]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/node.h
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / node.h
1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES 8
19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20
21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD 1
28
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD 100000
33
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE 64
36 #define SETVEC_SIZE 32
37
38 /* return value for read_node_page */
39 #define LOCKED_PAGE 1
40
41 /* For flag in struct node_info */
42 enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47 };
48
49 /*
50 * For node information
51 */
52 struct node_info {
53 nid_t nid; /* node id */
54 nid_t ino; /* inode number of the node's owner */
55 block_t blk_addr; /* block address of the node */
56 unsigned char version; /* version of the node */
57 unsigned char flag; /* for node information bits */
58 };
59
60 struct nat_entry {
61 struct list_head list; /* for clean or dirty nat list */
62 struct node_info ni; /* in-memory node information */
63 };
64
65 #define nat_get_nid(nat) ((nat)->ni.nid)
66 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
67 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
68 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
69 #define nat_get_ino(nat) ((nat)->ni.ino)
70 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
71 #define nat_get_version(nat) ((nat)->ni.version)
72 #define nat_set_version(nat, v) ((nat)->ni.version = (v))
73
74 #define inc_node_version(version) (++(version))
75
76 static inline void copy_node_info(struct node_info *dst,
77 struct node_info *src)
78 {
79 dst->nid = src->nid;
80 dst->ino = src->ino;
81 dst->blk_addr = src->blk_addr;
82 dst->version = src->version;
83 /* should not copy flag here */
84 }
85
86 static inline void set_nat_flag(struct nat_entry *ne,
87 unsigned int type, bool set)
88 {
89 unsigned char mask = 0x01 << type;
90 if (set)
91 ne->ni.flag |= mask;
92 else
93 ne->ni.flag &= ~mask;
94 }
95
96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97 {
98 unsigned char mask = 0x01 << type;
99 return ne->ni.flag & mask;
100 }
101
102 static inline void nat_reset_flag(struct nat_entry *ne)
103 {
104 /* these states can be set only after checkpoint was done */
105 set_nat_flag(ne, IS_CHECKPOINTED, true);
106 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 set_nat_flag(ne, HAS_LAST_FSYNC, true);
108 }
109
110 static inline void node_info_from_raw_nat(struct node_info *ni,
111 struct f2fs_nat_entry *raw_ne)
112 {
113 ni->ino = le32_to_cpu(raw_ne->ino);
114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 ni->version = raw_ne->version;
116 }
117
118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 struct node_info *ni)
120 {
121 raw_ne->ino = cpu_to_le32(ni->ino);
122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 raw_ne->version = ni->version;
124 }
125
126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127 {
128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 NM_I(sbi)->dirty_nats_ratio / 100;
130 }
131
132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133 {
134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135 }
136
137 enum mem_type {
138 FREE_NIDS, /* indicates the free nid list */
139 NAT_ENTRIES, /* indicates the cached nat entry */
140 DIRTY_DENTS, /* indicates dirty dentry pages */
141 INO_ENTRIES, /* indicates inode entries */
142 EXTENT_CACHE, /* indicates extent cache */
143 BASE_CHECK, /* check kernel status */
144 };
145
146 struct nat_entry_set {
147 struct list_head set_list; /* link with other nat sets */
148 struct list_head entry_list; /* link with dirty nat entries */
149 nid_t set; /* set number*/
150 unsigned int entry_cnt; /* the # of nat entries in set */
151 };
152
153 /*
154 * For free nid mangement
155 */
156 enum nid_state {
157 NID_NEW, /* newly added to free nid list */
158 NID_ALLOC /* it is allocated */
159 };
160
161 struct free_nid {
162 struct list_head list; /* for free node id list */
163 nid_t nid; /* node id */
164 int state; /* in use or not: NID_NEW or NID_ALLOC */
165 };
166
167 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168 {
169 struct f2fs_nm_info *nm_i = NM_I(sbi);
170 struct free_nid *fnid;
171
172 spin_lock(&nm_i->nid_list_lock);
173 if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) {
174 spin_unlock(&nm_i->nid_list_lock);
175 return;
176 }
177 fnid = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
178 struct free_nid, list);
179 *nid = fnid->nid;
180 spin_unlock(&nm_i->nid_list_lock);
181 }
182
183 /*
184 * inline functions
185 */
186 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
187 {
188 struct f2fs_nm_info *nm_i = NM_I(sbi);
189
190 #ifdef CONFIG_F2FS_CHECK_FS
191 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
192 nm_i->bitmap_size))
193 f2fs_bug_on(sbi, 1);
194 #endif
195 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
196 }
197
198 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
199 {
200 struct f2fs_nm_info *nm_i = NM_I(sbi);
201 pgoff_t block_off;
202 pgoff_t block_addr;
203
204 /*
205 * block_off = segment_off * 512 + off_in_segment
206 * OLD = (segment_off * 512) * 2 + off_in_segment
207 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
208 */
209 block_off = NAT_BLOCK_OFFSET(start);
210
211 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
212 (block_off << 1) -
213 (block_off & (sbi->blocks_per_seg - 1)));
214
215 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
216 block_addr += sbi->blocks_per_seg;
217
218 return block_addr;
219 }
220
221 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
222 pgoff_t block_addr)
223 {
224 struct f2fs_nm_info *nm_i = NM_I(sbi);
225
226 block_addr -= nm_i->nat_blkaddr;
227 block_addr ^= 1 << sbi->log_blocks_per_seg;
228 return block_addr + nm_i->nat_blkaddr;
229 }
230
231 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
232 {
233 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
234
235 f2fs_change_bit(block_off, nm_i->nat_bitmap);
236 #ifdef CONFIG_F2FS_CHECK_FS
237 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
238 #endif
239 }
240
241 static inline nid_t ino_of_node(struct page *node_page)
242 {
243 struct f2fs_node *rn = F2FS_NODE(node_page);
244 return le32_to_cpu(rn->footer.ino);
245 }
246
247 static inline nid_t nid_of_node(struct page *node_page)
248 {
249 struct f2fs_node *rn = F2FS_NODE(node_page);
250 return le32_to_cpu(rn->footer.nid);
251 }
252
253 static inline unsigned int ofs_of_node(struct page *node_page)
254 {
255 struct f2fs_node *rn = F2FS_NODE(node_page);
256 unsigned flag = le32_to_cpu(rn->footer.flag);
257 return flag >> OFFSET_BIT_SHIFT;
258 }
259
260 static inline __u64 cpver_of_node(struct page *node_page)
261 {
262 struct f2fs_node *rn = F2FS_NODE(node_page);
263 return le64_to_cpu(rn->footer.cp_ver);
264 }
265
266 static inline block_t next_blkaddr_of_node(struct page *node_page)
267 {
268 struct f2fs_node *rn = F2FS_NODE(node_page);
269 return le32_to_cpu(rn->footer.next_blkaddr);
270 }
271
272 static inline void fill_node_footer(struct page *page, nid_t nid,
273 nid_t ino, unsigned int ofs, bool reset)
274 {
275 struct f2fs_node *rn = F2FS_NODE(page);
276 unsigned int old_flag = 0;
277
278 if (reset)
279 memset(rn, 0, sizeof(*rn));
280 else
281 old_flag = le32_to_cpu(rn->footer.flag);
282
283 rn->footer.nid = cpu_to_le32(nid);
284 rn->footer.ino = cpu_to_le32(ino);
285
286 /* should remain old flag bits such as COLD_BIT_SHIFT */
287 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
288 (old_flag & OFFSET_BIT_MASK));
289 }
290
291 static inline void copy_node_footer(struct page *dst, struct page *src)
292 {
293 struct f2fs_node *src_rn = F2FS_NODE(src);
294 struct f2fs_node *dst_rn = F2FS_NODE(dst);
295 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
296 }
297
298 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
299 {
300 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
301 struct f2fs_node *rn = F2FS_NODE(page);
302 __u64 cp_ver = cur_cp_version(ckpt);
303
304 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
305 cp_ver |= (cur_cp_crc(ckpt) << 32);
306
307 rn->footer.cp_ver = cpu_to_le64(cp_ver);
308 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
309 }
310
311 static inline bool is_recoverable_dnode(struct page *page)
312 {
313 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
314 __u64 cp_ver = cur_cp_version(ckpt);
315
316 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
317 cp_ver |= (cur_cp_crc(ckpt) << 32);
318
319 return cp_ver == cpver_of_node(page);
320 }
321
322 /*
323 * f2fs assigns the following node offsets described as (num).
324 * N = NIDS_PER_BLOCK
325 *
326 * Inode block (0)
327 * |- direct node (1)
328 * |- direct node (2)
329 * |- indirect node (3)
330 * | `- direct node (4 => 4 + N - 1)
331 * |- indirect node (4 + N)
332 * | `- direct node (5 + N => 5 + 2N - 1)
333 * `- double indirect node (5 + 2N)
334 * `- indirect node (6 + 2N)
335 * `- direct node
336 * ......
337 * `- indirect node ((6 + 2N) + x(N + 1))
338 * `- direct node
339 * ......
340 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
341 * `- direct node
342 */
343 static inline bool IS_DNODE(struct page *node_page)
344 {
345 unsigned int ofs = ofs_of_node(node_page);
346
347 if (f2fs_has_xattr_block(ofs))
348 return true;
349
350 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
351 ofs == 5 + 2 * NIDS_PER_BLOCK)
352 return false;
353 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
354 ofs -= 6 + 2 * NIDS_PER_BLOCK;
355 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
356 return false;
357 }
358 return true;
359 }
360
361 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
362 {
363 struct f2fs_node *rn = F2FS_NODE(p);
364
365 f2fs_wait_on_page_writeback(p, NODE, true);
366
367 if (i)
368 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
369 else
370 rn->in.nid[off] = cpu_to_le32(nid);
371 return set_page_dirty(p);
372 }
373
374 static inline nid_t get_nid(struct page *p, int off, bool i)
375 {
376 struct f2fs_node *rn = F2FS_NODE(p);
377
378 if (i)
379 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
380 return le32_to_cpu(rn->in.nid[off]);
381 }
382
383 /*
384 * Coldness identification:
385 * - Mark cold files in f2fs_inode_info
386 * - Mark cold node blocks in their node footer
387 * - Mark cold data pages in page cache
388 */
389 static inline int is_cold_data(struct page *page)
390 {
391 return PageChecked(page);
392 }
393
394 static inline void set_cold_data(struct page *page)
395 {
396 SetPageChecked(page);
397 }
398
399 static inline void clear_cold_data(struct page *page)
400 {
401 ClearPageChecked(page);
402 }
403
404 static inline int is_node(struct page *page, int type)
405 {
406 struct f2fs_node *rn = F2FS_NODE(page);
407 return le32_to_cpu(rn->footer.flag) & (1 << type);
408 }
409
410 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
411 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
412 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
413
414 static inline int is_inline_node(struct page *page)
415 {
416 return PageChecked(page);
417 }
418
419 static inline void set_inline_node(struct page *page)
420 {
421 SetPageChecked(page);
422 }
423
424 static inline void clear_inline_node(struct page *page)
425 {
426 ClearPageChecked(page);
427 }
428
429 static inline void set_cold_node(struct inode *inode, struct page *page)
430 {
431 struct f2fs_node *rn = F2FS_NODE(page);
432 unsigned int flag = le32_to_cpu(rn->footer.flag);
433
434 if (S_ISDIR(inode->i_mode))
435 flag &= ~(0x1 << COLD_BIT_SHIFT);
436 else
437 flag |= (0x1 << COLD_BIT_SHIFT);
438 rn->footer.flag = cpu_to_le32(flag);
439 }
440
441 static inline void set_mark(struct page *page, int mark, int type)
442 {
443 struct f2fs_node *rn = F2FS_NODE(page);
444 unsigned int flag = le32_to_cpu(rn->footer.flag);
445 if (mark)
446 flag |= (0x1 << type);
447 else
448 flag &= ~(0x1 << type);
449 rn->footer.flag = cpu_to_le32(flag);
450 }
451 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
452 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)