]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/inline.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15 #include "node.h"
16
17 bool f2fs_may_inline_data(struct inode *inode)
18 {
19 if (f2fs_is_atomic_file(inode))
20 return false;
21
22 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
23 return false;
24
25 if (i_size_read(inode) > MAX_INLINE_DATA)
26 return false;
27
28 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
29 return false;
30
31 return true;
32 }
33
34 bool f2fs_may_inline_dentry(struct inode *inode)
35 {
36 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
37 return false;
38
39 if (!S_ISDIR(inode->i_mode))
40 return false;
41
42 return true;
43 }
44
45 void read_inline_data(struct page *page, struct page *ipage)
46 {
47 void *src_addr, *dst_addr;
48
49 if (PageUptodate(page))
50 return;
51
52 f2fs_bug_on(F2FS_P_SB(page), page->index);
53
54 zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
55
56 /* Copy the whole inline data block */
57 src_addr = inline_data_addr(ipage);
58 dst_addr = kmap_atomic(page);
59 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
60 flush_dcache_page(page);
61 kunmap_atomic(dst_addr);
62 if (!PageUptodate(page))
63 SetPageUptodate(page);
64 }
65
66 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from)
67 {
68 void *addr;
69
70 if (from >= MAX_INLINE_DATA)
71 return;
72
73 addr = inline_data_addr(ipage);
74
75 f2fs_wait_on_page_writeback(ipage, NODE, true);
76 memset(addr + from, 0, MAX_INLINE_DATA - from);
77 set_page_dirty(ipage);
78
79 if (from == 0)
80 clear_inode_flag(inode, FI_DATA_EXIST);
81 }
82
83 int f2fs_read_inline_data(struct inode *inode, struct page *page)
84 {
85 struct page *ipage;
86
87 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
88 if (IS_ERR(ipage)) {
89 unlock_page(page);
90 return PTR_ERR(ipage);
91 }
92
93 if (!f2fs_has_inline_data(inode)) {
94 f2fs_put_page(ipage, 1);
95 return -EAGAIN;
96 }
97
98 if (page->index)
99 zero_user_segment(page, 0, PAGE_SIZE);
100 else
101 read_inline_data(page, ipage);
102
103 if (!PageUptodate(page))
104 SetPageUptodate(page);
105 f2fs_put_page(ipage, 1);
106 unlock_page(page);
107 return 0;
108 }
109
110 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
111 {
112 struct f2fs_io_info fio = {
113 .sbi = F2FS_I_SB(dn->inode),
114 .type = DATA,
115 .op = REQ_OP_WRITE,
116 .op_flags = REQ_SYNC | REQ_PRIO,
117 .page = page,
118 .encrypted_page = NULL,
119 };
120 int dirty, err;
121
122 if (!f2fs_exist_data(dn->inode))
123 goto clear_out;
124
125 err = f2fs_reserve_block(dn, 0);
126 if (err)
127 return err;
128
129 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
130
131 read_inline_data(page, dn->inode_page);
132 set_page_dirty(page);
133
134 /* clear dirty state */
135 dirty = clear_page_dirty_for_io(page);
136
137 /* write data page to try to make data consistent */
138 set_page_writeback(page);
139 fio.old_blkaddr = dn->data_blkaddr;
140 set_inode_flag(dn->inode, FI_HOT_DATA);
141 write_data_page(dn, &fio);
142 f2fs_wait_on_page_writeback(page, DATA, true);
143 if (dirty) {
144 inode_dec_dirty_pages(dn->inode);
145 remove_dirty_inode(dn->inode);
146 }
147
148 /* this converted inline_data should be recovered. */
149 set_inode_flag(dn->inode, FI_APPEND_WRITE);
150
151 /* clear inline data and flag after data writeback */
152 truncate_inline_inode(dn->inode, dn->inode_page, 0);
153 clear_inline_node(dn->inode_page);
154 clear_out:
155 stat_dec_inline_inode(dn->inode);
156 clear_inode_flag(dn->inode, FI_INLINE_DATA);
157 f2fs_put_dnode(dn);
158 return 0;
159 }
160
161 int f2fs_convert_inline_inode(struct inode *inode)
162 {
163 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
164 struct dnode_of_data dn;
165 struct page *ipage, *page;
166 int err = 0;
167
168 if (!f2fs_has_inline_data(inode))
169 return 0;
170
171 page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
172 if (!page)
173 return -ENOMEM;
174
175 f2fs_lock_op(sbi);
176
177 ipage = get_node_page(sbi, inode->i_ino);
178 if (IS_ERR(ipage)) {
179 err = PTR_ERR(ipage);
180 goto out;
181 }
182
183 set_new_dnode(&dn, inode, ipage, ipage, 0);
184
185 if (f2fs_has_inline_data(inode))
186 err = f2fs_convert_inline_page(&dn, page);
187
188 f2fs_put_dnode(&dn);
189 out:
190 f2fs_unlock_op(sbi);
191
192 f2fs_put_page(page, 1);
193
194 f2fs_balance_fs(sbi, dn.node_changed);
195
196 return err;
197 }
198
199 int f2fs_write_inline_data(struct inode *inode, struct page *page)
200 {
201 void *src_addr, *dst_addr;
202 struct dnode_of_data dn;
203 int err;
204
205 set_new_dnode(&dn, inode, NULL, NULL, 0);
206 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
207 if (err)
208 return err;
209
210 if (!f2fs_has_inline_data(inode)) {
211 f2fs_put_dnode(&dn);
212 return -EAGAIN;
213 }
214
215 f2fs_bug_on(F2FS_I_SB(inode), page->index);
216
217 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
218 src_addr = kmap_atomic(page);
219 dst_addr = inline_data_addr(dn.inode_page);
220 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
221 kunmap_atomic(src_addr);
222 set_page_dirty(dn.inode_page);
223
224 set_inode_flag(inode, FI_APPEND_WRITE);
225 set_inode_flag(inode, FI_DATA_EXIST);
226
227 clear_inline_node(dn.inode_page);
228 f2fs_put_dnode(&dn);
229 return 0;
230 }
231
232 bool recover_inline_data(struct inode *inode, struct page *npage)
233 {
234 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
235 struct f2fs_inode *ri = NULL;
236 void *src_addr, *dst_addr;
237 struct page *ipage;
238
239 /*
240 * The inline_data recovery policy is as follows.
241 * [prev.] [next] of inline_data flag
242 * o o -> recover inline_data
243 * o x -> remove inline_data, and then recover data blocks
244 * x o -> remove inline_data, and then recover inline_data
245 * x x -> recover data blocks
246 */
247 if (IS_INODE(npage))
248 ri = F2FS_INODE(npage);
249
250 if (f2fs_has_inline_data(inode) &&
251 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
252 process_inline:
253 ipage = get_node_page(sbi, inode->i_ino);
254 f2fs_bug_on(sbi, IS_ERR(ipage));
255
256 f2fs_wait_on_page_writeback(ipage, NODE, true);
257
258 src_addr = inline_data_addr(npage);
259 dst_addr = inline_data_addr(ipage);
260 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
261
262 set_inode_flag(inode, FI_INLINE_DATA);
263 set_inode_flag(inode, FI_DATA_EXIST);
264
265 set_page_dirty(ipage);
266 f2fs_put_page(ipage, 1);
267 return true;
268 }
269
270 if (f2fs_has_inline_data(inode)) {
271 ipage = get_node_page(sbi, inode->i_ino);
272 f2fs_bug_on(sbi, IS_ERR(ipage));
273 truncate_inline_inode(inode, ipage, 0);
274 clear_inode_flag(inode, FI_INLINE_DATA);
275 f2fs_put_page(ipage, 1);
276 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
277 if (truncate_blocks(inode, 0, false))
278 return false;
279 goto process_inline;
280 }
281 return false;
282 }
283
284 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
285 struct fscrypt_name *fname, struct page **res_page)
286 {
287 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
288 struct f2fs_inline_dentry *inline_dentry;
289 struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
290 struct f2fs_dir_entry *de;
291 struct f2fs_dentry_ptr d;
292 struct page *ipage;
293 f2fs_hash_t namehash;
294
295 ipage = get_node_page(sbi, dir->i_ino);
296 if (IS_ERR(ipage)) {
297 *res_page = ipage;
298 return NULL;
299 }
300
301 namehash = f2fs_dentry_hash(&name, fname);
302
303 inline_dentry = inline_data_addr(ipage);
304
305 make_dentry_ptr_inline(NULL, &d, inline_dentry);
306 de = find_target_dentry(fname, namehash, NULL, &d);
307 unlock_page(ipage);
308 if (de)
309 *res_page = ipage;
310 else
311 f2fs_put_page(ipage, 0);
312
313 return de;
314 }
315
316 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
317 struct page *ipage)
318 {
319 struct f2fs_inline_dentry *inline_dentry;
320 struct f2fs_dentry_ptr d;
321
322 inline_dentry = inline_data_addr(ipage);
323
324 make_dentry_ptr_inline(NULL, &d, inline_dentry);
325 do_make_empty_dir(inode, parent, &d);
326
327 set_page_dirty(ipage);
328
329 /* update i_size to MAX_INLINE_DATA */
330 if (i_size_read(inode) < MAX_INLINE_DATA)
331 f2fs_i_size_write(inode, MAX_INLINE_DATA);
332 return 0;
333 }
334
335 /*
336 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
337 * release ipage in this function.
338 */
339 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
340 struct f2fs_inline_dentry *inline_dentry)
341 {
342 struct page *page;
343 struct dnode_of_data dn;
344 struct f2fs_dentry_block *dentry_blk;
345 int err;
346
347 page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
348 if (!page) {
349 f2fs_put_page(ipage, 1);
350 return -ENOMEM;
351 }
352
353 set_new_dnode(&dn, dir, ipage, NULL, 0);
354 err = f2fs_reserve_block(&dn, 0);
355 if (err)
356 goto out;
357
358 f2fs_wait_on_page_writeback(page, DATA, true);
359 zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
360
361 dentry_blk = kmap_atomic(page);
362
363 /* copy data from inline dentry block to new dentry block */
364 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
365 INLINE_DENTRY_BITMAP_SIZE);
366 memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
367 SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
368 /*
369 * we do not need to zero out remainder part of dentry and filename
370 * field, since we have used bitmap for marking the usage status of
371 * them, besides, we can also ignore copying/zeroing reserved space
372 * of dentry block, because them haven't been used so far.
373 */
374 memcpy(dentry_blk->dentry, inline_dentry->dentry,
375 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
376 memcpy(dentry_blk->filename, inline_dentry->filename,
377 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
378
379 kunmap_atomic(dentry_blk);
380 if (!PageUptodate(page))
381 SetPageUptodate(page);
382 set_page_dirty(page);
383
384 /* clear inline dir and flag after data writeback */
385 truncate_inline_inode(dir, ipage, 0);
386
387 stat_dec_inline_dir(dir);
388 clear_inode_flag(dir, FI_INLINE_DENTRY);
389
390 f2fs_i_depth_write(dir, 1);
391 if (i_size_read(dir) < PAGE_SIZE)
392 f2fs_i_size_write(dir, PAGE_SIZE);
393 out:
394 f2fs_put_page(page, 1);
395 return err;
396 }
397
398 static int f2fs_add_inline_entries(struct inode *dir,
399 struct f2fs_inline_dentry *inline_dentry)
400 {
401 struct f2fs_dentry_ptr d;
402 unsigned long bit_pos = 0;
403 int err = 0;
404
405 make_dentry_ptr_inline(NULL, &d, inline_dentry);
406
407 while (bit_pos < d.max) {
408 struct f2fs_dir_entry *de;
409 struct qstr new_name;
410 nid_t ino;
411 umode_t fake_mode;
412
413 if (!test_bit_le(bit_pos, d.bitmap)) {
414 bit_pos++;
415 continue;
416 }
417
418 de = &d.dentry[bit_pos];
419
420 if (unlikely(!de->name_len)) {
421 bit_pos++;
422 continue;
423 }
424
425 new_name.name = d.filename[bit_pos];
426 new_name.len = le16_to_cpu(de->name_len);
427
428 ino = le32_to_cpu(de->ino);
429 fake_mode = get_de_type(de) << S_SHIFT;
430
431 err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
432 ino, fake_mode);
433 if (err)
434 goto punch_dentry_pages;
435
436 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
437 }
438 return 0;
439 punch_dentry_pages:
440 truncate_inode_pages(&dir->i_data, 0);
441 truncate_blocks(dir, 0, false);
442 remove_dirty_inode(dir);
443 return err;
444 }
445
446 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
447 struct f2fs_inline_dentry *inline_dentry)
448 {
449 struct f2fs_inline_dentry *backup_dentry;
450 int err;
451
452 backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
453 sizeof(struct f2fs_inline_dentry), GFP_F2FS_ZERO);
454 if (!backup_dentry) {
455 f2fs_put_page(ipage, 1);
456 return -ENOMEM;
457 }
458
459 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA);
460 truncate_inline_inode(dir, ipage, 0);
461
462 unlock_page(ipage);
463
464 err = f2fs_add_inline_entries(dir, backup_dentry);
465 if (err)
466 goto recover;
467
468 lock_page(ipage);
469
470 stat_dec_inline_dir(dir);
471 clear_inode_flag(dir, FI_INLINE_DENTRY);
472 kfree(backup_dentry);
473 return 0;
474 recover:
475 lock_page(ipage);
476 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA);
477 f2fs_i_depth_write(dir, 0);
478 f2fs_i_size_write(dir, MAX_INLINE_DATA);
479 set_page_dirty(ipage);
480 f2fs_put_page(ipage, 1);
481
482 kfree(backup_dentry);
483 return err;
484 }
485
486 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
487 struct f2fs_inline_dentry *inline_dentry)
488 {
489 if (!F2FS_I(dir)->i_dir_level)
490 return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
491 else
492 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
493 }
494
495 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
496 const struct qstr *orig_name,
497 struct inode *inode, nid_t ino, umode_t mode)
498 {
499 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
500 struct page *ipage;
501 unsigned int bit_pos;
502 f2fs_hash_t name_hash;
503 struct f2fs_inline_dentry *inline_dentry = NULL;
504 struct f2fs_dentry_ptr d;
505 int slots = GET_DENTRY_SLOTS(new_name->len);
506 struct page *page = NULL;
507 int err = 0;
508
509 ipage = get_node_page(sbi, dir->i_ino);
510 if (IS_ERR(ipage))
511 return PTR_ERR(ipage);
512
513 inline_dentry = inline_data_addr(ipage);
514 bit_pos = room_for_filename(&inline_dentry->dentry_bitmap,
515 slots, NR_INLINE_DENTRY);
516 if (bit_pos >= NR_INLINE_DENTRY) {
517 err = f2fs_convert_inline_dir(dir, ipage, inline_dentry);
518 if (err)
519 return err;
520 err = -EAGAIN;
521 goto out;
522 }
523
524 if (inode) {
525 down_write(&F2FS_I(inode)->i_sem);
526 page = init_inode_metadata(inode, dir, new_name,
527 orig_name, ipage);
528 if (IS_ERR(page)) {
529 err = PTR_ERR(page);
530 goto fail;
531 }
532 }
533
534 f2fs_wait_on_page_writeback(ipage, NODE, true);
535
536 name_hash = f2fs_dentry_hash(new_name, NULL);
537 make_dentry_ptr_inline(NULL, &d, inline_dentry);
538 f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
539
540 set_page_dirty(ipage);
541
542 /* we don't need to mark_inode_dirty now */
543 if (inode) {
544 f2fs_i_pino_write(inode, dir->i_ino);
545 f2fs_put_page(page, 1);
546 }
547
548 update_parent_metadata(dir, inode, 0);
549 fail:
550 if (inode)
551 up_write(&F2FS_I(inode)->i_sem);
552 out:
553 f2fs_put_page(ipage, 1);
554 return err;
555 }
556
557 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
558 struct inode *dir, struct inode *inode)
559 {
560 struct f2fs_inline_dentry *inline_dentry;
561 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
562 unsigned int bit_pos;
563 int i;
564
565 lock_page(page);
566 f2fs_wait_on_page_writeback(page, NODE, true);
567
568 inline_dentry = inline_data_addr(page);
569 bit_pos = dentry - inline_dentry->dentry;
570 for (i = 0; i < slots; i++)
571 __clear_bit_le(bit_pos + i,
572 &inline_dentry->dentry_bitmap);
573
574 set_page_dirty(page);
575 f2fs_put_page(page, 1);
576
577 dir->i_ctime = dir->i_mtime = current_time(dir);
578 f2fs_mark_inode_dirty_sync(dir, false);
579
580 if (inode)
581 f2fs_drop_nlink(dir, inode);
582 }
583
584 bool f2fs_empty_inline_dir(struct inode *dir)
585 {
586 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
587 struct page *ipage;
588 unsigned int bit_pos = 2;
589 struct f2fs_inline_dentry *inline_dentry;
590
591 ipage = get_node_page(sbi, dir->i_ino);
592 if (IS_ERR(ipage))
593 return false;
594
595 inline_dentry = inline_data_addr(ipage);
596 bit_pos = find_next_bit_le(&inline_dentry->dentry_bitmap,
597 NR_INLINE_DENTRY,
598 bit_pos);
599
600 f2fs_put_page(ipage, 1);
601
602 if (bit_pos < NR_INLINE_DENTRY)
603 return false;
604
605 return true;
606 }
607
608 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
609 struct fscrypt_str *fstr)
610 {
611 struct inode *inode = file_inode(file);
612 struct f2fs_inline_dentry *inline_dentry = NULL;
613 struct page *ipage = NULL;
614 struct f2fs_dentry_ptr d;
615 int err;
616
617 if (ctx->pos == NR_INLINE_DENTRY)
618 return 0;
619
620 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
621 if (IS_ERR(ipage))
622 return PTR_ERR(ipage);
623
624 inline_dentry = inline_data_addr(ipage);
625
626 make_dentry_ptr_inline(inode, &d, inline_dentry);
627
628 err = f2fs_fill_dentries(ctx, &d, 0, fstr);
629 if (!err)
630 ctx->pos = NR_INLINE_DENTRY;
631
632 f2fs_put_page(ipage, 1);
633 return err < 0 ? err : 0;
634 }
635
636 int f2fs_inline_data_fiemap(struct inode *inode,
637 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
638 {
639 __u64 byteaddr, ilen;
640 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
641 FIEMAP_EXTENT_LAST;
642 struct node_info ni;
643 struct page *ipage;
644 int err = 0;
645
646 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
647 if (IS_ERR(ipage))
648 return PTR_ERR(ipage);
649
650 if (!f2fs_has_inline_data(inode)) {
651 err = -EAGAIN;
652 goto out;
653 }
654
655 ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
656 if (start >= ilen)
657 goto out;
658 if (start + len < ilen)
659 ilen = start + len;
660 ilen -= start;
661
662 get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
663 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
664 byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
665 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
666 out:
667 f2fs_put_page(ipage, 1);
668 return err;
669 }