buffer credits since we may write into the EA block
5768 * with this same handle. If journal_extend fails, then it will
5769 * only result in a minor loss of functionality for that inode.
5770 * If this is felt to be critical, then e2fsck should be run to
5771 * force a large enough s_min_extra_isize.
5772 */
5773 if (ext4_handle_valid(handle) &&
5774 jbd2_journal_extend(handle,
5775 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5776 return -ENOSPC;
5777
5778 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5779 return -EBUSY;
5780
5781 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5782 handle, &no_expand);
5783 ext4_write_unlock_xattr(inode, &no_expand);
5784
5785 return error;
5786 }
5787
5788 int ext4_expand_extra_isize(struct inode *inode,
5789 unsigned int new_extra_isize,
5790 struct ext4_iloc *iloc)
5791 {
5792 handle_t *handle;
5793 int no_expand;
5794 int error, rc;
5795
5796 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5797 brelse(iloc->bh);
5798 return -EOVERFLOW;
5799 }
5800
5801 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5802 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5803 if (IS_ERR(handle)) {
5804 error = PTR_ERR(handle);
5805 brelse(iloc->bh);
5806 return error;
5807 }
5808
5809 ext4_write_lock_xattr(inode, &no_expand);
5810
5811 BUFFER_TRACE(iloc.bh, "get_write_access");
5812 error = ext4_journal_get_write_access(handle, iloc->bh);
5813 if (error) {
5814 brelse(iloc->bh);
5815 goto out_stop;
5816 }
5817
5818 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5819 handle, &no_expand);
5820
5821 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5822 if (!error)
5823 error = rc;
5824
5825 ext4_write_unlock_xattr(inode, &no_expand);
5826 out_stop:
5827 ext4_journal_stop(handle);
5828 return error;
5829 }
5830
5831 /*
5832 * What we do here is to mark the in-core inode as clean with respect to inode
5833 * dirtiness (it may still be data-dirty).
5834 * This means that the in-core inode may be reaped by prune_icache
5835 * without having to perform any I/O. This is a very good thing,
5836 * because *any* task may call prune_icache - even ones which
5837 * have a transaction open against a different journal.
5838 *
5839 * Is this cheating? Not really. Sure, we haven't written the
5840 * inode out, but prune_icache isn't a user-visible syncing function.
5841 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5842 * we start and wait on commits.
5843 */
5844 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5845 {
5846 struct ext4_iloc iloc;
5847 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5848 int err;
5849
5850 might_sleep();
5851 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5852 err = ext4_reserve_inode_write(handle, inode, &iloc);
5853 if (err)
5854 return err;
5855
5856 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5857 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5858 iloc, handle);
5859
5860 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5861 }
5862
5863 /*
5864 * ext4_dirty_inode() is called from __mark_inode_dirty()
5865 *
5866 * We're really interested in the case where a file is being extended.
5867 * i_size has been changed by generic_commit_write() and we thus need
5868 * to include the updated inode in the current transaction.
5869 *
5870 * Also, dquot_alloc_block() will always dirty the inode when blocks
5871 * are allocated to the file.
5872 *
5873 * If the inode is marked synchronous, we don't honour that here - doing
5874 * so would cause a commit on atime updates, which we don't bother doing.
5875 * We handle synchronous inodes at the highest possible level.
5876 *
5877 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5878 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5879 * to copy into the on-disk inode structure are the timestamp files.
5880 */
5881 void ext4_dirty_inode(struct inode *inode, int flags)
5882 {
5883 handle_t *handle;
5884
5885 if (flags == I_DIRTY_TIME)
5886 return;
5887 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5888 if (IS_ERR(handle))
5889 goto out;
5890
5891 ext4_mark_inode_dirty(handle, inode);
5892
5893 ext4_journal_stop(handle);
5894 out:
5895 return;
5896 }
5897
5898 #if 0
5899 /*
5900 * Bind an inode's backing buffer_head into this transaction, to prevent
5901 * it from being flushed to disk early. Unlike
5902 * ext4_reserve_inode_write, this leaves behind no bh reference and
5903 * returns no iloc structure, so the caller needs to repeat the iloc
5904 * lookup to mark the inode dirty later.
5905 */
5906 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5907 {
5908 struct ext4_iloc iloc;
5909
5910 int err = 0;
5911 if (handle) {
5912 err = ext4_get_inode_loc(inode, &iloc);
5913 if (!err) {
5914 BUFFER_TRACE(iloc.bh, "get_write_access");
5915 err = jbd2_journal_get_write_access(handle, iloc.bh);
5916 if (!err)
5917 err = ext4_handle_dirty_metadata(handle,
5918 NULL,
5919 iloc.bh);
5920 brelse(iloc.bh);
5921 }
5922 }
5923 ext4_std_error(inode->i_sb, err);
5924 return err;
5925 }
5926 #endif
5927
5928 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5929 {
5930 journal_t *journal;
5931 handle_t *handle;
5932 int err;
5933 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5934
5935 /*
5936 * We have to be very careful here: changing a data block's
5937 * journaling status dynamically is dangerous. If we write a
5938 * data block to the journal, change the status and then delete
5939 * that block, we risk forgetting to revoke the old log record
5940 * from the journal and so a subsequent replay can corrupt data.
5941 * So, first we make sure that the journal is empty and that
5942 * nobody is changing anything.
5943 */
5944
5945 journal = EXT4_JOURNAL(inode);
5946 if (!journal)
5947 return 0;
5948 if (is_journal_aborted(journal))
5949 return -EROFS;
5950
5951 /* Wait for all existing dio workers */
5952 ext4_inode_block_unlocked_dio(inode);
5953 inode_dio_wait(inode);
5954
5955 /*
5956 * Before flushing the journal and switching inode's aops, we have
5957 * to flush all dirty data the inode has. There can be outstanding
5958 * delayed allocations, there can be unwritten extents created by
5959 * fallocate or buffered writes in dioread_nolock mode covered by
5960 * dirty data which can be converted only after flushing the dirty
5961 * data (and journalled aops don't know how to handle these cases).
5962 */
5963 if (val) {
5964 down_write(&EXT4_I(inode)->i_mmap_sem);
5965 err = filemap_write_and_wait(inode->i_mapping);
5966 if (err < 0) {
5967 up_write(&EXT4_I(inode)->i_mmap_sem);
5968 ext4_inode_resume_unlocked_dio(inode);
5969 return err;
5970 }
5971 }
5972
5973 percpu_down_write(&sbi->s_journal_flag_rwsem);
5974 jbd2_journal_lock_updates(journal);
5975
5976 /*
5977 * OK, there are no updates running now, and all cached data is
5978 * synced to disk. We are now in a completely consistent state
5979 * which doesn't have anything in the journal, and we know that
5980 * no filesystem updates are running, so it is safe to modify
5981 * the inode's in-core data-journaling state flag now.
5982 */
5983
5984 if (val)
5985 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5986 else {
5987 err = jbd2_journal_flush(journal);
5988 if (err < 0) {
5989 jbd2_journal_unlock_updates(journal);
5990 percpu_up_write(&sbi->s_journal_flag_rwsem);
5991 ext4_inode_resume_unlocked_dio(inode);
5992 return err;
5993 }
5994 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5995 }
5996 ext4_set_aops(inode);
5997 /*
5998 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5999 * E.g. S_DAX may get cleared / set.
6000 */
6001 ext4_set_inode_flags(inode);
6002
6003 jbd2_journal_unlock_updates(journal);
6004 percpu_up_write(&sbi->s_journal_flag_rwsem);
6005
6006 if (val)
6007 up_write(&EXT4_I(inode)->i_mmap_sem);
6008 ext4_inode_resume_unlocked_dio(inode);
6009
6010 /* Finally we can mark the inode as dirty. */
6011
6012 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6013 if (IS_ERR(handle))
6014 return PTR_ERR(handle);
6015
6016 err = ext4_mark_inode_dirty(handle, inode);
6017 ext4_handle_sync(handle);
6018 ext4_journal_stop(handle);
6019 ext4_std_error(inode->i_sb, err);
6020
6021 return err;
6022 }
6023
6024 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6025 {
6026 return !buffer_mapped(bh);
6027 }
6028
6029 int ext4_page_mkwrite(struct vm_fault *vmf)
6030 {
6031 struct vm_area_struct *vma = vmf->vma;
6032 struct page *page = vmf->page;
6033 loff_t size;
6034 unsigned long len;
6035 int ret;
6036 struct file *file = vma->vm_file;
6037 struct inode *inode = file_inode(file);
6038 struct address_space *mapping = inode->i_mapping;
6039 handle_t *handle;
6040 get_block_t *get_block;
6041 int retries = 0;
6042
6043 sb_start_pagefault(inode->i_sb);
6044 file_update_time(vma->vm_file);
6045
6046 down_read(&EXT4_I(inode)->i_mmap_sem);
6047
6048 ret = ext4_convert_inline_data(inode);
6049 if (ret)
6050 goto out_ret;
6051
6052 /* Delalloc case is easy... */
6053 if (test_opt(inode->i_sb, DELALLOC) &&
6054 !ext4_should_journal_data(inode) &&
6055 !ext4_nonda_switch(inode->i_sb)) {
6056 do {
6057 ret = block_page_mkwrite(vma, vmf,
6058 ext4_da_get_block_prep);
6059 } while (ret == -ENOSPC &&
6060 ext4_should_retry_alloc(inode->i_sb, &retries));
6061 goto out_ret;
6062 }
6063
6064 lock_page(page);
6065 size = i_size_read(inode);
6066 /* Page got truncated from under us? */
6067 if (page->mapping != mapping || page_offset(page) > size) {
6068 unlock_page(page);
6069 ret = VM_FAULT_NOPAGE;
6070 goto out;
6071 }
6072
6073 if (page->index == size >> PAGE_SHIFT)
6074 len = size & ~PAGE_MASK;
6075 else
6076 len = PAGE_SIZE;
6077 /*
6078 * Return if we have all the buffers mapped. This avoids the need to do
6079 * journal_start/journal_stop which can block and take a long time
6080 */
6081 if (page_has_buffers(page)) {
6082 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6083 0, len, NULL,
6084 ext4_bh_unmapped)) {
6085 /* Wait so that we don't change page under IO */
6086 wait_for_stable_page(page);
6087 ret = VM_FAULT_LOCKED;
6088 goto out;
6089 }
6090 }
6091 unlock_page(page);
6092 /* OK, we need to fill the hole... */
6093 if (ext4_should_dioread_nolock(inode))
6094 get_block = ext4_get_block_unwritten;
6095 else
6096 get_block = ext4_get_block;
6097 retry_alloc:
6098 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6099 ext4_writepage_trans_blocks(inode));
6100 if (IS_ERR(handle)) {
6101 ret = VM_FAULT_SIGBUS;
6102 goto out;
6103 }
6104 ret = block_page_mkwrite(vma, vmf, get_block);
6105 if (!ret && ext4_should_journal_data(inode)) {
6106 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6107 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6108 unlock_page(page);
6109 ret = VM_FAULT_SIGBUS;
6110 ext4_journal_stop(handle);
6111 goto out;
6112 }
6113 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6114 }
6115 ext4_journal_stop(handle);
6116 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6117 goto retry_alloc;
6118 out_ret:
6119 ret = block_page_mkwrite_return(ret);
6120 out:
6121 up_read(&EXT4_I(inode)->i_mmap_sem);
6122 sb_end_pagefault(inode->i_sb);
6123 return ret;
6124 }
6125
6126 int ext4_filemap_fault(struct vm_fault *vmf)
6127 {
6128 struct inode *inode = file_inode(vmf->vma->vm_file);
6129 int err;
6130
6131 down_read(&EXT4_I(inode)->i_mmap_sem);
6132 err = filemap_fault(vmf);
6133 up_read(&EXT4_I(inode)->i_mmap_sem);
6134
6135 return err;
6136 }
6137
6138 /*
6139 * Find the first extent at or after @lblk in an inode that is not a hole.
6140 * Search for @map_len blocks at most. The extent is returned in @result.
6141 *
6142 * The function returns 1 if we found an extent. The function returns 0 in
6143 * case there is no extent at or after @lblk and in that case also sets
6144 * @result->es_len to 0. In case of error, the error code is returned.
6145 */
6146 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6147 unsigned int map_len, struct extent_status *result)
6148 {
6149 struct ext4_map_blocks map;
6150 struct extent_status es = {};
6151 int ret;
6152
6153 map.m_lblk = lblk;
6154 map.m_len = map_len;
6155
6156 /*
6157 * For non-extent based files this loop may iterate several times since
6158 * we do not determine full hole size.
6159 */
6160 while (map.m_len > 0) {
6161 ret = ext4_map_blocks(NULL, inode, &map, 0);
6162 if (ret < 0)
6163 return ret;
6164 /* There's extent covering m_lblk? Just return it. */
6165 if (ret > 0) {
6166 int status;
6167
6168 ext4_es_store_pblock(result, map.m_pblk);
6169 result->es_lblk = map.m_lblk;
6170 result->es_len = map.m_len;
6171 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6172 status = EXTENT_STATUS_UNWRITTEN;
6173 else
6174 status = EXTENT_STATUS_WRITTEN;
6175 ext4_es_store_status(result, status);
6176 return 1;
6177 }
6178 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6179 map.m_lblk + map.m_len - 1,
6180 &es);
6181 /* Is delalloc data before next block in extent tree? */
6182 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6183 ext4_lblk_t offset = 0;
6184
6185 if (es.es_lblk < lblk)
6186 offset = lblk - es.es_lblk;
6187 result->es_lblk = es.es_lblk + offset;
6188 ext4_es_store_pblock(result,
6189 ext4_es_pblock(&es) + offset);
6190 result->es_len = es.es_len - offset;
6191 ext4_es_store_status(result, ext4_es_status(&es));
6192
6193 return 1;
6194 }
6195 /* There's a hole at m_lblk, advance us after it */
6196 map.m_lblk += map.m_len;
6197 map_len -= map.m_len;
6198 map.m_len = map_len;
6199 cond_resched();
6200 }
6201 result->es_len = 0;
6202 return 0;
6203 }