]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/segment.h
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
20
21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
26
27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE)
29
30 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
31 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
32 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
33
34 #define IS_CURSEG(sbi, seg) \
35 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
38 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
41
42 #define IS_CURSEC(sbi, secno) \
43 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
44 (sbi)->segs_per_sec) || \
45 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
46 (sbi)->segs_per_sec) || \
47 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
48 (sbi)->segs_per_sec) || \
49 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
50 (sbi)->segs_per_sec) || \
51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
52 (sbi)->segs_per_sec) || \
53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
54 (sbi)->segs_per_sec)) \
55
56 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
57 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
58
59 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
60 #define MAIN_SECS(sbi) ((sbi)->total_sections)
61
62 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
63 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
64
65 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
66 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
67 (sbi)->log_blocks_per_seg))
68
69 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
70 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
71
72 #define NEXT_FREE_BLKADDR(sbi, curseg) \
73 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
74
75 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
76 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
77 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
78 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
79 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
80
81 #define GET_SEGNO(sbi, blk_addr) \
82 ((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ? \
83 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
84 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
85 #define BLKS_PER_SEC(sbi) \
86 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
87 #define GET_SEC_FROM_SEG(sbi, segno) \
88 ((segno) / (sbi)->segs_per_sec)
89 #define GET_SEG_FROM_SEC(sbi, secno) \
90 ((secno) * (sbi)->segs_per_sec)
91 #define GET_ZONE_FROM_SEC(sbi, secno) \
92 ((secno) / (sbi)->secs_per_zone)
93 #define GET_ZONE_FROM_SEG(sbi, segno) \
94 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
95
96 #define GET_SUM_BLOCK(sbi, segno) \
97 ((sbi)->sm_info->ssa_blkaddr + (segno))
98
99 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
100 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
101
102 #define SIT_ENTRY_OFFSET(sit_i, segno) \
103 ((segno) % (sit_i)->sents_per_block)
104 #define SIT_BLOCK_OFFSET(segno) \
105 ((segno) / SIT_ENTRY_PER_BLOCK)
106 #define START_SEGNO(segno) \
107 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
108 #define SIT_BLK_CNT(sbi) \
109 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
110 #define f2fs_bitmap_size(nr) \
111 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
112
113 #define SECTOR_FROM_BLOCK(blk_addr) \
114 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
115 #define SECTOR_TO_BLOCK(sectors) \
116 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
117
118 /*
119 * indicate a block allocation direction: RIGHT and LEFT.
120 * RIGHT means allocating new sections towards the end of volume.
121 * LEFT means the opposite direction.
122 */
123 enum {
124 ALLOC_RIGHT = 0,
125 ALLOC_LEFT
126 };
127
128 /*
129 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
130 * LFS writes data sequentially with cleaning operations.
131 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
132 */
133 enum {
134 LFS = 0,
135 SSR
136 };
137
138 /*
139 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
140 * GC_CB is based on cost-benefit algorithm.
141 * GC_GREEDY is based on greedy algorithm.
142 */
143 enum {
144 GC_CB = 0,
145 GC_GREEDY,
146 ALLOC_NEXT,
147 FLUSH_DEVICE,
148 MAX_GC_POLICY,
149 };
150
151 /*
152 * BG_GC means the background cleaning job.
153 * FG_GC means the on-demand cleaning job.
154 * FORCE_FG_GC means on-demand cleaning job in background.
155 */
156 enum {
157 BG_GC = 0,
158 FG_GC,
159 FORCE_FG_GC,
160 };
161
162 /* for a function parameter to select a victim segment */
163 struct victim_sel_policy {
164 int alloc_mode; /* LFS or SSR */
165 int gc_mode; /* GC_CB or GC_GREEDY */
166 unsigned long *dirty_segmap; /* dirty segment bitmap */
167 unsigned int max_search; /* maximum # of segments to search */
168 unsigned int offset; /* last scanned bitmap offset */
169 unsigned int ofs_unit; /* bitmap search unit */
170 unsigned int min_cost; /* minimum cost */
171 unsigned int min_segno; /* segment # having min. cost */
172 };
173
174 struct seg_entry {
175 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
176 unsigned int valid_blocks:10; /* # of valid blocks */
177 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
178 unsigned int padding:6; /* padding */
179 unsigned char *cur_valid_map; /* validity bitmap of blocks */
180 #ifdef CONFIG_F2FS_CHECK_FS
181 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
182 #endif
183 /*
184 * # of valid blocks and the validity bitmap stored in the the last
185 * checkpoint pack. This information is used by the SSR mode.
186 */
187 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
188 unsigned char *discard_map;
189 unsigned long long mtime; /* modification time of the segment */
190 };
191
192 struct sec_entry {
193 unsigned int valid_blocks; /* # of valid blocks in a section */
194 };
195
196 struct segment_allocation {
197 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
198 };
199
200 /*
201 * this value is set in page as a private data which indicate that
202 * the page is atomically written, and it is in inmem_pages list.
203 */
204 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
205 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
206
207 #define IS_ATOMIC_WRITTEN_PAGE(page) \
208 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
209 #define IS_DUMMY_WRITTEN_PAGE(page) \
210 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
211
212 struct inmem_pages {
213 struct list_head list;
214 struct page *page;
215 block_t old_addr; /* for revoking when fail to commit */
216 };
217
218 struct sit_info {
219 const struct segment_allocation *s_ops;
220
221 block_t sit_base_addr; /* start block address of SIT area */
222 block_t sit_blocks; /* # of blocks used by SIT area */
223 block_t written_valid_blocks; /* # of valid blocks in main area */
224 char *sit_bitmap; /* SIT bitmap pointer */
225 #ifdef CONFIG_F2FS_CHECK_FS
226 char *sit_bitmap_mir; /* SIT bitmap mirror */
227 #endif
228 unsigned int bitmap_size; /* SIT bitmap size */
229
230 unsigned long *tmp_map; /* bitmap for temporal use */
231 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
232 unsigned int dirty_sentries; /* # of dirty sentries */
233 unsigned int sents_per_block; /* # of SIT entries per block */
234 struct mutex sentry_lock; /* to protect SIT cache */
235 struct seg_entry *sentries; /* SIT segment-level cache */
236 struct sec_entry *sec_entries; /* SIT section-level cache */
237
238 /* for cost-benefit algorithm in cleaning procedure */
239 unsigned long long elapsed_time; /* elapsed time after mount */
240 unsigned long long mounted_time; /* mount time */
241 unsigned long long min_mtime; /* min. modification time */
242 unsigned long long max_mtime; /* max. modification time */
243
244 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
245 };
246
247 struct free_segmap_info {
248 unsigned int start_segno; /* start segment number logically */
249 unsigned int free_segments; /* # of free segments */
250 unsigned int free_sections; /* # of free sections */
251 spinlock_t segmap_lock; /* free segmap lock */
252 unsigned long *free_segmap; /* free segment bitmap */
253 unsigned long *free_secmap; /* free section bitmap */
254 };
255
256 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
257 enum dirty_type {
258 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
259 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
260 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
261 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
262 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
263 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
264 DIRTY, /* to count # of dirty segments */
265 PRE, /* to count # of entirely obsolete segments */
266 NR_DIRTY_TYPE
267 };
268
269 struct dirty_seglist_info {
270 const struct victim_selection *v_ops; /* victim selction operation */
271 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
272 struct mutex seglist_lock; /* lock for segment bitmaps */
273 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
274 unsigned long *victim_secmap; /* background GC victims */
275 };
276
277 /* victim selection function for cleaning and SSR */
278 struct victim_selection {
279 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
280 int, int, char);
281 };
282
283 /* for active log information */
284 struct curseg_info {
285 struct mutex curseg_mutex; /* lock for consistency */
286 struct f2fs_summary_block *sum_blk; /* cached summary block */
287 struct rw_semaphore journal_rwsem; /* protect journal area */
288 struct f2fs_journal *journal; /* cached journal info */
289 unsigned char alloc_type; /* current allocation type */
290 unsigned int segno; /* current segment number */
291 unsigned short next_blkoff; /* next block offset to write */
292 unsigned int zone; /* current zone number */
293 unsigned int next_segno; /* preallocated segment */
294 };
295
296 struct sit_entry_set {
297 struct list_head set_list; /* link with all sit sets */
298 unsigned int start_segno; /* start segno of sits in set */
299 unsigned int entry_cnt; /* the # of sit entries in set */
300 };
301
302 /*
303 * inline functions
304 */
305 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
306 {
307 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
308 }
309
310 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
311 unsigned int segno)
312 {
313 struct sit_info *sit_i = SIT_I(sbi);
314 return &sit_i->sentries[segno];
315 }
316
317 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
318 unsigned int segno)
319 {
320 struct sit_info *sit_i = SIT_I(sbi);
321 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
322 }
323
324 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
325 unsigned int segno, bool use_section)
326 {
327 /*
328 * In order to get # of valid blocks in a section instantly from many
329 * segments, f2fs manages two counting structures separately.
330 */
331 if (use_section && sbi->segs_per_sec > 1)
332 return get_sec_entry(sbi, segno)->valid_blocks;
333 else
334 return get_seg_entry(sbi, segno)->valid_blocks;
335 }
336
337 static inline void seg_info_from_raw_sit(struct seg_entry *se,
338 struct f2fs_sit_entry *rs)
339 {
340 se->valid_blocks = GET_SIT_VBLOCKS(rs);
341 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
342 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
343 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
344 #ifdef CONFIG_F2FS_CHECK_FS
345 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
346 #endif
347 se->type = GET_SIT_TYPE(rs);
348 se->mtime = le64_to_cpu(rs->mtime);
349 }
350
351 static inline void seg_info_to_raw_sit(struct seg_entry *se,
352 struct f2fs_sit_entry *rs)
353 {
354 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
355 se->valid_blocks;
356 rs->vblocks = cpu_to_le16(raw_vblocks);
357 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
358 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
359 se->ckpt_valid_blocks = se->valid_blocks;
360 rs->mtime = cpu_to_le64(se->mtime);
361 }
362
363 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
364 unsigned int max, unsigned int segno)
365 {
366 unsigned int ret;
367 spin_lock(&free_i->segmap_lock);
368 ret = find_next_bit(free_i->free_segmap, max, segno);
369 spin_unlock(&free_i->segmap_lock);
370 return ret;
371 }
372
373 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
374 {
375 struct free_segmap_info *free_i = FREE_I(sbi);
376 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
377 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
378 unsigned int next;
379
380 spin_lock(&free_i->segmap_lock);
381 clear_bit(segno, free_i->free_segmap);
382 free_i->free_segments++;
383
384 next = find_next_bit(free_i->free_segmap,
385 start_segno + sbi->segs_per_sec, start_segno);
386 if (next >= start_segno + sbi->segs_per_sec) {
387 clear_bit(secno, free_i->free_secmap);
388 free_i->free_sections++;
389 }
390 spin_unlock(&free_i->segmap_lock);
391 }
392
393 static inline void __set_inuse(struct f2fs_sb_info *sbi,
394 unsigned int segno)
395 {
396 struct free_segmap_info *free_i = FREE_I(sbi);
397 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
398
399 set_bit(segno, free_i->free_segmap);
400 free_i->free_segments--;
401 if (!test_and_set_bit(secno, free_i->free_secmap))
402 free_i->free_sections--;
403 }
404
405 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
406 unsigned int segno)
407 {
408 struct free_segmap_info *free_i = FREE_I(sbi);
409 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
410 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
411 unsigned int next;
412
413 spin_lock(&free_i->segmap_lock);
414 if (test_and_clear_bit(segno, free_i->free_segmap)) {
415 free_i->free_segments++;
416
417 next = find_next_bit(free_i->free_segmap,
418 start_segno + sbi->segs_per_sec, start_segno);
419 if (next >= start_segno + sbi->segs_per_sec) {
420 if (test_and_clear_bit(secno, free_i->free_secmap))
421 free_i->free_sections++;
422 }
423 }
424 spin_unlock(&free_i->segmap_lock);
425 }
426
427 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
428 unsigned int segno)
429 {
430 struct free_segmap_info *free_i = FREE_I(sbi);
431 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
432
433 spin_lock(&free_i->segmap_lock);
434 if (!test_and_set_bit(segno, free_i->free_segmap)) {
435 free_i->free_segments--;
436 if (!test_and_set_bit(secno, free_i->free_secmap))
437 free_i->free_sections--;
438 }
439 spin_unlock(&free_i->segmap_lock);
440 }
441
442 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
443 void *dst_addr)
444 {
445 struct sit_info *sit_i = SIT_I(sbi);
446
447 #ifdef CONFIG_F2FS_CHECK_FS
448 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
449 sit_i->bitmap_size))
450 f2fs_bug_on(sbi, 1);
451 #endif
452 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
453 }
454
455 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
456 {
457 return SIT_I(sbi)->written_valid_blocks;
458 }
459
460 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
461 {
462 return FREE_I(sbi)->free_segments;
463 }
464
465 static inline int reserved_segments(struct f2fs_sb_info *sbi)
466 {
467 return SM_I(sbi)->reserved_segments;
468 }
469
470 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
471 {
472 return FREE_I(sbi)->free_sections;
473 }
474
475 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
476 {
477 return DIRTY_I(sbi)->nr_dirty[PRE];
478 }
479
480 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
481 {
482 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
483 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
484 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
485 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
486 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
487 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
488 }
489
490 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
491 {
492 return SM_I(sbi)->ovp_segments;
493 }
494
495 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
496 {
497 return GET_SEC_FROM_SEG(sbi, (unsigned int)overprovision_segments(sbi));
498 }
499
500 static inline int reserved_sections(struct f2fs_sb_info *sbi)
501 {
502 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
503 }
504
505 static inline bool need_SSR(struct f2fs_sb_info *sbi)
506 {
507 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
508 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
509 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
510
511 if (test_opt(sbi, LFS))
512 return false;
513
514 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
515 2 * reserved_sections(sbi));
516 }
517
518 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
519 int freed, int needed)
520 {
521 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
522 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
523 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
524
525 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
526 return false;
527
528 return (free_sections(sbi) + freed) <=
529 (node_secs + 2 * dent_secs + imeta_secs +
530 reserved_sections(sbi) + needed);
531 }
532
533 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
534 {
535 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
536 }
537
538 static inline int utilization(struct f2fs_sb_info *sbi)
539 {
540 return div_u64((u64)valid_user_blocks(sbi) * 100,
541 sbi->user_block_count);
542 }
543
544 /*
545 * Sometimes f2fs may be better to drop out-of-place update policy.
546 * And, users can control the policy through sysfs entries.
547 * There are five policies with triggering conditions as follows.
548 * F2FS_IPU_FORCE - all the time,
549 * F2FS_IPU_SSR - if SSR mode is activated,
550 * F2FS_IPU_UTIL - if FS utilization is over threashold,
551 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
552 * threashold,
553 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
554 * storages. IPU will be triggered only if the # of dirty
555 * pages over min_fsync_blocks.
556 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
557 */
558 #define DEF_MIN_IPU_UTIL 70
559 #define DEF_MIN_FSYNC_BLOCKS 8
560 #define DEF_MIN_HOT_BLOCKS 16
561
562 enum {
563 F2FS_IPU_FORCE,
564 F2FS_IPU_SSR,
565 F2FS_IPU_UTIL,
566 F2FS_IPU_SSR_UTIL,
567 F2FS_IPU_FSYNC,
568 F2FS_IPU_ASYNC,
569 };
570
571 static inline bool need_inplace_update_policy(struct inode *inode,
572 struct f2fs_io_info *fio)
573 {
574 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
575 unsigned int policy = SM_I(sbi)->ipu_policy;
576
577 if (test_opt(sbi, LFS))
578 return false;
579
580 if (policy & (0x1 << F2FS_IPU_FORCE))
581 return true;
582 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
583 return true;
584 if (policy & (0x1 << F2FS_IPU_UTIL) &&
585 utilization(sbi) > SM_I(sbi)->min_ipu_util)
586 return true;
587 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
588 utilization(sbi) > SM_I(sbi)->min_ipu_util)
589 return true;
590
591 /*
592 * IPU for rewrite async pages
593 */
594 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
595 fio && fio->op == REQ_OP_WRITE &&
596 !(fio->op_flags & REQ_SYNC) &&
597 !f2fs_encrypted_inode(inode))
598 return true;
599
600 /* this is only set during fdatasync */
601 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
602 is_inode_flag_set(inode, FI_NEED_IPU))
603 return true;
604
605 return false;
606 }
607
608 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
609 int type)
610 {
611 struct curseg_info *curseg = CURSEG_I(sbi, type);
612 return curseg->segno;
613 }
614
615 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
616 int type)
617 {
618 struct curseg_info *curseg = CURSEG_I(sbi, type);
619 return curseg->alloc_type;
620 }
621
622 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
623 {
624 struct curseg_info *curseg = CURSEG_I(sbi, type);
625 return curseg->next_blkoff;
626 }
627
628 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
629 {
630 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
631 }
632
633 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
634 {
635 BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
636 || blk_addr >= MAX_BLKADDR(sbi));
637 }
638
639 /*
640 * Summary block is always treated as an invalid block
641 */
642 static inline void check_block_count(struct f2fs_sb_info *sbi,
643 int segno, struct f2fs_sit_entry *raw_sit)
644 {
645 #ifdef CONFIG_F2FS_CHECK_FS
646 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
647 int valid_blocks = 0;
648 int cur_pos = 0, next_pos;
649
650 /* check bitmap with valid block count */
651 do {
652 if (is_valid) {
653 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
654 sbi->blocks_per_seg,
655 cur_pos);
656 valid_blocks += next_pos - cur_pos;
657 } else
658 next_pos = find_next_bit_le(&raw_sit->valid_map,
659 sbi->blocks_per_seg,
660 cur_pos);
661 cur_pos = next_pos;
662 is_valid = !is_valid;
663 } while (cur_pos < sbi->blocks_per_seg);
664 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
665 #endif
666 /* check segment usage, and check boundary of a given segment number */
667 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
668 || segno > TOTAL_SEGS(sbi) - 1);
669 }
670
671 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
672 unsigned int start)
673 {
674 struct sit_info *sit_i = SIT_I(sbi);
675 unsigned int offset = SIT_BLOCK_OFFSET(start);
676 block_t blk_addr = sit_i->sit_base_addr + offset;
677
678 check_seg_range(sbi, start);
679
680 #ifdef CONFIG_F2FS_CHECK_FS
681 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
682 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
683 f2fs_bug_on(sbi, 1);
684 #endif
685
686 /* calculate sit block address */
687 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
688 blk_addr += sit_i->sit_blocks;
689
690 return blk_addr;
691 }
692
693 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
694 pgoff_t block_addr)
695 {
696 struct sit_info *sit_i = SIT_I(sbi);
697 block_addr -= sit_i->sit_base_addr;
698 if (block_addr < sit_i->sit_blocks)
699 block_addr += sit_i->sit_blocks;
700 else
701 block_addr -= sit_i->sit_blocks;
702
703 return block_addr + sit_i->sit_base_addr;
704 }
705
706 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
707 {
708 unsigned int block_off = SIT_BLOCK_OFFSET(start);
709
710 f2fs_change_bit(block_off, sit_i->sit_bitmap);
711 #ifdef CONFIG_F2FS_CHECK_FS
712 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
713 #endif
714 }
715
716 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
717 {
718 struct sit_info *sit_i = SIT_I(sbi);
719 time64_t now = ktime_get_real_seconds();
720
721 return sit_i->elapsed_time + now - sit_i->mounted_time;
722 }
723
724 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
725 unsigned int ofs_in_node, unsigned char version)
726 {
727 sum->nid = cpu_to_le32(nid);
728 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
729 sum->version = version;
730 }
731
732 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
733 {
734 return __start_cp_addr(sbi) +
735 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
736 }
737
738 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
739 {
740 return __start_cp_addr(sbi) +
741 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
742 - (base + 1) + type;
743 }
744
745 static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
746 unsigned int secno)
747 {
748 if (get_valid_blocks(sbi, GET_SEG_FROM_SEC(sbi, secno), true) >=
749 sbi->fggc_threshold)
750 return true;
751 return false;
752 }
753
754 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
755 {
756 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
757 return true;
758 return false;
759 }
760
761 /*
762 * It is very important to gather dirty pages and write at once, so that we can
763 * submit a big bio without interfering other data writes.
764 * By default, 512 pages for directory data,
765 * 512 pages (2MB) * 8 for nodes, and
766 * 256 pages * 8 for meta are set.
767 */
768 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
769 {
770 if (sbi->sb->s_bdi->wb.dirty_exceeded)
771 return 0;
772
773 if (type == DATA)
774 return sbi->blocks_per_seg;
775 else if (type == NODE)
776 return 8 * sbi->blocks_per_seg;
777 else if (type == META)
778 return 8 * BIO_MAX_PAGES;
779 else
780 return 0;
781 }
782
783 /*
784 * When writing pages, it'd better align nr_to_write for segment size.
785 */
786 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
787 struct writeback_control *wbc)
788 {
789 long nr_to_write, desired;
790
791 if (wbc->sync_mode != WB_SYNC_NONE)
792 return 0;
793
794 nr_to_write = wbc->nr_to_write;
795 desired = BIO_MAX_PAGES;
796 if (type == NODE)
797 desired <<= 1;
798
799 wbc->nr_to_write = desired;
800 return desired - nr_to_write;
801 }