]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/inode.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[mirror_ubuntu-artful-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
78 static long get_nr_inodes(void)
79 {
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
87 static inline long get_nr_inodes_unused(void)
88 {
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
96 long get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 return -ENXIO;
119 }
120
121 /**
122 * inode_init_always - perform inode structure initialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
143 if (sb->s_xattr)
144 inode->i_opflags |= IOP_XATTR;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
148 inode->i_size = 0;
149 inode->i_write_hint = WRITE_LIFE_NOT_SET;
150 inode->i_blocks = 0;
151 inode->i_bytes = 0;
152 inode->i_generation = 0;
153 inode->i_pipe = NULL;
154 inode->i_bdev = NULL;
155 inode->i_cdev = NULL;
156 inode->i_link = NULL;
157 inode->i_dir_seq = 0;
158 inode->i_rdev = 0;
159 inode->dirtied_when = 0;
160
161 #ifdef CONFIG_CGROUP_WRITEBACK
162 inode->i_wb_frn_winner = 0;
163 inode->i_wb_frn_avg_time = 0;
164 inode->i_wb_frn_history = 0;
165 #endif
166
167 if (security_inode_alloc(inode))
168 goto out;
169 spin_lock_init(&inode->i_lock);
170 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
171
172 init_rwsem(&inode->i_rwsem);
173 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
174
175 atomic_set(&inode->i_dio_count, 0);
176
177 mapping->a_ops = &empty_aops;
178 mapping->host = inode;
179 mapping->flags = 0;
180 atomic_set(&mapping->i_mmap_writable, 0);
181 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
182 mapping->private_data = NULL;
183 mapping->writeback_index = 0;
184 inode->i_private = NULL;
185 inode->i_mapping = mapping;
186 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
187 #ifdef CONFIG_FS_POSIX_ACL
188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
189 #endif
190
191 #ifdef CONFIG_FSNOTIFY
192 inode->i_fsnotify_mask = 0;
193 #endif
194 inode->i_flctx = NULL;
195 this_cpu_inc(nr_inodes);
196
197 return 0;
198 out:
199 return -ENOMEM;
200 }
201 EXPORT_SYMBOL(inode_init_always);
202
203 static struct inode *alloc_inode(struct super_block *sb)
204 {
205 struct inode *inode;
206
207 if (sb->s_op->alloc_inode)
208 inode = sb->s_op->alloc_inode(sb);
209 else
210 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211
212 if (!inode)
213 return NULL;
214
215 if (unlikely(inode_init_always(sb, inode))) {
216 if (inode->i_sb->s_op->destroy_inode)
217 inode->i_sb->s_op->destroy_inode(inode);
218 else
219 kmem_cache_free(inode_cachep, inode);
220 return NULL;
221 }
222
223 return inode;
224 }
225
226 void free_inode_nonrcu(struct inode *inode)
227 {
228 kmem_cache_free(inode_cachep, inode);
229 }
230 EXPORT_SYMBOL(free_inode_nonrcu);
231
232 void __destroy_inode(struct inode *inode)
233 {
234 BUG_ON(inode_has_buffers(inode));
235 inode_detach_wb(inode);
236 security_inode_free(inode);
237 fsnotify_inode_delete(inode);
238 locks_free_lock_context(inode);
239 if (!inode->i_nlink) {
240 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
241 atomic_long_dec(&inode->i_sb->s_remove_count);
242 }
243
244 #ifdef CONFIG_FS_POSIX_ACL
245 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
246 posix_acl_release(inode->i_acl);
247 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
248 posix_acl_release(inode->i_default_acl);
249 #endif
250 this_cpu_dec(nr_inodes);
251 }
252 EXPORT_SYMBOL(__destroy_inode);
253
254 static void i_callback(struct rcu_head *head)
255 {
256 struct inode *inode = container_of(head, struct inode, i_rcu);
257 kmem_cache_free(inode_cachep, inode);
258 }
259
260 static void destroy_inode(struct inode *inode)
261 {
262 BUG_ON(!list_empty(&inode->i_lru));
263 __destroy_inode(inode);
264 if (inode->i_sb->s_op->destroy_inode)
265 inode->i_sb->s_op->destroy_inode(inode);
266 else
267 call_rcu(&inode->i_rcu, i_callback);
268 }
269
270 /**
271 * drop_nlink - directly drop an inode's link count
272 * @inode: inode
273 *
274 * This is a low-level filesystem helper to replace any
275 * direct filesystem manipulation of i_nlink. In cases
276 * where we are attempting to track writes to the
277 * filesystem, a decrement to zero means an imminent
278 * write when the file is truncated and actually unlinked
279 * on the filesystem.
280 */
281 void drop_nlink(struct inode *inode)
282 {
283 WARN_ON(inode->i_nlink == 0);
284 inode->__i_nlink--;
285 if (!inode->i_nlink)
286 atomic_long_inc(&inode->i_sb->s_remove_count);
287 }
288 EXPORT_SYMBOL(drop_nlink);
289
290 /**
291 * clear_nlink - directly zero an inode's link count
292 * @inode: inode
293 *
294 * This is a low-level filesystem helper to replace any
295 * direct filesystem manipulation of i_nlink. See
296 * drop_nlink() for why we care about i_nlink hitting zero.
297 */
298 void clear_nlink(struct inode *inode)
299 {
300 if (inode->i_nlink) {
301 inode->__i_nlink = 0;
302 atomic_long_inc(&inode->i_sb->s_remove_count);
303 }
304 }
305 EXPORT_SYMBOL(clear_nlink);
306
307 /**
308 * set_nlink - directly set an inode's link count
309 * @inode: inode
310 * @nlink: new nlink (should be non-zero)
311 *
312 * This is a low-level filesystem helper to replace any
313 * direct filesystem manipulation of i_nlink.
314 */
315 void set_nlink(struct inode *inode, unsigned int nlink)
316 {
317 if (!nlink) {
318 clear_nlink(inode);
319 } else {
320 /* Yes, some filesystems do change nlink from zero to one */
321 if (inode->i_nlink == 0)
322 atomic_long_dec(&inode->i_sb->s_remove_count);
323
324 inode->__i_nlink = nlink;
325 }
326 }
327 EXPORT_SYMBOL(set_nlink);
328
329 /**
330 * inc_nlink - directly increment an inode's link count
331 * @inode: inode
332 *
333 * This is a low-level filesystem helper to replace any
334 * direct filesystem manipulation of i_nlink. Currently,
335 * it is only here for parity with dec_nlink().
336 */
337 void inc_nlink(struct inode *inode)
338 {
339 if (unlikely(inode->i_nlink == 0)) {
340 WARN_ON(!(inode->i_state & I_LINKABLE));
341 atomic_long_dec(&inode->i_sb->s_remove_count);
342 }
343
344 inode->__i_nlink++;
345 }
346 EXPORT_SYMBOL(inc_nlink);
347
348 void address_space_init_once(struct address_space *mapping)
349 {
350 memset(mapping, 0, sizeof(*mapping));
351 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
352 spin_lock_init(&mapping->tree_lock);
353 init_rwsem(&mapping->i_mmap_rwsem);
354 INIT_LIST_HEAD(&mapping->private_list);
355 spin_lock_init(&mapping->private_lock);
356 mapping->i_mmap = RB_ROOT;
357 }
358 EXPORT_SYMBOL(address_space_init_once);
359
360 /*
361 * These are initializations that only need to be done
362 * once, because the fields are idempotent across use
363 * of the inode, so let the slab aware of that.
364 */
365 void inode_init_once(struct inode *inode)
366 {
367 memset(inode, 0, sizeof(*inode));
368 INIT_HLIST_NODE(&inode->i_hash);
369 INIT_LIST_HEAD(&inode->i_devices);
370 INIT_LIST_HEAD(&inode->i_io_list);
371 INIT_LIST_HEAD(&inode->i_wb_list);
372 INIT_LIST_HEAD(&inode->i_lru);
373 address_space_init_once(&inode->i_data);
374 i_size_ordered_init(inode);
375 }
376 EXPORT_SYMBOL(inode_init_once);
377
378 static void init_once(void *foo)
379 {
380 struct inode *inode = (struct inode *) foo;
381
382 inode_init_once(inode);
383 }
384
385 /*
386 * inode->i_lock must be held
387 */
388 void __iget(struct inode *inode)
389 {
390 atomic_inc(&inode->i_count);
391 }
392
393 /*
394 * get additional reference to inode; caller must already hold one.
395 */
396 void ihold(struct inode *inode)
397 {
398 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
399 }
400 EXPORT_SYMBOL(ihold);
401
402 static void inode_lru_list_add(struct inode *inode)
403 {
404 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
405 this_cpu_inc(nr_unused);
406 else
407 inode->i_state |= I_REFERENCED;
408 }
409
410 /*
411 * Add inode to LRU if needed (inode is unused and clean).
412 *
413 * Needs inode->i_lock held.
414 */
415 void inode_add_lru(struct inode *inode)
416 {
417 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
418 I_FREEING | I_WILL_FREE)) &&
419 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
420 inode_lru_list_add(inode);
421 }
422
423
424 static void inode_lru_list_del(struct inode *inode)
425 {
426
427 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
428 this_cpu_dec(nr_unused);
429 }
430
431 /**
432 * inode_sb_list_add - add inode to the superblock list of inodes
433 * @inode: inode to add
434 */
435 void inode_sb_list_add(struct inode *inode)
436 {
437 spin_lock(&inode->i_sb->s_inode_list_lock);
438 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
439 spin_unlock(&inode->i_sb->s_inode_list_lock);
440 }
441 EXPORT_SYMBOL_GPL(inode_sb_list_add);
442
443 static inline void inode_sb_list_del(struct inode *inode)
444 {
445 if (!list_empty(&inode->i_sb_list)) {
446 spin_lock(&inode->i_sb->s_inode_list_lock);
447 list_del_init(&inode->i_sb_list);
448 spin_unlock(&inode->i_sb->s_inode_list_lock);
449 }
450 }
451
452 static unsigned long hash(struct super_block *sb, unsigned long hashval)
453 {
454 unsigned long tmp;
455
456 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
457 L1_CACHE_BYTES;
458 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
459 return tmp & i_hash_mask;
460 }
461
462 /**
463 * __insert_inode_hash - hash an inode
464 * @inode: unhashed inode
465 * @hashval: unsigned long value used to locate this object in the
466 * inode_hashtable.
467 *
468 * Add an inode to the inode hash for this superblock.
469 */
470 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
471 {
472 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
473
474 spin_lock(&inode_hash_lock);
475 spin_lock(&inode->i_lock);
476 hlist_add_head(&inode->i_hash, b);
477 spin_unlock(&inode->i_lock);
478 spin_unlock(&inode_hash_lock);
479 }
480 EXPORT_SYMBOL(__insert_inode_hash);
481
482 /**
483 * __remove_inode_hash - remove an inode from the hash
484 * @inode: inode to unhash
485 *
486 * Remove an inode from the superblock.
487 */
488 void __remove_inode_hash(struct inode *inode)
489 {
490 spin_lock(&inode_hash_lock);
491 spin_lock(&inode->i_lock);
492 hlist_del_init(&inode->i_hash);
493 spin_unlock(&inode->i_lock);
494 spin_unlock(&inode_hash_lock);
495 }
496 EXPORT_SYMBOL(__remove_inode_hash);
497
498 void clear_inode(struct inode *inode)
499 {
500 might_sleep();
501 /*
502 * We have to cycle tree_lock here because reclaim can be still in the
503 * process of removing the last page (in __delete_from_page_cache())
504 * and we must not free mapping under it.
505 */
506 spin_lock_irq(&inode->i_data.tree_lock);
507 BUG_ON(inode->i_data.nrpages);
508 BUG_ON(inode->i_data.nrexceptional);
509 spin_unlock_irq(&inode->i_data.tree_lock);
510 BUG_ON(!list_empty(&inode->i_data.private_list));
511 BUG_ON(!(inode->i_state & I_FREEING));
512 BUG_ON(inode->i_state & I_CLEAR);
513 BUG_ON(!list_empty(&inode->i_wb_list));
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode->i_state = I_FREEING | I_CLEAR;
516 }
517 EXPORT_SYMBOL(clear_inode);
518
519 /*
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
523 *
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
527 *
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
531 */
532 static void evict(struct inode *inode)
533 {
534 const struct super_operations *op = inode->i_sb->s_op;
535
536 BUG_ON(!(inode->i_state & I_FREEING));
537 BUG_ON(!list_empty(&inode->i_lru));
538
539 if (!list_empty(&inode->i_io_list))
540 inode_io_list_del(inode);
541
542 inode_sb_list_del(inode);
543
544 /*
545 * Wait for flusher thread to be done with the inode so that filesystem
546 * does not start destroying it while writeback is still running. Since
547 * the inode has I_FREEING set, flusher thread won't start new work on
548 * the inode. We just have to wait for running writeback to finish.
549 */
550 inode_wait_for_writeback(inode);
551
552 if (op->evict_inode) {
553 op->evict_inode(inode);
554 } else {
555 truncate_inode_pages_final(&inode->i_data);
556 clear_inode(inode);
557 }
558 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
559 bd_forget(inode);
560 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
561 cd_forget(inode);
562
563 remove_inode_hash(inode);
564
565 spin_lock(&inode->i_lock);
566 wake_up_bit(&inode->i_state, __I_NEW);
567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 spin_unlock(&inode->i_lock);
569
570 destroy_inode(inode);
571 }
572
573 /*
574 * dispose_list - dispose of the contents of a local list
575 * @head: the head of the list to free
576 *
577 * Dispose-list gets a local list with local inodes in it, so it doesn't
578 * need to worry about list corruption and SMP locks.
579 */
580 static void dispose_list(struct list_head *head)
581 {
582 while (!list_empty(head)) {
583 struct inode *inode;
584
585 inode = list_first_entry(head, struct inode, i_lru);
586 list_del_init(&inode->i_lru);
587
588 evict(inode);
589 cond_resched();
590 }
591 }
592
593 /**
594 * evict_inodes - evict all evictable inodes for a superblock
595 * @sb: superblock to operate on
596 *
597 * Make sure that no inodes with zero refcount are retained. This is
598 * called by superblock shutdown after having MS_ACTIVE flag removed,
599 * so any inode reaching zero refcount during or after that call will
600 * be immediately evicted.
601 */
602 void evict_inodes(struct super_block *sb)
603 {
604 struct inode *inode, *next;
605 LIST_HEAD(dispose);
606
607 again:
608 spin_lock(&sb->s_inode_list_lock);
609 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
610 if (atomic_read(&inode->i_count))
611 continue;
612
613 spin_lock(&inode->i_lock);
614 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
615 spin_unlock(&inode->i_lock);
616 continue;
617 }
618
619 inode->i_state |= I_FREEING;
620 inode_lru_list_del(inode);
621 spin_unlock(&inode->i_lock);
622 list_add(&inode->i_lru, &dispose);
623
624 /*
625 * We can have a ton of inodes to evict at unmount time given
626 * enough memory, check to see if we need to go to sleep for a
627 * bit so we don't livelock.
628 */
629 if (need_resched()) {
630 spin_unlock(&sb->s_inode_list_lock);
631 cond_resched();
632 dispose_list(&dispose);
633 goto again;
634 }
635 }
636 spin_unlock(&sb->s_inode_list_lock);
637
638 dispose_list(&dispose);
639 }
640
641 /**
642 * invalidate_inodes - attempt to free all inodes on a superblock
643 * @sb: superblock to operate on
644 * @kill_dirty: flag to guide handling of dirty inodes
645 *
646 * Attempts to free all inodes for a given superblock. If there were any
647 * busy inodes return a non-zero value, else zero.
648 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
649 * them as busy.
650 */
651 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
652 {
653 int busy = 0;
654 struct inode *inode, *next;
655 LIST_HEAD(dispose);
656
657 spin_lock(&sb->s_inode_list_lock);
658 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
659 spin_lock(&inode->i_lock);
660 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
661 spin_unlock(&inode->i_lock);
662 continue;
663 }
664 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
665 spin_unlock(&inode->i_lock);
666 busy = 1;
667 continue;
668 }
669 if (atomic_read(&inode->i_count)) {
670 spin_unlock(&inode->i_lock);
671 busy = 1;
672 continue;
673 }
674
675 inode->i_state |= I_FREEING;
676 inode_lru_list_del(inode);
677 spin_unlock(&inode->i_lock);
678 list_add(&inode->i_lru, &dispose);
679 }
680 spin_unlock(&sb->s_inode_list_lock);
681
682 dispose_list(&dispose);
683
684 return busy;
685 }
686
687 /*
688 * Isolate the inode from the LRU in preparation for freeing it.
689 *
690 * Any inodes which are pinned purely because of attached pagecache have their
691 * pagecache removed. If the inode has metadata buffers attached to
692 * mapping->private_list then try to remove them.
693 *
694 * If the inode has the I_REFERENCED flag set, then it means that it has been
695 * used recently - the flag is set in iput_final(). When we encounter such an
696 * inode, clear the flag and move it to the back of the LRU so it gets another
697 * pass through the LRU before it gets reclaimed. This is necessary because of
698 * the fact we are doing lazy LRU updates to minimise lock contention so the
699 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
700 * with this flag set because they are the inodes that are out of order.
701 */
702 static enum lru_status inode_lru_isolate(struct list_head *item,
703 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
704 {
705 struct list_head *freeable = arg;
706 struct inode *inode = container_of(item, struct inode, i_lru);
707
708 /*
709 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
710 * If we fail to get the lock, just skip it.
711 */
712 if (!spin_trylock(&inode->i_lock))
713 return LRU_SKIP;
714
715 /*
716 * Referenced or dirty inodes are still in use. Give them another pass
717 * through the LRU as we canot reclaim them now.
718 */
719 if (atomic_read(&inode->i_count) ||
720 (inode->i_state & ~I_REFERENCED)) {
721 list_lru_isolate(lru, &inode->i_lru);
722 spin_unlock(&inode->i_lock);
723 this_cpu_dec(nr_unused);
724 return LRU_REMOVED;
725 }
726
727 /* recently referenced inodes get one more pass */
728 if (inode->i_state & I_REFERENCED) {
729 inode->i_state &= ~I_REFERENCED;
730 spin_unlock(&inode->i_lock);
731 return LRU_ROTATE;
732 }
733
734 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
735 __iget(inode);
736 spin_unlock(&inode->i_lock);
737 spin_unlock(lru_lock);
738 if (remove_inode_buffers(inode)) {
739 unsigned long reap;
740 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
741 if (current_is_kswapd())
742 __count_vm_events(KSWAPD_INODESTEAL, reap);
743 else
744 __count_vm_events(PGINODESTEAL, reap);
745 if (current->reclaim_state)
746 current->reclaim_state->reclaimed_slab += reap;
747 }
748 iput(inode);
749 spin_lock(lru_lock);
750 return LRU_RETRY;
751 }
752
753 WARN_ON(inode->i_state & I_NEW);
754 inode->i_state |= I_FREEING;
755 list_lru_isolate_move(lru, &inode->i_lru, freeable);
756 spin_unlock(&inode->i_lock);
757
758 this_cpu_dec(nr_unused);
759 return LRU_REMOVED;
760 }
761
762 /*
763 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
764 * This is called from the superblock shrinker function with a number of inodes
765 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
766 * then are freed outside inode_lock by dispose_list().
767 */
768 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
769 {
770 LIST_HEAD(freeable);
771 long freed;
772
773 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
774 inode_lru_isolate, &freeable);
775 dispose_list(&freeable);
776 return freed;
777 }
778
779 static void __wait_on_freeing_inode(struct inode *inode);
780 /*
781 * Called with the inode lock held.
782 */
783 static struct inode *find_inode(struct super_block *sb,
784 struct hlist_head *head,
785 int (*test)(struct inode *, void *),
786 void *data)
787 {
788 struct inode *inode = NULL;
789
790 repeat:
791 hlist_for_each_entry(inode, head, i_hash) {
792 if (inode->i_sb != sb)
793 continue;
794 if (!test(inode, data))
795 continue;
796 spin_lock(&inode->i_lock);
797 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
798 __wait_on_freeing_inode(inode);
799 goto repeat;
800 }
801 __iget(inode);
802 spin_unlock(&inode->i_lock);
803 return inode;
804 }
805 return NULL;
806 }
807
808 /*
809 * find_inode_fast is the fast path version of find_inode, see the comment at
810 * iget_locked for details.
811 */
812 static struct inode *find_inode_fast(struct super_block *sb,
813 struct hlist_head *head, unsigned long ino)
814 {
815 struct inode *inode = NULL;
816
817 repeat:
818 hlist_for_each_entry(inode, head, i_hash) {
819 if (inode->i_ino != ino)
820 continue;
821 if (inode->i_sb != sb)
822 continue;
823 spin_lock(&inode->i_lock);
824 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
825 __wait_on_freeing_inode(inode);
826 goto repeat;
827 }
828 __iget(inode);
829 spin_unlock(&inode->i_lock);
830 return inode;
831 }
832 return NULL;
833 }
834
835 /*
836 * Each cpu owns a range of LAST_INO_BATCH numbers.
837 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
838 * to renew the exhausted range.
839 *
840 * This does not significantly increase overflow rate because every CPU can
841 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
842 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
843 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
844 * overflow rate by 2x, which does not seem too significant.
845 *
846 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
847 * error if st_ino won't fit in target struct field. Use 32bit counter
848 * here to attempt to avoid that.
849 */
850 #define LAST_INO_BATCH 1024
851 static DEFINE_PER_CPU(unsigned int, last_ino);
852
853 unsigned int get_next_ino(void)
854 {
855 unsigned int *p = &get_cpu_var(last_ino);
856 unsigned int res = *p;
857
858 #ifdef CONFIG_SMP
859 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
860 static atomic_t shared_last_ino;
861 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
862
863 res = next - LAST_INO_BATCH;
864 }
865 #endif
866
867 res++;
868 /* get_next_ino should not provide a 0 inode number */
869 if (unlikely(!res))
870 res++;
871 *p = res;
872 put_cpu_var(last_ino);
873 return res;
874 }
875 EXPORT_SYMBOL(get_next_ino);
876
877 /**
878 * new_inode_pseudo - obtain an inode
879 * @sb: superblock
880 *
881 * Allocates a new inode for given superblock.
882 * Inode wont be chained in superblock s_inodes list
883 * This means :
884 * - fs can't be unmount
885 * - quotas, fsnotify, writeback can't work
886 */
887 struct inode *new_inode_pseudo(struct super_block *sb)
888 {
889 struct inode *inode = alloc_inode(sb);
890
891 if (inode) {
892 spin_lock(&inode->i_lock);
893 inode->i_state = 0;
894 spin_unlock(&inode->i_lock);
895 INIT_LIST_HEAD(&inode->i_sb_list);
896 }
897 return inode;
898 }
899
900 /**
901 * new_inode - obtain an inode
902 * @sb: superblock
903 *
904 * Allocates a new inode for given superblock. The default gfp_mask
905 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
906 * If HIGHMEM pages are unsuitable or it is known that pages allocated
907 * for the page cache are not reclaimable or migratable,
908 * mapping_set_gfp_mask() must be called with suitable flags on the
909 * newly created inode's mapping
910 *
911 */
912 struct inode *new_inode(struct super_block *sb)
913 {
914 struct inode *inode;
915
916 spin_lock_prefetch(&sb->s_inode_list_lock);
917
918 inode = new_inode_pseudo(sb);
919 if (inode)
920 inode_sb_list_add(inode);
921 return inode;
922 }
923 EXPORT_SYMBOL(new_inode);
924
925 #ifdef CONFIG_DEBUG_LOCK_ALLOC
926 void lockdep_annotate_inode_mutex_key(struct inode *inode)
927 {
928 if (S_ISDIR(inode->i_mode)) {
929 struct file_system_type *type = inode->i_sb->s_type;
930
931 /* Set new key only if filesystem hasn't already changed it */
932 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
933 /*
934 * ensure nobody is actually holding i_mutex
935 */
936 // mutex_destroy(&inode->i_mutex);
937 init_rwsem(&inode->i_rwsem);
938 lockdep_set_class(&inode->i_rwsem,
939 &type->i_mutex_dir_key);
940 }
941 }
942 }
943 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
944 #endif
945
946 /**
947 * unlock_new_inode - clear the I_NEW state and wake up any waiters
948 * @inode: new inode to unlock
949 *
950 * Called when the inode is fully initialised to clear the new state of the
951 * inode and wake up anyone waiting for the inode to finish initialisation.
952 */
953 void unlock_new_inode(struct inode *inode)
954 {
955 lockdep_annotate_inode_mutex_key(inode);
956 spin_lock(&inode->i_lock);
957 WARN_ON(!(inode->i_state & I_NEW));
958 inode->i_state &= ~I_NEW;
959 smp_mb();
960 wake_up_bit(&inode->i_state, __I_NEW);
961 spin_unlock(&inode->i_lock);
962 }
963 EXPORT_SYMBOL(unlock_new_inode);
964
965 /**
966 * lock_two_nondirectories - take two i_mutexes on non-directory objects
967 *
968 * Lock any non-NULL argument that is not a directory.
969 * Zero, one or two objects may be locked by this function.
970 *
971 * @inode1: first inode to lock
972 * @inode2: second inode to lock
973 */
974 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
975 {
976 if (inode1 > inode2)
977 swap(inode1, inode2);
978
979 if (inode1 && !S_ISDIR(inode1->i_mode))
980 inode_lock(inode1);
981 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
982 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
983 }
984 EXPORT_SYMBOL(lock_two_nondirectories);
985
986 /**
987 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
988 * @inode1: first inode to unlock
989 * @inode2: second inode to unlock
990 */
991 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
992 {
993 if (inode1 && !S_ISDIR(inode1->i_mode))
994 inode_unlock(inode1);
995 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
996 inode_unlock(inode2);
997 }
998 EXPORT_SYMBOL(unlock_two_nondirectories);
999
1000 /**
1001 * iget5_locked - obtain an inode from a mounted file system
1002 * @sb: super block of file system
1003 * @hashval: hash value (usually inode number) to get
1004 * @test: callback used for comparisons between inodes
1005 * @set: callback used to initialize a new struct inode
1006 * @data: opaque data pointer to pass to @test and @set
1007 *
1008 * Search for the inode specified by @hashval and @data in the inode cache,
1009 * and if present it is return it with an increased reference count. This is
1010 * a generalized version of iget_locked() for file systems where the inode
1011 * number is not sufficient for unique identification of an inode.
1012 *
1013 * If the inode is not in cache, allocate a new inode and return it locked,
1014 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1015 * before unlocking it via unlock_new_inode().
1016 *
1017 * Note both @test and @set are called with the inode_hash_lock held, so can't
1018 * sleep.
1019 */
1020 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1021 int (*test)(struct inode *, void *),
1022 int (*set)(struct inode *, void *), void *data)
1023 {
1024 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1025 struct inode *inode;
1026 again:
1027 spin_lock(&inode_hash_lock);
1028 inode = find_inode(sb, head, test, data);
1029 spin_unlock(&inode_hash_lock);
1030
1031 if (inode) {
1032 wait_on_inode(inode);
1033 if (unlikely(inode_unhashed(inode))) {
1034 iput(inode);
1035 goto again;
1036 }
1037 return inode;
1038 }
1039
1040 inode = alloc_inode(sb);
1041 if (inode) {
1042 struct inode *old;
1043
1044 spin_lock(&inode_hash_lock);
1045 /* We released the lock, so.. */
1046 old = find_inode(sb, head, test, data);
1047 if (!old) {
1048 if (set(inode, data))
1049 goto set_failed;
1050
1051 spin_lock(&inode->i_lock);
1052 inode->i_state = I_NEW;
1053 hlist_add_head(&inode->i_hash, head);
1054 spin_unlock(&inode->i_lock);
1055 inode_sb_list_add(inode);
1056 spin_unlock(&inode_hash_lock);
1057
1058 /* Return the locked inode with I_NEW set, the
1059 * caller is responsible for filling in the contents
1060 */
1061 return inode;
1062 }
1063
1064 /*
1065 * Uhhuh, somebody else created the same inode under
1066 * us. Use the old inode instead of the one we just
1067 * allocated.
1068 */
1069 spin_unlock(&inode_hash_lock);
1070 destroy_inode(inode);
1071 inode = old;
1072 wait_on_inode(inode);
1073 if (unlikely(inode_unhashed(inode))) {
1074 iput(inode);
1075 goto again;
1076 }
1077 }
1078 return inode;
1079
1080 set_failed:
1081 spin_unlock(&inode_hash_lock);
1082 destroy_inode(inode);
1083 return NULL;
1084 }
1085 EXPORT_SYMBOL(iget5_locked);
1086
1087 /**
1088 * iget_locked - obtain an inode from a mounted file system
1089 * @sb: super block of file system
1090 * @ino: inode number to get
1091 *
1092 * Search for the inode specified by @ino in the inode cache and if present
1093 * return it with an increased reference count. This is for file systems
1094 * where the inode number is sufficient for unique identification of an inode.
1095 *
1096 * If the inode is not in cache, allocate a new inode and return it locked,
1097 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1098 * before unlocking it via unlock_new_inode().
1099 */
1100 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1101 {
1102 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1103 struct inode *inode;
1104 again:
1105 spin_lock(&inode_hash_lock);
1106 inode = find_inode_fast(sb, head, ino);
1107 spin_unlock(&inode_hash_lock);
1108 if (inode) {
1109 wait_on_inode(inode);
1110 if (unlikely(inode_unhashed(inode))) {
1111 iput(inode);
1112 goto again;
1113 }
1114 return inode;
1115 }
1116
1117 inode = alloc_inode(sb);
1118 if (inode) {
1119 struct inode *old;
1120
1121 spin_lock(&inode_hash_lock);
1122 /* We released the lock, so.. */
1123 old = find_inode_fast(sb, head, ino);
1124 if (!old) {
1125 inode->i_ino = ino;
1126 spin_lock(&inode->i_lock);
1127 inode->i_state = I_NEW;
1128 hlist_add_head(&inode->i_hash, head);
1129 spin_unlock(&inode->i_lock);
1130 inode_sb_list_add(inode);
1131 spin_unlock(&inode_hash_lock);
1132
1133 /* Return the locked inode with I_NEW set, the
1134 * caller is responsible for filling in the contents
1135 */
1136 return inode;
1137 }
1138
1139 /*
1140 * Uhhuh, somebody else created the same inode under
1141 * us. Use the old inode instead of the one we just
1142 * allocated.
1143 */
1144 spin_unlock(&inode_hash_lock);
1145 destroy_inode(inode);
1146 inode = old;
1147 wait_on_inode(inode);
1148 if (unlikely(inode_unhashed(inode))) {
1149 iput(inode);
1150 goto again;
1151 }
1152 }
1153 return inode;
1154 }
1155 EXPORT_SYMBOL(iget_locked);
1156
1157 /*
1158 * search the inode cache for a matching inode number.
1159 * If we find one, then the inode number we are trying to
1160 * allocate is not unique and so we should not use it.
1161 *
1162 * Returns 1 if the inode number is unique, 0 if it is not.
1163 */
1164 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1165 {
1166 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1167 struct inode *inode;
1168
1169 spin_lock(&inode_hash_lock);
1170 hlist_for_each_entry(inode, b, i_hash) {
1171 if (inode->i_ino == ino && inode->i_sb == sb) {
1172 spin_unlock(&inode_hash_lock);
1173 return 0;
1174 }
1175 }
1176 spin_unlock(&inode_hash_lock);
1177
1178 return 1;
1179 }
1180
1181 /**
1182 * iunique - get a unique inode number
1183 * @sb: superblock
1184 * @max_reserved: highest reserved inode number
1185 *
1186 * Obtain an inode number that is unique on the system for a given
1187 * superblock. This is used by file systems that have no natural
1188 * permanent inode numbering system. An inode number is returned that
1189 * is higher than the reserved limit but unique.
1190 *
1191 * BUGS:
1192 * With a large number of inodes live on the file system this function
1193 * currently becomes quite slow.
1194 */
1195 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1196 {
1197 /*
1198 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1199 * error if st_ino won't fit in target struct field. Use 32bit counter
1200 * here to attempt to avoid that.
1201 */
1202 static DEFINE_SPINLOCK(iunique_lock);
1203 static unsigned int counter;
1204 ino_t res;
1205
1206 spin_lock(&iunique_lock);
1207 do {
1208 if (counter <= max_reserved)
1209 counter = max_reserved + 1;
1210 res = counter++;
1211 } while (!test_inode_iunique(sb, res));
1212 spin_unlock(&iunique_lock);
1213
1214 return res;
1215 }
1216 EXPORT_SYMBOL(iunique);
1217
1218 struct inode *igrab(struct inode *inode)
1219 {
1220 spin_lock(&inode->i_lock);
1221 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1222 __iget(inode);
1223 spin_unlock(&inode->i_lock);
1224 } else {
1225 spin_unlock(&inode->i_lock);
1226 /*
1227 * Handle the case where s_op->clear_inode is not been
1228 * called yet, and somebody is calling igrab
1229 * while the inode is getting freed.
1230 */
1231 inode = NULL;
1232 }
1233 return inode;
1234 }
1235 EXPORT_SYMBOL(igrab);
1236
1237 /**
1238 * ilookup5_nowait - search for an inode in the inode cache
1239 * @sb: super block of file system to search
1240 * @hashval: hash value (usually inode number) to search for
1241 * @test: callback used for comparisons between inodes
1242 * @data: opaque data pointer to pass to @test
1243 *
1244 * Search for the inode specified by @hashval and @data in the inode cache.
1245 * If the inode is in the cache, the inode is returned with an incremented
1246 * reference count.
1247 *
1248 * Note: I_NEW is not waited upon so you have to be very careful what you do
1249 * with the returned inode. You probably should be using ilookup5() instead.
1250 *
1251 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1252 */
1253 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1254 int (*test)(struct inode *, void *), void *data)
1255 {
1256 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1257 struct inode *inode;
1258
1259 spin_lock(&inode_hash_lock);
1260 inode = find_inode(sb, head, test, data);
1261 spin_unlock(&inode_hash_lock);
1262
1263 return inode;
1264 }
1265 EXPORT_SYMBOL(ilookup5_nowait);
1266
1267 /**
1268 * ilookup5 - search for an inode in the inode cache
1269 * @sb: super block of file system to search
1270 * @hashval: hash value (usually inode number) to search for
1271 * @test: callback used for comparisons between inodes
1272 * @data: opaque data pointer to pass to @test
1273 *
1274 * Search for the inode specified by @hashval and @data in the inode cache,
1275 * and if the inode is in the cache, return the inode with an incremented
1276 * reference count. Waits on I_NEW before returning the inode.
1277 * returned with an incremented reference count.
1278 *
1279 * This is a generalized version of ilookup() for file systems where the
1280 * inode number is not sufficient for unique identification of an inode.
1281 *
1282 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1283 */
1284 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1285 int (*test)(struct inode *, void *), void *data)
1286 {
1287 struct inode *inode;
1288 again:
1289 inode = ilookup5_nowait(sb, hashval, test, data);
1290 if (inode) {
1291 wait_on_inode(inode);
1292 if (unlikely(inode_unhashed(inode))) {
1293 iput(inode);
1294 goto again;
1295 }
1296 }
1297 return inode;
1298 }
1299 EXPORT_SYMBOL(ilookup5);
1300
1301 /**
1302 * ilookup - search for an inode in the inode cache
1303 * @sb: super block of file system to search
1304 * @ino: inode number to search for
1305 *
1306 * Search for the inode @ino in the inode cache, and if the inode is in the
1307 * cache, the inode is returned with an incremented reference count.
1308 */
1309 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1310 {
1311 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1312 struct inode *inode;
1313 again:
1314 spin_lock(&inode_hash_lock);
1315 inode = find_inode_fast(sb, head, ino);
1316 spin_unlock(&inode_hash_lock);
1317
1318 if (inode) {
1319 wait_on_inode(inode);
1320 if (unlikely(inode_unhashed(inode))) {
1321 iput(inode);
1322 goto again;
1323 }
1324 }
1325 return inode;
1326 }
1327 EXPORT_SYMBOL(ilookup);
1328
1329 /**
1330 * find_inode_nowait - find an inode in the inode cache
1331 * @sb: super block of file system to search
1332 * @hashval: hash value (usually inode number) to search for
1333 * @match: callback used for comparisons between inodes
1334 * @data: opaque data pointer to pass to @match
1335 *
1336 * Search for the inode specified by @hashval and @data in the inode
1337 * cache, where the helper function @match will return 0 if the inode
1338 * does not match, 1 if the inode does match, and -1 if the search
1339 * should be stopped. The @match function must be responsible for
1340 * taking the i_lock spin_lock and checking i_state for an inode being
1341 * freed or being initialized, and incrementing the reference count
1342 * before returning 1. It also must not sleep, since it is called with
1343 * the inode_hash_lock spinlock held.
1344 *
1345 * This is a even more generalized version of ilookup5() when the
1346 * function must never block --- find_inode() can block in
1347 * __wait_on_freeing_inode() --- or when the caller can not increment
1348 * the reference count because the resulting iput() might cause an
1349 * inode eviction. The tradeoff is that the @match funtion must be
1350 * very carefully implemented.
1351 */
1352 struct inode *find_inode_nowait(struct super_block *sb,
1353 unsigned long hashval,
1354 int (*match)(struct inode *, unsigned long,
1355 void *),
1356 void *data)
1357 {
1358 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1359 struct inode *inode, *ret_inode = NULL;
1360 int mval;
1361
1362 spin_lock(&inode_hash_lock);
1363 hlist_for_each_entry(inode, head, i_hash) {
1364 if (inode->i_sb != sb)
1365 continue;
1366 mval = match(inode, hashval, data);
1367 if (mval == 0)
1368 continue;
1369 if (mval == 1)
1370 ret_inode = inode;
1371 goto out;
1372 }
1373 out:
1374 spin_unlock(&inode_hash_lock);
1375 return ret_inode;
1376 }
1377 EXPORT_SYMBOL(find_inode_nowait);
1378
1379 int insert_inode_locked(struct inode *inode)
1380 {
1381 struct super_block *sb = inode->i_sb;
1382 ino_t ino = inode->i_ino;
1383 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1384
1385 while (1) {
1386 struct inode *old = NULL;
1387 spin_lock(&inode_hash_lock);
1388 hlist_for_each_entry(old, head, i_hash) {
1389 if (old->i_ino != ino)
1390 continue;
1391 if (old->i_sb != sb)
1392 continue;
1393 spin_lock(&old->i_lock);
1394 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1395 spin_unlock(&old->i_lock);
1396 continue;
1397 }
1398 break;
1399 }
1400 if (likely(!old)) {
1401 spin_lock(&inode->i_lock);
1402 inode->i_state |= I_NEW;
1403 hlist_add_head(&inode->i_hash, head);
1404 spin_unlock(&inode->i_lock);
1405 spin_unlock(&inode_hash_lock);
1406 return 0;
1407 }
1408 __iget(old);
1409 spin_unlock(&old->i_lock);
1410 spin_unlock(&inode_hash_lock);
1411 wait_on_inode(old);
1412 if (unlikely(!inode_unhashed(old))) {
1413 iput(old);
1414 return -EBUSY;
1415 }
1416 iput(old);
1417 }
1418 }
1419 EXPORT_SYMBOL(insert_inode_locked);
1420
1421 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1422 int (*test)(struct inode *, void *), void *data)
1423 {
1424 struct super_block *sb = inode->i_sb;
1425 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1426
1427 while (1) {
1428 struct inode *old = NULL;
1429
1430 spin_lock(&inode_hash_lock);
1431 hlist_for_each_entry(old, head, i_hash) {
1432 if (old->i_sb != sb)
1433 continue;
1434 if (!test(old, data))
1435 continue;
1436 spin_lock(&old->i_lock);
1437 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1438 spin_unlock(&old->i_lock);
1439 continue;
1440 }
1441 break;
1442 }
1443 if (likely(!old)) {
1444 spin_lock(&inode->i_lock);
1445 inode->i_state |= I_NEW;
1446 hlist_add_head(&inode->i_hash, head);
1447 spin_unlock(&inode->i_lock);
1448 spin_unlock(&inode_hash_lock);
1449 return 0;
1450 }
1451 __iget(old);
1452 spin_unlock(&old->i_lock);
1453 spin_unlock(&inode_hash_lock);
1454 wait_on_inode(old);
1455 if (unlikely(!inode_unhashed(old))) {
1456 iput(old);
1457 return -EBUSY;
1458 }
1459 iput(old);
1460 }
1461 }
1462 EXPORT_SYMBOL(insert_inode_locked4);
1463
1464
1465 int generic_delete_inode(struct inode *inode)
1466 {
1467 return 1;
1468 }
1469 EXPORT_SYMBOL(generic_delete_inode);
1470
1471 /*
1472 * Called when we're dropping the last reference
1473 * to an inode.
1474 *
1475 * Call the FS "drop_inode()" function, defaulting to
1476 * the legacy UNIX filesystem behaviour. If it tells
1477 * us to evict inode, do so. Otherwise, retain inode
1478 * in cache if fs is alive, sync and evict if fs is
1479 * shutting down.
1480 */
1481 static void iput_final(struct inode *inode)
1482 {
1483 struct super_block *sb = inode->i_sb;
1484 const struct super_operations *op = inode->i_sb->s_op;
1485 int drop;
1486
1487 WARN_ON(inode->i_state & I_NEW);
1488
1489 if (op->drop_inode)
1490 drop = op->drop_inode(inode);
1491 else
1492 drop = generic_drop_inode(inode);
1493
1494 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1495 inode_add_lru(inode);
1496 spin_unlock(&inode->i_lock);
1497 return;
1498 }
1499
1500 if (!drop) {
1501 inode->i_state |= I_WILL_FREE;
1502 spin_unlock(&inode->i_lock);
1503 write_inode_now(inode, 1);
1504 spin_lock(&inode->i_lock);
1505 WARN_ON(inode->i_state & I_NEW);
1506 inode->i_state &= ~I_WILL_FREE;
1507 }
1508
1509 inode->i_state |= I_FREEING;
1510 if (!list_empty(&inode->i_lru))
1511 inode_lru_list_del(inode);
1512 spin_unlock(&inode->i_lock);
1513
1514 evict(inode);
1515 }
1516
1517 /**
1518 * iput - put an inode
1519 * @inode: inode to put
1520 *
1521 * Puts an inode, dropping its usage count. If the inode use count hits
1522 * zero, the inode is then freed and may also be destroyed.
1523 *
1524 * Consequently, iput() can sleep.
1525 */
1526 void iput(struct inode *inode)
1527 {
1528 if (!inode)
1529 return;
1530 BUG_ON(inode->i_state & I_CLEAR);
1531 retry:
1532 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1533 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1534 atomic_inc(&inode->i_count);
1535 inode->i_state &= ~I_DIRTY_TIME;
1536 spin_unlock(&inode->i_lock);
1537 trace_writeback_lazytime_iput(inode);
1538 mark_inode_dirty_sync(inode);
1539 goto retry;
1540 }
1541 iput_final(inode);
1542 }
1543 }
1544 EXPORT_SYMBOL(iput);
1545
1546 /**
1547 * bmap - find a block number in a file
1548 * @inode: inode of file
1549 * @block: block to find
1550 *
1551 * Returns the block number on the device holding the inode that
1552 * is the disk block number for the block of the file requested.
1553 * That is, asked for block 4 of inode 1 the function will return the
1554 * disk block relative to the disk start that holds that block of the
1555 * file.
1556 */
1557 sector_t bmap(struct inode *inode, sector_t block)
1558 {
1559 sector_t res = 0;
1560 if (inode->i_mapping->a_ops->bmap)
1561 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1562 return res;
1563 }
1564 EXPORT_SYMBOL(bmap);
1565
1566 /*
1567 * Update times in overlayed inode from underlying real inode
1568 */
1569 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1570 bool rcu)
1571 {
1572 if (!rcu) {
1573 struct inode *realinode = d_real_inode(dentry);
1574
1575 if (unlikely(inode != realinode) &&
1576 (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1577 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1578 inode->i_mtime = realinode->i_mtime;
1579 inode->i_ctime = realinode->i_ctime;
1580 }
1581 }
1582 }
1583
1584 /*
1585 * With relative atime, only update atime if the previous atime is
1586 * earlier than either the ctime or mtime or if at least a day has
1587 * passed since the last atime update.
1588 */
1589 static int relatime_need_update(const struct path *path, struct inode *inode,
1590 struct timespec now, bool rcu)
1591 {
1592
1593 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1594 return 1;
1595
1596 update_ovl_inode_times(path->dentry, inode, rcu);
1597 /*
1598 * Is mtime younger than atime? If yes, update atime:
1599 */
1600 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1601 return 1;
1602 /*
1603 * Is ctime younger than atime? If yes, update atime:
1604 */
1605 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1606 return 1;
1607
1608 /*
1609 * Is the previous atime value older than a day? If yes,
1610 * update atime:
1611 */
1612 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1613 return 1;
1614 /*
1615 * Good, we can skip the atime update:
1616 */
1617 return 0;
1618 }
1619
1620 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1621 {
1622 int iflags = I_DIRTY_TIME;
1623
1624 if (flags & S_ATIME)
1625 inode->i_atime = *time;
1626 if (flags & S_VERSION)
1627 inode_inc_iversion(inode);
1628 if (flags & S_CTIME)
1629 inode->i_ctime = *time;
1630 if (flags & S_MTIME)
1631 inode->i_mtime = *time;
1632
1633 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1634 iflags |= I_DIRTY_SYNC;
1635 __mark_inode_dirty(inode, iflags);
1636 return 0;
1637 }
1638 EXPORT_SYMBOL(generic_update_time);
1639
1640 /*
1641 * This does the actual work of updating an inodes time or version. Must have
1642 * had called mnt_want_write() before calling this.
1643 */
1644 static int update_time(struct inode *inode, struct timespec *time, int flags)
1645 {
1646 int (*update_time)(struct inode *, struct timespec *, int);
1647
1648 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1649 generic_update_time;
1650
1651 return update_time(inode, time, flags);
1652 }
1653
1654 /**
1655 * touch_atime - update the access time
1656 * @path: the &struct path to update
1657 * @inode: inode to update
1658 *
1659 * Update the accessed time on an inode and mark it for writeback.
1660 * This function automatically handles read only file systems and media,
1661 * as well as the "noatime" flag and inode specific "noatime" markers.
1662 */
1663 bool __atime_needs_update(const struct path *path, struct inode *inode,
1664 bool rcu)
1665 {
1666 struct vfsmount *mnt = path->mnt;
1667 struct timespec now;
1668
1669 if (inode->i_flags & S_NOATIME)
1670 return false;
1671
1672 /* Atime updates will likely cause i_uid and i_gid to be written
1673 * back improprely if their true value is unknown to the vfs.
1674 */
1675 if (HAS_UNMAPPED_ID(inode))
1676 return false;
1677
1678 if (IS_NOATIME(inode))
1679 return false;
1680 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1681 return false;
1682
1683 if (mnt->mnt_flags & MNT_NOATIME)
1684 return false;
1685 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1686 return false;
1687
1688 now = current_time(inode);
1689
1690 if (!relatime_need_update(path, inode, now, rcu))
1691 return false;
1692
1693 if (timespec_equal(&inode->i_atime, &now))
1694 return false;
1695
1696 return true;
1697 }
1698
1699 void touch_atime(const struct path *path)
1700 {
1701 struct vfsmount *mnt = path->mnt;
1702 struct inode *inode = d_inode(path->dentry);
1703 struct timespec now;
1704
1705 if (!__atime_needs_update(path, inode, false))
1706 return;
1707
1708 if (!sb_start_write_trylock(inode->i_sb))
1709 return;
1710
1711 if (__mnt_want_write(mnt) != 0)
1712 goto skip_update;
1713 /*
1714 * File systems can error out when updating inodes if they need to
1715 * allocate new space to modify an inode (such is the case for
1716 * Btrfs), but since we touch atime while walking down the path we
1717 * really don't care if we failed to update the atime of the file,
1718 * so just ignore the return value.
1719 * We may also fail on filesystems that have the ability to make parts
1720 * of the fs read only, e.g. subvolumes in Btrfs.
1721 */
1722 now = current_time(inode);
1723 update_time(inode, &now, S_ATIME);
1724 __mnt_drop_write(mnt);
1725 skip_update:
1726 sb_end_write(inode->i_sb);
1727 }
1728 EXPORT_SYMBOL(touch_atime);
1729
1730 /*
1731 * The logic we want is
1732 *
1733 * if suid or (sgid and xgrp)
1734 * remove privs
1735 */
1736 int should_remove_suid(struct dentry *dentry)
1737 {
1738 umode_t mode = d_inode(dentry)->i_mode;
1739 int kill = 0;
1740
1741 /* suid always must be killed */
1742 if (unlikely(mode & S_ISUID))
1743 kill = ATTR_KILL_SUID;
1744
1745 /*
1746 * sgid without any exec bits is just a mandatory locking mark; leave
1747 * it alone. If some exec bits are set, it's a real sgid; kill it.
1748 */
1749 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1750 kill |= ATTR_KILL_SGID;
1751
1752 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1753 return kill;
1754
1755 return 0;
1756 }
1757 EXPORT_SYMBOL(should_remove_suid);
1758
1759 /*
1760 * Return mask of changes for notify_change() that need to be done as a
1761 * response to write or truncate. Return 0 if nothing has to be changed.
1762 * Negative value on error (change should be denied).
1763 */
1764 int dentry_needs_remove_privs(struct dentry *dentry)
1765 {
1766 struct inode *inode = d_inode(dentry);
1767 int mask = 0;
1768 int ret;
1769
1770 if (IS_NOSEC(inode))
1771 return 0;
1772
1773 mask = should_remove_suid(dentry);
1774 ret = security_inode_need_killpriv(dentry);
1775 if (ret < 0)
1776 return ret;
1777 if (ret)
1778 mask |= ATTR_KILL_PRIV;
1779 return mask;
1780 }
1781
1782 static int __remove_privs(struct dentry *dentry, int kill)
1783 {
1784 struct iattr newattrs;
1785
1786 newattrs.ia_valid = ATTR_FORCE | kill;
1787 /*
1788 * Note we call this on write, so notify_change will not
1789 * encounter any conflicting delegations:
1790 */
1791 return notify_change(dentry, &newattrs, NULL);
1792 }
1793
1794 /*
1795 * Remove special file priviledges (suid, capabilities) when file is written
1796 * to or truncated.
1797 */
1798 int file_remove_privs(struct file *file)
1799 {
1800 struct dentry *dentry = file_dentry(file);
1801 struct inode *inode = file_inode(file);
1802 int kill;
1803 int error = 0;
1804
1805 /* Fast path for nothing security related */
1806 if (IS_NOSEC(inode))
1807 return 0;
1808
1809 kill = dentry_needs_remove_privs(dentry);
1810 if (kill < 0)
1811 return kill;
1812 if (kill)
1813 error = __remove_privs(dentry, kill);
1814 if (!error)
1815 inode_has_no_xattr(inode);
1816
1817 return error;
1818 }
1819 EXPORT_SYMBOL(file_remove_privs);
1820
1821 /**
1822 * file_update_time - update mtime and ctime time
1823 * @file: file accessed
1824 *
1825 * Update the mtime and ctime members of an inode and mark the inode
1826 * for writeback. Note that this function is meant exclusively for
1827 * usage in the file write path of filesystems, and filesystems may
1828 * choose to explicitly ignore update via this function with the
1829 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1830 * timestamps are handled by the server. This can return an error for
1831 * file systems who need to allocate space in order to update an inode.
1832 */
1833
1834 int file_update_time(struct file *file)
1835 {
1836 struct inode *inode = file_inode(file);
1837 struct timespec now;
1838 int sync_it = 0;
1839 int ret;
1840
1841 /* First try to exhaust all avenues to not sync */
1842 if (IS_NOCMTIME(inode))
1843 return 0;
1844
1845 now = current_time(inode);
1846 if (!timespec_equal(&inode->i_mtime, &now))
1847 sync_it = S_MTIME;
1848
1849 if (!timespec_equal(&inode->i_ctime, &now))
1850 sync_it |= S_CTIME;
1851
1852 if (IS_I_VERSION(inode))
1853 sync_it |= S_VERSION;
1854
1855 if (!sync_it)
1856 return 0;
1857
1858 /* Finally allowed to write? Takes lock. */
1859 if (__mnt_want_write_file(file))
1860 return 0;
1861
1862 ret = update_time(inode, &now, sync_it);
1863 __mnt_drop_write_file(file);
1864
1865 return ret;
1866 }
1867 EXPORT_SYMBOL(file_update_time);
1868
1869 int inode_needs_sync(struct inode *inode)
1870 {
1871 if (IS_SYNC(inode))
1872 return 1;
1873 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1874 return 1;
1875 return 0;
1876 }
1877 EXPORT_SYMBOL(inode_needs_sync);
1878
1879 /*
1880 * If we try to find an inode in the inode hash while it is being
1881 * deleted, we have to wait until the filesystem completes its
1882 * deletion before reporting that it isn't found. This function waits
1883 * until the deletion _might_ have completed. Callers are responsible
1884 * to recheck inode state.
1885 *
1886 * It doesn't matter if I_NEW is not set initially, a call to
1887 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1888 * will DTRT.
1889 */
1890 static void __wait_on_freeing_inode(struct inode *inode)
1891 {
1892 wait_queue_head_t *wq;
1893 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1894 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1895 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1896 spin_unlock(&inode->i_lock);
1897 spin_unlock(&inode_hash_lock);
1898 schedule();
1899 finish_wait(wq, &wait.wq_entry);
1900 spin_lock(&inode_hash_lock);
1901 }
1902
1903 static __initdata unsigned long ihash_entries;
1904 static int __init set_ihash_entries(char *str)
1905 {
1906 if (!str)
1907 return 0;
1908 ihash_entries = simple_strtoul(str, &str, 0);
1909 return 1;
1910 }
1911 __setup("ihash_entries=", set_ihash_entries);
1912
1913 /*
1914 * Initialize the waitqueues and inode hash table.
1915 */
1916 void __init inode_init_early(void)
1917 {
1918 /* If hashes are distributed across NUMA nodes, defer
1919 * hash allocation until vmalloc space is available.
1920 */
1921 if (hashdist)
1922 return;
1923
1924 inode_hashtable =
1925 alloc_large_system_hash("Inode-cache",
1926 sizeof(struct hlist_head),
1927 ihash_entries,
1928 14,
1929 HASH_EARLY | HASH_ZERO,
1930 &i_hash_shift,
1931 &i_hash_mask,
1932 0,
1933 0);
1934 }
1935
1936 void __init inode_init(void)
1937 {
1938 /* inode slab cache */
1939 inode_cachep = kmem_cache_create("inode_cache",
1940 sizeof(struct inode),
1941 0,
1942 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1943 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1944 init_once);
1945
1946 /* Hash may have been set up in inode_init_early */
1947 if (!hashdist)
1948 return;
1949
1950 inode_hashtable =
1951 alloc_large_system_hash("Inode-cache",
1952 sizeof(struct hlist_head),
1953 ihash_entries,
1954 14,
1955 HASH_ZERO,
1956 &i_hash_shift,
1957 &i_hash_mask,
1958 0,
1959 0);
1960 }
1961
1962 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1963 {
1964 inode->i_mode = mode;
1965 if (S_ISCHR(mode)) {
1966 inode->i_fop = &def_chr_fops;
1967 inode->i_rdev = rdev;
1968 } else if (S_ISBLK(mode)) {
1969 inode->i_fop = &def_blk_fops;
1970 inode->i_rdev = rdev;
1971 } else if (S_ISFIFO(mode))
1972 inode->i_fop = &pipefifo_fops;
1973 else if (S_ISSOCK(mode))
1974 ; /* leave it no_open_fops */
1975 else
1976 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1977 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1978 inode->i_ino);
1979 }
1980 EXPORT_SYMBOL(init_special_inode);
1981
1982 /**
1983 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1984 * @inode: New inode
1985 * @dir: Directory inode
1986 * @mode: mode of the new inode
1987 */
1988 void inode_init_owner(struct inode *inode, const struct inode *dir,
1989 umode_t mode)
1990 {
1991 inode->i_uid = current_fsuid();
1992 if (dir && dir->i_mode & S_ISGID) {
1993 inode->i_gid = dir->i_gid;
1994 if (S_ISDIR(mode))
1995 mode |= S_ISGID;
1996 } else
1997 inode->i_gid = current_fsgid();
1998 inode->i_mode = mode;
1999 }
2000 EXPORT_SYMBOL(inode_init_owner);
2001
2002 /**
2003 * inode_owner_or_capable - check current task permissions to inode
2004 * @inode: inode being checked
2005 *
2006 * Return true if current either has CAP_FOWNER in a namespace with the
2007 * inode owner uid mapped, or owns the file.
2008 */
2009 bool inode_owner_or_capable(const struct inode *inode)
2010 {
2011 struct user_namespace *ns;
2012
2013 if (uid_eq(current_fsuid(), inode->i_uid))
2014 return true;
2015
2016 ns = current_user_ns();
2017 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2018 return true;
2019 return false;
2020 }
2021 EXPORT_SYMBOL(inode_owner_or_capable);
2022
2023 /*
2024 * Direct i/o helper functions
2025 */
2026 static void __inode_dio_wait(struct inode *inode)
2027 {
2028 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2029 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2030
2031 do {
2032 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2033 if (atomic_read(&inode->i_dio_count))
2034 schedule();
2035 } while (atomic_read(&inode->i_dio_count));
2036 finish_wait(wq, &q.wq_entry);
2037 }
2038
2039 /**
2040 * inode_dio_wait - wait for outstanding DIO requests to finish
2041 * @inode: inode to wait for
2042 *
2043 * Waits for all pending direct I/O requests to finish so that we can
2044 * proceed with a truncate or equivalent operation.
2045 *
2046 * Must be called under a lock that serializes taking new references
2047 * to i_dio_count, usually by inode->i_mutex.
2048 */
2049 void inode_dio_wait(struct inode *inode)
2050 {
2051 if (atomic_read(&inode->i_dio_count))
2052 __inode_dio_wait(inode);
2053 }
2054 EXPORT_SYMBOL(inode_dio_wait);
2055
2056 /*
2057 * inode_set_flags - atomically set some inode flags
2058 *
2059 * Note: the caller should be holding i_mutex, or else be sure that
2060 * they have exclusive access to the inode structure (i.e., while the
2061 * inode is being instantiated). The reason for the cmpxchg() loop
2062 * --- which wouldn't be necessary if all code paths which modify
2063 * i_flags actually followed this rule, is that there is at least one
2064 * code path which doesn't today so we use cmpxchg() out of an abundance
2065 * of caution.
2066 *
2067 * In the long run, i_mutex is overkill, and we should probably look
2068 * at using the i_lock spinlock to protect i_flags, and then make sure
2069 * it is so documented in include/linux/fs.h and that all code follows
2070 * the locking convention!!
2071 */
2072 void inode_set_flags(struct inode *inode, unsigned int flags,
2073 unsigned int mask)
2074 {
2075 unsigned int old_flags, new_flags;
2076
2077 WARN_ON_ONCE(flags & ~mask);
2078 do {
2079 old_flags = ACCESS_ONCE(inode->i_flags);
2080 new_flags = (old_flags & ~mask) | flags;
2081 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2082 new_flags) != old_flags));
2083 }
2084 EXPORT_SYMBOL(inode_set_flags);
2085
2086 void inode_nohighmem(struct inode *inode)
2087 {
2088 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2089 }
2090 EXPORT_SYMBOL(inode_nohighmem);
2091
2092 /**
2093 * current_time - Return FS time
2094 * @inode: inode.
2095 *
2096 * Return the current time truncated to the time granularity supported by
2097 * the fs.
2098 *
2099 * Note that inode and inode->sb cannot be NULL.
2100 * Otherwise, the function warns and returns time without truncation.
2101 */
2102 struct timespec current_time(struct inode *inode)
2103 {
2104 struct timespec now = current_kernel_time();
2105
2106 if (unlikely(!inode->i_sb)) {
2107 WARN(1, "current_time() called with uninitialized super_block in the inode");
2108 return now;
2109 }
2110
2111 return timespec_trunc(now, inode->i_sb->s_time_gran);
2112 }
2113 EXPORT_SYMBOL(current_time);