]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/gfs2/lock_dlm.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / gfs2 / lock_dlm.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/fs.h>
13 #include <linux/dlm.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/sched/signal.h>
19
20 #include "incore.h"
21 #include "glock.h"
22 #include "util.h"
23 #include "sys.h"
24 #include "trace_gfs2.h"
25
26 extern struct workqueue_struct *gfs2_control_wq;
27
28 /**
29 * gfs2_update_stats - Update time based stats
30 * @mv: Pointer to mean/variance structure to update
31 * @sample: New data to include
32 *
33 * @delta is the difference between the current rtt sample and the
34 * running average srtt. We add 1/8 of that to the srtt in order to
35 * update the current srtt estimate. The variance estimate is a bit
36 * more complicated. We subtract the abs value of the @delta from
37 * the current variance estimate and add 1/4 of that to the running
38 * total.
39 *
40 * Note that the index points at the array entry containing the smoothed
41 * mean value, and the variance is always in the following entry
42 *
43 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
44 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
45 * they are not scaled fixed point.
46 */
47
48 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
49 s64 sample)
50 {
51 s64 delta = sample - s->stats[index];
52 s->stats[index] += (delta >> 3);
53 index++;
54 s->stats[index] += ((abs(delta) - s->stats[index]) >> 2);
55 }
56
57 /**
58 * gfs2_update_reply_times - Update locking statistics
59 * @gl: The glock to update
60 *
61 * This assumes that gl->gl_dstamp has been set earlier.
62 *
63 * The rtt (lock round trip time) is an estimate of the time
64 * taken to perform a dlm lock request. We update it on each
65 * reply from the dlm.
66 *
67 * The blocking flag is set on the glock for all dlm requests
68 * which may potentially block due to lock requests from other nodes.
69 * DLM requests where the current lock state is exclusive, the
70 * requested state is null (or unlocked) or where the TRY or
71 * TRY_1CB flags are set are classified as non-blocking. All
72 * other DLM requests are counted as (potentially) blocking.
73 */
74 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
75 {
76 struct gfs2_pcpu_lkstats *lks;
77 const unsigned gltype = gl->gl_name.ln_type;
78 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
79 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
80 s64 rtt;
81
82 preempt_disable();
83 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
84 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
85 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
86 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
87 preempt_enable();
88
89 trace_gfs2_glock_lock_time(gl, rtt);
90 }
91
92 /**
93 * gfs2_update_request_times - Update locking statistics
94 * @gl: The glock to update
95 *
96 * The irt (lock inter-request times) measures the average time
97 * between requests to the dlm. It is updated immediately before
98 * each dlm call.
99 */
100
101 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
102 {
103 struct gfs2_pcpu_lkstats *lks;
104 const unsigned gltype = gl->gl_name.ln_type;
105 ktime_t dstamp;
106 s64 irt;
107
108 preempt_disable();
109 dstamp = gl->gl_dstamp;
110 gl->gl_dstamp = ktime_get_real();
111 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
112 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
113 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
114 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
115 preempt_enable();
116 }
117
118 static void gdlm_ast(void *arg)
119 {
120 struct gfs2_glock *gl = arg;
121 unsigned ret = gl->gl_state;
122
123 gfs2_update_reply_times(gl);
124 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
125
126 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
127 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
128
129 switch (gl->gl_lksb.sb_status) {
130 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
131 gfs2_glock_free(gl);
132 return;
133 case -DLM_ECANCEL: /* Cancel while getting lock */
134 ret |= LM_OUT_CANCELED;
135 goto out;
136 case -EAGAIN: /* Try lock fails */
137 case -EDEADLK: /* Deadlock detected */
138 goto out;
139 case -ETIMEDOUT: /* Canceled due to timeout */
140 ret |= LM_OUT_ERROR;
141 goto out;
142 case 0: /* Success */
143 break;
144 default: /* Something unexpected */
145 BUG();
146 }
147
148 ret = gl->gl_req;
149 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
150 if (gl->gl_req == LM_ST_SHARED)
151 ret = LM_ST_DEFERRED;
152 else if (gl->gl_req == LM_ST_DEFERRED)
153 ret = LM_ST_SHARED;
154 else
155 BUG();
156 }
157
158 set_bit(GLF_INITIAL, &gl->gl_flags);
159 gfs2_glock_complete(gl, ret);
160 return;
161 out:
162 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
163 gl->gl_lksb.sb_lkid = 0;
164 gfs2_glock_complete(gl, ret);
165 }
166
167 static void gdlm_bast(void *arg, int mode)
168 {
169 struct gfs2_glock *gl = arg;
170
171 switch (mode) {
172 case DLM_LOCK_EX:
173 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
174 break;
175 case DLM_LOCK_CW:
176 gfs2_glock_cb(gl, LM_ST_DEFERRED);
177 break;
178 case DLM_LOCK_PR:
179 gfs2_glock_cb(gl, LM_ST_SHARED);
180 break;
181 default:
182 pr_err("unknown bast mode %d\n", mode);
183 BUG();
184 }
185 }
186
187 /* convert gfs lock-state to dlm lock-mode */
188
189 static int make_mode(const unsigned int lmstate)
190 {
191 switch (lmstate) {
192 case LM_ST_UNLOCKED:
193 return DLM_LOCK_NL;
194 case LM_ST_EXCLUSIVE:
195 return DLM_LOCK_EX;
196 case LM_ST_DEFERRED:
197 return DLM_LOCK_CW;
198 case LM_ST_SHARED:
199 return DLM_LOCK_PR;
200 }
201 pr_err("unknown LM state %d\n", lmstate);
202 BUG();
203 return -1;
204 }
205
206 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
207 const int req)
208 {
209 u32 lkf = 0;
210
211 if (gl->gl_lksb.sb_lvbptr)
212 lkf |= DLM_LKF_VALBLK;
213
214 if (gfs_flags & LM_FLAG_TRY)
215 lkf |= DLM_LKF_NOQUEUE;
216
217 if (gfs_flags & LM_FLAG_TRY_1CB) {
218 lkf |= DLM_LKF_NOQUEUE;
219 lkf |= DLM_LKF_NOQUEUEBAST;
220 }
221
222 if (gfs_flags & LM_FLAG_PRIORITY) {
223 lkf |= DLM_LKF_NOORDER;
224 lkf |= DLM_LKF_HEADQUE;
225 }
226
227 if (gfs_flags & LM_FLAG_ANY) {
228 if (req == DLM_LOCK_PR)
229 lkf |= DLM_LKF_ALTCW;
230 else if (req == DLM_LOCK_CW)
231 lkf |= DLM_LKF_ALTPR;
232 else
233 BUG();
234 }
235
236 if (gl->gl_lksb.sb_lkid != 0) {
237 lkf |= DLM_LKF_CONVERT;
238 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
239 lkf |= DLM_LKF_QUECVT;
240 }
241
242 return lkf;
243 }
244
245 static void gfs2_reverse_hex(char *c, u64 value)
246 {
247 *c = '0';
248 while (value) {
249 *c-- = hex_asc[value & 0x0f];
250 value >>= 4;
251 }
252 }
253
254 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
255 unsigned int flags)
256 {
257 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
258 int req;
259 u32 lkf;
260 char strname[GDLM_STRNAME_BYTES] = "";
261
262 req = make_mode(req_state);
263 lkf = make_flags(gl, flags, req);
264 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
265 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
266 if (gl->gl_lksb.sb_lkid) {
267 gfs2_update_request_times(gl);
268 } else {
269 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
270 strname[GDLM_STRNAME_BYTES - 1] = '\0';
271 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
272 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
273 gl->gl_dstamp = ktime_get_real();
274 }
275 /*
276 * Submit the actual lock request.
277 */
278
279 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
280 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
281 }
282
283 static void gdlm_put_lock(struct gfs2_glock *gl)
284 {
285 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
286 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
287 int lvb_needs_unlock = 0;
288 int error;
289
290 if (gl->gl_lksb.sb_lkid == 0) {
291 gfs2_glock_free(gl);
292 return;
293 }
294
295 clear_bit(GLF_BLOCKING, &gl->gl_flags);
296 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
297 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
298 gfs2_update_request_times(gl);
299
300 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
301
302 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
303 lvb_needs_unlock = 1;
304
305 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
306 !lvb_needs_unlock) {
307 gfs2_glock_free(gl);
308 return;
309 }
310
311 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
312 NULL, gl);
313 if (error) {
314 pr_err("gdlm_unlock %x,%llx err=%d\n",
315 gl->gl_name.ln_type,
316 (unsigned long long)gl->gl_name.ln_number, error);
317 return;
318 }
319 }
320
321 static void gdlm_cancel(struct gfs2_glock *gl)
322 {
323 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
324 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
325 }
326
327 /*
328 * dlm/gfs2 recovery coordination using dlm_recover callbacks
329 *
330 * 1. dlm_controld sees lockspace members change
331 * 2. dlm_controld blocks dlm-kernel locking activity
332 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
333 * 4. dlm_controld starts and finishes its own user level recovery
334 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
335 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
336 * 7. dlm_recoverd does its own lock recovery
337 * 8. dlm_recoverd unblocks dlm-kernel locking activity
338 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
339 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
340 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
341 * 12. gfs2_recover dequeues and recovers journals of failed nodes
342 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
343 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
344 * 15. gfs2_control unblocks normal locking when all journals are recovered
345 *
346 * - failures during recovery
347 *
348 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
349 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
350 * recovering for a prior failure. gfs2_control needs a way to detect
351 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
352 * the recover_block and recover_start values.
353 *
354 * recover_done() provides a new lockspace generation number each time it
355 * is called (step 9). This generation number is saved as recover_start.
356 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
357 * recover_block = recover_start. So, while recover_block is equal to
358 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
359 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
360 *
361 * - more specific gfs2 steps in sequence above
362 *
363 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
364 * 6. recover_slot records any failed jids (maybe none)
365 * 9. recover_done sets recover_start = new generation number
366 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
367 * 12. gfs2_recover does journal recoveries for failed jids identified above
368 * 14. gfs2_control clears control_lock lvb bits for recovered jids
369 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
370 * again) then do nothing, otherwise if recover_start > recover_block
371 * then clear BLOCK_LOCKS.
372 *
373 * - parallel recovery steps across all nodes
374 *
375 * All nodes attempt to update the control_lock lvb with the new generation
376 * number and jid bits, but only the first to get the control_lock EX will
377 * do so; others will see that it's already done (lvb already contains new
378 * generation number.)
379 *
380 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
381 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
382 * . One node gets control_lock first and writes the lvb, others see it's done
383 * . All nodes attempt to recover jids for which they see control_lock bits set
384 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
385 * . All nodes will eventually see all lvb bits clear and unblock locks
386 *
387 * - is there a problem with clearing an lvb bit that should be set
388 * and missing a journal recovery?
389 *
390 * 1. jid fails
391 * 2. lvb bit set for step 1
392 * 3. jid recovered for step 1
393 * 4. jid taken again (new mount)
394 * 5. jid fails (for step 4)
395 * 6. lvb bit set for step 5 (will already be set)
396 * 7. lvb bit cleared for step 3
397 *
398 * This is not a problem because the failure in step 5 does not
399 * require recovery, because the mount in step 4 could not have
400 * progressed far enough to unblock locks and access the fs. The
401 * control_mount() function waits for all recoveries to be complete
402 * for the latest lockspace generation before ever unblocking locks
403 * and returning. The mount in step 4 waits until the recovery in
404 * step 1 is done.
405 *
406 * - special case of first mounter: first node to mount the fs
407 *
408 * The first node to mount a gfs2 fs needs to check all the journals
409 * and recover any that need recovery before other nodes are allowed
410 * to mount the fs. (Others may begin mounting, but they must wait
411 * for the first mounter to be done before taking locks on the fs
412 * or accessing the fs.) This has two parts:
413 *
414 * 1. The mounted_lock tells a node it's the first to mount the fs.
415 * Each node holds the mounted_lock in PR while it's mounted.
416 * Each node tries to acquire the mounted_lock in EX when it mounts.
417 * If a node is granted the mounted_lock EX it means there are no
418 * other mounted nodes (no PR locks exist), and it is the first mounter.
419 * The mounted_lock is demoted to PR when first recovery is done, so
420 * others will fail to get an EX lock, but will get a PR lock.
421 *
422 * 2. The control_lock blocks others in control_mount() while the first
423 * mounter is doing first mount recovery of all journals.
424 * A mounting node needs to acquire control_lock in EX mode before
425 * it can proceed. The first mounter holds control_lock in EX while doing
426 * the first mount recovery, blocking mounts from other nodes, then demotes
427 * control_lock to NL when it's done (others_may_mount/first_done),
428 * allowing other nodes to continue mounting.
429 *
430 * first mounter:
431 * control_lock EX/NOQUEUE success
432 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
433 * set first=1
434 * do first mounter recovery
435 * mounted_lock EX->PR
436 * control_lock EX->NL, write lvb generation
437 *
438 * other mounter:
439 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
440 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
441 * mounted_lock PR/NOQUEUE success
442 * read lvb generation
443 * control_lock EX->NL
444 * set first=0
445 *
446 * - mount during recovery
447 *
448 * If a node mounts while others are doing recovery (not first mounter),
449 * the mounting node will get its initial recover_done() callback without
450 * having seen any previous failures/callbacks.
451 *
452 * It must wait for all recoveries preceding its mount to be finished
453 * before it unblocks locks. It does this by repeating the "other mounter"
454 * steps above until the lvb generation number is >= its mount generation
455 * number (from initial recover_done) and all lvb bits are clear.
456 *
457 * - control_lock lvb format
458 *
459 * 4 bytes generation number: the latest dlm lockspace generation number
460 * from recover_done callback. Indicates the jid bitmap has been updated
461 * to reflect all slot failures through that generation.
462 * 4 bytes unused.
463 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
464 * that jid N needs recovery.
465 */
466
467 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
468
469 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
470 char *lvb_bits)
471 {
472 __le32 gen;
473 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
474 memcpy(&gen, lvb_bits, sizeof(__le32));
475 *lvb_gen = le32_to_cpu(gen);
476 }
477
478 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
479 char *lvb_bits)
480 {
481 __le32 gen;
482 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
483 gen = cpu_to_le32(lvb_gen);
484 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
485 }
486
487 static int all_jid_bits_clear(char *lvb)
488 {
489 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
490 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
491 }
492
493 static void sync_wait_cb(void *arg)
494 {
495 struct lm_lockstruct *ls = arg;
496 complete(&ls->ls_sync_wait);
497 }
498
499 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
500 {
501 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
502 int error;
503
504 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
505 if (error) {
506 fs_err(sdp, "%s lkid %x error %d\n",
507 name, lksb->sb_lkid, error);
508 return error;
509 }
510
511 wait_for_completion(&ls->ls_sync_wait);
512
513 if (lksb->sb_status != -DLM_EUNLOCK) {
514 fs_err(sdp, "%s lkid %x status %d\n",
515 name, lksb->sb_lkid, lksb->sb_status);
516 return -1;
517 }
518 return 0;
519 }
520
521 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
522 unsigned int num, struct dlm_lksb *lksb, char *name)
523 {
524 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
525 char strname[GDLM_STRNAME_BYTES];
526 int error, status;
527
528 memset(strname, 0, GDLM_STRNAME_BYTES);
529 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
530
531 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
532 strname, GDLM_STRNAME_BYTES - 1,
533 0, sync_wait_cb, ls, NULL);
534 if (error) {
535 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
536 name, lksb->sb_lkid, flags, mode, error);
537 return error;
538 }
539
540 wait_for_completion(&ls->ls_sync_wait);
541
542 status = lksb->sb_status;
543
544 if (status && status != -EAGAIN) {
545 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
546 name, lksb->sb_lkid, flags, mode, status);
547 }
548
549 return status;
550 }
551
552 static int mounted_unlock(struct gfs2_sbd *sdp)
553 {
554 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
555 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
556 }
557
558 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
559 {
560 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
561 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
562 &ls->ls_mounted_lksb, "mounted_lock");
563 }
564
565 static int control_unlock(struct gfs2_sbd *sdp)
566 {
567 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
568 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
569 }
570
571 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
572 {
573 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
574 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
575 &ls->ls_control_lksb, "control_lock");
576 }
577
578 static void gfs2_control_func(struct work_struct *work)
579 {
580 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
581 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
582 uint32_t block_gen, start_gen, lvb_gen, flags;
583 int recover_set = 0;
584 int write_lvb = 0;
585 int recover_size;
586 int i, error;
587
588 spin_lock(&ls->ls_recover_spin);
589 /*
590 * No MOUNT_DONE means we're still mounting; control_mount()
591 * will set this flag, after which this thread will take over
592 * all further clearing of BLOCK_LOCKS.
593 *
594 * FIRST_MOUNT means this node is doing first mounter recovery,
595 * for which recovery control is handled by
596 * control_mount()/control_first_done(), not this thread.
597 */
598 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
599 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
600 spin_unlock(&ls->ls_recover_spin);
601 return;
602 }
603 block_gen = ls->ls_recover_block;
604 start_gen = ls->ls_recover_start;
605 spin_unlock(&ls->ls_recover_spin);
606
607 /*
608 * Equal block_gen and start_gen implies we are between
609 * recover_prep and recover_done callbacks, which means
610 * dlm recovery is in progress and dlm locking is blocked.
611 * There's no point trying to do any work until recover_done.
612 */
613
614 if (block_gen == start_gen)
615 return;
616
617 /*
618 * Propagate recover_submit[] and recover_result[] to lvb:
619 * dlm_recoverd adds to recover_submit[] jids needing recovery
620 * gfs2_recover adds to recover_result[] journal recovery results
621 *
622 * set lvb bit for jids in recover_submit[] if the lvb has not
623 * yet been updated for the generation of the failure
624 *
625 * clear lvb bit for jids in recover_result[] if the result of
626 * the journal recovery is SUCCESS
627 */
628
629 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
630 if (error) {
631 fs_err(sdp, "control lock EX error %d\n", error);
632 return;
633 }
634
635 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
636
637 spin_lock(&ls->ls_recover_spin);
638 if (block_gen != ls->ls_recover_block ||
639 start_gen != ls->ls_recover_start) {
640 fs_info(sdp, "recover generation %u block1 %u %u\n",
641 start_gen, block_gen, ls->ls_recover_block);
642 spin_unlock(&ls->ls_recover_spin);
643 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
644 return;
645 }
646
647 recover_size = ls->ls_recover_size;
648
649 if (lvb_gen <= start_gen) {
650 /*
651 * Clear lvb bits for jids we've successfully recovered.
652 * Because all nodes attempt to recover failed journals,
653 * a journal can be recovered multiple times successfully
654 * in succession. Only the first will really do recovery,
655 * the others find it clean, but still report a successful
656 * recovery. So, another node may have already recovered
657 * the jid and cleared the lvb bit for it.
658 */
659 for (i = 0; i < recover_size; i++) {
660 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
661 continue;
662
663 ls->ls_recover_result[i] = 0;
664
665 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
666 continue;
667
668 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
669 write_lvb = 1;
670 }
671 }
672
673 if (lvb_gen == start_gen) {
674 /*
675 * Failed slots before start_gen are already set in lvb.
676 */
677 for (i = 0; i < recover_size; i++) {
678 if (!ls->ls_recover_submit[i])
679 continue;
680 if (ls->ls_recover_submit[i] < lvb_gen)
681 ls->ls_recover_submit[i] = 0;
682 }
683 } else if (lvb_gen < start_gen) {
684 /*
685 * Failed slots before start_gen are not yet set in lvb.
686 */
687 for (i = 0; i < recover_size; i++) {
688 if (!ls->ls_recover_submit[i])
689 continue;
690 if (ls->ls_recover_submit[i] < start_gen) {
691 ls->ls_recover_submit[i] = 0;
692 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
693 }
694 }
695 /* even if there are no bits to set, we need to write the
696 latest generation to the lvb */
697 write_lvb = 1;
698 } else {
699 /*
700 * we should be getting a recover_done() for lvb_gen soon
701 */
702 }
703 spin_unlock(&ls->ls_recover_spin);
704
705 if (write_lvb) {
706 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
707 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
708 } else {
709 flags = DLM_LKF_CONVERT;
710 }
711
712 error = control_lock(sdp, DLM_LOCK_NL, flags);
713 if (error) {
714 fs_err(sdp, "control lock NL error %d\n", error);
715 return;
716 }
717
718 /*
719 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
720 * and clear a jid bit in the lvb if the recovery is a success.
721 * Eventually all journals will be recovered, all jid bits will
722 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
723 */
724
725 for (i = 0; i < recover_size; i++) {
726 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
727 fs_info(sdp, "recover generation %u jid %d\n",
728 start_gen, i);
729 gfs2_recover_set(sdp, i);
730 recover_set++;
731 }
732 }
733 if (recover_set)
734 return;
735
736 /*
737 * No more jid bits set in lvb, all recovery is done, unblock locks
738 * (unless a new recover_prep callback has occured blocking locks
739 * again while working above)
740 */
741
742 spin_lock(&ls->ls_recover_spin);
743 if (ls->ls_recover_block == block_gen &&
744 ls->ls_recover_start == start_gen) {
745 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
746 spin_unlock(&ls->ls_recover_spin);
747 fs_info(sdp, "recover generation %u done\n", start_gen);
748 gfs2_glock_thaw(sdp);
749 } else {
750 fs_info(sdp, "recover generation %u block2 %u %u\n",
751 start_gen, block_gen, ls->ls_recover_block);
752 spin_unlock(&ls->ls_recover_spin);
753 }
754 }
755
756 static int control_mount(struct gfs2_sbd *sdp)
757 {
758 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
759 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
760 int mounted_mode;
761 int retries = 0;
762 int error;
763
764 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
765 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
766 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
767 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
768 init_completion(&ls->ls_sync_wait);
769
770 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
771
772 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
773 if (error) {
774 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
775 return error;
776 }
777
778 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
779 if (error) {
780 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
781 control_unlock(sdp);
782 return error;
783 }
784 mounted_mode = DLM_LOCK_NL;
785
786 restart:
787 if (retries++ && signal_pending(current)) {
788 error = -EINTR;
789 goto fail;
790 }
791
792 /*
793 * We always start with both locks in NL. control_lock is
794 * demoted to NL below so we don't need to do it here.
795 */
796
797 if (mounted_mode != DLM_LOCK_NL) {
798 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
799 if (error)
800 goto fail;
801 mounted_mode = DLM_LOCK_NL;
802 }
803
804 /*
805 * Other nodes need to do some work in dlm recovery and gfs2_control
806 * before the recover_done and control_lock will be ready for us below.
807 * A delay here is not required but often avoids having to retry.
808 */
809
810 msleep_interruptible(500);
811
812 /*
813 * Acquire control_lock in EX and mounted_lock in either EX or PR.
814 * control_lock lvb keeps track of any pending journal recoveries.
815 * mounted_lock indicates if any other nodes have the fs mounted.
816 */
817
818 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
819 if (error == -EAGAIN) {
820 goto restart;
821 } else if (error) {
822 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
823 goto fail;
824 }
825
826 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
827 if (!error) {
828 mounted_mode = DLM_LOCK_EX;
829 goto locks_done;
830 } else if (error != -EAGAIN) {
831 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
832 goto fail;
833 }
834
835 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
836 if (!error) {
837 mounted_mode = DLM_LOCK_PR;
838 goto locks_done;
839 } else {
840 /* not even -EAGAIN should happen here */
841 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
842 goto fail;
843 }
844
845 locks_done:
846 /*
847 * If we got both locks above in EX, then we're the first mounter.
848 * If not, then we need to wait for the control_lock lvb to be
849 * updated by other mounted nodes to reflect our mount generation.
850 *
851 * In simple first mounter cases, first mounter will see zero lvb_gen,
852 * but in cases where all existing nodes leave/fail before mounting
853 * nodes finish control_mount, then all nodes will be mounting and
854 * lvb_gen will be non-zero.
855 */
856
857 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
858
859 if (lvb_gen == 0xFFFFFFFF) {
860 /* special value to force mount attempts to fail */
861 fs_err(sdp, "control_mount control_lock disabled\n");
862 error = -EINVAL;
863 goto fail;
864 }
865
866 if (mounted_mode == DLM_LOCK_EX) {
867 /* first mounter, keep both EX while doing first recovery */
868 spin_lock(&ls->ls_recover_spin);
869 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
870 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
871 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
872 spin_unlock(&ls->ls_recover_spin);
873 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
874 return 0;
875 }
876
877 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
878 if (error)
879 goto fail;
880
881 /*
882 * We are not first mounter, now we need to wait for the control_lock
883 * lvb generation to be >= the generation from our first recover_done
884 * and all lvb bits to be clear (no pending journal recoveries.)
885 */
886
887 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
888 /* journals need recovery, wait until all are clear */
889 fs_info(sdp, "control_mount wait for journal recovery\n");
890 goto restart;
891 }
892
893 spin_lock(&ls->ls_recover_spin);
894 block_gen = ls->ls_recover_block;
895 start_gen = ls->ls_recover_start;
896 mount_gen = ls->ls_recover_mount;
897
898 if (lvb_gen < mount_gen) {
899 /* wait for mounted nodes to update control_lock lvb to our
900 generation, which might include new recovery bits set */
901 fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
902 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
903 lvb_gen, ls->ls_recover_flags);
904 spin_unlock(&ls->ls_recover_spin);
905 goto restart;
906 }
907
908 if (lvb_gen != start_gen) {
909 /* wait for mounted nodes to update control_lock lvb to the
910 latest recovery generation */
911 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
912 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
913 lvb_gen, ls->ls_recover_flags);
914 spin_unlock(&ls->ls_recover_spin);
915 goto restart;
916 }
917
918 if (block_gen == start_gen) {
919 /* dlm recovery in progress, wait for it to finish */
920 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
921 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
922 lvb_gen, ls->ls_recover_flags);
923 spin_unlock(&ls->ls_recover_spin);
924 goto restart;
925 }
926
927 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
928 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
929 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
930 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
931 spin_unlock(&ls->ls_recover_spin);
932 return 0;
933
934 fail:
935 mounted_unlock(sdp);
936 control_unlock(sdp);
937 return error;
938 }
939
940 static int control_first_done(struct gfs2_sbd *sdp)
941 {
942 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
943 uint32_t start_gen, block_gen;
944 int error;
945
946 restart:
947 spin_lock(&ls->ls_recover_spin);
948 start_gen = ls->ls_recover_start;
949 block_gen = ls->ls_recover_block;
950
951 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
952 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
953 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
954 /* sanity check, should not happen */
955 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
956 start_gen, block_gen, ls->ls_recover_flags);
957 spin_unlock(&ls->ls_recover_spin);
958 control_unlock(sdp);
959 return -1;
960 }
961
962 if (start_gen == block_gen) {
963 /*
964 * Wait for the end of a dlm recovery cycle to switch from
965 * first mounter recovery. We can ignore any recover_slot
966 * callbacks between the recover_prep and next recover_done
967 * because we are still the first mounter and any failed nodes
968 * have not fully mounted, so they don't need recovery.
969 */
970 spin_unlock(&ls->ls_recover_spin);
971 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
972
973 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
974 TASK_UNINTERRUPTIBLE);
975 goto restart;
976 }
977
978 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
979 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
980 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
981 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
982 spin_unlock(&ls->ls_recover_spin);
983
984 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
985 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
986
987 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
988 if (error)
989 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
990
991 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
992 if (error)
993 fs_err(sdp, "control_first_done control NL error %d\n", error);
994
995 return error;
996 }
997
998 /*
999 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1000 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1001 * gfs2 jids start at 0, so jid = slot - 1)
1002 */
1003
1004 #define RECOVER_SIZE_INC 16
1005
1006 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1007 int num_slots)
1008 {
1009 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1010 uint32_t *submit = NULL;
1011 uint32_t *result = NULL;
1012 uint32_t old_size, new_size;
1013 int i, max_jid;
1014
1015 if (!ls->ls_lvb_bits) {
1016 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1017 if (!ls->ls_lvb_bits)
1018 return -ENOMEM;
1019 }
1020
1021 max_jid = 0;
1022 for (i = 0; i < num_slots; i++) {
1023 if (max_jid < slots[i].slot - 1)
1024 max_jid = slots[i].slot - 1;
1025 }
1026
1027 old_size = ls->ls_recover_size;
1028
1029 if (old_size >= max_jid + 1)
1030 return 0;
1031
1032 new_size = old_size + RECOVER_SIZE_INC;
1033
1034 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1035 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1036 if (!submit || !result) {
1037 kfree(submit);
1038 kfree(result);
1039 return -ENOMEM;
1040 }
1041
1042 spin_lock(&ls->ls_recover_spin);
1043 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1044 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1045 kfree(ls->ls_recover_submit);
1046 kfree(ls->ls_recover_result);
1047 ls->ls_recover_submit = submit;
1048 ls->ls_recover_result = result;
1049 ls->ls_recover_size = new_size;
1050 spin_unlock(&ls->ls_recover_spin);
1051 return 0;
1052 }
1053
1054 static void free_recover_size(struct lm_lockstruct *ls)
1055 {
1056 kfree(ls->ls_lvb_bits);
1057 kfree(ls->ls_recover_submit);
1058 kfree(ls->ls_recover_result);
1059 ls->ls_recover_submit = NULL;
1060 ls->ls_recover_result = NULL;
1061 ls->ls_recover_size = 0;
1062 }
1063
1064 /* dlm calls before it does lock recovery */
1065
1066 static void gdlm_recover_prep(void *arg)
1067 {
1068 struct gfs2_sbd *sdp = arg;
1069 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1070
1071 spin_lock(&ls->ls_recover_spin);
1072 ls->ls_recover_block = ls->ls_recover_start;
1073 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1074
1075 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1076 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1077 spin_unlock(&ls->ls_recover_spin);
1078 return;
1079 }
1080 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1081 spin_unlock(&ls->ls_recover_spin);
1082 }
1083
1084 /* dlm calls after recover_prep has been completed on all lockspace members;
1085 identifies slot/jid of failed member */
1086
1087 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1088 {
1089 struct gfs2_sbd *sdp = arg;
1090 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1091 int jid = slot->slot - 1;
1092
1093 spin_lock(&ls->ls_recover_spin);
1094 if (ls->ls_recover_size < jid + 1) {
1095 fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1096 jid, ls->ls_recover_block, ls->ls_recover_size);
1097 spin_unlock(&ls->ls_recover_spin);
1098 return;
1099 }
1100
1101 if (ls->ls_recover_submit[jid]) {
1102 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1103 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1104 }
1105 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1106 spin_unlock(&ls->ls_recover_spin);
1107 }
1108
1109 /* dlm calls after recover_slot and after it completes lock recovery */
1110
1111 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1112 int our_slot, uint32_t generation)
1113 {
1114 struct gfs2_sbd *sdp = arg;
1115 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1116
1117 /* ensure the ls jid arrays are large enough */
1118 set_recover_size(sdp, slots, num_slots);
1119
1120 spin_lock(&ls->ls_recover_spin);
1121 ls->ls_recover_start = generation;
1122
1123 if (!ls->ls_recover_mount) {
1124 ls->ls_recover_mount = generation;
1125 ls->ls_jid = our_slot - 1;
1126 }
1127
1128 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1129 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1130
1131 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1132 smp_mb__after_atomic();
1133 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1134 spin_unlock(&ls->ls_recover_spin);
1135 }
1136
1137 /* gfs2_recover thread has a journal recovery result */
1138
1139 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1140 unsigned int result)
1141 {
1142 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1143
1144 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1145 return;
1146
1147 /* don't care about the recovery of own journal during mount */
1148 if (jid == ls->ls_jid)
1149 return;
1150
1151 spin_lock(&ls->ls_recover_spin);
1152 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1153 spin_unlock(&ls->ls_recover_spin);
1154 return;
1155 }
1156 if (ls->ls_recover_size < jid + 1) {
1157 fs_err(sdp, "recovery_result jid %d short size %d",
1158 jid, ls->ls_recover_size);
1159 spin_unlock(&ls->ls_recover_spin);
1160 return;
1161 }
1162
1163 fs_info(sdp, "recover jid %d result %s\n", jid,
1164 result == LM_RD_GAVEUP ? "busy" : "success");
1165
1166 ls->ls_recover_result[jid] = result;
1167
1168 /* GAVEUP means another node is recovering the journal; delay our
1169 next attempt to recover it, to give the other node a chance to
1170 finish before trying again */
1171
1172 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1173 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1174 result == LM_RD_GAVEUP ? HZ : 0);
1175 spin_unlock(&ls->ls_recover_spin);
1176 }
1177
1178 const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1179 .recover_prep = gdlm_recover_prep,
1180 .recover_slot = gdlm_recover_slot,
1181 .recover_done = gdlm_recover_done,
1182 };
1183
1184 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1185 {
1186 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1187 char cluster[GFS2_LOCKNAME_LEN];
1188 const char *fsname;
1189 uint32_t flags;
1190 int error, ops_result;
1191
1192 /*
1193 * initialize everything
1194 */
1195
1196 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1197 spin_lock_init(&ls->ls_recover_spin);
1198 ls->ls_recover_flags = 0;
1199 ls->ls_recover_mount = 0;
1200 ls->ls_recover_start = 0;
1201 ls->ls_recover_block = 0;
1202 ls->ls_recover_size = 0;
1203 ls->ls_recover_submit = NULL;
1204 ls->ls_recover_result = NULL;
1205 ls->ls_lvb_bits = NULL;
1206
1207 error = set_recover_size(sdp, NULL, 0);
1208 if (error)
1209 goto fail;
1210
1211 /*
1212 * prepare dlm_new_lockspace args
1213 */
1214
1215 fsname = strchr(table, ':');
1216 if (!fsname) {
1217 fs_info(sdp, "no fsname found\n");
1218 error = -EINVAL;
1219 goto fail_free;
1220 }
1221 memset(cluster, 0, sizeof(cluster));
1222 memcpy(cluster, table, strlen(table) - strlen(fsname));
1223 fsname++;
1224
1225 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1226
1227 /*
1228 * create/join lockspace
1229 */
1230
1231 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1232 &gdlm_lockspace_ops, sdp, &ops_result,
1233 &ls->ls_dlm);
1234 if (error) {
1235 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1236 goto fail_free;
1237 }
1238
1239 if (ops_result < 0) {
1240 /*
1241 * dlm does not support ops callbacks,
1242 * old dlm_controld/gfs_controld are used, try without ops.
1243 */
1244 fs_info(sdp, "dlm lockspace ops not used\n");
1245 free_recover_size(ls);
1246 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1247 return 0;
1248 }
1249
1250 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1251 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1252 error = -EINVAL;
1253 goto fail_release;
1254 }
1255
1256 /*
1257 * control_mount() uses control_lock to determine first mounter,
1258 * and for later mounts, waits for any recoveries to be cleared.
1259 */
1260
1261 error = control_mount(sdp);
1262 if (error) {
1263 fs_err(sdp, "mount control error %d\n", error);
1264 goto fail_release;
1265 }
1266
1267 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1268 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1269 smp_mb__after_atomic();
1270 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1271 return 0;
1272
1273 fail_release:
1274 dlm_release_lockspace(ls->ls_dlm, 2);
1275 fail_free:
1276 free_recover_size(ls);
1277 fail:
1278 return error;
1279 }
1280
1281 static void gdlm_first_done(struct gfs2_sbd *sdp)
1282 {
1283 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1284 int error;
1285
1286 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1287 return;
1288
1289 error = control_first_done(sdp);
1290 if (error)
1291 fs_err(sdp, "mount first_done error %d\n", error);
1292 }
1293
1294 static void gdlm_unmount(struct gfs2_sbd *sdp)
1295 {
1296 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1297
1298 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1299 goto release;
1300
1301 /* wait for gfs2_control_wq to be done with this mount */
1302
1303 spin_lock(&ls->ls_recover_spin);
1304 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1305 spin_unlock(&ls->ls_recover_spin);
1306 flush_delayed_work(&sdp->sd_control_work);
1307
1308 /* mounted_lock and control_lock will be purged in dlm recovery */
1309 release:
1310 if (ls->ls_dlm) {
1311 dlm_release_lockspace(ls->ls_dlm, 2);
1312 ls->ls_dlm = NULL;
1313 }
1314
1315 free_recover_size(ls);
1316 }
1317
1318 static const match_table_t dlm_tokens = {
1319 { Opt_jid, "jid=%d"},
1320 { Opt_id, "id=%d"},
1321 { Opt_first, "first=%d"},
1322 { Opt_nodir, "nodir=%d"},
1323 { Opt_err, NULL },
1324 };
1325
1326 const struct lm_lockops gfs2_dlm_ops = {
1327 .lm_proto_name = "lock_dlm",
1328 .lm_mount = gdlm_mount,
1329 .lm_first_done = gdlm_first_done,
1330 .lm_recovery_result = gdlm_recovery_result,
1331 .lm_unmount = gdlm_unmount,
1332 .lm_put_lock = gdlm_put_lock,
1333 .lm_lock = gdlm_lock,
1334 .lm_cancel = gdlm_cancel,
1335 .lm_tokens = &dlm_tokens,
1336 };
1337