]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fs-writeback.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 struct wb_completion *done = work->done;
180
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
189 {
190 trace_writeback_queue(wb, work);
191
192 if (work->done)
193 atomic_inc(&work->done->cnt);
194
195 spin_lock_bh(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
202
203 spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
210 *
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
216 */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
219 {
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
247
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
250
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
259 }
260 }
261
262 if (!wb)
263 wb = &bdi->wb;
264
265 /*
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
268 */
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
271 }
272
273 /**
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
276 *
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
280 */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
285 {
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
288
289 /*
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
294 */
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
298
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
303 }
304
305 spin_unlock(&wb->list_lock);
306 wb_put(wb);
307 cpu_relax();
308 spin_lock(&inode->i_lock);
309 }
310 }
311
312 /**
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
315 *
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
318 */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
321 {
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
329
330 struct rcu_head rcu_head;
331 struct work_struct work;
332 };
333
334 static void inode_switch_wbs_work_fn(struct work_struct *work)
335 {
336 struct inode_switch_wbs_context *isw =
337 container_of(work, struct inode_switch_wbs_context, work);
338 struct inode *inode = isw->inode;
339 struct address_space *mapping = inode->i_mapping;
340 struct bdi_writeback *old_wb = inode->i_wb;
341 struct bdi_writeback *new_wb = isw->new_wb;
342 struct radix_tree_iter iter;
343 bool switched = false;
344 void **slot;
345
346 /*
347 * By the time control reaches here, RCU grace period has passed
348 * since I_WB_SWITCH assertion and all wb stat update transactions
349 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350 * synchronizing against mapping->tree_lock.
351 *
352 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
353 * gives us exclusion against all wb related operations on @inode
354 * including IO list manipulations and stat updates.
355 */
356 if (old_wb < new_wb) {
357 spin_lock(&old_wb->list_lock);
358 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
359 } else {
360 spin_lock(&new_wb->list_lock);
361 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
362 }
363 spin_lock(&inode->i_lock);
364 spin_lock_irq(&mapping->tree_lock);
365
366 /*
367 * Once I_FREEING is visible under i_lock, the eviction path owns
368 * the inode and we shouldn't modify ->i_io_list.
369 */
370 if (unlikely(inode->i_state & I_FREEING))
371 goto skip_switch;
372
373 /*
374 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
375 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376 * pages actually under underwriteback.
377 */
378 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
379 PAGECACHE_TAG_DIRTY) {
380 struct page *page = radix_tree_deref_slot_protected(slot,
381 &mapping->tree_lock);
382 if (likely(page) && PageDirty(page)) {
383 dec_wb_stat(old_wb, WB_RECLAIMABLE);
384 inc_wb_stat(new_wb, WB_RECLAIMABLE);
385 }
386 }
387
388 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
389 PAGECACHE_TAG_WRITEBACK) {
390 struct page *page = radix_tree_deref_slot_protected(slot,
391 &mapping->tree_lock);
392 if (likely(page)) {
393 WARN_ON_ONCE(!PageWriteback(page));
394 dec_wb_stat(old_wb, WB_WRITEBACK);
395 inc_wb_stat(new_wb, WB_WRITEBACK);
396 }
397 }
398
399 wb_get(new_wb);
400
401 /*
402 * Transfer to @new_wb's IO list if necessary. The specific list
403 * @inode was on is ignored and the inode is put on ->b_dirty which
404 * is always correct including from ->b_dirty_time. The transfer
405 * preserves @inode->dirtied_when ordering.
406 */
407 if (!list_empty(&inode->i_io_list)) {
408 struct inode *pos;
409
410 inode_io_list_del_locked(inode, old_wb);
411 inode->i_wb = new_wb;
412 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
413 if (time_after_eq(inode->dirtied_when,
414 pos->dirtied_when))
415 break;
416 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
417 } else {
418 inode->i_wb = new_wb;
419 }
420
421 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
422 inode->i_wb_frn_winner = 0;
423 inode->i_wb_frn_avg_time = 0;
424 inode->i_wb_frn_history = 0;
425 switched = true;
426 skip_switch:
427 /*
428 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
429 * ensures that the new wb is visible if they see !I_WB_SWITCH.
430 */
431 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
432
433 spin_unlock_irq(&mapping->tree_lock);
434 spin_unlock(&inode->i_lock);
435 spin_unlock(&new_wb->list_lock);
436 spin_unlock(&old_wb->list_lock);
437
438 if (switched) {
439 wb_wakeup(new_wb);
440 wb_put(old_wb);
441 }
442 wb_put(new_wb);
443
444 iput(inode);
445 kfree(isw);
446
447 atomic_dec(&isw_nr_in_flight);
448 }
449
450 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
451 {
452 struct inode_switch_wbs_context *isw = container_of(rcu_head,
453 struct inode_switch_wbs_context, rcu_head);
454
455 /* needs to grab bh-unsafe locks, bounce to work item */
456 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
457 queue_work(isw_wq, &isw->work);
458 }
459
460 /**
461 * inode_switch_wbs - change the wb association of an inode
462 * @inode: target inode
463 * @new_wb_id: ID of the new wb
464 *
465 * Switch @inode's wb association to the wb identified by @new_wb_id. The
466 * switching is performed asynchronously and may fail silently.
467 */
468 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
469 {
470 struct backing_dev_info *bdi = inode_to_bdi(inode);
471 struct cgroup_subsys_state *memcg_css;
472 struct inode_switch_wbs_context *isw;
473
474 /* noop if seems to be already in progress */
475 if (inode->i_state & I_WB_SWITCH)
476 return;
477
478 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
479 if (!isw)
480 return;
481
482 /* find and pin the new wb */
483 rcu_read_lock();
484 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
485 if (memcg_css)
486 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
487 rcu_read_unlock();
488 if (!isw->new_wb)
489 goto out_free;
490
491 /* while holding I_WB_SWITCH, no one else can update the association */
492 spin_lock(&inode->i_lock);
493 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
494 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
495 inode_to_wb(inode) == isw->new_wb) {
496 spin_unlock(&inode->i_lock);
497 goto out_free;
498 }
499 inode->i_state |= I_WB_SWITCH;
500 __iget(inode);
501 spin_unlock(&inode->i_lock);
502
503 isw->inode = inode;
504
505 atomic_inc(&isw_nr_in_flight);
506
507 /*
508 * In addition to synchronizing among switchers, I_WB_SWITCH tells
509 * the RCU protected stat update paths to grab the mapping's
510 * tree_lock so that stat transfer can synchronize against them.
511 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
512 */
513 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
514 return;
515
516 out_free:
517 if (isw->new_wb)
518 wb_put(isw->new_wb);
519 kfree(isw);
520 }
521
522 /**
523 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
524 * @wbc: writeback_control of interest
525 * @inode: target inode
526 *
527 * @inode is locked and about to be written back under the control of @wbc.
528 * Record @inode's writeback context into @wbc and unlock the i_lock. On
529 * writeback completion, wbc_detach_inode() should be called. This is used
530 * to track the cgroup writeback context.
531 */
532 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
533 struct inode *inode)
534 {
535 if (!inode_cgwb_enabled(inode)) {
536 spin_unlock(&inode->i_lock);
537 return;
538 }
539
540 wbc->wb = inode_to_wb(inode);
541 wbc->inode = inode;
542
543 wbc->wb_id = wbc->wb->memcg_css->id;
544 wbc->wb_lcand_id = inode->i_wb_frn_winner;
545 wbc->wb_tcand_id = 0;
546 wbc->wb_bytes = 0;
547 wbc->wb_lcand_bytes = 0;
548 wbc->wb_tcand_bytes = 0;
549
550 wb_get(wbc->wb);
551 spin_unlock(&inode->i_lock);
552
553 /*
554 * A dying wb indicates that the memcg-blkcg mapping has changed
555 * and a new wb is already serving the memcg. Switch immediately.
556 */
557 if (unlikely(wb_dying(wbc->wb)))
558 inode_switch_wbs(inode, wbc->wb_id);
559 }
560
561 /**
562 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
563 * @wbc: writeback_control of the just finished writeback
564 *
565 * To be called after a writeback attempt of an inode finishes and undoes
566 * wbc_attach_and_unlock_inode(). Can be called under any context.
567 *
568 * As concurrent write sharing of an inode is expected to be very rare and
569 * memcg only tracks page ownership on first-use basis severely confining
570 * the usefulness of such sharing, cgroup writeback tracks ownership
571 * per-inode. While the support for concurrent write sharing of an inode
572 * is deemed unnecessary, an inode being written to by different cgroups at
573 * different points in time is a lot more common, and, more importantly,
574 * charging only by first-use can too readily lead to grossly incorrect
575 * behaviors (single foreign page can lead to gigabytes of writeback to be
576 * incorrectly attributed).
577 *
578 * To resolve this issue, cgroup writeback detects the majority dirtier of
579 * an inode and transfers the ownership to it. To avoid unnnecessary
580 * oscillation, the detection mechanism keeps track of history and gives
581 * out the switch verdict only if the foreign usage pattern is stable over
582 * a certain amount of time and/or writeback attempts.
583 *
584 * On each writeback attempt, @wbc tries to detect the majority writer
585 * using Boyer-Moore majority vote algorithm. In addition to the byte
586 * count from the majority voting, it also counts the bytes written for the
587 * current wb and the last round's winner wb (max of last round's current
588 * wb, the winner from two rounds ago, and the last round's majority
589 * candidate). Keeping track of the historical winner helps the algorithm
590 * to semi-reliably detect the most active writer even when it's not the
591 * absolute majority.
592 *
593 * Once the winner of the round is determined, whether the winner is
594 * foreign or not and how much IO time the round consumed is recorded in
595 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
596 * over a certain threshold, the switch verdict is given.
597 */
598 void wbc_detach_inode(struct writeback_control *wbc)
599 {
600 struct bdi_writeback *wb = wbc->wb;
601 struct inode *inode = wbc->inode;
602 unsigned long avg_time, max_bytes, max_time;
603 u16 history;
604 int max_id;
605
606 if (!wb)
607 return;
608
609 history = inode->i_wb_frn_history;
610 avg_time = inode->i_wb_frn_avg_time;
611
612 /* pick the winner of this round */
613 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
614 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
615 max_id = wbc->wb_id;
616 max_bytes = wbc->wb_bytes;
617 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
618 max_id = wbc->wb_lcand_id;
619 max_bytes = wbc->wb_lcand_bytes;
620 } else {
621 max_id = wbc->wb_tcand_id;
622 max_bytes = wbc->wb_tcand_bytes;
623 }
624
625 /*
626 * Calculate the amount of IO time the winner consumed and fold it
627 * into the running average kept per inode. If the consumed IO
628 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
629 * deciding whether to switch or not. This is to prevent one-off
630 * small dirtiers from skewing the verdict.
631 */
632 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
633 wb->avg_write_bandwidth);
634 if (avg_time)
635 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
636 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
637 else
638 avg_time = max_time; /* immediate catch up on first run */
639
640 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
641 int slots;
642
643 /*
644 * The switch verdict is reached if foreign wb's consume
645 * more than a certain proportion of IO time in a
646 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
647 * history mask where each bit represents one sixteenth of
648 * the period. Determine the number of slots to shift into
649 * history from @max_time.
650 */
651 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
652 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
653 history <<= slots;
654 if (wbc->wb_id != max_id)
655 history |= (1U << slots) - 1;
656
657 /*
658 * Switch if the current wb isn't the consistent winner.
659 * If there are multiple closely competing dirtiers, the
660 * inode may switch across them repeatedly over time, which
661 * is okay. The main goal is avoiding keeping an inode on
662 * the wrong wb for an extended period of time.
663 */
664 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
665 inode_switch_wbs(inode, max_id);
666 }
667
668 /*
669 * Multiple instances of this function may race to update the
670 * following fields but we don't mind occassional inaccuracies.
671 */
672 inode->i_wb_frn_winner = max_id;
673 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
674 inode->i_wb_frn_history = history;
675
676 wb_put(wbc->wb);
677 wbc->wb = NULL;
678 }
679
680 /**
681 * wbc_account_io - account IO issued during writeback
682 * @wbc: writeback_control of the writeback in progress
683 * @page: page being written out
684 * @bytes: number of bytes being written out
685 *
686 * @bytes from @page are about to written out during the writeback
687 * controlled by @wbc. Keep the book for foreign inode detection. See
688 * wbc_detach_inode().
689 */
690 void wbc_account_io(struct writeback_control *wbc, struct page *page,
691 size_t bytes)
692 {
693 int id;
694
695 /*
696 * pageout() path doesn't attach @wbc to the inode being written
697 * out. This is intentional as we don't want the function to block
698 * behind a slow cgroup. Ultimately, we want pageout() to kick off
699 * regular writeback instead of writing things out itself.
700 */
701 if (!wbc->wb)
702 return;
703
704 id = mem_cgroup_css_from_page(page)->id;
705
706 if (id == wbc->wb_id) {
707 wbc->wb_bytes += bytes;
708 return;
709 }
710
711 if (id == wbc->wb_lcand_id)
712 wbc->wb_lcand_bytes += bytes;
713
714 /* Boyer-Moore majority vote algorithm */
715 if (!wbc->wb_tcand_bytes)
716 wbc->wb_tcand_id = id;
717 if (id == wbc->wb_tcand_id)
718 wbc->wb_tcand_bytes += bytes;
719 else
720 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
721 }
722 EXPORT_SYMBOL_GPL(wbc_account_io);
723
724 /**
725 * inode_congested - test whether an inode is congested
726 * @inode: inode to test for congestion (may be NULL)
727 * @cong_bits: mask of WB_[a]sync_congested bits to test
728 *
729 * Tests whether @inode is congested. @cong_bits is the mask of congestion
730 * bits to test and the return value is the mask of set bits.
731 *
732 * If cgroup writeback is enabled for @inode, the congestion state is
733 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
734 * associated with @inode is congested; otherwise, the root wb's congestion
735 * state is used.
736 *
737 * @inode is allowed to be NULL as this function is often called on
738 * mapping->host which is NULL for the swapper space.
739 */
740 int inode_congested(struct inode *inode, int cong_bits)
741 {
742 /*
743 * Once set, ->i_wb never becomes NULL while the inode is alive.
744 * Start transaction iff ->i_wb is visible.
745 */
746 if (inode && inode_to_wb_is_valid(inode)) {
747 struct bdi_writeback *wb;
748 bool locked, congested;
749
750 wb = unlocked_inode_to_wb_begin(inode, &locked);
751 congested = wb_congested(wb, cong_bits);
752 unlocked_inode_to_wb_end(inode, locked);
753 return congested;
754 }
755
756 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
757 }
758 EXPORT_SYMBOL_GPL(inode_congested);
759
760 /**
761 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
762 * @wb: target bdi_writeback to split @nr_pages to
763 * @nr_pages: number of pages to write for the whole bdi
764 *
765 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
766 * relation to the total write bandwidth of all wb's w/ dirty inodes on
767 * @wb->bdi.
768 */
769 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
770 {
771 unsigned long this_bw = wb->avg_write_bandwidth;
772 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
773
774 if (nr_pages == LONG_MAX)
775 return LONG_MAX;
776
777 /*
778 * This may be called on clean wb's and proportional distribution
779 * may not make sense, just use the original @nr_pages in those
780 * cases. In general, we wanna err on the side of writing more.
781 */
782 if (!tot_bw || this_bw >= tot_bw)
783 return nr_pages;
784 else
785 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
786 }
787
788 /**
789 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
790 * @bdi: target backing_dev_info
791 * @base_work: wb_writeback_work to issue
792 * @skip_if_busy: skip wb's which already have writeback in progress
793 *
794 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
795 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
796 * distributed to the busy wbs according to each wb's proportion in the
797 * total active write bandwidth of @bdi.
798 */
799 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
800 struct wb_writeback_work *base_work,
801 bool skip_if_busy)
802 {
803 struct bdi_writeback *last_wb = NULL;
804 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
805 struct bdi_writeback, bdi_node);
806
807 might_sleep();
808 restart:
809 rcu_read_lock();
810 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
811 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
812 struct wb_writeback_work fallback_work;
813 struct wb_writeback_work *work;
814 long nr_pages;
815
816 if (last_wb) {
817 wb_put(last_wb);
818 last_wb = NULL;
819 }
820
821 /* SYNC_ALL writes out I_DIRTY_TIME too */
822 if (!wb_has_dirty_io(wb) &&
823 (base_work->sync_mode == WB_SYNC_NONE ||
824 list_empty(&wb->b_dirty_time)))
825 continue;
826 if (skip_if_busy && writeback_in_progress(wb))
827 continue;
828
829 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
830
831 work = kmalloc(sizeof(*work), GFP_ATOMIC);
832 if (work) {
833 *work = *base_work;
834 work->nr_pages = nr_pages;
835 work->auto_free = 1;
836 wb_queue_work(wb, work);
837 continue;
838 }
839
840 /* alloc failed, execute synchronously using on-stack fallback */
841 work = &fallback_work;
842 *work = *base_work;
843 work->nr_pages = nr_pages;
844 work->auto_free = 0;
845 work->done = &fallback_work_done;
846
847 wb_queue_work(wb, work);
848
849 /*
850 * Pin @wb so that it stays on @bdi->wb_list. This allows
851 * continuing iteration from @wb after dropping and
852 * regrabbing rcu read lock.
853 */
854 wb_get(wb);
855 last_wb = wb;
856
857 rcu_read_unlock();
858 wb_wait_for_completion(bdi, &fallback_work_done);
859 goto restart;
860 }
861 rcu_read_unlock();
862
863 if (last_wb)
864 wb_put(last_wb);
865 }
866
867 /**
868 * cgroup_writeback_umount - flush inode wb switches for umount
869 *
870 * This function is called when a super_block is about to be destroyed and
871 * flushes in-flight inode wb switches. An inode wb switch goes through
872 * RCU and then workqueue, so the two need to be flushed in order to ensure
873 * that all previously scheduled switches are finished. As wb switches are
874 * rare occurrences and synchronize_rcu() can take a while, perform
875 * flushing iff wb switches are in flight.
876 */
877 void cgroup_writeback_umount(void)
878 {
879 if (atomic_read(&isw_nr_in_flight)) {
880 synchronize_rcu();
881 flush_workqueue(isw_wq);
882 }
883 }
884
885 static int __init cgroup_writeback_init(void)
886 {
887 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
888 if (!isw_wq)
889 return -ENOMEM;
890 return 0;
891 }
892 fs_initcall(cgroup_writeback_init);
893
894 #else /* CONFIG_CGROUP_WRITEBACK */
895
896 static struct bdi_writeback *
897 locked_inode_to_wb_and_lock_list(struct inode *inode)
898 __releases(&inode->i_lock)
899 __acquires(&wb->list_lock)
900 {
901 struct bdi_writeback *wb = inode_to_wb(inode);
902
903 spin_unlock(&inode->i_lock);
904 spin_lock(&wb->list_lock);
905 return wb;
906 }
907
908 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
909 __acquires(&wb->list_lock)
910 {
911 struct bdi_writeback *wb = inode_to_wb(inode);
912
913 spin_lock(&wb->list_lock);
914 return wb;
915 }
916
917 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
918 {
919 return nr_pages;
920 }
921
922 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
923 struct wb_writeback_work *base_work,
924 bool skip_if_busy)
925 {
926 might_sleep();
927
928 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
929 base_work->auto_free = 0;
930 wb_queue_work(&bdi->wb, base_work);
931 }
932 }
933
934 #endif /* CONFIG_CGROUP_WRITEBACK */
935
936 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
937 bool range_cyclic, enum wb_reason reason)
938 {
939 struct wb_writeback_work *work;
940
941 if (!wb_has_dirty_io(wb))
942 return;
943
944 /*
945 * This is WB_SYNC_NONE writeback, so if allocation fails just
946 * wakeup the thread for old dirty data writeback
947 */
948 work = kzalloc(sizeof(*work),
949 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
950 if (!work) {
951 trace_writeback_nowork(wb);
952 wb_wakeup(wb);
953 return;
954 }
955
956 work->sync_mode = WB_SYNC_NONE;
957 work->nr_pages = nr_pages;
958 work->range_cyclic = range_cyclic;
959 work->reason = reason;
960 work->auto_free = 1;
961
962 wb_queue_work(wb, work);
963 }
964
965 /**
966 * wb_start_background_writeback - start background writeback
967 * @wb: bdi_writback to write from
968 *
969 * Description:
970 * This makes sure WB_SYNC_NONE background writeback happens. When
971 * this function returns, it is only guaranteed that for given wb
972 * some IO is happening if we are over background dirty threshold.
973 * Caller need not hold sb s_umount semaphore.
974 */
975 void wb_start_background_writeback(struct bdi_writeback *wb)
976 {
977 /*
978 * We just wake up the flusher thread. It will perform background
979 * writeback as soon as there is no other work to do.
980 */
981 trace_writeback_wake_background(wb);
982 wb_wakeup(wb);
983 }
984
985 /*
986 * Remove the inode from the writeback list it is on.
987 */
988 void inode_io_list_del(struct inode *inode)
989 {
990 struct bdi_writeback *wb;
991
992 wb = inode_to_wb_and_lock_list(inode);
993 inode_io_list_del_locked(inode, wb);
994 spin_unlock(&wb->list_lock);
995 }
996
997 /*
998 * mark an inode as under writeback on the sb
999 */
1000 void sb_mark_inode_writeback(struct inode *inode)
1001 {
1002 struct super_block *sb = inode->i_sb;
1003 unsigned long flags;
1004
1005 if (list_empty(&inode->i_wb_list)) {
1006 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1007 if (list_empty(&inode->i_wb_list)) {
1008 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1009 trace_sb_mark_inode_writeback(inode);
1010 }
1011 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1012 }
1013 }
1014
1015 /*
1016 * clear an inode as under writeback on the sb
1017 */
1018 void sb_clear_inode_writeback(struct inode *inode)
1019 {
1020 struct super_block *sb = inode->i_sb;
1021 unsigned long flags;
1022
1023 if (!list_empty(&inode->i_wb_list)) {
1024 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1025 if (!list_empty(&inode->i_wb_list)) {
1026 list_del_init(&inode->i_wb_list);
1027 trace_sb_clear_inode_writeback(inode);
1028 }
1029 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1030 }
1031 }
1032
1033 /*
1034 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1035 * furthest end of its superblock's dirty-inode list.
1036 *
1037 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1038 * already the most-recently-dirtied inode on the b_dirty list. If that is
1039 * the case then the inode must have been redirtied while it was being written
1040 * out and we don't reset its dirtied_when.
1041 */
1042 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1043 {
1044 if (!list_empty(&wb->b_dirty)) {
1045 struct inode *tail;
1046
1047 tail = wb_inode(wb->b_dirty.next);
1048 if (time_before(inode->dirtied_when, tail->dirtied_when))
1049 inode->dirtied_when = jiffies;
1050 }
1051 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1052 }
1053
1054 /*
1055 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1056 */
1057 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1058 {
1059 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1060 }
1061
1062 static void inode_sync_complete(struct inode *inode)
1063 {
1064 inode->i_state &= ~I_SYNC;
1065 /* If inode is clean an unused, put it into LRU now... */
1066 inode_add_lru(inode);
1067 /* Waiters must see I_SYNC cleared before being woken up */
1068 smp_mb();
1069 wake_up_bit(&inode->i_state, __I_SYNC);
1070 }
1071
1072 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1073 {
1074 bool ret = time_after(inode->dirtied_when, t);
1075 #ifndef CONFIG_64BIT
1076 /*
1077 * For inodes being constantly redirtied, dirtied_when can get stuck.
1078 * It _appears_ to be in the future, but is actually in distant past.
1079 * This test is necessary to prevent such wrapped-around relative times
1080 * from permanently stopping the whole bdi writeback.
1081 */
1082 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1083 #endif
1084 return ret;
1085 }
1086
1087 #define EXPIRE_DIRTY_ATIME 0x0001
1088
1089 /*
1090 * Move expired (dirtied before work->older_than_this) dirty inodes from
1091 * @delaying_queue to @dispatch_queue.
1092 */
1093 static int move_expired_inodes(struct list_head *delaying_queue,
1094 struct list_head *dispatch_queue,
1095 int flags,
1096 struct wb_writeback_work *work)
1097 {
1098 unsigned long *older_than_this = NULL;
1099 unsigned long expire_time;
1100 LIST_HEAD(tmp);
1101 struct list_head *pos, *node;
1102 struct super_block *sb = NULL;
1103 struct inode *inode;
1104 int do_sb_sort = 0;
1105 int moved = 0;
1106
1107 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1108 older_than_this = work->older_than_this;
1109 else if (!work->for_sync) {
1110 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1111 older_than_this = &expire_time;
1112 }
1113 while (!list_empty(delaying_queue)) {
1114 inode = wb_inode(delaying_queue->prev);
1115 if (older_than_this &&
1116 inode_dirtied_after(inode, *older_than_this))
1117 break;
1118 list_move(&inode->i_io_list, &tmp);
1119 moved++;
1120 if (flags & EXPIRE_DIRTY_ATIME)
1121 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1122 if (sb_is_blkdev_sb(inode->i_sb))
1123 continue;
1124 if (sb && sb != inode->i_sb)
1125 do_sb_sort = 1;
1126 sb = inode->i_sb;
1127 }
1128
1129 /* just one sb in list, splice to dispatch_queue and we're done */
1130 if (!do_sb_sort) {
1131 list_splice(&tmp, dispatch_queue);
1132 goto out;
1133 }
1134
1135 /* Move inodes from one superblock together */
1136 while (!list_empty(&tmp)) {
1137 sb = wb_inode(tmp.prev)->i_sb;
1138 list_for_each_prev_safe(pos, node, &tmp) {
1139 inode = wb_inode(pos);
1140 if (inode->i_sb == sb)
1141 list_move(&inode->i_io_list, dispatch_queue);
1142 }
1143 }
1144 out:
1145 return moved;
1146 }
1147
1148 /*
1149 * Queue all expired dirty inodes for io, eldest first.
1150 * Before
1151 * newly dirtied b_dirty b_io b_more_io
1152 * =============> gf edc BA
1153 * After
1154 * newly dirtied b_dirty b_io b_more_io
1155 * =============> g fBAedc
1156 * |
1157 * +--> dequeue for IO
1158 */
1159 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1160 {
1161 int moved;
1162
1163 assert_spin_locked(&wb->list_lock);
1164 list_splice_init(&wb->b_more_io, &wb->b_io);
1165 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1166 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1167 EXPIRE_DIRTY_ATIME, work);
1168 if (moved)
1169 wb_io_lists_populated(wb);
1170 trace_writeback_queue_io(wb, work, moved);
1171 }
1172
1173 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1174 {
1175 int ret;
1176
1177 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1178 trace_writeback_write_inode_start(inode, wbc);
1179 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1180 trace_writeback_write_inode(inode, wbc);
1181 return ret;
1182 }
1183 return 0;
1184 }
1185
1186 /*
1187 * Wait for writeback on an inode to complete. Called with i_lock held.
1188 * Caller must make sure inode cannot go away when we drop i_lock.
1189 */
1190 static void __inode_wait_for_writeback(struct inode *inode)
1191 __releases(inode->i_lock)
1192 __acquires(inode->i_lock)
1193 {
1194 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1195 wait_queue_head_t *wqh;
1196
1197 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1198 while (inode->i_state & I_SYNC) {
1199 spin_unlock(&inode->i_lock);
1200 __wait_on_bit(wqh, &wq, bit_wait,
1201 TASK_UNINTERRUPTIBLE);
1202 spin_lock(&inode->i_lock);
1203 }
1204 }
1205
1206 /*
1207 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1208 */
1209 void inode_wait_for_writeback(struct inode *inode)
1210 {
1211 spin_lock(&inode->i_lock);
1212 __inode_wait_for_writeback(inode);
1213 spin_unlock(&inode->i_lock);
1214 }
1215
1216 /*
1217 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1218 * held and drops it. It is aimed for callers not holding any inode reference
1219 * so once i_lock is dropped, inode can go away.
1220 */
1221 static void inode_sleep_on_writeback(struct inode *inode)
1222 __releases(inode->i_lock)
1223 {
1224 DEFINE_WAIT(wait);
1225 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1226 int sleep;
1227
1228 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1229 sleep = inode->i_state & I_SYNC;
1230 spin_unlock(&inode->i_lock);
1231 if (sleep)
1232 schedule();
1233 finish_wait(wqh, &wait);
1234 }
1235
1236 /*
1237 * Find proper writeback list for the inode depending on its current state and
1238 * possibly also change of its state while we were doing writeback. Here we
1239 * handle things such as livelock prevention or fairness of writeback among
1240 * inodes. This function can be called only by flusher thread - noone else
1241 * processes all inodes in writeback lists and requeueing inodes behind flusher
1242 * thread's back can have unexpected consequences.
1243 */
1244 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1245 struct writeback_control *wbc)
1246 {
1247 if (inode->i_state & I_FREEING)
1248 return;
1249
1250 /*
1251 * Sync livelock prevention. Each inode is tagged and synced in one
1252 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1253 * the dirty time to prevent enqueue and sync it again.
1254 */
1255 if ((inode->i_state & I_DIRTY) &&
1256 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1257 inode->dirtied_when = jiffies;
1258
1259 if (wbc->pages_skipped) {
1260 /*
1261 * writeback is not making progress due to locked
1262 * buffers. Skip this inode for now.
1263 */
1264 redirty_tail(inode, wb);
1265 return;
1266 }
1267
1268 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1269 /*
1270 * We didn't write back all the pages. nfs_writepages()
1271 * sometimes bales out without doing anything.
1272 */
1273 if (wbc->nr_to_write <= 0) {
1274 /* Slice used up. Queue for next turn. */
1275 requeue_io(inode, wb);
1276 } else {
1277 /*
1278 * Writeback blocked by something other than
1279 * congestion. Delay the inode for some time to
1280 * avoid spinning on the CPU (100% iowait)
1281 * retrying writeback of the dirty page/inode
1282 * that cannot be performed immediately.
1283 */
1284 redirty_tail(inode, wb);
1285 }
1286 } else if (inode->i_state & I_DIRTY) {
1287 /*
1288 * Filesystems can dirty the inode during writeback operations,
1289 * such as delayed allocation during submission or metadata
1290 * updates after data IO completion.
1291 */
1292 redirty_tail(inode, wb);
1293 } else if (inode->i_state & I_DIRTY_TIME) {
1294 inode->dirtied_when = jiffies;
1295 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1296 } else {
1297 /* The inode is clean. Remove from writeback lists. */
1298 inode_io_list_del_locked(inode, wb);
1299 }
1300 }
1301
1302 /*
1303 * Write out an inode and its dirty pages. Do not update the writeback list
1304 * linkage. That is left to the caller. The caller is also responsible for
1305 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1306 */
1307 static int
1308 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1309 {
1310 struct address_space *mapping = inode->i_mapping;
1311 long nr_to_write = wbc->nr_to_write;
1312 unsigned dirty;
1313 int ret;
1314
1315 WARN_ON(!(inode->i_state & I_SYNC));
1316
1317 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1318
1319 ret = do_writepages(mapping, wbc);
1320
1321 /*
1322 * Make sure to wait on the data before writing out the metadata.
1323 * This is important for filesystems that modify metadata on data
1324 * I/O completion. We don't do it for sync(2) writeback because it has a
1325 * separate, external IO completion path and ->sync_fs for guaranteeing
1326 * inode metadata is written back correctly.
1327 */
1328 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1329 int err = filemap_fdatawait(mapping);
1330 if (ret == 0)
1331 ret = err;
1332 }
1333
1334 /*
1335 * Some filesystems may redirty the inode during the writeback
1336 * due to delalloc, clear dirty metadata flags right before
1337 * write_inode()
1338 */
1339 spin_lock(&inode->i_lock);
1340
1341 dirty = inode->i_state & I_DIRTY;
1342 if (inode->i_state & I_DIRTY_TIME) {
1343 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1344 wbc->sync_mode == WB_SYNC_ALL ||
1345 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1346 unlikely(time_after(jiffies,
1347 (inode->dirtied_time_when +
1348 dirtytime_expire_interval * HZ)))) {
1349 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1350 trace_writeback_lazytime(inode);
1351 }
1352 } else
1353 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1354 inode->i_state &= ~dirty;
1355
1356 /*
1357 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1358 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1359 * either they see the I_DIRTY bits cleared or we see the dirtied
1360 * inode.
1361 *
1362 * I_DIRTY_PAGES is always cleared together above even if @mapping
1363 * still has dirty pages. The flag is reinstated after smp_mb() if
1364 * necessary. This guarantees that either __mark_inode_dirty()
1365 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1366 */
1367 smp_mb();
1368
1369 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1370 inode->i_state |= I_DIRTY_PAGES;
1371
1372 spin_unlock(&inode->i_lock);
1373
1374 if (dirty & I_DIRTY_TIME)
1375 mark_inode_dirty_sync(inode);
1376 /* Don't write the inode if only I_DIRTY_PAGES was set */
1377 if (dirty & ~I_DIRTY_PAGES) {
1378 int err = write_inode(inode, wbc);
1379 if (ret == 0)
1380 ret = err;
1381 }
1382 trace_writeback_single_inode(inode, wbc, nr_to_write);
1383 return ret;
1384 }
1385
1386 /*
1387 * Write out an inode's dirty pages. Either the caller has an active reference
1388 * on the inode or the inode has I_WILL_FREE set.
1389 *
1390 * This function is designed to be called for writing back one inode which
1391 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1392 * and does more profound writeback list handling in writeback_sb_inodes().
1393 */
1394 static int writeback_single_inode(struct inode *inode,
1395 struct writeback_control *wbc)
1396 {
1397 struct bdi_writeback *wb;
1398 int ret = 0;
1399
1400 spin_lock(&inode->i_lock);
1401 if (!atomic_read(&inode->i_count))
1402 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1403 else
1404 WARN_ON(inode->i_state & I_WILL_FREE);
1405
1406 if (inode->i_state & I_SYNC) {
1407 if (wbc->sync_mode != WB_SYNC_ALL)
1408 goto out;
1409 /*
1410 * It's a data-integrity sync. We must wait. Since callers hold
1411 * inode reference or inode has I_WILL_FREE set, it cannot go
1412 * away under us.
1413 */
1414 __inode_wait_for_writeback(inode);
1415 }
1416 WARN_ON(inode->i_state & I_SYNC);
1417 /*
1418 * Skip inode if it is clean and we have no outstanding writeback in
1419 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1420 * function since flusher thread may be doing for example sync in
1421 * parallel and if we move the inode, it could get skipped. So here we
1422 * make sure inode is on some writeback list and leave it there unless
1423 * we have completely cleaned the inode.
1424 */
1425 if (!(inode->i_state & I_DIRTY_ALL) &&
1426 (wbc->sync_mode != WB_SYNC_ALL ||
1427 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1428 goto out;
1429 inode->i_state |= I_SYNC;
1430 wbc_attach_and_unlock_inode(wbc, inode);
1431
1432 ret = __writeback_single_inode(inode, wbc);
1433
1434 wbc_detach_inode(wbc);
1435
1436 wb = inode_to_wb_and_lock_list(inode);
1437 spin_lock(&inode->i_lock);
1438 /*
1439 * If inode is clean, remove it from writeback lists. Otherwise don't
1440 * touch it. See comment above for explanation.
1441 */
1442 if (!(inode->i_state & I_DIRTY_ALL))
1443 inode_io_list_del_locked(inode, wb);
1444 spin_unlock(&wb->list_lock);
1445 inode_sync_complete(inode);
1446 out:
1447 spin_unlock(&inode->i_lock);
1448 return ret;
1449 }
1450
1451 static long writeback_chunk_size(struct bdi_writeback *wb,
1452 struct wb_writeback_work *work)
1453 {
1454 long pages;
1455
1456 /*
1457 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1458 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1459 * here avoids calling into writeback_inodes_wb() more than once.
1460 *
1461 * The intended call sequence for WB_SYNC_ALL writeback is:
1462 *
1463 * wb_writeback()
1464 * writeback_sb_inodes() <== called only once
1465 * write_cache_pages() <== called once for each inode
1466 * (quickly) tag currently dirty pages
1467 * (maybe slowly) sync all tagged pages
1468 */
1469 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1470 pages = LONG_MAX;
1471 else {
1472 pages = min(wb->avg_write_bandwidth / 2,
1473 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1474 pages = min(pages, work->nr_pages);
1475 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1476 MIN_WRITEBACK_PAGES);
1477 }
1478
1479 return pages;
1480 }
1481
1482 /*
1483 * Write a portion of b_io inodes which belong to @sb.
1484 *
1485 * Return the number of pages and/or inodes written.
1486 *
1487 * NOTE! This is called with wb->list_lock held, and will
1488 * unlock and relock that for each inode it ends up doing
1489 * IO for.
1490 */
1491 static long writeback_sb_inodes(struct super_block *sb,
1492 struct bdi_writeback *wb,
1493 struct wb_writeback_work *work)
1494 {
1495 struct writeback_control wbc = {
1496 .sync_mode = work->sync_mode,
1497 .tagged_writepages = work->tagged_writepages,
1498 .for_kupdate = work->for_kupdate,
1499 .for_background = work->for_background,
1500 .for_sync = work->for_sync,
1501 .range_cyclic = work->range_cyclic,
1502 .range_start = 0,
1503 .range_end = LLONG_MAX,
1504 };
1505 unsigned long start_time = jiffies;
1506 long write_chunk;
1507 long wrote = 0; /* count both pages and inodes */
1508
1509 while (!list_empty(&wb->b_io)) {
1510 struct inode *inode = wb_inode(wb->b_io.prev);
1511 struct bdi_writeback *tmp_wb;
1512
1513 if (inode->i_sb != sb) {
1514 if (work->sb) {
1515 /*
1516 * We only want to write back data for this
1517 * superblock, move all inodes not belonging
1518 * to it back onto the dirty list.
1519 */
1520 redirty_tail(inode, wb);
1521 continue;
1522 }
1523
1524 /*
1525 * The inode belongs to a different superblock.
1526 * Bounce back to the caller to unpin this and
1527 * pin the next superblock.
1528 */
1529 break;
1530 }
1531
1532 /*
1533 * Don't bother with new inodes or inodes being freed, first
1534 * kind does not need periodic writeout yet, and for the latter
1535 * kind writeout is handled by the freer.
1536 */
1537 spin_lock(&inode->i_lock);
1538 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1539 spin_unlock(&inode->i_lock);
1540 redirty_tail(inode, wb);
1541 continue;
1542 }
1543 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1544 /*
1545 * If this inode is locked for writeback and we are not
1546 * doing writeback-for-data-integrity, move it to
1547 * b_more_io so that writeback can proceed with the
1548 * other inodes on s_io.
1549 *
1550 * We'll have another go at writing back this inode
1551 * when we completed a full scan of b_io.
1552 */
1553 spin_unlock(&inode->i_lock);
1554 requeue_io(inode, wb);
1555 trace_writeback_sb_inodes_requeue(inode);
1556 continue;
1557 }
1558 spin_unlock(&wb->list_lock);
1559
1560 /*
1561 * We already requeued the inode if it had I_SYNC set and we
1562 * are doing WB_SYNC_NONE writeback. So this catches only the
1563 * WB_SYNC_ALL case.
1564 */
1565 if (inode->i_state & I_SYNC) {
1566 /* Wait for I_SYNC. This function drops i_lock... */
1567 inode_sleep_on_writeback(inode);
1568 /* Inode may be gone, start again */
1569 spin_lock(&wb->list_lock);
1570 continue;
1571 }
1572 inode->i_state |= I_SYNC;
1573 wbc_attach_and_unlock_inode(&wbc, inode);
1574
1575 write_chunk = writeback_chunk_size(wb, work);
1576 wbc.nr_to_write = write_chunk;
1577 wbc.pages_skipped = 0;
1578
1579 /*
1580 * We use I_SYNC to pin the inode in memory. While it is set
1581 * evict_inode() will wait so the inode cannot be freed.
1582 */
1583 __writeback_single_inode(inode, &wbc);
1584
1585 wbc_detach_inode(&wbc);
1586 work->nr_pages -= write_chunk - wbc.nr_to_write;
1587 wrote += write_chunk - wbc.nr_to_write;
1588
1589 if (need_resched()) {
1590 /*
1591 * We're trying to balance between building up a nice
1592 * long list of IOs to improve our merge rate, and
1593 * getting those IOs out quickly for anyone throttling
1594 * in balance_dirty_pages(). cond_resched() doesn't
1595 * unplug, so get our IOs out the door before we
1596 * give up the CPU.
1597 */
1598 blk_flush_plug(current);
1599 cond_resched();
1600 }
1601
1602 /*
1603 * Requeue @inode if still dirty. Be careful as @inode may
1604 * have been switched to another wb in the meantime.
1605 */
1606 tmp_wb = inode_to_wb_and_lock_list(inode);
1607 spin_lock(&inode->i_lock);
1608 if (!(inode->i_state & I_DIRTY_ALL))
1609 wrote++;
1610 requeue_inode(inode, tmp_wb, &wbc);
1611 inode_sync_complete(inode);
1612 spin_unlock(&inode->i_lock);
1613
1614 if (unlikely(tmp_wb != wb)) {
1615 spin_unlock(&tmp_wb->list_lock);
1616 spin_lock(&wb->list_lock);
1617 }
1618
1619 /*
1620 * bail out to wb_writeback() often enough to check
1621 * background threshold and other termination conditions.
1622 */
1623 if (wrote) {
1624 if (time_is_before_jiffies(start_time + HZ / 10UL))
1625 break;
1626 if (work->nr_pages <= 0)
1627 break;
1628 }
1629 }
1630 return wrote;
1631 }
1632
1633 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1634 struct wb_writeback_work *work)
1635 {
1636 unsigned long start_time = jiffies;
1637 long wrote = 0;
1638
1639 while (!list_empty(&wb->b_io)) {
1640 struct inode *inode = wb_inode(wb->b_io.prev);
1641 struct super_block *sb = inode->i_sb;
1642
1643 if (!trylock_super(sb)) {
1644 /*
1645 * trylock_super() may fail consistently due to
1646 * s_umount being grabbed by someone else. Don't use
1647 * requeue_io() to avoid busy retrying the inode/sb.
1648 */
1649 redirty_tail(inode, wb);
1650 continue;
1651 }
1652 wrote += writeback_sb_inodes(sb, wb, work);
1653 up_read(&sb->s_umount);
1654
1655 /* refer to the same tests at the end of writeback_sb_inodes */
1656 if (wrote) {
1657 if (time_is_before_jiffies(start_time + HZ / 10UL))
1658 break;
1659 if (work->nr_pages <= 0)
1660 break;
1661 }
1662 }
1663 /* Leave any unwritten inodes on b_io */
1664 return wrote;
1665 }
1666
1667 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1668 enum wb_reason reason)
1669 {
1670 struct wb_writeback_work work = {
1671 .nr_pages = nr_pages,
1672 .sync_mode = WB_SYNC_NONE,
1673 .range_cyclic = 1,
1674 .reason = reason,
1675 };
1676 struct blk_plug plug;
1677
1678 blk_start_plug(&plug);
1679 spin_lock(&wb->list_lock);
1680 if (list_empty(&wb->b_io))
1681 queue_io(wb, &work);
1682 __writeback_inodes_wb(wb, &work);
1683 spin_unlock(&wb->list_lock);
1684 blk_finish_plug(&plug);
1685
1686 return nr_pages - work.nr_pages;
1687 }
1688
1689 /*
1690 * Explicit flushing or periodic writeback of "old" data.
1691 *
1692 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1693 * dirtying-time in the inode's address_space. So this periodic writeback code
1694 * just walks the superblock inode list, writing back any inodes which are
1695 * older than a specific point in time.
1696 *
1697 * Try to run once per dirty_writeback_interval. But if a writeback event
1698 * takes longer than a dirty_writeback_interval interval, then leave a
1699 * one-second gap.
1700 *
1701 * older_than_this takes precedence over nr_to_write. So we'll only write back
1702 * all dirty pages if they are all attached to "old" mappings.
1703 */
1704 static long wb_writeback(struct bdi_writeback *wb,
1705 struct wb_writeback_work *work)
1706 {
1707 unsigned long wb_start = jiffies;
1708 long nr_pages = work->nr_pages;
1709 unsigned long oldest_jif;
1710 struct inode *inode;
1711 long progress;
1712 struct blk_plug plug;
1713
1714 oldest_jif = jiffies;
1715 work->older_than_this = &oldest_jif;
1716
1717 blk_start_plug(&plug);
1718 spin_lock(&wb->list_lock);
1719 for (;;) {
1720 /*
1721 * Stop writeback when nr_pages has been consumed
1722 */
1723 if (work->nr_pages <= 0)
1724 break;
1725
1726 /*
1727 * Background writeout and kupdate-style writeback may
1728 * run forever. Stop them if there is other work to do
1729 * so that e.g. sync can proceed. They'll be restarted
1730 * after the other works are all done.
1731 */
1732 if ((work->for_background || work->for_kupdate) &&
1733 !list_empty(&wb->work_list))
1734 break;
1735
1736 /*
1737 * For background writeout, stop when we are below the
1738 * background dirty threshold
1739 */
1740 if (work->for_background && !wb_over_bg_thresh(wb))
1741 break;
1742
1743 /*
1744 * Kupdate and background works are special and we want to
1745 * include all inodes that need writing. Livelock avoidance is
1746 * handled by these works yielding to any other work so we are
1747 * safe.
1748 */
1749 if (work->for_kupdate) {
1750 oldest_jif = jiffies -
1751 msecs_to_jiffies(dirty_expire_interval * 10);
1752 } else if (work->for_background)
1753 oldest_jif = jiffies;
1754
1755 trace_writeback_start(wb, work);
1756 if (list_empty(&wb->b_io))
1757 queue_io(wb, work);
1758 if (work->sb)
1759 progress = writeback_sb_inodes(work->sb, wb, work);
1760 else
1761 progress = __writeback_inodes_wb(wb, work);
1762 trace_writeback_written(wb, work);
1763
1764 wb_update_bandwidth(wb, wb_start);
1765
1766 /*
1767 * Did we write something? Try for more
1768 *
1769 * Dirty inodes are moved to b_io for writeback in batches.
1770 * The completion of the current batch does not necessarily
1771 * mean the overall work is done. So we keep looping as long
1772 * as made some progress on cleaning pages or inodes.
1773 */
1774 if (progress)
1775 continue;
1776 /*
1777 * No more inodes for IO, bail
1778 */
1779 if (list_empty(&wb->b_more_io))
1780 break;
1781 /*
1782 * Nothing written. Wait for some inode to
1783 * become available for writeback. Otherwise
1784 * we'll just busyloop.
1785 */
1786 trace_writeback_wait(wb, work);
1787 inode = wb_inode(wb->b_more_io.prev);
1788 spin_lock(&inode->i_lock);
1789 spin_unlock(&wb->list_lock);
1790 /* This function drops i_lock... */
1791 inode_sleep_on_writeback(inode);
1792 spin_lock(&wb->list_lock);
1793 }
1794 spin_unlock(&wb->list_lock);
1795 blk_finish_plug(&plug);
1796
1797 return nr_pages - work->nr_pages;
1798 }
1799
1800 /*
1801 * Return the next wb_writeback_work struct that hasn't been processed yet.
1802 */
1803 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1804 {
1805 struct wb_writeback_work *work = NULL;
1806
1807 spin_lock_bh(&wb->work_lock);
1808 if (!list_empty(&wb->work_list)) {
1809 work = list_entry(wb->work_list.next,
1810 struct wb_writeback_work, list);
1811 list_del_init(&work->list);
1812 }
1813 spin_unlock_bh(&wb->work_lock);
1814 return work;
1815 }
1816
1817 /*
1818 * Add in the number of potentially dirty inodes, because each inode
1819 * write can dirty pagecache in the underlying blockdev.
1820 */
1821 static unsigned long get_nr_dirty_pages(void)
1822 {
1823 return global_node_page_state(NR_FILE_DIRTY) +
1824 global_node_page_state(NR_UNSTABLE_NFS) +
1825 get_nr_dirty_inodes();
1826 }
1827
1828 static long wb_check_background_flush(struct bdi_writeback *wb)
1829 {
1830 if (wb_over_bg_thresh(wb)) {
1831
1832 struct wb_writeback_work work = {
1833 .nr_pages = LONG_MAX,
1834 .sync_mode = WB_SYNC_NONE,
1835 .for_background = 1,
1836 .range_cyclic = 1,
1837 .reason = WB_REASON_BACKGROUND,
1838 };
1839
1840 return wb_writeback(wb, &work);
1841 }
1842
1843 return 0;
1844 }
1845
1846 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1847 {
1848 unsigned long expired;
1849 long nr_pages;
1850
1851 /*
1852 * When set to zero, disable periodic writeback
1853 */
1854 if (!dirty_writeback_interval)
1855 return 0;
1856
1857 expired = wb->last_old_flush +
1858 msecs_to_jiffies(dirty_writeback_interval * 10);
1859 if (time_before(jiffies, expired))
1860 return 0;
1861
1862 wb->last_old_flush = jiffies;
1863 nr_pages = get_nr_dirty_pages();
1864
1865 if (nr_pages) {
1866 struct wb_writeback_work work = {
1867 .nr_pages = nr_pages,
1868 .sync_mode = WB_SYNC_NONE,
1869 .for_kupdate = 1,
1870 .range_cyclic = 1,
1871 .reason = WB_REASON_PERIODIC,
1872 };
1873
1874 return wb_writeback(wb, &work);
1875 }
1876
1877 return 0;
1878 }
1879
1880 /*
1881 * Retrieve work items and do the writeback they describe
1882 */
1883 static long wb_do_writeback(struct bdi_writeback *wb)
1884 {
1885 struct wb_writeback_work *work;
1886 long wrote = 0;
1887
1888 set_bit(WB_writeback_running, &wb->state);
1889 while ((work = get_next_work_item(wb)) != NULL) {
1890 trace_writeback_exec(wb, work);
1891 wrote += wb_writeback(wb, work);
1892 finish_writeback_work(wb, work);
1893 }
1894
1895 /*
1896 * Check for periodic writeback, kupdated() style
1897 */
1898 wrote += wb_check_old_data_flush(wb);
1899 wrote += wb_check_background_flush(wb);
1900 clear_bit(WB_writeback_running, &wb->state);
1901
1902 return wrote;
1903 }
1904
1905 /*
1906 * Handle writeback of dirty data for the device backed by this bdi. Also
1907 * reschedules periodically and does kupdated style flushing.
1908 */
1909 void wb_workfn(struct work_struct *work)
1910 {
1911 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1912 struct bdi_writeback, dwork);
1913 long pages_written;
1914
1915 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1916 current->flags |= PF_SWAPWRITE;
1917
1918 if (likely(!current_is_workqueue_rescuer() ||
1919 !test_bit(WB_registered, &wb->state))) {
1920 /*
1921 * The normal path. Keep writing back @wb until its
1922 * work_list is empty. Note that this path is also taken
1923 * if @wb is shutting down even when we're running off the
1924 * rescuer as work_list needs to be drained.
1925 */
1926 do {
1927 pages_written = wb_do_writeback(wb);
1928 trace_writeback_pages_written(pages_written);
1929 } while (!list_empty(&wb->work_list));
1930 } else {
1931 /*
1932 * bdi_wq can't get enough workers and we're running off
1933 * the emergency worker. Don't hog it. Hopefully, 1024 is
1934 * enough for efficient IO.
1935 */
1936 pages_written = writeback_inodes_wb(wb, 1024,
1937 WB_REASON_FORKER_THREAD);
1938 trace_writeback_pages_written(pages_written);
1939 }
1940
1941 if (!list_empty(&wb->work_list))
1942 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1943 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1944 wb_wakeup_delayed(wb);
1945
1946 current->flags &= ~PF_SWAPWRITE;
1947 }
1948
1949 /*
1950 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1951 * the whole world.
1952 */
1953 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1954 {
1955 struct backing_dev_info *bdi;
1956
1957 /*
1958 * If we are expecting writeback progress we must submit plugged IO.
1959 */
1960 if (blk_needs_flush_plug(current))
1961 blk_schedule_flush_plug(current);
1962
1963 if (!nr_pages)
1964 nr_pages = get_nr_dirty_pages();
1965
1966 rcu_read_lock();
1967 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1968 struct bdi_writeback *wb;
1969
1970 if (!bdi_has_dirty_io(bdi))
1971 continue;
1972
1973 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1974 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1975 false, reason);
1976 }
1977 rcu_read_unlock();
1978 }
1979
1980 /*
1981 * Wake up bdi's periodically to make sure dirtytime inodes gets
1982 * written back periodically. We deliberately do *not* check the
1983 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1984 * kernel to be constantly waking up once there are any dirtytime
1985 * inodes on the system. So instead we define a separate delayed work
1986 * function which gets called much more rarely. (By default, only
1987 * once every 12 hours.)
1988 *
1989 * If there is any other write activity going on in the file system,
1990 * this function won't be necessary. But if the only thing that has
1991 * happened on the file system is a dirtytime inode caused by an atime
1992 * update, we need this infrastructure below to make sure that inode
1993 * eventually gets pushed out to disk.
1994 */
1995 static void wakeup_dirtytime_writeback(struct work_struct *w);
1996 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1997
1998 static void wakeup_dirtytime_writeback(struct work_struct *w)
1999 {
2000 struct backing_dev_info *bdi;
2001
2002 rcu_read_lock();
2003 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2004 struct bdi_writeback *wb;
2005
2006 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2007 if (!list_empty(&wb->b_dirty_time))
2008 wb_wakeup(wb);
2009 }
2010 rcu_read_unlock();
2011 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2012 }
2013
2014 static int __init start_dirtytime_writeback(void)
2015 {
2016 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2017 return 0;
2018 }
2019 __initcall(start_dirtytime_writeback);
2020
2021 int dirtytime_interval_handler(struct ctl_table *table, int write,
2022 void __user *buffer, size_t *lenp, loff_t *ppos)
2023 {
2024 int ret;
2025
2026 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2027 if (ret == 0 && write)
2028 mod_delayed_work(system_wq, &dirtytime_work, 0);
2029 return ret;
2030 }
2031
2032 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2033 {
2034 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2035 struct dentry *dentry;
2036 const char *name = "?";
2037
2038 dentry = d_find_alias(inode);
2039 if (dentry) {
2040 spin_lock(&dentry->d_lock);
2041 name = (const char *) dentry->d_name.name;
2042 }
2043 printk(KERN_DEBUG
2044 "%s(%d): dirtied inode %lu (%s) on %s\n",
2045 current->comm, task_pid_nr(current), inode->i_ino,
2046 name, inode->i_sb->s_id);
2047 if (dentry) {
2048 spin_unlock(&dentry->d_lock);
2049 dput(dentry);
2050 }
2051 }
2052 }
2053
2054 /**
2055 * __mark_inode_dirty - internal function
2056 *
2057 * @inode: inode to mark
2058 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2059 *
2060 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2061 * mark_inode_dirty_sync.
2062 *
2063 * Put the inode on the super block's dirty list.
2064 *
2065 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2066 * dirty list only if it is hashed or if it refers to a blockdev.
2067 * If it was not hashed, it will never be added to the dirty list
2068 * even if it is later hashed, as it will have been marked dirty already.
2069 *
2070 * In short, make sure you hash any inodes _before_ you start marking
2071 * them dirty.
2072 *
2073 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2074 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2075 * the kernel-internal blockdev inode represents the dirtying time of the
2076 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2077 * page->mapping->host, so the page-dirtying time is recorded in the internal
2078 * blockdev inode.
2079 */
2080 void __mark_inode_dirty(struct inode *inode, int flags)
2081 {
2082 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2083 struct super_block *sb = inode->i_sb;
2084 int dirtytime;
2085
2086 trace_writeback_mark_inode_dirty(inode, flags);
2087
2088 /*
2089 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2090 * dirty the inode itself
2091 */
2092 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2093 trace_writeback_dirty_inode_start(inode, flags);
2094
2095 if (sb->s_op->dirty_inode)
2096 sb->s_op->dirty_inode(inode, flags);
2097
2098 trace_writeback_dirty_inode(inode, flags);
2099 }
2100 if (flags & I_DIRTY_INODE)
2101 flags &= ~I_DIRTY_TIME;
2102 dirtytime = flags & I_DIRTY_TIME;
2103
2104 /*
2105 * Paired with smp_mb() in __writeback_single_inode() for the
2106 * following lockless i_state test. See there for details.
2107 */
2108 smp_mb();
2109
2110 if (((inode->i_state & flags) == flags) ||
2111 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2112 return;
2113
2114 if (unlikely(block_dump))
2115 block_dump___mark_inode_dirty(inode);
2116
2117 spin_lock(&inode->i_lock);
2118 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2119 goto out_unlock_inode;
2120 if ((inode->i_state & flags) != flags) {
2121 const int was_dirty = inode->i_state & I_DIRTY;
2122
2123 inode_attach_wb(inode, NULL);
2124
2125 if (flags & I_DIRTY_INODE)
2126 inode->i_state &= ~I_DIRTY_TIME;
2127 inode->i_state |= flags;
2128
2129 /*
2130 * If the inode is being synced, just update its dirty state.
2131 * The unlocker will place the inode on the appropriate
2132 * superblock list, based upon its state.
2133 */
2134 if (inode->i_state & I_SYNC)
2135 goto out_unlock_inode;
2136
2137 /*
2138 * Only add valid (hashed) inodes to the superblock's
2139 * dirty list. Add blockdev inodes as well.
2140 */
2141 if (!S_ISBLK(inode->i_mode)) {
2142 if (inode_unhashed(inode))
2143 goto out_unlock_inode;
2144 }
2145 if (inode->i_state & I_FREEING)
2146 goto out_unlock_inode;
2147
2148 /*
2149 * If the inode was already on b_dirty/b_io/b_more_io, don't
2150 * reposition it (that would break b_dirty time-ordering).
2151 */
2152 if (!was_dirty) {
2153 struct bdi_writeback *wb;
2154 struct list_head *dirty_list;
2155 bool wakeup_bdi = false;
2156
2157 wb = locked_inode_to_wb_and_lock_list(inode);
2158
2159 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2160 !test_bit(WB_registered, &wb->state),
2161 "bdi-%s not registered\n", wb->bdi->name);
2162
2163 inode->dirtied_when = jiffies;
2164 if (dirtytime)
2165 inode->dirtied_time_when = jiffies;
2166
2167 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2168 dirty_list = &wb->b_dirty;
2169 else
2170 dirty_list = &wb->b_dirty_time;
2171
2172 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2173 dirty_list);
2174
2175 spin_unlock(&wb->list_lock);
2176 trace_writeback_dirty_inode_enqueue(inode);
2177
2178 /*
2179 * If this is the first dirty inode for this bdi,
2180 * we have to wake-up the corresponding bdi thread
2181 * to make sure background write-back happens
2182 * later.
2183 */
2184 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2185 wb_wakeup_delayed(wb);
2186 return;
2187 }
2188 }
2189 out_unlock_inode:
2190 spin_unlock(&inode->i_lock);
2191
2192 #undef I_DIRTY_INODE
2193 }
2194 EXPORT_SYMBOL(__mark_inode_dirty);
2195
2196 /*
2197 * The @s_sync_lock is used to serialise concurrent sync operations
2198 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2199 * Concurrent callers will block on the s_sync_lock rather than doing contending
2200 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2201 * has been issued up to the time this function is enter is guaranteed to be
2202 * completed by the time we have gained the lock and waited for all IO that is
2203 * in progress regardless of the order callers are granted the lock.
2204 */
2205 static void wait_sb_inodes(struct super_block *sb)
2206 {
2207 LIST_HEAD(sync_list);
2208
2209 /*
2210 * We need to be protected against the filesystem going from
2211 * r/o to r/w or vice versa.
2212 */
2213 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2214
2215 mutex_lock(&sb->s_sync_lock);
2216
2217 /*
2218 * Splice the writeback list onto a temporary list to avoid waiting on
2219 * inodes that have started writeback after this point.
2220 *
2221 * Use rcu_read_lock() to keep the inodes around until we have a
2222 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2223 * the local list because inodes can be dropped from either by writeback
2224 * completion.
2225 */
2226 rcu_read_lock();
2227 spin_lock_irq(&sb->s_inode_wblist_lock);
2228 list_splice_init(&sb->s_inodes_wb, &sync_list);
2229
2230 /*
2231 * Data integrity sync. Must wait for all pages under writeback, because
2232 * there may have been pages dirtied before our sync call, but which had
2233 * writeout started before we write it out. In which case, the inode
2234 * may not be on the dirty list, but we still have to wait for that
2235 * writeout.
2236 */
2237 while (!list_empty(&sync_list)) {
2238 struct inode *inode = list_first_entry(&sync_list, struct inode,
2239 i_wb_list);
2240 struct address_space *mapping = inode->i_mapping;
2241
2242 /*
2243 * Move each inode back to the wb list before we drop the lock
2244 * to preserve consistency between i_wb_list and the mapping
2245 * writeback tag. Writeback completion is responsible to remove
2246 * the inode from either list once the writeback tag is cleared.
2247 */
2248 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2249
2250 /*
2251 * The mapping can appear untagged while still on-list since we
2252 * do not have the mapping lock. Skip it here, wb completion
2253 * will remove it.
2254 */
2255 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2256 continue;
2257
2258 spin_unlock_irq(&sb->s_inode_wblist_lock);
2259
2260 spin_lock(&inode->i_lock);
2261 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2262 spin_unlock(&inode->i_lock);
2263
2264 spin_lock_irq(&sb->s_inode_wblist_lock);
2265 continue;
2266 }
2267 __iget(inode);
2268 spin_unlock(&inode->i_lock);
2269 rcu_read_unlock();
2270
2271 /*
2272 * We keep the error status of individual mapping so that
2273 * applications can catch the writeback error using fsync(2).
2274 * See filemap_fdatawait_keep_errors() for details.
2275 */
2276 filemap_fdatawait_keep_errors(mapping);
2277
2278 cond_resched();
2279
2280 iput(inode);
2281
2282 rcu_read_lock();
2283 spin_lock_irq(&sb->s_inode_wblist_lock);
2284 }
2285 spin_unlock_irq(&sb->s_inode_wblist_lock);
2286 rcu_read_unlock();
2287 mutex_unlock(&sb->s_sync_lock);
2288 }
2289
2290 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2291 enum wb_reason reason, bool skip_if_busy)
2292 {
2293 DEFINE_WB_COMPLETION_ONSTACK(done);
2294 struct wb_writeback_work work = {
2295 .sb = sb,
2296 .sync_mode = WB_SYNC_NONE,
2297 .tagged_writepages = 1,
2298 .done = &done,
2299 .nr_pages = nr,
2300 .reason = reason,
2301 };
2302 struct backing_dev_info *bdi = sb->s_bdi;
2303
2304 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2305 return;
2306 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2307
2308 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2309 wb_wait_for_completion(bdi, &done);
2310 }
2311
2312 /**
2313 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2314 * @sb: the superblock
2315 * @nr: the number of pages to write
2316 * @reason: reason why some writeback work initiated
2317 *
2318 * Start writeback on some inodes on this super_block. No guarantees are made
2319 * on how many (if any) will be written, and this function does not wait
2320 * for IO completion of submitted IO.
2321 */
2322 void writeback_inodes_sb_nr(struct super_block *sb,
2323 unsigned long nr,
2324 enum wb_reason reason)
2325 {
2326 __writeback_inodes_sb_nr(sb, nr, reason, false);
2327 }
2328 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2329
2330 /**
2331 * writeback_inodes_sb - writeback dirty inodes from given super_block
2332 * @sb: the superblock
2333 * @reason: reason why some writeback work was initiated
2334 *
2335 * Start writeback on some inodes on this super_block. No guarantees are made
2336 * on how many (if any) will be written, and this function does not wait
2337 * for IO completion of submitted IO.
2338 */
2339 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2340 {
2341 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2342 }
2343 EXPORT_SYMBOL(writeback_inodes_sb);
2344
2345 /**
2346 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2347 * @sb: the superblock
2348 * @nr: the number of pages to write
2349 * @reason: the reason of writeback
2350 *
2351 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2352 * Returns 1 if writeback was started, 0 if not.
2353 */
2354 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2355 enum wb_reason reason)
2356 {
2357 if (!down_read_trylock(&sb->s_umount))
2358 return false;
2359
2360 __writeback_inodes_sb_nr(sb, nr, reason, true);
2361 up_read(&sb->s_umount);
2362 return true;
2363 }
2364 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2365
2366 /**
2367 * try_to_writeback_inodes_sb - try to start writeback if none underway
2368 * @sb: the superblock
2369 * @reason: reason why some writeback work was initiated
2370 *
2371 * Implement by try_to_writeback_inodes_sb_nr()
2372 * Returns 1 if writeback was started, 0 if not.
2373 */
2374 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2375 {
2376 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2377 }
2378 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2379
2380 /**
2381 * sync_inodes_sb - sync sb inode pages
2382 * @sb: the superblock
2383 *
2384 * This function writes and waits on any dirty inode belonging to this
2385 * super_block.
2386 */
2387 void sync_inodes_sb(struct super_block *sb)
2388 {
2389 DEFINE_WB_COMPLETION_ONSTACK(done);
2390 struct wb_writeback_work work = {
2391 .sb = sb,
2392 .sync_mode = WB_SYNC_ALL,
2393 .nr_pages = LONG_MAX,
2394 .range_cyclic = 0,
2395 .done = &done,
2396 .reason = WB_REASON_SYNC,
2397 .for_sync = 1,
2398 };
2399 struct backing_dev_info *bdi = sb->s_bdi;
2400
2401 /*
2402 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2403 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2404 * bdi_has_dirty() need to be written out too.
2405 */
2406 if (bdi == &noop_backing_dev_info)
2407 return;
2408 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2409
2410 bdi_split_work_to_wbs(bdi, &work, false);
2411 wb_wait_for_completion(bdi, &done);
2412
2413 wait_sb_inodes(sb);
2414 }
2415 EXPORT_SYMBOL(sync_inodes_sb);
2416
2417 /**
2418 * write_inode_now - write an inode to disk
2419 * @inode: inode to write to disk
2420 * @sync: whether the write should be synchronous or not
2421 *
2422 * This function commits an inode to disk immediately if it is dirty. This is
2423 * primarily needed by knfsd.
2424 *
2425 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2426 */
2427 int write_inode_now(struct inode *inode, int sync)
2428 {
2429 struct writeback_control wbc = {
2430 .nr_to_write = LONG_MAX,
2431 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2432 .range_start = 0,
2433 .range_end = LLONG_MAX,
2434 };
2435
2436 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2437 wbc.nr_to_write = 0;
2438
2439 might_sleep();
2440 return writeback_single_inode(inode, &wbc);
2441 }
2442 EXPORT_SYMBOL(write_inode_now);
2443
2444 /**
2445 * sync_inode - write an inode and its pages to disk.
2446 * @inode: the inode to sync
2447 * @wbc: controls the writeback mode
2448 *
2449 * sync_inode() will write an inode and its pages to disk. It will also
2450 * correctly update the inode on its superblock's dirty inode lists and will
2451 * update inode->i_state.
2452 *
2453 * The caller must have a ref on the inode.
2454 */
2455 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2456 {
2457 return writeback_single_inode(inode, wbc);
2458 }
2459 EXPORT_SYMBOL(sync_inode);
2460
2461 /**
2462 * sync_inode_metadata - write an inode to disk
2463 * @inode: the inode to sync
2464 * @wait: wait for I/O to complete.
2465 *
2466 * Write an inode to disk and adjust its dirty state after completion.
2467 *
2468 * Note: only writes the actual inode, no associated data or other metadata.
2469 */
2470 int sync_inode_metadata(struct inode *inode, int wait)
2471 {
2472 struct writeback_control wbc = {
2473 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2474 .nr_to_write = 0, /* metadata-only */
2475 };
2476
2477 return sync_inode(inode, &wbc);
2478 }
2479 EXPORT_SYMBOL(sync_inode_metadata);