]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/segment.c
block: switch bios to blk_status_t
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171 struct f2fs_inode_info *fi = F2FS_I(inode);
172 struct inmem_pages *new;
173
174 f2fs_trace_pid(page);
175
176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177 SetPagePrivate(page);
178
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180
181 /* add atomic page indices to the list */
182 new->page = page;
183 INIT_LIST_HEAD(&new->list);
184
185 /* increase reference count with clean state */
186 mutex_lock(&fi->inmem_lock);
187 get_page(page);
188 list_add_tail(&new->list, &fi->inmem_pages);
189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190 mutex_unlock(&fi->inmem_lock);
191
192 trace_f2fs_register_inmem_page(page, INMEM);
193 }
194
195 static int __revoke_inmem_pages(struct inode *inode,
196 struct list_head *head, bool drop, bool recover)
197 {
198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199 struct inmem_pages *cur, *tmp;
200 int err = 0;
201
202 list_for_each_entry_safe(cur, tmp, head, list) {
203 struct page *page = cur->page;
204
205 if (drop)
206 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207
208 lock_page(page);
209
210 if (recover) {
211 struct dnode_of_data dn;
212 struct node_info ni;
213
214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215
216 set_new_dnode(&dn, inode, NULL, NULL, 0);
217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218 err = -EAGAIN;
219 goto next;
220 }
221 get_node_info(sbi, dn.nid, &ni);
222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223 cur->old_addr, ni.version, true, true);
224 f2fs_put_dnode(&dn);
225 }
226 next:
227 /* we don't need to invalidate this in the sccessful status */
228 if (drop || recover)
229 ClearPageUptodate(page);
230 set_page_private(page, 0);
231 ClearPagePrivate(page);
232 f2fs_put_page(page, 1);
233
234 list_del(&cur->list);
235 kmem_cache_free(inmem_entry_slab, cur);
236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237 }
238 return err;
239 }
240
241 void drop_inmem_pages(struct inode *inode)
242 {
243 struct f2fs_inode_info *fi = F2FS_I(inode);
244
245 mutex_lock(&fi->inmem_lock);
246 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
247 mutex_unlock(&fi->inmem_lock);
248
249 clear_inode_flag(inode, FI_ATOMIC_FILE);
250 stat_dec_atomic_write(inode);
251 }
252
253 void drop_inmem_page(struct inode *inode, struct page *page)
254 {
255 struct f2fs_inode_info *fi = F2FS_I(inode);
256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
257 struct list_head *head = &fi->inmem_pages;
258 struct inmem_pages *cur = NULL;
259
260 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
261
262 mutex_lock(&fi->inmem_lock);
263 list_for_each_entry(cur, head, list) {
264 if (cur->page == page)
265 break;
266 }
267
268 f2fs_bug_on(sbi, !cur || cur->page != page);
269 list_del(&cur->list);
270 mutex_unlock(&fi->inmem_lock);
271
272 dec_page_count(sbi, F2FS_INMEM_PAGES);
273 kmem_cache_free(inmem_entry_slab, cur);
274
275 ClearPageUptodate(page);
276 set_page_private(page, 0);
277 ClearPagePrivate(page);
278 f2fs_put_page(page, 0);
279
280 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
281 }
282
283 static int __commit_inmem_pages(struct inode *inode,
284 struct list_head *revoke_list)
285 {
286 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
287 struct f2fs_inode_info *fi = F2FS_I(inode);
288 struct inmem_pages *cur, *tmp;
289 struct f2fs_io_info fio = {
290 .sbi = sbi,
291 .type = DATA,
292 .op = REQ_OP_WRITE,
293 .op_flags = REQ_SYNC | REQ_PRIO,
294 };
295 pgoff_t last_idx = ULONG_MAX;
296 int err = 0;
297
298 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
299 struct page *page = cur->page;
300
301 lock_page(page);
302 if (page->mapping == inode->i_mapping) {
303 trace_f2fs_commit_inmem_page(page, INMEM);
304
305 set_page_dirty(page);
306 f2fs_wait_on_page_writeback(page, DATA, true);
307 if (clear_page_dirty_for_io(page)) {
308 inode_dec_dirty_pages(inode);
309 remove_dirty_inode(inode);
310 }
311
312 fio.page = page;
313 fio.old_blkaddr = NULL_ADDR;
314 fio.encrypted_page = NULL;
315 fio.need_lock = false,
316 err = do_write_data_page(&fio);
317 if (err) {
318 unlock_page(page);
319 break;
320 }
321
322 /* record old blkaddr for revoking */
323 cur->old_addr = fio.old_blkaddr;
324 last_idx = page->index;
325 }
326 unlock_page(page);
327 list_move_tail(&cur->list, revoke_list);
328 }
329
330 if (last_idx != ULONG_MAX)
331 f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
332 DATA, WRITE);
333
334 if (!err)
335 __revoke_inmem_pages(inode, revoke_list, false, false);
336
337 return err;
338 }
339
340 int commit_inmem_pages(struct inode *inode)
341 {
342 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
343 struct f2fs_inode_info *fi = F2FS_I(inode);
344 struct list_head revoke_list;
345 int err;
346
347 INIT_LIST_HEAD(&revoke_list);
348 f2fs_balance_fs(sbi, true);
349 f2fs_lock_op(sbi);
350
351 set_inode_flag(inode, FI_ATOMIC_COMMIT);
352
353 mutex_lock(&fi->inmem_lock);
354 err = __commit_inmem_pages(inode, &revoke_list);
355 if (err) {
356 int ret;
357 /*
358 * try to revoke all committed pages, but still we could fail
359 * due to no memory or other reason, if that happened, EAGAIN
360 * will be returned, which means in such case, transaction is
361 * already not integrity, caller should use journal to do the
362 * recovery or rewrite & commit last transaction. For other
363 * error number, revoking was done by filesystem itself.
364 */
365 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
366 if (ret)
367 err = ret;
368
369 /* drop all uncommitted pages */
370 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
371 }
372 mutex_unlock(&fi->inmem_lock);
373
374 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
375
376 f2fs_unlock_op(sbi);
377 return err;
378 }
379
380 /*
381 * This function balances dirty node and dentry pages.
382 * In addition, it controls garbage collection.
383 */
384 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
385 {
386 #ifdef CONFIG_F2FS_FAULT_INJECTION
387 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
388 f2fs_show_injection_info(FAULT_CHECKPOINT);
389 f2fs_stop_checkpoint(sbi, false);
390 }
391 #endif
392
393 /* balance_fs_bg is able to be pending */
394 if (need && excess_cached_nats(sbi))
395 f2fs_balance_fs_bg(sbi);
396
397 /*
398 * We should do GC or end up with checkpoint, if there are so many dirty
399 * dir/node pages without enough free segments.
400 */
401 if (has_not_enough_free_secs(sbi, 0, 0)) {
402 mutex_lock(&sbi->gc_mutex);
403 f2fs_gc(sbi, false, false, NULL_SEGNO);
404 }
405 }
406
407 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
408 {
409 /* try to shrink extent cache when there is no enough memory */
410 if (!available_free_memory(sbi, EXTENT_CACHE))
411 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
412
413 /* check the # of cached NAT entries */
414 if (!available_free_memory(sbi, NAT_ENTRIES))
415 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
416
417 if (!available_free_memory(sbi, FREE_NIDS))
418 try_to_free_nids(sbi, MAX_FREE_NIDS);
419 else
420 build_free_nids(sbi, false, false);
421
422 if (!is_idle(sbi) && !excess_dirty_nats(sbi))
423 return;
424
425 /* checkpoint is the only way to shrink partial cached entries */
426 if (!available_free_memory(sbi, NAT_ENTRIES) ||
427 !available_free_memory(sbi, INO_ENTRIES) ||
428 excess_prefree_segs(sbi) ||
429 excess_dirty_nats(sbi) ||
430 f2fs_time_over(sbi, CP_TIME)) {
431 if (test_opt(sbi, DATA_FLUSH)) {
432 struct blk_plug plug;
433
434 blk_start_plug(&plug);
435 sync_dirty_inodes(sbi, FILE_INODE);
436 blk_finish_plug(&plug);
437 }
438 f2fs_sync_fs(sbi->sb, true);
439 stat_inc_bg_cp_count(sbi->stat_info);
440 }
441 }
442
443 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
444 struct block_device *bdev)
445 {
446 struct bio *bio = f2fs_bio_alloc(0);
447 int ret;
448
449 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
450 bio->bi_bdev = bdev;
451 ret = submit_bio_wait(bio);
452 bio_put(bio);
453
454 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
455 test_opt(sbi, FLUSH_MERGE), ret);
456 return ret;
457 }
458
459 static int submit_flush_wait(struct f2fs_sb_info *sbi)
460 {
461 int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
462 int i;
463
464 if (!sbi->s_ndevs || ret)
465 return ret;
466
467 for (i = 1; i < sbi->s_ndevs; i++) {
468 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
469 if (ret)
470 break;
471 }
472 return ret;
473 }
474
475 static int issue_flush_thread(void *data)
476 {
477 struct f2fs_sb_info *sbi = data;
478 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
479 wait_queue_head_t *q = &fcc->flush_wait_queue;
480 repeat:
481 if (kthread_should_stop())
482 return 0;
483
484 if (!llist_empty(&fcc->issue_list)) {
485 struct flush_cmd *cmd, *next;
486 int ret;
487
488 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
489 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
490
491 ret = submit_flush_wait(sbi);
492 atomic_inc(&fcc->issued_flush);
493
494 llist_for_each_entry_safe(cmd, next,
495 fcc->dispatch_list, llnode) {
496 cmd->ret = ret;
497 complete(&cmd->wait);
498 }
499 fcc->dispatch_list = NULL;
500 }
501
502 wait_event_interruptible(*q,
503 kthread_should_stop() || !llist_empty(&fcc->issue_list));
504 goto repeat;
505 }
506
507 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
508 {
509 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
510 struct flush_cmd cmd;
511 int ret;
512
513 if (test_opt(sbi, NOBARRIER))
514 return 0;
515
516 if (!test_opt(sbi, FLUSH_MERGE)) {
517 ret = submit_flush_wait(sbi);
518 atomic_inc(&fcc->issued_flush);
519 return ret;
520 }
521
522 if (!atomic_read(&fcc->issing_flush)) {
523 atomic_inc(&fcc->issing_flush);
524 ret = submit_flush_wait(sbi);
525 atomic_dec(&fcc->issing_flush);
526
527 atomic_inc(&fcc->issued_flush);
528 return ret;
529 }
530
531 init_completion(&cmd.wait);
532
533 atomic_inc(&fcc->issing_flush);
534 llist_add(&cmd.llnode, &fcc->issue_list);
535
536 if (!fcc->dispatch_list)
537 wake_up(&fcc->flush_wait_queue);
538
539 if (fcc->f2fs_issue_flush) {
540 wait_for_completion(&cmd.wait);
541 atomic_dec(&fcc->issing_flush);
542 } else {
543 llist_del_all(&fcc->issue_list);
544 atomic_set(&fcc->issing_flush, 0);
545 }
546
547 return cmd.ret;
548 }
549
550 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
551 {
552 dev_t dev = sbi->sb->s_bdev->bd_dev;
553 struct flush_cmd_control *fcc;
554 int err = 0;
555
556 if (SM_I(sbi)->fcc_info) {
557 fcc = SM_I(sbi)->fcc_info;
558 goto init_thread;
559 }
560
561 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
562 if (!fcc)
563 return -ENOMEM;
564 atomic_set(&fcc->issued_flush, 0);
565 atomic_set(&fcc->issing_flush, 0);
566 init_waitqueue_head(&fcc->flush_wait_queue);
567 init_llist_head(&fcc->issue_list);
568 SM_I(sbi)->fcc_info = fcc;
569 init_thread:
570 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
571 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
572 if (IS_ERR(fcc->f2fs_issue_flush)) {
573 err = PTR_ERR(fcc->f2fs_issue_flush);
574 kfree(fcc);
575 SM_I(sbi)->fcc_info = NULL;
576 return err;
577 }
578
579 return err;
580 }
581
582 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
583 {
584 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
585
586 if (fcc && fcc->f2fs_issue_flush) {
587 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
588
589 fcc->f2fs_issue_flush = NULL;
590 kthread_stop(flush_thread);
591 }
592 if (free) {
593 kfree(fcc);
594 SM_I(sbi)->fcc_info = NULL;
595 }
596 }
597
598 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
599 enum dirty_type dirty_type)
600 {
601 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
602
603 /* need not be added */
604 if (IS_CURSEG(sbi, segno))
605 return;
606
607 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
608 dirty_i->nr_dirty[dirty_type]++;
609
610 if (dirty_type == DIRTY) {
611 struct seg_entry *sentry = get_seg_entry(sbi, segno);
612 enum dirty_type t = sentry->type;
613
614 if (unlikely(t >= DIRTY)) {
615 f2fs_bug_on(sbi, 1);
616 return;
617 }
618 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
619 dirty_i->nr_dirty[t]++;
620 }
621 }
622
623 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
624 enum dirty_type dirty_type)
625 {
626 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
627
628 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
629 dirty_i->nr_dirty[dirty_type]--;
630
631 if (dirty_type == DIRTY) {
632 struct seg_entry *sentry = get_seg_entry(sbi, segno);
633 enum dirty_type t = sentry->type;
634
635 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
636 dirty_i->nr_dirty[t]--;
637
638 if (get_valid_blocks(sbi, segno, true) == 0)
639 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
640 dirty_i->victim_secmap);
641 }
642 }
643
644 /*
645 * Should not occur error such as -ENOMEM.
646 * Adding dirty entry into seglist is not critical operation.
647 * If a given segment is one of current working segments, it won't be added.
648 */
649 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
650 {
651 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
652 unsigned short valid_blocks;
653
654 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
655 return;
656
657 mutex_lock(&dirty_i->seglist_lock);
658
659 valid_blocks = get_valid_blocks(sbi, segno, false);
660
661 if (valid_blocks == 0) {
662 __locate_dirty_segment(sbi, segno, PRE);
663 __remove_dirty_segment(sbi, segno, DIRTY);
664 } else if (valid_blocks < sbi->blocks_per_seg) {
665 __locate_dirty_segment(sbi, segno, DIRTY);
666 } else {
667 /* Recovery routine with SSR needs this */
668 __remove_dirty_segment(sbi, segno, DIRTY);
669 }
670
671 mutex_unlock(&dirty_i->seglist_lock);
672 }
673
674 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
675 struct block_device *bdev, block_t lstart,
676 block_t start, block_t len)
677 {
678 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
679 struct list_head *pend_list;
680 struct discard_cmd *dc;
681
682 f2fs_bug_on(sbi, !len);
683
684 pend_list = &dcc->pend_list[plist_idx(len)];
685
686 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
687 INIT_LIST_HEAD(&dc->list);
688 dc->bdev = bdev;
689 dc->lstart = lstart;
690 dc->start = start;
691 dc->len = len;
692 dc->ref = 0;
693 dc->state = D_PREP;
694 dc->error = 0;
695 init_completion(&dc->wait);
696 list_add_tail(&dc->list, pend_list);
697 atomic_inc(&dcc->discard_cmd_cnt);
698 dcc->undiscard_blks += len;
699
700 return dc;
701 }
702
703 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
704 struct block_device *bdev, block_t lstart,
705 block_t start, block_t len,
706 struct rb_node *parent, struct rb_node **p)
707 {
708 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
709 struct discard_cmd *dc;
710
711 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
712
713 rb_link_node(&dc->rb_node, parent, p);
714 rb_insert_color(&dc->rb_node, &dcc->root);
715
716 return dc;
717 }
718
719 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
720 struct discard_cmd *dc)
721 {
722 if (dc->state == D_DONE)
723 atomic_dec(&dcc->issing_discard);
724
725 list_del(&dc->list);
726 rb_erase(&dc->rb_node, &dcc->root);
727 dcc->undiscard_blks -= dc->len;
728
729 kmem_cache_free(discard_cmd_slab, dc);
730
731 atomic_dec(&dcc->discard_cmd_cnt);
732 }
733
734 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
735 struct discard_cmd *dc)
736 {
737 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
738
739 if (dc->error == -EOPNOTSUPP)
740 dc->error = 0;
741
742 if (dc->error)
743 f2fs_msg(sbi->sb, KERN_INFO,
744 "Issue discard failed, ret: %d", dc->error);
745 __detach_discard_cmd(dcc, dc);
746 }
747
748 static void f2fs_submit_discard_endio(struct bio *bio)
749 {
750 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
751
752 dc->error = blk_status_to_errno(bio->bi_status);
753 dc->state = D_DONE;
754 complete(&dc->wait);
755 bio_put(bio);
756 }
757
758 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
759 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
760 struct discard_cmd *dc)
761 {
762 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
763 struct bio *bio = NULL;
764
765 if (dc->state != D_PREP)
766 return;
767
768 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
769
770 dc->error = __blkdev_issue_discard(dc->bdev,
771 SECTOR_FROM_BLOCK(dc->start),
772 SECTOR_FROM_BLOCK(dc->len),
773 GFP_NOFS, 0, &bio);
774 if (!dc->error) {
775 /* should keep before submission to avoid D_DONE right away */
776 dc->state = D_SUBMIT;
777 atomic_inc(&dcc->issued_discard);
778 atomic_inc(&dcc->issing_discard);
779 if (bio) {
780 bio->bi_private = dc;
781 bio->bi_end_io = f2fs_submit_discard_endio;
782 bio->bi_opf |= REQ_SYNC;
783 submit_bio(bio);
784 list_move_tail(&dc->list, &dcc->wait_list);
785 }
786 } else {
787 __remove_discard_cmd(sbi, dc);
788 }
789 }
790
791 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
792 struct block_device *bdev, block_t lstart,
793 block_t start, block_t len,
794 struct rb_node **insert_p,
795 struct rb_node *insert_parent)
796 {
797 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
798 struct rb_node **p = &dcc->root.rb_node;
799 struct rb_node *parent = NULL;
800 struct discard_cmd *dc = NULL;
801
802 if (insert_p && insert_parent) {
803 parent = insert_parent;
804 p = insert_p;
805 goto do_insert;
806 }
807
808 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
809 do_insert:
810 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
811 if (!dc)
812 return NULL;
813
814 return dc;
815 }
816
817 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
818 struct discard_cmd *dc)
819 {
820 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
821 }
822
823 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
824 struct discard_cmd *dc, block_t blkaddr)
825 {
826 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
827 struct discard_info di = dc->di;
828 bool modified = false;
829
830 if (dc->state == D_DONE || dc->len == 1) {
831 __remove_discard_cmd(sbi, dc);
832 return;
833 }
834
835 dcc->undiscard_blks -= di.len;
836
837 if (blkaddr > di.lstart) {
838 dc->len = blkaddr - dc->lstart;
839 dcc->undiscard_blks += dc->len;
840 __relocate_discard_cmd(dcc, dc);
841 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
842 modified = true;
843 }
844
845 if (blkaddr < di.lstart + di.len - 1) {
846 if (modified) {
847 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
848 di.start + blkaddr + 1 - di.lstart,
849 di.lstart + di.len - 1 - blkaddr,
850 NULL, NULL);
851 f2fs_bug_on(sbi,
852 !__check_rb_tree_consistence(sbi, &dcc->root));
853 } else {
854 dc->lstart++;
855 dc->len--;
856 dc->start++;
857 dcc->undiscard_blks += dc->len;
858 __relocate_discard_cmd(dcc, dc);
859 f2fs_bug_on(sbi,
860 !__check_rb_tree_consistence(sbi, &dcc->root));
861 }
862 }
863 }
864
865 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
866 struct block_device *bdev, block_t lstart,
867 block_t start, block_t len)
868 {
869 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
870 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
871 struct discard_cmd *dc;
872 struct discard_info di = {0};
873 struct rb_node **insert_p = NULL, *insert_parent = NULL;
874 block_t end = lstart + len;
875
876 mutex_lock(&dcc->cmd_lock);
877
878 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
879 NULL, lstart,
880 (struct rb_entry **)&prev_dc,
881 (struct rb_entry **)&next_dc,
882 &insert_p, &insert_parent, true);
883 if (dc)
884 prev_dc = dc;
885
886 if (!prev_dc) {
887 di.lstart = lstart;
888 di.len = next_dc ? next_dc->lstart - lstart : len;
889 di.len = min(di.len, len);
890 di.start = start;
891 }
892
893 while (1) {
894 struct rb_node *node;
895 bool merged = false;
896 struct discard_cmd *tdc = NULL;
897
898 if (prev_dc) {
899 di.lstart = prev_dc->lstart + prev_dc->len;
900 if (di.lstart < lstart)
901 di.lstart = lstart;
902 if (di.lstart >= end)
903 break;
904
905 if (!next_dc || next_dc->lstart > end)
906 di.len = end - di.lstart;
907 else
908 di.len = next_dc->lstart - di.lstart;
909 di.start = start + di.lstart - lstart;
910 }
911
912 if (!di.len)
913 goto next;
914
915 if (prev_dc && prev_dc->state == D_PREP &&
916 prev_dc->bdev == bdev &&
917 __is_discard_back_mergeable(&di, &prev_dc->di)) {
918 prev_dc->di.len += di.len;
919 dcc->undiscard_blks += di.len;
920 __relocate_discard_cmd(dcc, prev_dc);
921 f2fs_bug_on(sbi,
922 !__check_rb_tree_consistence(sbi, &dcc->root));
923 di = prev_dc->di;
924 tdc = prev_dc;
925 merged = true;
926 }
927
928 if (next_dc && next_dc->state == D_PREP &&
929 next_dc->bdev == bdev &&
930 __is_discard_front_mergeable(&di, &next_dc->di)) {
931 next_dc->di.lstart = di.lstart;
932 next_dc->di.len += di.len;
933 next_dc->di.start = di.start;
934 dcc->undiscard_blks += di.len;
935 __relocate_discard_cmd(dcc, next_dc);
936 if (tdc)
937 __remove_discard_cmd(sbi, tdc);
938 f2fs_bug_on(sbi,
939 !__check_rb_tree_consistence(sbi, &dcc->root));
940 merged = true;
941 }
942
943 if (!merged) {
944 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
945 di.len, NULL, NULL);
946 f2fs_bug_on(sbi,
947 !__check_rb_tree_consistence(sbi, &dcc->root));
948 }
949 next:
950 prev_dc = next_dc;
951 if (!prev_dc)
952 break;
953
954 node = rb_next(&prev_dc->rb_node);
955 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
956 }
957
958 mutex_unlock(&dcc->cmd_lock);
959 }
960
961 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
962 struct block_device *bdev, block_t blkstart, block_t blklen)
963 {
964 block_t lblkstart = blkstart;
965
966 trace_f2fs_queue_discard(bdev, blkstart, blklen);
967
968 if (sbi->s_ndevs) {
969 int devi = f2fs_target_device_index(sbi, blkstart);
970
971 blkstart -= FDEV(devi).start_blk;
972 }
973 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
974 return 0;
975 }
976
977 static void __issue_discard_cmd(struct f2fs_sb_info *sbi, bool issue_cond)
978 {
979 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
980 struct list_head *pend_list;
981 struct discard_cmd *dc, *tmp;
982 struct blk_plug plug;
983 int i, iter = 0;
984
985 mutex_lock(&dcc->cmd_lock);
986 blk_start_plug(&plug);
987 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
988 pend_list = &dcc->pend_list[i];
989 list_for_each_entry_safe(dc, tmp, pend_list, list) {
990 f2fs_bug_on(sbi, dc->state != D_PREP);
991
992 if (!issue_cond || is_idle(sbi))
993 __submit_discard_cmd(sbi, dc);
994 if (issue_cond && iter++ > DISCARD_ISSUE_RATE)
995 goto out;
996 }
997 }
998 out:
999 blk_finish_plug(&plug);
1000 mutex_unlock(&dcc->cmd_lock);
1001 }
1002
1003 static void __wait_discard_cmd(struct f2fs_sb_info *sbi, bool wait_cond)
1004 {
1005 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1006 struct list_head *wait_list = &(dcc->wait_list);
1007 struct discard_cmd *dc, *tmp;
1008
1009 mutex_lock(&dcc->cmd_lock);
1010 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1011 if (!wait_cond || dc->state == D_DONE) {
1012 if (dc->ref)
1013 continue;
1014 wait_for_completion_io(&dc->wait);
1015 __remove_discard_cmd(sbi, dc);
1016 }
1017 }
1018 mutex_unlock(&dcc->cmd_lock);
1019 }
1020
1021 /* This should be covered by global mutex, &sit_i->sentry_lock */
1022 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1023 {
1024 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1025 struct discard_cmd *dc;
1026 bool need_wait = false;
1027
1028 mutex_lock(&dcc->cmd_lock);
1029 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1030 if (dc) {
1031 if (dc->state == D_PREP) {
1032 __punch_discard_cmd(sbi, dc, blkaddr);
1033 } else {
1034 dc->ref++;
1035 need_wait = true;
1036 }
1037 }
1038 mutex_unlock(&dcc->cmd_lock);
1039
1040 if (need_wait) {
1041 wait_for_completion_io(&dc->wait);
1042 mutex_lock(&dcc->cmd_lock);
1043 f2fs_bug_on(sbi, dc->state != D_DONE);
1044 dc->ref--;
1045 if (!dc->ref)
1046 __remove_discard_cmd(sbi, dc);
1047 mutex_unlock(&dcc->cmd_lock);
1048 }
1049 }
1050
1051 /* This comes from f2fs_put_super */
1052 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1053 {
1054 __issue_discard_cmd(sbi, false);
1055 __wait_discard_cmd(sbi, false);
1056 }
1057
1058 static int issue_discard_thread(void *data)
1059 {
1060 struct f2fs_sb_info *sbi = data;
1061 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1062 wait_queue_head_t *q = &dcc->discard_wait_queue;
1063 repeat:
1064 if (kthread_should_stop())
1065 return 0;
1066
1067 __issue_discard_cmd(sbi, true);
1068 __wait_discard_cmd(sbi, true);
1069
1070 congestion_wait(BLK_RW_SYNC, HZ/50);
1071
1072 wait_event_interruptible(*q, kthread_should_stop() ||
1073 atomic_read(&dcc->discard_cmd_cnt));
1074 goto repeat;
1075 }
1076
1077 #ifdef CONFIG_BLK_DEV_ZONED
1078 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1079 struct block_device *bdev, block_t blkstart, block_t blklen)
1080 {
1081 sector_t sector, nr_sects;
1082 block_t lblkstart = blkstart;
1083 int devi = 0;
1084
1085 if (sbi->s_ndevs) {
1086 devi = f2fs_target_device_index(sbi, blkstart);
1087 blkstart -= FDEV(devi).start_blk;
1088 }
1089
1090 /*
1091 * We need to know the type of the zone: for conventional zones,
1092 * use regular discard if the drive supports it. For sequential
1093 * zones, reset the zone write pointer.
1094 */
1095 switch (get_blkz_type(sbi, bdev, blkstart)) {
1096
1097 case BLK_ZONE_TYPE_CONVENTIONAL:
1098 if (!blk_queue_discard(bdev_get_queue(bdev)))
1099 return 0;
1100 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1101 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1102 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1103 sector = SECTOR_FROM_BLOCK(blkstart);
1104 nr_sects = SECTOR_FROM_BLOCK(blklen);
1105
1106 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1107 nr_sects != bdev_zone_sectors(bdev)) {
1108 f2fs_msg(sbi->sb, KERN_INFO,
1109 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1110 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1111 blkstart, blklen);
1112 return -EIO;
1113 }
1114 trace_f2fs_issue_reset_zone(bdev, blkstart);
1115 return blkdev_reset_zones(bdev, sector,
1116 nr_sects, GFP_NOFS);
1117 default:
1118 /* Unknown zone type: broken device ? */
1119 return -EIO;
1120 }
1121 }
1122 #endif
1123
1124 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1125 struct block_device *bdev, block_t blkstart, block_t blklen)
1126 {
1127 #ifdef CONFIG_BLK_DEV_ZONED
1128 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1129 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1130 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1131 #endif
1132 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1133 }
1134
1135 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1136 block_t blkstart, block_t blklen)
1137 {
1138 sector_t start = blkstart, len = 0;
1139 struct block_device *bdev;
1140 struct seg_entry *se;
1141 unsigned int offset;
1142 block_t i;
1143 int err = 0;
1144
1145 bdev = f2fs_target_device(sbi, blkstart, NULL);
1146
1147 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1148 if (i != start) {
1149 struct block_device *bdev2 =
1150 f2fs_target_device(sbi, i, NULL);
1151
1152 if (bdev2 != bdev) {
1153 err = __issue_discard_async(sbi, bdev,
1154 start, len);
1155 if (err)
1156 return err;
1157 bdev = bdev2;
1158 start = i;
1159 len = 0;
1160 }
1161 }
1162
1163 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1164 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1165
1166 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1167 sbi->discard_blks--;
1168 }
1169
1170 if (len)
1171 err = __issue_discard_async(sbi, bdev, start, len);
1172 return err;
1173 }
1174
1175 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1176 bool check_only)
1177 {
1178 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1179 int max_blocks = sbi->blocks_per_seg;
1180 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1181 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1182 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1183 unsigned long *discard_map = (unsigned long *)se->discard_map;
1184 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1185 unsigned int start = 0, end = -1;
1186 bool force = (cpc->reason & CP_DISCARD);
1187 struct discard_entry *de = NULL;
1188 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1189 int i;
1190
1191 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1192 return false;
1193
1194 if (!force) {
1195 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1196 SM_I(sbi)->dcc_info->nr_discards >=
1197 SM_I(sbi)->dcc_info->max_discards)
1198 return false;
1199 }
1200
1201 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1202 for (i = 0; i < entries; i++)
1203 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1204 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1205
1206 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1207 SM_I(sbi)->dcc_info->max_discards) {
1208 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1209 if (start >= max_blocks)
1210 break;
1211
1212 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1213 if (force && start && end != max_blocks
1214 && (end - start) < cpc->trim_minlen)
1215 continue;
1216
1217 if (check_only)
1218 return true;
1219
1220 if (!de) {
1221 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1222 GFP_F2FS_ZERO);
1223 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1224 list_add_tail(&de->list, head);
1225 }
1226
1227 for (i = start; i < end; i++)
1228 __set_bit_le(i, (void *)de->discard_map);
1229
1230 SM_I(sbi)->dcc_info->nr_discards += end - start;
1231 }
1232 return false;
1233 }
1234
1235 void release_discard_addrs(struct f2fs_sb_info *sbi)
1236 {
1237 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1238 struct discard_entry *entry, *this;
1239
1240 /* drop caches */
1241 list_for_each_entry_safe(entry, this, head, list) {
1242 list_del(&entry->list);
1243 kmem_cache_free(discard_entry_slab, entry);
1244 }
1245 }
1246
1247 /*
1248 * Should call clear_prefree_segments after checkpoint is done.
1249 */
1250 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1251 {
1252 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1253 unsigned int segno;
1254
1255 mutex_lock(&dirty_i->seglist_lock);
1256 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1257 __set_test_and_free(sbi, segno);
1258 mutex_unlock(&dirty_i->seglist_lock);
1259 }
1260
1261 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1262 {
1263 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1264 struct discard_entry *entry, *this;
1265 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1266 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1267 unsigned int start = 0, end = -1;
1268 unsigned int secno, start_segno;
1269 bool force = (cpc->reason & CP_DISCARD);
1270
1271 mutex_lock(&dirty_i->seglist_lock);
1272
1273 while (1) {
1274 int i;
1275 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1276 if (start >= MAIN_SEGS(sbi))
1277 break;
1278 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1279 start + 1);
1280
1281 for (i = start; i < end; i++)
1282 clear_bit(i, prefree_map);
1283
1284 dirty_i->nr_dirty[PRE] -= end - start;
1285
1286 if (!test_opt(sbi, DISCARD))
1287 continue;
1288
1289 if (force && start >= cpc->trim_start &&
1290 (end - 1) <= cpc->trim_end)
1291 continue;
1292
1293 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1294 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1295 (end - start) << sbi->log_blocks_per_seg);
1296 continue;
1297 }
1298 next:
1299 secno = GET_SEC_FROM_SEG(sbi, start);
1300 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1301 if (!IS_CURSEC(sbi, secno) &&
1302 !get_valid_blocks(sbi, start, true))
1303 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1304 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1305
1306 start = start_segno + sbi->segs_per_sec;
1307 if (start < end)
1308 goto next;
1309 else
1310 end = start - 1;
1311 }
1312 mutex_unlock(&dirty_i->seglist_lock);
1313
1314 /* send small discards */
1315 list_for_each_entry_safe(entry, this, head, list) {
1316 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1317 bool is_valid = test_bit_le(0, entry->discard_map);
1318
1319 find_next:
1320 if (is_valid) {
1321 next_pos = find_next_zero_bit_le(entry->discard_map,
1322 sbi->blocks_per_seg, cur_pos);
1323 len = next_pos - cur_pos;
1324
1325 if (force && len < cpc->trim_minlen)
1326 goto skip;
1327
1328 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1329 len);
1330 cpc->trimmed += len;
1331 total_len += len;
1332 } else {
1333 next_pos = find_next_bit_le(entry->discard_map,
1334 sbi->blocks_per_seg, cur_pos);
1335 }
1336 skip:
1337 cur_pos = next_pos;
1338 is_valid = !is_valid;
1339
1340 if (cur_pos < sbi->blocks_per_seg)
1341 goto find_next;
1342
1343 list_del(&entry->list);
1344 SM_I(sbi)->dcc_info->nr_discards -= total_len;
1345 kmem_cache_free(discard_entry_slab, entry);
1346 }
1347
1348 wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
1349 }
1350
1351 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1352 {
1353 dev_t dev = sbi->sb->s_bdev->bd_dev;
1354 struct discard_cmd_control *dcc;
1355 int err = 0, i;
1356
1357 if (SM_I(sbi)->dcc_info) {
1358 dcc = SM_I(sbi)->dcc_info;
1359 goto init_thread;
1360 }
1361
1362 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1363 if (!dcc)
1364 return -ENOMEM;
1365
1366 INIT_LIST_HEAD(&dcc->entry_list);
1367 for (i = 0; i < MAX_PLIST_NUM; i++)
1368 INIT_LIST_HEAD(&dcc->pend_list[i]);
1369 INIT_LIST_HEAD(&dcc->wait_list);
1370 mutex_init(&dcc->cmd_lock);
1371 atomic_set(&dcc->issued_discard, 0);
1372 atomic_set(&dcc->issing_discard, 0);
1373 atomic_set(&dcc->discard_cmd_cnt, 0);
1374 dcc->nr_discards = 0;
1375 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1376 dcc->undiscard_blks = 0;
1377 dcc->root = RB_ROOT;
1378
1379 init_waitqueue_head(&dcc->discard_wait_queue);
1380 SM_I(sbi)->dcc_info = dcc;
1381 init_thread:
1382 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1383 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1384 if (IS_ERR(dcc->f2fs_issue_discard)) {
1385 err = PTR_ERR(dcc->f2fs_issue_discard);
1386 kfree(dcc);
1387 SM_I(sbi)->dcc_info = NULL;
1388 return err;
1389 }
1390
1391 return err;
1392 }
1393
1394 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1395 {
1396 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1397
1398 if (!dcc)
1399 return;
1400
1401 if (dcc->f2fs_issue_discard) {
1402 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1403
1404 dcc->f2fs_issue_discard = NULL;
1405 kthread_stop(discard_thread);
1406 }
1407
1408 kfree(dcc);
1409 SM_I(sbi)->dcc_info = NULL;
1410 }
1411
1412 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1413 {
1414 struct sit_info *sit_i = SIT_I(sbi);
1415
1416 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1417 sit_i->dirty_sentries++;
1418 return false;
1419 }
1420
1421 return true;
1422 }
1423
1424 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1425 unsigned int segno, int modified)
1426 {
1427 struct seg_entry *se = get_seg_entry(sbi, segno);
1428 se->type = type;
1429 if (modified)
1430 __mark_sit_entry_dirty(sbi, segno);
1431 }
1432
1433 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1434 {
1435 struct seg_entry *se;
1436 unsigned int segno, offset;
1437 long int new_vblocks;
1438
1439 segno = GET_SEGNO(sbi, blkaddr);
1440
1441 se = get_seg_entry(sbi, segno);
1442 new_vblocks = se->valid_blocks + del;
1443 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1444
1445 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1446 (new_vblocks > sbi->blocks_per_seg)));
1447
1448 se->valid_blocks = new_vblocks;
1449 se->mtime = get_mtime(sbi);
1450 SIT_I(sbi)->max_mtime = se->mtime;
1451
1452 /* Update valid block bitmap */
1453 if (del > 0) {
1454 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
1455 #ifdef CONFIG_F2FS_CHECK_FS
1456 if (f2fs_test_and_set_bit(offset,
1457 se->cur_valid_map_mir))
1458 f2fs_bug_on(sbi, 1);
1459 else
1460 WARN_ON(1);
1461 #else
1462 f2fs_bug_on(sbi, 1);
1463 #endif
1464 }
1465 if (f2fs_discard_en(sbi) &&
1466 !f2fs_test_and_set_bit(offset, se->discard_map))
1467 sbi->discard_blks--;
1468
1469 /* don't overwrite by SSR to keep node chain */
1470 if (se->type == CURSEG_WARM_NODE) {
1471 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1472 se->ckpt_valid_blocks++;
1473 }
1474 } else {
1475 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
1476 #ifdef CONFIG_F2FS_CHECK_FS
1477 if (!f2fs_test_and_clear_bit(offset,
1478 se->cur_valid_map_mir))
1479 f2fs_bug_on(sbi, 1);
1480 else
1481 WARN_ON(1);
1482 #else
1483 f2fs_bug_on(sbi, 1);
1484 #endif
1485 }
1486 if (f2fs_discard_en(sbi) &&
1487 f2fs_test_and_clear_bit(offset, se->discard_map))
1488 sbi->discard_blks++;
1489 }
1490 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1491 se->ckpt_valid_blocks += del;
1492
1493 __mark_sit_entry_dirty(sbi, segno);
1494
1495 /* update total number of valid blocks to be written in ckpt area */
1496 SIT_I(sbi)->written_valid_blocks += del;
1497
1498 if (sbi->segs_per_sec > 1)
1499 get_sec_entry(sbi, segno)->valid_blocks += del;
1500 }
1501
1502 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1503 {
1504 update_sit_entry(sbi, new, 1);
1505 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1506 update_sit_entry(sbi, old, -1);
1507
1508 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1509 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1510 }
1511
1512 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1513 {
1514 unsigned int segno = GET_SEGNO(sbi, addr);
1515 struct sit_info *sit_i = SIT_I(sbi);
1516
1517 f2fs_bug_on(sbi, addr == NULL_ADDR);
1518 if (addr == NEW_ADDR)
1519 return;
1520
1521 /* add it into sit main buffer */
1522 mutex_lock(&sit_i->sentry_lock);
1523
1524 update_sit_entry(sbi, addr, -1);
1525
1526 /* add it into dirty seglist */
1527 locate_dirty_segment(sbi, segno);
1528
1529 mutex_unlock(&sit_i->sentry_lock);
1530 }
1531
1532 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1533 {
1534 struct sit_info *sit_i = SIT_I(sbi);
1535 unsigned int segno, offset;
1536 struct seg_entry *se;
1537 bool is_cp = false;
1538
1539 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1540 return true;
1541
1542 mutex_lock(&sit_i->sentry_lock);
1543
1544 segno = GET_SEGNO(sbi, blkaddr);
1545 se = get_seg_entry(sbi, segno);
1546 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1547
1548 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1549 is_cp = true;
1550
1551 mutex_unlock(&sit_i->sentry_lock);
1552
1553 return is_cp;
1554 }
1555
1556 /*
1557 * This function should be resided under the curseg_mutex lock
1558 */
1559 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1560 struct f2fs_summary *sum)
1561 {
1562 struct curseg_info *curseg = CURSEG_I(sbi, type);
1563 void *addr = curseg->sum_blk;
1564 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1565 memcpy(addr, sum, sizeof(struct f2fs_summary));
1566 }
1567
1568 /*
1569 * Calculate the number of current summary pages for writing
1570 */
1571 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1572 {
1573 int valid_sum_count = 0;
1574 int i, sum_in_page;
1575
1576 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1577 if (sbi->ckpt->alloc_type[i] == SSR)
1578 valid_sum_count += sbi->blocks_per_seg;
1579 else {
1580 if (for_ra)
1581 valid_sum_count += le16_to_cpu(
1582 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1583 else
1584 valid_sum_count += curseg_blkoff(sbi, i);
1585 }
1586 }
1587
1588 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1589 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1590 if (valid_sum_count <= sum_in_page)
1591 return 1;
1592 else if ((valid_sum_count - sum_in_page) <=
1593 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1594 return 2;
1595 return 3;
1596 }
1597
1598 /*
1599 * Caller should put this summary page
1600 */
1601 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1602 {
1603 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1604 }
1605
1606 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1607 {
1608 struct page *page = grab_meta_page(sbi, blk_addr);
1609 void *dst = page_address(page);
1610
1611 if (src)
1612 memcpy(dst, src, PAGE_SIZE);
1613 else
1614 memset(dst, 0, PAGE_SIZE);
1615 set_page_dirty(page);
1616 f2fs_put_page(page, 1);
1617 }
1618
1619 static void write_sum_page(struct f2fs_sb_info *sbi,
1620 struct f2fs_summary_block *sum_blk, block_t blk_addr)
1621 {
1622 update_meta_page(sbi, (void *)sum_blk, blk_addr);
1623 }
1624
1625 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1626 int type, block_t blk_addr)
1627 {
1628 struct curseg_info *curseg = CURSEG_I(sbi, type);
1629 struct page *page = grab_meta_page(sbi, blk_addr);
1630 struct f2fs_summary_block *src = curseg->sum_blk;
1631 struct f2fs_summary_block *dst;
1632
1633 dst = (struct f2fs_summary_block *)page_address(page);
1634
1635 mutex_lock(&curseg->curseg_mutex);
1636
1637 down_read(&curseg->journal_rwsem);
1638 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1639 up_read(&curseg->journal_rwsem);
1640
1641 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1642 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1643
1644 mutex_unlock(&curseg->curseg_mutex);
1645
1646 set_page_dirty(page);
1647 f2fs_put_page(page, 1);
1648 }
1649
1650 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1651 {
1652 struct curseg_info *curseg = CURSEG_I(sbi, type);
1653 unsigned int segno = curseg->segno + 1;
1654 struct free_segmap_info *free_i = FREE_I(sbi);
1655
1656 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1657 return !test_bit(segno, free_i->free_segmap);
1658 return 0;
1659 }
1660
1661 /*
1662 * Find a new segment from the free segments bitmap to right order
1663 * This function should be returned with success, otherwise BUG
1664 */
1665 static void get_new_segment(struct f2fs_sb_info *sbi,
1666 unsigned int *newseg, bool new_sec, int dir)
1667 {
1668 struct free_segmap_info *free_i = FREE_I(sbi);
1669 unsigned int segno, secno, zoneno;
1670 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1671 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
1672 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
1673 unsigned int left_start = hint;
1674 bool init = true;
1675 int go_left = 0;
1676 int i;
1677
1678 spin_lock(&free_i->segmap_lock);
1679
1680 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1681 segno = find_next_zero_bit(free_i->free_segmap,
1682 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
1683 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
1684 goto got_it;
1685 }
1686 find_other_zone:
1687 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1688 if (secno >= MAIN_SECS(sbi)) {
1689 if (dir == ALLOC_RIGHT) {
1690 secno = find_next_zero_bit(free_i->free_secmap,
1691 MAIN_SECS(sbi), 0);
1692 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1693 } else {
1694 go_left = 1;
1695 left_start = hint - 1;
1696 }
1697 }
1698 if (go_left == 0)
1699 goto skip_left;
1700
1701 while (test_bit(left_start, free_i->free_secmap)) {
1702 if (left_start > 0) {
1703 left_start--;
1704 continue;
1705 }
1706 left_start = find_next_zero_bit(free_i->free_secmap,
1707 MAIN_SECS(sbi), 0);
1708 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1709 break;
1710 }
1711 secno = left_start;
1712 skip_left:
1713 hint = secno;
1714 segno = GET_SEG_FROM_SEC(sbi, secno);
1715 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
1716
1717 /* give up on finding another zone */
1718 if (!init)
1719 goto got_it;
1720 if (sbi->secs_per_zone == 1)
1721 goto got_it;
1722 if (zoneno == old_zoneno)
1723 goto got_it;
1724 if (dir == ALLOC_LEFT) {
1725 if (!go_left && zoneno + 1 >= total_zones)
1726 goto got_it;
1727 if (go_left && zoneno == 0)
1728 goto got_it;
1729 }
1730 for (i = 0; i < NR_CURSEG_TYPE; i++)
1731 if (CURSEG_I(sbi, i)->zone == zoneno)
1732 break;
1733
1734 if (i < NR_CURSEG_TYPE) {
1735 /* zone is in user, try another */
1736 if (go_left)
1737 hint = zoneno * sbi->secs_per_zone - 1;
1738 else if (zoneno + 1 >= total_zones)
1739 hint = 0;
1740 else
1741 hint = (zoneno + 1) * sbi->secs_per_zone;
1742 init = false;
1743 goto find_other_zone;
1744 }
1745 got_it:
1746 /* set it as dirty segment in free segmap */
1747 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1748 __set_inuse(sbi, segno);
1749 *newseg = segno;
1750 spin_unlock(&free_i->segmap_lock);
1751 }
1752
1753 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1754 {
1755 struct curseg_info *curseg = CURSEG_I(sbi, type);
1756 struct summary_footer *sum_footer;
1757
1758 curseg->segno = curseg->next_segno;
1759 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
1760 curseg->next_blkoff = 0;
1761 curseg->next_segno = NULL_SEGNO;
1762
1763 sum_footer = &(curseg->sum_blk->footer);
1764 memset(sum_footer, 0, sizeof(struct summary_footer));
1765 if (IS_DATASEG(type))
1766 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1767 if (IS_NODESEG(type))
1768 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1769 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1770 }
1771
1772 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
1773 {
1774 /* if segs_per_sec is large than 1, we need to keep original policy. */
1775 if (sbi->segs_per_sec != 1)
1776 return CURSEG_I(sbi, type)->segno;
1777
1778 if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
1779 return 0;
1780
1781 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
1782 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
1783 return CURSEG_I(sbi, type)->segno;
1784 }
1785
1786 /*
1787 * Allocate a current working segment.
1788 * This function always allocates a free segment in LFS manner.
1789 */
1790 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1791 {
1792 struct curseg_info *curseg = CURSEG_I(sbi, type);
1793 unsigned int segno = curseg->segno;
1794 int dir = ALLOC_LEFT;
1795
1796 write_sum_page(sbi, curseg->sum_blk,
1797 GET_SUM_BLOCK(sbi, segno));
1798 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1799 dir = ALLOC_RIGHT;
1800
1801 if (test_opt(sbi, NOHEAP))
1802 dir = ALLOC_RIGHT;
1803
1804 segno = __get_next_segno(sbi, type);
1805 get_new_segment(sbi, &segno, new_sec, dir);
1806 curseg->next_segno = segno;
1807 reset_curseg(sbi, type, 1);
1808 curseg->alloc_type = LFS;
1809 }
1810
1811 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1812 struct curseg_info *seg, block_t start)
1813 {
1814 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1815 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1816 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1817 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1818 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1819 int i, pos;
1820
1821 for (i = 0; i < entries; i++)
1822 target_map[i] = ckpt_map[i] | cur_map[i];
1823
1824 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1825
1826 seg->next_blkoff = pos;
1827 }
1828
1829 /*
1830 * If a segment is written by LFS manner, next block offset is just obtained
1831 * by increasing the current block offset. However, if a segment is written by
1832 * SSR manner, next block offset obtained by calling __next_free_blkoff
1833 */
1834 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1835 struct curseg_info *seg)
1836 {
1837 if (seg->alloc_type == SSR)
1838 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1839 else
1840 seg->next_blkoff++;
1841 }
1842
1843 /*
1844 * This function always allocates a used segment(from dirty seglist) by SSR
1845 * manner, so it should recover the existing segment information of valid blocks
1846 */
1847 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1848 {
1849 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1850 struct curseg_info *curseg = CURSEG_I(sbi, type);
1851 unsigned int new_segno = curseg->next_segno;
1852 struct f2fs_summary_block *sum_node;
1853 struct page *sum_page;
1854
1855 write_sum_page(sbi, curseg->sum_blk,
1856 GET_SUM_BLOCK(sbi, curseg->segno));
1857 __set_test_and_inuse(sbi, new_segno);
1858
1859 mutex_lock(&dirty_i->seglist_lock);
1860 __remove_dirty_segment(sbi, new_segno, PRE);
1861 __remove_dirty_segment(sbi, new_segno, DIRTY);
1862 mutex_unlock(&dirty_i->seglist_lock);
1863
1864 reset_curseg(sbi, type, 1);
1865 curseg->alloc_type = SSR;
1866 __next_free_blkoff(sbi, curseg, 0);
1867
1868 if (reuse) {
1869 sum_page = get_sum_page(sbi, new_segno);
1870 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1871 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1872 f2fs_put_page(sum_page, 1);
1873 }
1874 }
1875
1876 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1877 {
1878 struct curseg_info *curseg = CURSEG_I(sbi, type);
1879 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1880 unsigned segno = NULL_SEGNO;
1881 int i, cnt;
1882 bool reversed = false;
1883
1884 /* need_SSR() already forces to do this */
1885 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
1886 curseg->next_segno = segno;
1887 return 1;
1888 }
1889
1890 /* For node segments, let's do SSR more intensively */
1891 if (IS_NODESEG(type)) {
1892 if (type >= CURSEG_WARM_NODE) {
1893 reversed = true;
1894 i = CURSEG_COLD_NODE;
1895 } else {
1896 i = CURSEG_HOT_NODE;
1897 }
1898 cnt = NR_CURSEG_NODE_TYPE;
1899 } else {
1900 if (type >= CURSEG_WARM_DATA) {
1901 reversed = true;
1902 i = CURSEG_COLD_DATA;
1903 } else {
1904 i = CURSEG_HOT_DATA;
1905 }
1906 cnt = NR_CURSEG_DATA_TYPE;
1907 }
1908
1909 for (; cnt-- > 0; reversed ? i-- : i++) {
1910 if (i == type)
1911 continue;
1912 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
1913 curseg->next_segno = segno;
1914 return 1;
1915 }
1916 }
1917 return 0;
1918 }
1919
1920 /*
1921 * flush out current segment and replace it with new segment
1922 * This function should be returned with success, otherwise BUG
1923 */
1924 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1925 int type, bool force)
1926 {
1927 struct curseg_info *curseg = CURSEG_I(sbi, type);
1928
1929 if (force)
1930 new_curseg(sbi, type, true);
1931 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
1932 type == CURSEG_WARM_NODE)
1933 new_curseg(sbi, type, false);
1934 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1935 new_curseg(sbi, type, false);
1936 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1937 change_curseg(sbi, type, true);
1938 else
1939 new_curseg(sbi, type, false);
1940
1941 stat_inc_seg_type(sbi, curseg);
1942 }
1943
1944 void allocate_new_segments(struct f2fs_sb_info *sbi)
1945 {
1946 struct curseg_info *curseg;
1947 unsigned int old_segno;
1948 int i;
1949
1950 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1951 curseg = CURSEG_I(sbi, i);
1952 old_segno = curseg->segno;
1953 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1954 locate_dirty_segment(sbi, old_segno);
1955 }
1956 }
1957
1958 static const struct segment_allocation default_salloc_ops = {
1959 .allocate_segment = allocate_segment_by_default,
1960 };
1961
1962 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1963 {
1964 __u64 trim_start = cpc->trim_start;
1965 bool has_candidate = false;
1966
1967 mutex_lock(&SIT_I(sbi)->sentry_lock);
1968 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
1969 if (add_discard_addrs(sbi, cpc, true)) {
1970 has_candidate = true;
1971 break;
1972 }
1973 }
1974 mutex_unlock(&SIT_I(sbi)->sentry_lock);
1975
1976 cpc->trim_start = trim_start;
1977 return has_candidate;
1978 }
1979
1980 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1981 {
1982 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1983 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1984 unsigned int start_segno, end_segno;
1985 struct cp_control cpc;
1986 int err = 0;
1987
1988 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1989 return -EINVAL;
1990
1991 cpc.trimmed = 0;
1992 if (end <= MAIN_BLKADDR(sbi))
1993 goto out;
1994
1995 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1996 f2fs_msg(sbi->sb, KERN_WARNING,
1997 "Found FS corruption, run fsck to fix.");
1998 goto out;
1999 }
2000
2001 /* start/end segment number in main_area */
2002 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2003 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2004 GET_SEGNO(sbi, end);
2005 cpc.reason = CP_DISCARD;
2006 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2007
2008 /* do checkpoint to issue discard commands safely */
2009 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
2010 cpc.trim_start = start_segno;
2011
2012 if (sbi->discard_blks == 0)
2013 break;
2014 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2015 cpc.trim_end = end_segno;
2016 else
2017 cpc.trim_end = min_t(unsigned int,
2018 rounddown(start_segno +
2019 BATCHED_TRIM_SEGMENTS(sbi),
2020 sbi->segs_per_sec) - 1, end_segno);
2021
2022 mutex_lock(&sbi->gc_mutex);
2023 err = write_checkpoint(sbi, &cpc);
2024 mutex_unlock(&sbi->gc_mutex);
2025 if (err)
2026 break;
2027
2028 schedule();
2029 }
2030 out:
2031 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
2032 return err;
2033 }
2034
2035 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2036 {
2037 struct curseg_info *curseg = CURSEG_I(sbi, type);
2038 if (curseg->next_blkoff < sbi->blocks_per_seg)
2039 return true;
2040 return false;
2041 }
2042
2043 static int __get_segment_type_2(struct page *page, enum page_type p_type)
2044 {
2045 if (p_type == DATA)
2046 return CURSEG_HOT_DATA;
2047 else
2048 return CURSEG_HOT_NODE;
2049 }
2050
2051 static int __get_segment_type_4(struct page *page, enum page_type p_type)
2052 {
2053 if (p_type == DATA) {
2054 struct inode *inode = page->mapping->host;
2055
2056 if (S_ISDIR(inode->i_mode))
2057 return CURSEG_HOT_DATA;
2058 else
2059 return CURSEG_COLD_DATA;
2060 } else {
2061 if (IS_DNODE(page) && is_cold_node(page))
2062 return CURSEG_WARM_NODE;
2063 else
2064 return CURSEG_COLD_NODE;
2065 }
2066 }
2067
2068 static int __get_segment_type_6(struct page *page, enum page_type p_type)
2069 {
2070 if (p_type == DATA) {
2071 struct inode *inode = page->mapping->host;
2072
2073 if (is_cold_data(page) || file_is_cold(inode))
2074 return CURSEG_COLD_DATA;
2075 if (is_inode_flag_set(inode, FI_HOT_DATA))
2076 return CURSEG_HOT_DATA;
2077 return CURSEG_WARM_DATA;
2078 } else {
2079 if (IS_DNODE(page))
2080 return is_cold_node(page) ? CURSEG_WARM_NODE :
2081 CURSEG_HOT_NODE;
2082 return CURSEG_COLD_NODE;
2083 }
2084 }
2085
2086 static int __get_segment_type(struct page *page, enum page_type p_type)
2087 {
2088 switch (F2FS_P_SB(page)->active_logs) {
2089 case 2:
2090 return __get_segment_type_2(page, p_type);
2091 case 4:
2092 return __get_segment_type_4(page, p_type);
2093 }
2094 /* NR_CURSEG_TYPE(6) logs by default */
2095 f2fs_bug_on(F2FS_P_SB(page),
2096 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
2097 return __get_segment_type_6(page, p_type);
2098 }
2099
2100 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2101 block_t old_blkaddr, block_t *new_blkaddr,
2102 struct f2fs_summary *sum, int type)
2103 {
2104 struct sit_info *sit_i = SIT_I(sbi);
2105 struct curseg_info *curseg = CURSEG_I(sbi, type);
2106
2107 mutex_lock(&curseg->curseg_mutex);
2108 mutex_lock(&sit_i->sentry_lock);
2109
2110 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2111
2112 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2113
2114 /*
2115 * __add_sum_entry should be resided under the curseg_mutex
2116 * because, this function updates a summary entry in the
2117 * current summary block.
2118 */
2119 __add_sum_entry(sbi, type, sum);
2120
2121 __refresh_next_blkoff(sbi, curseg);
2122
2123 stat_inc_block_count(sbi, curseg);
2124
2125 if (!__has_curseg_space(sbi, type))
2126 sit_i->s_ops->allocate_segment(sbi, type, false);
2127 /*
2128 * SIT information should be updated after segment allocation,
2129 * since we need to keep dirty segments precisely under SSR.
2130 */
2131 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
2132
2133 mutex_unlock(&sit_i->sentry_lock);
2134
2135 if (page && IS_NODESEG(type))
2136 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2137
2138 mutex_unlock(&curseg->curseg_mutex);
2139 }
2140
2141 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2142 {
2143 int type = __get_segment_type(fio->page, fio->type);
2144 int err;
2145
2146 if (fio->type == NODE || fio->type == DATA)
2147 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
2148 reallocate:
2149 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2150 &fio->new_blkaddr, sum, type);
2151
2152 /* writeout dirty page into bdev */
2153 err = f2fs_submit_page_mbio(fio);
2154 if (err == -EAGAIN) {
2155 fio->old_blkaddr = fio->new_blkaddr;
2156 goto reallocate;
2157 }
2158
2159 if (fio->type == NODE || fio->type == DATA)
2160 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
2161 }
2162
2163 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
2164 {
2165 struct f2fs_io_info fio = {
2166 .sbi = sbi,
2167 .type = META,
2168 .op = REQ_OP_WRITE,
2169 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2170 .old_blkaddr = page->index,
2171 .new_blkaddr = page->index,
2172 .page = page,
2173 .encrypted_page = NULL,
2174 };
2175
2176 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2177 fio.op_flags &= ~REQ_META;
2178
2179 set_page_writeback(page);
2180 f2fs_submit_page_mbio(&fio);
2181 }
2182
2183 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2184 {
2185 struct f2fs_summary sum;
2186
2187 set_summary(&sum, nid, 0, 0);
2188 do_write_page(&sum, fio);
2189 }
2190
2191 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2192 {
2193 struct f2fs_sb_info *sbi = fio->sbi;
2194 struct f2fs_summary sum;
2195 struct node_info ni;
2196
2197 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2198 get_node_info(sbi, dn->nid, &ni);
2199 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2200 do_write_page(&sum, fio);
2201 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2202 }
2203
2204 int rewrite_data_page(struct f2fs_io_info *fio)
2205 {
2206 fio->new_blkaddr = fio->old_blkaddr;
2207 stat_inc_inplace_blocks(fio->sbi);
2208 return f2fs_submit_page_bio(fio);
2209 }
2210
2211 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2212 block_t old_blkaddr, block_t new_blkaddr,
2213 bool recover_curseg, bool recover_newaddr)
2214 {
2215 struct sit_info *sit_i = SIT_I(sbi);
2216 struct curseg_info *curseg;
2217 unsigned int segno, old_cursegno;
2218 struct seg_entry *se;
2219 int type;
2220 unsigned short old_blkoff;
2221
2222 segno = GET_SEGNO(sbi, new_blkaddr);
2223 se = get_seg_entry(sbi, segno);
2224 type = se->type;
2225
2226 if (!recover_curseg) {
2227 /* for recovery flow */
2228 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2229 if (old_blkaddr == NULL_ADDR)
2230 type = CURSEG_COLD_DATA;
2231 else
2232 type = CURSEG_WARM_DATA;
2233 }
2234 } else {
2235 if (!IS_CURSEG(sbi, segno))
2236 type = CURSEG_WARM_DATA;
2237 }
2238
2239 curseg = CURSEG_I(sbi, type);
2240
2241 mutex_lock(&curseg->curseg_mutex);
2242 mutex_lock(&sit_i->sentry_lock);
2243
2244 old_cursegno = curseg->segno;
2245 old_blkoff = curseg->next_blkoff;
2246
2247 /* change the current segment */
2248 if (segno != curseg->segno) {
2249 curseg->next_segno = segno;
2250 change_curseg(sbi, type, true);
2251 }
2252
2253 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2254 __add_sum_entry(sbi, type, sum);
2255
2256 if (!recover_curseg || recover_newaddr)
2257 update_sit_entry(sbi, new_blkaddr, 1);
2258 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2259 update_sit_entry(sbi, old_blkaddr, -1);
2260
2261 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2262 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2263
2264 locate_dirty_segment(sbi, old_cursegno);
2265
2266 if (recover_curseg) {
2267 if (old_cursegno != curseg->segno) {
2268 curseg->next_segno = old_cursegno;
2269 change_curseg(sbi, type, true);
2270 }
2271 curseg->next_blkoff = old_blkoff;
2272 }
2273
2274 mutex_unlock(&sit_i->sentry_lock);
2275 mutex_unlock(&curseg->curseg_mutex);
2276 }
2277
2278 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2279 block_t old_addr, block_t new_addr,
2280 unsigned char version, bool recover_curseg,
2281 bool recover_newaddr)
2282 {
2283 struct f2fs_summary sum;
2284
2285 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2286
2287 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2288 recover_curseg, recover_newaddr);
2289
2290 f2fs_update_data_blkaddr(dn, new_addr);
2291 }
2292
2293 void f2fs_wait_on_page_writeback(struct page *page,
2294 enum page_type type, bool ordered)
2295 {
2296 if (PageWriteback(page)) {
2297 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2298
2299 f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
2300 0, page->index, type, WRITE);
2301 if (ordered)
2302 wait_on_page_writeback(page);
2303 else
2304 wait_for_stable_page(page);
2305 }
2306 }
2307
2308 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2309 block_t blkaddr)
2310 {
2311 struct page *cpage;
2312
2313 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2314 return;
2315
2316 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2317 if (cpage) {
2318 f2fs_wait_on_page_writeback(cpage, DATA, true);
2319 f2fs_put_page(cpage, 1);
2320 }
2321 }
2322
2323 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
2324 {
2325 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2326 struct curseg_info *seg_i;
2327 unsigned char *kaddr;
2328 struct page *page;
2329 block_t start;
2330 int i, j, offset;
2331
2332 start = start_sum_block(sbi);
2333
2334 page = get_meta_page(sbi, start++);
2335 kaddr = (unsigned char *)page_address(page);
2336
2337 /* Step 1: restore nat cache */
2338 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2339 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2340
2341 /* Step 2: restore sit cache */
2342 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2343 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2344 offset = 2 * SUM_JOURNAL_SIZE;
2345
2346 /* Step 3: restore summary entries */
2347 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2348 unsigned short blk_off;
2349 unsigned int segno;
2350
2351 seg_i = CURSEG_I(sbi, i);
2352 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2353 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2354 seg_i->next_segno = segno;
2355 reset_curseg(sbi, i, 0);
2356 seg_i->alloc_type = ckpt->alloc_type[i];
2357 seg_i->next_blkoff = blk_off;
2358
2359 if (seg_i->alloc_type == SSR)
2360 blk_off = sbi->blocks_per_seg;
2361
2362 for (j = 0; j < blk_off; j++) {
2363 struct f2fs_summary *s;
2364 s = (struct f2fs_summary *)(kaddr + offset);
2365 seg_i->sum_blk->entries[j] = *s;
2366 offset += SUMMARY_SIZE;
2367 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2368 SUM_FOOTER_SIZE)
2369 continue;
2370
2371 f2fs_put_page(page, 1);
2372 page = NULL;
2373
2374 page = get_meta_page(sbi, start++);
2375 kaddr = (unsigned char *)page_address(page);
2376 offset = 0;
2377 }
2378 }
2379 f2fs_put_page(page, 1);
2380 return 0;
2381 }
2382
2383 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2384 {
2385 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2386 struct f2fs_summary_block *sum;
2387 struct curseg_info *curseg;
2388 struct page *new;
2389 unsigned short blk_off;
2390 unsigned int segno = 0;
2391 block_t blk_addr = 0;
2392
2393 /* get segment number and block addr */
2394 if (IS_DATASEG(type)) {
2395 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2396 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2397 CURSEG_HOT_DATA]);
2398 if (__exist_node_summaries(sbi))
2399 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2400 else
2401 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2402 } else {
2403 segno = le32_to_cpu(ckpt->cur_node_segno[type -
2404 CURSEG_HOT_NODE]);
2405 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2406 CURSEG_HOT_NODE]);
2407 if (__exist_node_summaries(sbi))
2408 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2409 type - CURSEG_HOT_NODE);
2410 else
2411 blk_addr = GET_SUM_BLOCK(sbi, segno);
2412 }
2413
2414 new = get_meta_page(sbi, blk_addr);
2415 sum = (struct f2fs_summary_block *)page_address(new);
2416
2417 if (IS_NODESEG(type)) {
2418 if (__exist_node_summaries(sbi)) {
2419 struct f2fs_summary *ns = &sum->entries[0];
2420 int i;
2421 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2422 ns->version = 0;
2423 ns->ofs_in_node = 0;
2424 }
2425 } else {
2426 int err;
2427
2428 err = restore_node_summary(sbi, segno, sum);
2429 if (err) {
2430 f2fs_put_page(new, 1);
2431 return err;
2432 }
2433 }
2434 }
2435
2436 /* set uncompleted segment to curseg */
2437 curseg = CURSEG_I(sbi, type);
2438 mutex_lock(&curseg->curseg_mutex);
2439
2440 /* update journal info */
2441 down_write(&curseg->journal_rwsem);
2442 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2443 up_write(&curseg->journal_rwsem);
2444
2445 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2446 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2447 curseg->next_segno = segno;
2448 reset_curseg(sbi, type, 0);
2449 curseg->alloc_type = ckpt->alloc_type[type];
2450 curseg->next_blkoff = blk_off;
2451 mutex_unlock(&curseg->curseg_mutex);
2452 f2fs_put_page(new, 1);
2453 return 0;
2454 }
2455
2456 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2457 {
2458 int type = CURSEG_HOT_DATA;
2459 int err;
2460
2461 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2462 int npages = npages_for_summary_flush(sbi, true);
2463
2464 if (npages >= 2)
2465 ra_meta_pages(sbi, start_sum_block(sbi), npages,
2466 META_CP, true);
2467
2468 /* restore for compacted data summary */
2469 if (read_compacted_summaries(sbi))
2470 return -EINVAL;
2471 type = CURSEG_HOT_NODE;
2472 }
2473
2474 if (__exist_node_summaries(sbi))
2475 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2476 NR_CURSEG_TYPE - type, META_CP, true);
2477
2478 for (; type <= CURSEG_COLD_NODE; type++) {
2479 err = read_normal_summaries(sbi, type);
2480 if (err)
2481 return err;
2482 }
2483
2484 return 0;
2485 }
2486
2487 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2488 {
2489 struct page *page;
2490 unsigned char *kaddr;
2491 struct f2fs_summary *summary;
2492 struct curseg_info *seg_i;
2493 int written_size = 0;
2494 int i, j;
2495
2496 page = grab_meta_page(sbi, blkaddr++);
2497 kaddr = (unsigned char *)page_address(page);
2498
2499 /* Step 1: write nat cache */
2500 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2501 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
2502 written_size += SUM_JOURNAL_SIZE;
2503
2504 /* Step 2: write sit cache */
2505 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2506 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
2507 written_size += SUM_JOURNAL_SIZE;
2508
2509 /* Step 3: write summary entries */
2510 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2511 unsigned short blkoff;
2512 seg_i = CURSEG_I(sbi, i);
2513 if (sbi->ckpt->alloc_type[i] == SSR)
2514 blkoff = sbi->blocks_per_seg;
2515 else
2516 blkoff = curseg_blkoff(sbi, i);
2517
2518 for (j = 0; j < blkoff; j++) {
2519 if (!page) {
2520 page = grab_meta_page(sbi, blkaddr++);
2521 kaddr = (unsigned char *)page_address(page);
2522 written_size = 0;
2523 }
2524 summary = (struct f2fs_summary *)(kaddr + written_size);
2525 *summary = seg_i->sum_blk->entries[j];
2526 written_size += SUMMARY_SIZE;
2527
2528 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
2529 SUM_FOOTER_SIZE)
2530 continue;
2531
2532 set_page_dirty(page);
2533 f2fs_put_page(page, 1);
2534 page = NULL;
2535 }
2536 }
2537 if (page) {
2538 set_page_dirty(page);
2539 f2fs_put_page(page, 1);
2540 }
2541 }
2542
2543 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2544 block_t blkaddr, int type)
2545 {
2546 int i, end;
2547 if (IS_DATASEG(type))
2548 end = type + NR_CURSEG_DATA_TYPE;
2549 else
2550 end = type + NR_CURSEG_NODE_TYPE;
2551
2552 for (i = type; i < end; i++)
2553 write_current_sum_page(sbi, i, blkaddr + (i - type));
2554 }
2555
2556 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2557 {
2558 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2559 write_compacted_summaries(sbi, start_blk);
2560 else
2561 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2562 }
2563
2564 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2565 {
2566 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2567 }
2568
2569 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2570 unsigned int val, int alloc)
2571 {
2572 int i;
2573
2574 if (type == NAT_JOURNAL) {
2575 for (i = 0; i < nats_in_cursum(journal); i++) {
2576 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2577 return i;
2578 }
2579 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2580 return update_nats_in_cursum(journal, 1);
2581 } else if (type == SIT_JOURNAL) {
2582 for (i = 0; i < sits_in_cursum(journal); i++)
2583 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2584 return i;
2585 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2586 return update_sits_in_cursum(journal, 1);
2587 }
2588 return -1;
2589 }
2590
2591 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2592 unsigned int segno)
2593 {
2594 return get_meta_page(sbi, current_sit_addr(sbi, segno));
2595 }
2596
2597 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2598 unsigned int start)
2599 {
2600 struct sit_info *sit_i = SIT_I(sbi);
2601 struct page *src_page, *dst_page;
2602 pgoff_t src_off, dst_off;
2603 void *src_addr, *dst_addr;
2604
2605 src_off = current_sit_addr(sbi, start);
2606 dst_off = next_sit_addr(sbi, src_off);
2607
2608 /* get current sit block page without lock */
2609 src_page = get_meta_page(sbi, src_off);
2610 dst_page = grab_meta_page(sbi, dst_off);
2611 f2fs_bug_on(sbi, PageDirty(src_page));
2612
2613 src_addr = page_address(src_page);
2614 dst_addr = page_address(dst_page);
2615 memcpy(dst_addr, src_addr, PAGE_SIZE);
2616
2617 set_page_dirty(dst_page);
2618 f2fs_put_page(src_page, 1);
2619
2620 set_to_next_sit(sit_i, start);
2621
2622 return dst_page;
2623 }
2624
2625 static struct sit_entry_set *grab_sit_entry_set(void)
2626 {
2627 struct sit_entry_set *ses =
2628 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2629
2630 ses->entry_cnt = 0;
2631 INIT_LIST_HEAD(&ses->set_list);
2632 return ses;
2633 }
2634
2635 static void release_sit_entry_set(struct sit_entry_set *ses)
2636 {
2637 list_del(&ses->set_list);
2638 kmem_cache_free(sit_entry_set_slab, ses);
2639 }
2640
2641 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2642 struct list_head *head)
2643 {
2644 struct sit_entry_set *next = ses;
2645
2646 if (list_is_last(&ses->set_list, head))
2647 return;
2648
2649 list_for_each_entry_continue(next, head, set_list)
2650 if (ses->entry_cnt <= next->entry_cnt)
2651 break;
2652
2653 list_move_tail(&ses->set_list, &next->set_list);
2654 }
2655
2656 static void add_sit_entry(unsigned int segno, struct list_head *head)
2657 {
2658 struct sit_entry_set *ses;
2659 unsigned int start_segno = START_SEGNO(segno);
2660
2661 list_for_each_entry(ses, head, set_list) {
2662 if (ses->start_segno == start_segno) {
2663 ses->entry_cnt++;
2664 adjust_sit_entry_set(ses, head);
2665 return;
2666 }
2667 }
2668
2669 ses = grab_sit_entry_set();
2670
2671 ses->start_segno = start_segno;
2672 ses->entry_cnt++;
2673 list_add(&ses->set_list, head);
2674 }
2675
2676 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2677 {
2678 struct f2fs_sm_info *sm_info = SM_I(sbi);
2679 struct list_head *set_list = &sm_info->sit_entry_set;
2680 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2681 unsigned int segno;
2682
2683 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2684 add_sit_entry(segno, set_list);
2685 }
2686
2687 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2688 {
2689 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2690 struct f2fs_journal *journal = curseg->journal;
2691 int i;
2692
2693 down_write(&curseg->journal_rwsem);
2694 for (i = 0; i < sits_in_cursum(journal); i++) {
2695 unsigned int segno;
2696 bool dirtied;
2697
2698 segno = le32_to_cpu(segno_in_journal(journal, i));
2699 dirtied = __mark_sit_entry_dirty(sbi, segno);
2700
2701 if (!dirtied)
2702 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2703 }
2704 update_sits_in_cursum(journal, -i);
2705 up_write(&curseg->journal_rwsem);
2706 }
2707
2708 /*
2709 * CP calls this function, which flushes SIT entries including sit_journal,
2710 * and moves prefree segs to free segs.
2711 */
2712 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2713 {
2714 struct sit_info *sit_i = SIT_I(sbi);
2715 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2716 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2717 struct f2fs_journal *journal = curseg->journal;
2718 struct sit_entry_set *ses, *tmp;
2719 struct list_head *head = &SM_I(sbi)->sit_entry_set;
2720 bool to_journal = true;
2721 struct seg_entry *se;
2722
2723 mutex_lock(&sit_i->sentry_lock);
2724
2725 if (!sit_i->dirty_sentries)
2726 goto out;
2727
2728 /*
2729 * add and account sit entries of dirty bitmap in sit entry
2730 * set temporarily
2731 */
2732 add_sits_in_set(sbi);
2733
2734 /*
2735 * if there are no enough space in journal to store dirty sit
2736 * entries, remove all entries from journal and add and account
2737 * them in sit entry set.
2738 */
2739 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2740 remove_sits_in_journal(sbi);
2741
2742 /*
2743 * there are two steps to flush sit entries:
2744 * #1, flush sit entries to journal in current cold data summary block.
2745 * #2, flush sit entries to sit page.
2746 */
2747 list_for_each_entry_safe(ses, tmp, head, set_list) {
2748 struct page *page = NULL;
2749 struct f2fs_sit_block *raw_sit = NULL;
2750 unsigned int start_segno = ses->start_segno;
2751 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2752 (unsigned long)MAIN_SEGS(sbi));
2753 unsigned int segno = start_segno;
2754
2755 if (to_journal &&
2756 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2757 to_journal = false;
2758
2759 if (to_journal) {
2760 down_write(&curseg->journal_rwsem);
2761 } else {
2762 page = get_next_sit_page(sbi, start_segno);
2763 raw_sit = page_address(page);
2764 }
2765
2766 /* flush dirty sit entries in region of current sit set */
2767 for_each_set_bit_from(segno, bitmap, end) {
2768 int offset, sit_offset;
2769
2770 se = get_seg_entry(sbi, segno);
2771
2772 /* add discard candidates */
2773 if (!(cpc->reason & CP_DISCARD)) {
2774 cpc->trim_start = segno;
2775 add_discard_addrs(sbi, cpc, false);
2776 }
2777
2778 if (to_journal) {
2779 offset = lookup_journal_in_cursum(journal,
2780 SIT_JOURNAL, segno, 1);
2781 f2fs_bug_on(sbi, offset < 0);
2782 segno_in_journal(journal, offset) =
2783 cpu_to_le32(segno);
2784 seg_info_to_raw_sit(se,
2785 &sit_in_journal(journal, offset));
2786 } else {
2787 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2788 seg_info_to_raw_sit(se,
2789 &raw_sit->entries[sit_offset]);
2790 }
2791
2792 __clear_bit(segno, bitmap);
2793 sit_i->dirty_sentries--;
2794 ses->entry_cnt--;
2795 }
2796
2797 if (to_journal)
2798 up_write(&curseg->journal_rwsem);
2799 else
2800 f2fs_put_page(page, 1);
2801
2802 f2fs_bug_on(sbi, ses->entry_cnt);
2803 release_sit_entry_set(ses);
2804 }
2805
2806 f2fs_bug_on(sbi, !list_empty(head));
2807 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2808 out:
2809 if (cpc->reason & CP_DISCARD) {
2810 __u64 trim_start = cpc->trim_start;
2811
2812 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2813 add_discard_addrs(sbi, cpc, false);
2814
2815 cpc->trim_start = trim_start;
2816 }
2817 mutex_unlock(&sit_i->sentry_lock);
2818
2819 set_prefree_as_free_segments(sbi);
2820 }
2821
2822 static int build_sit_info(struct f2fs_sb_info *sbi)
2823 {
2824 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2825 struct sit_info *sit_i;
2826 unsigned int sit_segs, start;
2827 char *src_bitmap;
2828 unsigned int bitmap_size;
2829
2830 /* allocate memory for SIT information */
2831 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2832 if (!sit_i)
2833 return -ENOMEM;
2834
2835 SM_I(sbi)->sit_info = sit_i;
2836
2837 sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
2838 sizeof(struct seg_entry), GFP_KERNEL);
2839 if (!sit_i->sentries)
2840 return -ENOMEM;
2841
2842 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2843 sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
2844 if (!sit_i->dirty_sentries_bitmap)
2845 return -ENOMEM;
2846
2847 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2848 sit_i->sentries[start].cur_valid_map
2849 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2850 sit_i->sentries[start].ckpt_valid_map
2851 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2852 if (!sit_i->sentries[start].cur_valid_map ||
2853 !sit_i->sentries[start].ckpt_valid_map)
2854 return -ENOMEM;
2855
2856 #ifdef CONFIG_F2FS_CHECK_FS
2857 sit_i->sentries[start].cur_valid_map_mir
2858 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2859 if (!sit_i->sentries[start].cur_valid_map_mir)
2860 return -ENOMEM;
2861 #endif
2862
2863 if (f2fs_discard_en(sbi)) {
2864 sit_i->sentries[start].discard_map
2865 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2866 if (!sit_i->sentries[start].discard_map)
2867 return -ENOMEM;
2868 }
2869 }
2870
2871 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2872 if (!sit_i->tmp_map)
2873 return -ENOMEM;
2874
2875 if (sbi->segs_per_sec > 1) {
2876 sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
2877 sizeof(struct sec_entry), GFP_KERNEL);
2878 if (!sit_i->sec_entries)
2879 return -ENOMEM;
2880 }
2881
2882 /* get information related with SIT */
2883 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2884
2885 /* setup SIT bitmap from ckeckpoint pack */
2886 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2887 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2888
2889 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2890 if (!sit_i->sit_bitmap)
2891 return -ENOMEM;
2892
2893 #ifdef CONFIG_F2FS_CHECK_FS
2894 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2895 if (!sit_i->sit_bitmap_mir)
2896 return -ENOMEM;
2897 #endif
2898
2899 /* init SIT information */
2900 sit_i->s_ops = &default_salloc_ops;
2901
2902 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2903 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2904 sit_i->written_valid_blocks = 0;
2905 sit_i->bitmap_size = bitmap_size;
2906 sit_i->dirty_sentries = 0;
2907 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2908 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2909 sit_i->mounted_time = ktime_get_real_seconds();
2910 mutex_init(&sit_i->sentry_lock);
2911 return 0;
2912 }
2913
2914 static int build_free_segmap(struct f2fs_sb_info *sbi)
2915 {
2916 struct free_segmap_info *free_i;
2917 unsigned int bitmap_size, sec_bitmap_size;
2918
2919 /* allocate memory for free segmap information */
2920 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2921 if (!free_i)
2922 return -ENOMEM;
2923
2924 SM_I(sbi)->free_info = free_i;
2925
2926 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2927 free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
2928 if (!free_i->free_segmap)
2929 return -ENOMEM;
2930
2931 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2932 free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
2933 if (!free_i->free_secmap)
2934 return -ENOMEM;
2935
2936 /* set all segments as dirty temporarily */
2937 memset(free_i->free_segmap, 0xff, bitmap_size);
2938 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2939
2940 /* init free segmap information */
2941 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2942 free_i->free_segments = 0;
2943 free_i->free_sections = 0;
2944 spin_lock_init(&free_i->segmap_lock);
2945 return 0;
2946 }
2947
2948 static int build_curseg(struct f2fs_sb_info *sbi)
2949 {
2950 struct curseg_info *array;
2951 int i;
2952
2953 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2954 if (!array)
2955 return -ENOMEM;
2956
2957 SM_I(sbi)->curseg_array = array;
2958
2959 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2960 mutex_init(&array[i].curseg_mutex);
2961 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2962 if (!array[i].sum_blk)
2963 return -ENOMEM;
2964 init_rwsem(&array[i].journal_rwsem);
2965 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2966 GFP_KERNEL);
2967 if (!array[i].journal)
2968 return -ENOMEM;
2969 array[i].segno = NULL_SEGNO;
2970 array[i].next_blkoff = 0;
2971 }
2972 return restore_curseg_summaries(sbi);
2973 }
2974
2975 static void build_sit_entries(struct f2fs_sb_info *sbi)
2976 {
2977 struct sit_info *sit_i = SIT_I(sbi);
2978 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2979 struct f2fs_journal *journal = curseg->journal;
2980 struct seg_entry *se;
2981 struct f2fs_sit_entry sit;
2982 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2983 unsigned int i, start, end;
2984 unsigned int readed, start_blk = 0;
2985
2986 do {
2987 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
2988 META_SIT, true);
2989
2990 start = start_blk * sit_i->sents_per_block;
2991 end = (start_blk + readed) * sit_i->sents_per_block;
2992
2993 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2994 struct f2fs_sit_block *sit_blk;
2995 struct page *page;
2996
2997 se = &sit_i->sentries[start];
2998 page = get_current_sit_page(sbi, start);
2999 sit_blk = (struct f2fs_sit_block *)page_address(page);
3000 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3001 f2fs_put_page(page, 1);
3002
3003 check_block_count(sbi, start, &sit);
3004 seg_info_from_raw_sit(se, &sit);
3005
3006 /* build discard map only one time */
3007 if (f2fs_discard_en(sbi)) {
3008 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3009 memset(se->discard_map, 0xff,
3010 SIT_VBLOCK_MAP_SIZE);
3011 } else {
3012 memcpy(se->discard_map,
3013 se->cur_valid_map,
3014 SIT_VBLOCK_MAP_SIZE);
3015 sbi->discard_blks +=
3016 sbi->blocks_per_seg -
3017 se->valid_blocks;
3018 }
3019 }
3020
3021 if (sbi->segs_per_sec > 1)
3022 get_sec_entry(sbi, start)->valid_blocks +=
3023 se->valid_blocks;
3024 }
3025 start_blk += readed;
3026 } while (start_blk < sit_blk_cnt);
3027
3028 down_read(&curseg->journal_rwsem);
3029 for (i = 0; i < sits_in_cursum(journal); i++) {
3030 unsigned int old_valid_blocks;
3031
3032 start = le32_to_cpu(segno_in_journal(journal, i));
3033 se = &sit_i->sentries[start];
3034 sit = sit_in_journal(journal, i);
3035
3036 old_valid_blocks = se->valid_blocks;
3037
3038 check_block_count(sbi, start, &sit);
3039 seg_info_from_raw_sit(se, &sit);
3040
3041 if (f2fs_discard_en(sbi)) {
3042 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3043 memset(se->discard_map, 0xff,
3044 SIT_VBLOCK_MAP_SIZE);
3045 } else {
3046 memcpy(se->discard_map, se->cur_valid_map,
3047 SIT_VBLOCK_MAP_SIZE);
3048 sbi->discard_blks += old_valid_blocks -
3049 se->valid_blocks;
3050 }
3051 }
3052
3053 if (sbi->segs_per_sec > 1)
3054 get_sec_entry(sbi, start)->valid_blocks +=
3055 se->valid_blocks - old_valid_blocks;
3056 }
3057 up_read(&curseg->journal_rwsem);
3058 }
3059
3060 static void init_free_segmap(struct f2fs_sb_info *sbi)
3061 {
3062 unsigned int start;
3063 int type;
3064
3065 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3066 struct seg_entry *sentry = get_seg_entry(sbi, start);
3067 if (!sentry->valid_blocks)
3068 __set_free(sbi, start);
3069 else
3070 SIT_I(sbi)->written_valid_blocks +=
3071 sentry->valid_blocks;
3072 }
3073
3074 /* set use the current segments */
3075 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3076 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3077 __set_test_and_inuse(sbi, curseg_t->segno);
3078 }
3079 }
3080
3081 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3082 {
3083 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3084 struct free_segmap_info *free_i = FREE_I(sbi);
3085 unsigned int segno = 0, offset = 0;
3086 unsigned short valid_blocks;
3087
3088 while (1) {
3089 /* find dirty segment based on free segmap */
3090 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3091 if (segno >= MAIN_SEGS(sbi))
3092 break;
3093 offset = segno + 1;
3094 valid_blocks = get_valid_blocks(sbi, segno, false);
3095 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3096 continue;
3097 if (valid_blocks > sbi->blocks_per_seg) {
3098 f2fs_bug_on(sbi, 1);
3099 continue;
3100 }
3101 mutex_lock(&dirty_i->seglist_lock);
3102 __locate_dirty_segment(sbi, segno, DIRTY);
3103 mutex_unlock(&dirty_i->seglist_lock);
3104 }
3105 }
3106
3107 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3108 {
3109 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3110 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3111
3112 dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
3113 if (!dirty_i->victim_secmap)
3114 return -ENOMEM;
3115 return 0;
3116 }
3117
3118 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3119 {
3120 struct dirty_seglist_info *dirty_i;
3121 unsigned int bitmap_size, i;
3122
3123 /* allocate memory for dirty segments list information */
3124 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
3125 if (!dirty_i)
3126 return -ENOMEM;
3127
3128 SM_I(sbi)->dirty_info = dirty_i;
3129 mutex_init(&dirty_i->seglist_lock);
3130
3131 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3132
3133 for (i = 0; i < NR_DIRTY_TYPE; i++) {
3134 dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
3135 if (!dirty_i->dirty_segmap[i])
3136 return -ENOMEM;
3137 }
3138
3139 init_dirty_segmap(sbi);
3140 return init_victim_secmap(sbi);
3141 }
3142
3143 /*
3144 * Update min, max modified time for cost-benefit GC algorithm
3145 */
3146 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3147 {
3148 struct sit_info *sit_i = SIT_I(sbi);
3149 unsigned int segno;
3150
3151 mutex_lock(&sit_i->sentry_lock);
3152
3153 sit_i->min_mtime = LLONG_MAX;
3154
3155 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3156 unsigned int i;
3157 unsigned long long mtime = 0;
3158
3159 for (i = 0; i < sbi->segs_per_sec; i++)
3160 mtime += get_seg_entry(sbi, segno + i)->mtime;
3161
3162 mtime = div_u64(mtime, sbi->segs_per_sec);
3163
3164 if (sit_i->min_mtime > mtime)
3165 sit_i->min_mtime = mtime;
3166 }
3167 sit_i->max_mtime = get_mtime(sbi);
3168 mutex_unlock(&sit_i->sentry_lock);
3169 }
3170
3171 int build_segment_manager(struct f2fs_sb_info *sbi)
3172 {
3173 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3174 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3175 struct f2fs_sm_info *sm_info;
3176 int err;
3177
3178 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
3179 if (!sm_info)
3180 return -ENOMEM;
3181
3182 /* init sm info */
3183 sbi->sm_info = sm_info;
3184 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3185 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3186 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3187 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3188 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3189 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3190 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3191 sm_info->rec_prefree_segments = sm_info->main_segments *
3192 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3193 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3194 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3195
3196 if (!test_opt(sbi, LFS))
3197 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3198 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3199 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3200 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3201
3202 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3203
3204 INIT_LIST_HEAD(&sm_info->sit_entry_set);
3205
3206 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
3207 err = create_flush_cmd_control(sbi);
3208 if (err)
3209 return err;
3210 }
3211
3212 err = create_discard_cmd_control(sbi);
3213 if (err)
3214 return err;
3215
3216 err = build_sit_info(sbi);
3217 if (err)
3218 return err;
3219 err = build_free_segmap(sbi);
3220 if (err)
3221 return err;
3222 err = build_curseg(sbi);
3223 if (err)
3224 return err;
3225
3226 /* reinit free segmap based on SIT */
3227 build_sit_entries(sbi);
3228
3229 init_free_segmap(sbi);
3230 err = build_dirty_segmap(sbi);
3231 if (err)
3232 return err;
3233
3234 init_min_max_mtime(sbi);
3235 return 0;
3236 }
3237
3238 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3239 enum dirty_type dirty_type)
3240 {
3241 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3242
3243 mutex_lock(&dirty_i->seglist_lock);
3244 kvfree(dirty_i->dirty_segmap[dirty_type]);
3245 dirty_i->nr_dirty[dirty_type] = 0;
3246 mutex_unlock(&dirty_i->seglist_lock);
3247 }
3248
3249 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3250 {
3251 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3252 kvfree(dirty_i->victim_secmap);
3253 }
3254
3255 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3256 {
3257 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3258 int i;
3259
3260 if (!dirty_i)
3261 return;
3262
3263 /* discard pre-free/dirty segments list */
3264 for (i = 0; i < NR_DIRTY_TYPE; i++)
3265 discard_dirty_segmap(sbi, i);
3266
3267 destroy_victim_secmap(sbi);
3268 SM_I(sbi)->dirty_info = NULL;
3269 kfree(dirty_i);
3270 }
3271
3272 static void destroy_curseg(struct f2fs_sb_info *sbi)
3273 {
3274 struct curseg_info *array = SM_I(sbi)->curseg_array;
3275 int i;
3276
3277 if (!array)
3278 return;
3279 SM_I(sbi)->curseg_array = NULL;
3280 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3281 kfree(array[i].sum_blk);
3282 kfree(array[i].journal);
3283 }
3284 kfree(array);
3285 }
3286
3287 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3288 {
3289 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3290 if (!free_i)
3291 return;
3292 SM_I(sbi)->free_info = NULL;
3293 kvfree(free_i->free_segmap);
3294 kvfree(free_i->free_secmap);
3295 kfree(free_i);
3296 }
3297
3298 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3299 {
3300 struct sit_info *sit_i = SIT_I(sbi);
3301 unsigned int start;
3302
3303 if (!sit_i)
3304 return;
3305
3306 if (sit_i->sentries) {
3307 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3308 kfree(sit_i->sentries[start].cur_valid_map);
3309 #ifdef CONFIG_F2FS_CHECK_FS
3310 kfree(sit_i->sentries[start].cur_valid_map_mir);
3311 #endif
3312 kfree(sit_i->sentries[start].ckpt_valid_map);
3313 kfree(sit_i->sentries[start].discard_map);
3314 }
3315 }
3316 kfree(sit_i->tmp_map);
3317
3318 kvfree(sit_i->sentries);
3319 kvfree(sit_i->sec_entries);
3320 kvfree(sit_i->dirty_sentries_bitmap);
3321
3322 SM_I(sbi)->sit_info = NULL;
3323 kfree(sit_i->sit_bitmap);
3324 #ifdef CONFIG_F2FS_CHECK_FS
3325 kfree(sit_i->sit_bitmap_mir);
3326 #endif
3327 kfree(sit_i);
3328 }
3329
3330 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3331 {
3332 struct f2fs_sm_info *sm_info = SM_I(sbi);
3333
3334 if (!sm_info)
3335 return;
3336 destroy_flush_cmd_control(sbi, true);
3337 destroy_discard_cmd_control(sbi);
3338 destroy_dirty_segmap(sbi);
3339 destroy_curseg(sbi);
3340 destroy_free_segmap(sbi);
3341 destroy_sit_info(sbi);
3342 sbi->sm_info = NULL;
3343 kfree(sm_info);
3344 }
3345
3346 int __init create_segment_manager_caches(void)
3347 {
3348 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3349 sizeof(struct discard_entry));
3350 if (!discard_entry_slab)
3351 goto fail;
3352
3353 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3354 sizeof(struct discard_cmd));
3355 if (!discard_cmd_slab)
3356 goto destroy_discard_entry;
3357
3358 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3359 sizeof(struct sit_entry_set));
3360 if (!sit_entry_set_slab)
3361 goto destroy_discard_cmd;
3362
3363 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3364 sizeof(struct inmem_pages));
3365 if (!inmem_entry_slab)
3366 goto destroy_sit_entry_set;
3367 return 0;
3368
3369 destroy_sit_entry_set:
3370 kmem_cache_destroy(sit_entry_set_slab);
3371 destroy_discard_cmd:
3372 kmem_cache_destroy(discard_cmd_slab);
3373 destroy_discard_entry:
3374 kmem_cache_destroy(discard_entry_slab);
3375 fail:
3376 return -ENOMEM;
3377 }
3378
3379 void destroy_segment_manager_caches(void)
3380 {
3381 kmem_cache_destroy(sit_entry_set_slab);
3382 kmem_cache_destroy(discard_cmd_slab);
3383 kmem_cache_destroy(discard_entry_slab);
3384 kmem_cache_destroy(inmem_entry_slab);
3385 }