]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <linux/uaccess.h>
41
42 #include "internal.h"
43 #include "mount.h"
44
45 /* [Feb-1997 T. Schoebel-Theuer]
46 * Fundamental changes in the pathname lookup mechanisms (namei)
47 * were necessary because of omirr. The reason is that omirr needs
48 * to know the _real_ pathname, not the user-supplied one, in case
49 * of symlinks (and also when transname replacements occur).
50 *
51 * The new code replaces the old recursive symlink resolution with
52 * an iterative one (in case of non-nested symlink chains). It does
53 * this with calls to <fs>_follow_link().
54 * As a side effect, dir_namei(), _namei() and follow_link() are now
55 * replaced with a single function lookup_dentry() that can handle all
56 * the special cases of the former code.
57 *
58 * With the new dcache, the pathname is stored at each inode, at least as
59 * long as the refcount of the inode is positive. As a side effect, the
60 * size of the dcache depends on the inode cache and thus is dynamic.
61 *
62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63 * resolution to correspond with current state of the code.
64 *
65 * Note that the symlink resolution is not *completely* iterative.
66 * There is still a significant amount of tail- and mid- recursion in
67 * the algorithm. Also, note that <fs>_readlink() is not used in
68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69 * may return different results than <fs>_follow_link(). Many virtual
70 * filesystems (including /proc) exhibit this behavior.
71 */
72
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75 * and the name already exists in form of a symlink, try to create the new
76 * name indicated by the symlink. The old code always complained that the
77 * name already exists, due to not following the symlink even if its target
78 * is nonexistent. The new semantics affects also mknod() and link() when
79 * the name is a symlink pointing to a non-existent name.
80 *
81 * I don't know which semantics is the right one, since I have no access
82 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84 * "old" one. Personally, I think the new semantics is much more logical.
85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86 * file does succeed in both HP-UX and SunOs, but not in Solaris
87 * and in the old Linux semantics.
88 */
89
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91 * semantics. See the comments in "open_namei" and "do_link" below.
92 *
93 * [10-Sep-98 Alan Modra] Another symlink change.
94 */
95
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97 * inside the path - always follow.
98 * in the last component in creation/removal/renaming - never follow.
99 * if LOOKUP_FOLLOW passed - follow.
100 * if the pathname has trailing slashes - follow.
101 * otherwise - don't follow.
102 * (applied in that order).
103 *
104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106 * During the 2.4 we need to fix the userland stuff depending on it -
107 * hopefully we will be able to get rid of that wart in 2.5. So far only
108 * XEmacs seems to be relying on it...
109 */
110 /*
111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
113 * any extra contention...
114 */
115
116 /* In order to reduce some races, while at the same time doing additional
117 * checking and hopefully speeding things up, we copy filenames to the
118 * kernel data space before using them..
119 *
120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121 * PATH_MAX includes the nul terminator --RR.
122 */
123
124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
125
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129 struct filename *result;
130 char *kname;
131 int len;
132
133 result = audit_reusename(filename);
134 if (result)
135 return result;
136
137 result = __getname();
138 if (unlikely(!result))
139 return ERR_PTR(-ENOMEM);
140
141 /*
142 * First, try to embed the struct filename inside the names_cache
143 * allocation
144 */
145 kname = (char *)result->iname;
146 result->name = kname;
147
148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 if (unlikely(len < 0)) {
150 __putname(result);
151 return ERR_PTR(len);
152 }
153
154 /*
155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 * separate struct filename so we can dedicate the entire
157 * names_cache allocation for the pathname, and re-do the copy from
158 * userland.
159 */
160 if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 const size_t size = offsetof(struct filename, iname[1]);
162 kname = (char *)result;
163
164 /*
165 * size is chosen that way we to guarantee that
166 * result->iname[0] is within the same object and that
167 * kname can't be equal to result->iname, no matter what.
168 */
169 result = kzalloc(size, GFP_KERNEL);
170 if (unlikely(!result)) {
171 __putname(kname);
172 return ERR_PTR(-ENOMEM);
173 }
174 result->name = kname;
175 len = strncpy_from_user(kname, filename, PATH_MAX);
176 if (unlikely(len < 0)) {
177 __putname(kname);
178 kfree(result);
179 return ERR_PTR(len);
180 }
181 if (unlikely(len == PATH_MAX)) {
182 __putname(kname);
183 kfree(result);
184 return ERR_PTR(-ENAMETOOLONG);
185 }
186 }
187
188 result->refcnt = 1;
189 /* The empty path is special. */
190 if (unlikely(!len)) {
191 if (empty)
192 *empty = 1;
193 if (!(flags & LOOKUP_EMPTY)) {
194 putname(result);
195 return ERR_PTR(-ENOENT);
196 }
197 }
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203 }
204
205 struct filename *
206 getname(const char __user * filename)
207 {
208 return getname_flags(filename, 0, NULL);
209 }
210
211 struct filename *
212 getname_kernel(const char * filename)
213 {
214 struct filename *result;
215 int len = strlen(filename) + 1;
216
217 result = __getname();
218 if (unlikely(!result))
219 return ERR_PTR(-ENOMEM);
220
221 if (len <= EMBEDDED_NAME_MAX) {
222 result->name = (char *)result->iname;
223 } else if (len <= PATH_MAX) {
224 struct filename *tmp;
225
226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 if (unlikely(!tmp)) {
228 __putname(result);
229 return ERR_PTR(-ENOMEM);
230 }
231 tmp->name = (char *)result;
232 result = tmp;
233 } else {
234 __putname(result);
235 return ERR_PTR(-ENAMETOOLONG);
236 }
237 memcpy((char *)result->name, filename, len);
238 result->uptr = NULL;
239 result->aname = NULL;
240 result->refcnt = 1;
241 audit_getname(result);
242
243 return result;
244 }
245
246 void putname(struct filename *name)
247 {
248 BUG_ON(name->refcnt <= 0);
249
250 if (--name->refcnt > 0)
251 return;
252
253 if (name->name != name->iname) {
254 __putname(name->name);
255 kfree(name);
256 } else
257 __putname(name);
258 }
259
260 static int check_acl(struct inode *inode, int mask)
261 {
262 #ifdef CONFIG_FS_POSIX_ACL
263 struct posix_acl *acl;
264
265 if (mask & MAY_NOT_BLOCK) {
266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267 if (!acl)
268 return -EAGAIN;
269 /* no ->get_acl() calls in RCU mode... */
270 if (is_uncached_acl(acl))
271 return -ECHILD;
272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273 }
274
275 acl = get_acl(inode, ACL_TYPE_ACCESS);
276 if (IS_ERR(acl))
277 return PTR_ERR(acl);
278 if (acl) {
279 int error = posix_acl_permission(inode, acl, mask);
280 posix_acl_release(acl);
281 return error;
282 }
283 #endif
284
285 return -EAGAIN;
286 }
287
288 /*
289 * This does the basic permission checking
290 */
291 static int acl_permission_check(struct inode *inode, int mask)
292 {
293 unsigned int mode = inode->i_mode;
294
295 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296 mode >>= 6;
297 else {
298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 int error = check_acl(inode, mask);
300 if (error != -EAGAIN)
301 return error;
302 }
303
304 if (in_group_p(inode->i_gid))
305 mode >>= 3;
306 }
307
308 /*
309 * If the DACs are ok we don't need any capability check.
310 */
311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312 return 0;
313 return -EACCES;
314 }
315
316 /**
317 * generic_permission - check for access rights on a Posix-like filesystem
318 * @inode: inode to check access rights for
319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320 *
321 * Used to check for read/write/execute permissions on a file.
322 * We use "fsuid" for this, letting us set arbitrary permissions
323 * for filesystem access without changing the "normal" uids which
324 * are used for other things.
325 *
326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327 * request cannot be satisfied (eg. requires blocking or too much complexity).
328 * It would then be called again in ref-walk mode.
329 */
330 int generic_permission(struct inode *inode, int mask)
331 {
332 int ret;
333
334 /*
335 * Do the basic permission checks.
336 */
337 ret = acl_permission_check(inode, mask);
338 if (ret != -EACCES)
339 return ret;
340
341 if (S_ISDIR(inode->i_mode)) {
342 /* DACs are overridable for directories */
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
348 return 0;
349 return -EACCES;
350 }
351
352 /*
353 * Searching includes executable on directories, else just read.
354 */
355 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
356 if (mask == MAY_READ)
357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
358 return 0;
359 /*
360 * Read/write DACs are always overridable.
361 * Executable DACs are overridable when there is
362 * at least one exec bit set.
363 */
364 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
366 return 0;
367
368 return -EACCES;
369 }
370 EXPORT_SYMBOL(generic_permission);
371
372 /*
373 * We _really_ want to just do "generic_permission()" without
374 * even looking at the inode->i_op values. So we keep a cache
375 * flag in inode->i_opflags, that says "this has not special
376 * permission function, use the fast case".
377 */
378 static inline int do_inode_permission(struct inode *inode, int mask)
379 {
380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 if (likely(inode->i_op->permission))
382 return inode->i_op->permission(inode, mask);
383
384 /* This gets set once for the inode lifetime */
385 spin_lock(&inode->i_lock);
386 inode->i_opflags |= IOP_FASTPERM;
387 spin_unlock(&inode->i_lock);
388 }
389 return generic_permission(inode, mask);
390 }
391
392 /**
393 * __inode_permission - Check for access rights to a given inode
394 * @inode: Inode to check permission on
395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396 *
397 * Check for read/write/execute permissions on an inode.
398 *
399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400 *
401 * This does not check for a read-only file system. You probably want
402 * inode_permission().
403 */
404 int __inode_permission(struct inode *inode, int mask)
405 {
406 int retval;
407
408 if (unlikely(mask & MAY_WRITE)) {
409 /*
410 * Nobody gets write access to an immutable file.
411 */
412 if (IS_IMMUTABLE(inode))
413 return -EPERM;
414
415 /*
416 * Updating mtime will likely cause i_uid and i_gid to be
417 * written back improperly if their true value is unknown
418 * to the vfs.
419 */
420 if (HAS_UNMAPPED_ID(inode))
421 return -EACCES;
422 }
423
424 retval = do_inode_permission(inode, mask);
425 if (retval)
426 return retval;
427
428 retval = devcgroup_inode_permission(inode, mask);
429 if (retval)
430 return retval;
431
432 return security_inode_permission(inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435
436 /**
437 * sb_permission - Check superblock-level permissions
438 * @sb: Superblock of inode to check permission on
439 * @inode: Inode to check permission on
440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441 *
442 * Separate out file-system wide checks from inode-specific permission checks.
443 */
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446 if (unlikely(mask & MAY_WRITE)) {
447 umode_t mode = inode->i_mode;
448
449 /* Nobody gets write access to a read-only fs. */
450 if ((sb->s_flags & MS_RDONLY) &&
451 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 return -EROFS;
453 }
454 return 0;
455 }
456
457 /**
458 * inode_permission - Check for access rights to a given inode
459 * @inode: Inode to check permission on
460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461 *
462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
463 * this, letting us set arbitrary permissions for filesystem access without
464 * changing the "normal" UIDs which are used for other things.
465 *
466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467 */
468 int inode_permission(struct inode *inode, int mask)
469 {
470 int retval;
471
472 retval = sb_permission(inode->i_sb, inode, mask);
473 if (retval)
474 return retval;
475 return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480 * path_get - get a reference to a path
481 * @path: path to get the reference to
482 *
483 * Given a path increment the reference count to the dentry and the vfsmount.
484 */
485 void path_get(const struct path *path)
486 {
487 mntget(path->mnt);
488 dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493 * path_put - put a reference to a path
494 * @path: path to put the reference to
495 *
496 * Given a path decrement the reference count to the dentry and the vfsmount.
497 */
498 void path_put(const struct path *path)
499 {
500 dput(path->dentry);
501 mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 struct path path;
508 struct qstr last;
509 struct path root;
510 struct inode *inode; /* path.dentry.d_inode */
511 unsigned int flags;
512 unsigned seq, m_seq;
513 int last_type;
514 unsigned depth;
515 int total_link_count;
516 struct saved {
517 struct path link;
518 struct delayed_call done;
519 const char *name;
520 unsigned seq;
521 } *stack, internal[EMBEDDED_LEVELS];
522 struct filename *name;
523 struct nameidata *saved;
524 struct inode *link_inode;
525 unsigned root_seq;
526 int dfd;
527 } __randomize_layout;
528
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 struct nameidata *old = current->nameidata;
532 p->stack = p->internal;
533 p->dfd = dfd;
534 p->name = name;
535 p->total_link_count = old ? old->total_link_count : 0;
536 p->saved = old;
537 current->nameidata = p;
538 }
539
540 static void restore_nameidata(void)
541 {
542 struct nameidata *now = current->nameidata, *old = now->saved;
543
544 current->nameidata = old;
545 if (old)
546 old->total_link_count = now->total_link_count;
547 if (now->stack != now->internal)
548 kfree(now->stack);
549 }
550
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553 struct saved *p;
554
555 if (nd->flags & LOOKUP_RCU) {
556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 GFP_ATOMIC);
558 if (unlikely(!p))
559 return -ECHILD;
560 } else {
561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 GFP_KERNEL);
563 if (unlikely(!p))
564 return -ENOMEM;
565 }
566 memcpy(p, nd->internal, sizeof(nd->internal));
567 nd->stack = p;
568 return 0;
569 }
570
571 /**
572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573 * @path: nameidate to verify
574 *
575 * Rename can sometimes move a file or directory outside of a bind
576 * mount, path_connected allows those cases to be detected.
577 */
578 static bool path_connected(const struct path *path)
579 {
580 struct vfsmount *mnt = path->mnt;
581
582 /* Only bind mounts can have disconnected paths */
583 if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 return true;
585
586 return is_subdir(path->dentry, mnt->mnt_root);
587 }
588
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591 if (likely(nd->depth != EMBEDDED_LEVELS))
592 return 0;
593 if (likely(nd->stack != nd->internal))
594 return 0;
595 return __nd_alloc_stack(nd);
596 }
597
598 static void drop_links(struct nameidata *nd)
599 {
600 int i = nd->depth;
601 while (i--) {
602 struct saved *last = nd->stack + i;
603 do_delayed_call(&last->done);
604 clear_delayed_call(&last->done);
605 }
606 }
607
608 static void terminate_walk(struct nameidata *nd)
609 {
610 drop_links(nd);
611 if (!(nd->flags & LOOKUP_RCU)) {
612 int i;
613 path_put(&nd->path);
614 for (i = 0; i < nd->depth; i++)
615 path_put(&nd->stack[i].link);
616 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 path_put(&nd->root);
618 nd->root.mnt = NULL;
619 }
620 } else {
621 nd->flags &= ~LOOKUP_RCU;
622 if (!(nd->flags & LOOKUP_ROOT))
623 nd->root.mnt = NULL;
624 rcu_read_unlock();
625 }
626 nd->depth = 0;
627 }
628
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 struct path *path, unsigned seq)
632 {
633 int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 if (unlikely(res)) {
635 if (res > 0)
636 path->mnt = NULL;
637 path->dentry = NULL;
638 return false;
639 }
640 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 path->dentry = NULL;
642 return false;
643 }
644 return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646
647 static bool legitimize_links(struct nameidata *nd)
648 {
649 int i;
650 for (i = 0; i < nd->depth; i++) {
651 struct saved *last = nd->stack + i;
652 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 drop_links(nd);
654 nd->depth = i + 1;
655 return false;
656 }
657 }
658 return true;
659 }
660
661 /*
662 * Path walking has 2 modes, rcu-walk and ref-walk (see
663 * Documentation/filesystems/path-lookup.txt). In situations when we can't
664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665 * normal reference counts on dentries and vfsmounts to transition to ref-walk
666 * mode. Refcounts are grabbed at the last known good point before rcu-walk
667 * got stuck, so ref-walk may continue from there. If this is not successful
668 * (eg. a seqcount has changed), then failure is returned and it's up to caller
669 * to restart the path walk from the beginning in ref-walk mode.
670 */
671
672 /**
673 * unlazy_walk - try to switch to ref-walk mode.
674 * @nd: nameidata pathwalk data
675 * Returns: 0 on success, -ECHILD on failure
676 *
677 * unlazy_walk attempts to legitimize the current nd->path and nd->root
678 * for ref-walk mode.
679 * Must be called from rcu-walk context.
680 * Nothing should touch nameidata between unlazy_walk() failure and
681 * terminate_walk().
682 */
683 static int unlazy_walk(struct nameidata *nd)
684 {
685 struct dentry *parent = nd->path.dentry;
686
687 BUG_ON(!(nd->flags & LOOKUP_RCU));
688
689 nd->flags &= ~LOOKUP_RCU;
690 if (unlikely(!legitimize_links(nd)))
691 goto out2;
692 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
693 goto out1;
694 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
695 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
696 goto out;
697 }
698 rcu_read_unlock();
699 BUG_ON(nd->inode != parent->d_inode);
700 return 0;
701
702 out2:
703 nd->path.mnt = NULL;
704 nd->path.dentry = NULL;
705 out1:
706 if (!(nd->flags & LOOKUP_ROOT))
707 nd->root.mnt = NULL;
708 out:
709 rcu_read_unlock();
710 return -ECHILD;
711 }
712
713 /**
714 * unlazy_child - try to switch to ref-walk mode.
715 * @nd: nameidata pathwalk data
716 * @dentry: child of nd->path.dentry
717 * @seq: seq number to check dentry against
718 * Returns: 0 on success, -ECHILD on failure
719 *
720 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
721 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
722 * @nd. Must be called from rcu-walk context.
723 * Nothing should touch nameidata between unlazy_child() failure and
724 * terminate_walk().
725 */
726 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
727 {
728 BUG_ON(!(nd->flags & LOOKUP_RCU));
729
730 nd->flags &= ~LOOKUP_RCU;
731 if (unlikely(!legitimize_links(nd)))
732 goto out2;
733 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
734 goto out2;
735 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
736 goto out1;
737
738 /*
739 * We need to move both the parent and the dentry from the RCU domain
740 * to be properly refcounted. And the sequence number in the dentry
741 * validates *both* dentry counters, since we checked the sequence
742 * number of the parent after we got the child sequence number. So we
743 * know the parent must still be valid if the child sequence number is
744 */
745 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
746 goto out;
747 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
748 rcu_read_unlock();
749 dput(dentry);
750 goto drop_root_mnt;
751 }
752 /*
753 * Sequence counts matched. Now make sure that the root is
754 * still valid and get it if required.
755 */
756 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
757 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
758 rcu_read_unlock();
759 dput(dentry);
760 return -ECHILD;
761 }
762 }
763
764 rcu_read_unlock();
765 return 0;
766
767 out2:
768 nd->path.mnt = NULL;
769 out1:
770 nd->path.dentry = NULL;
771 out:
772 rcu_read_unlock();
773 drop_root_mnt:
774 if (!(nd->flags & LOOKUP_ROOT))
775 nd->root.mnt = NULL;
776 return -ECHILD;
777 }
778
779 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
780 {
781 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
782 return dentry->d_op->d_revalidate(dentry, flags);
783 else
784 return 1;
785 }
786
787 /**
788 * complete_walk - successful completion of path walk
789 * @nd: pointer nameidata
790 *
791 * If we had been in RCU mode, drop out of it and legitimize nd->path.
792 * Revalidate the final result, unless we'd already done that during
793 * the path walk or the filesystem doesn't ask for it. Return 0 on
794 * success, -error on failure. In case of failure caller does not
795 * need to drop nd->path.
796 */
797 static int complete_walk(struct nameidata *nd)
798 {
799 struct dentry *dentry = nd->path.dentry;
800 int status;
801
802 if (nd->flags & LOOKUP_RCU) {
803 if (!(nd->flags & LOOKUP_ROOT))
804 nd->root.mnt = NULL;
805 if (unlikely(unlazy_walk(nd)))
806 return -ECHILD;
807 }
808
809 if (likely(!(nd->flags & LOOKUP_JUMPED)))
810 return 0;
811
812 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
813 return 0;
814
815 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
816 if (status > 0)
817 return 0;
818
819 if (!status)
820 status = -ESTALE;
821
822 return status;
823 }
824
825 static void set_root(struct nameidata *nd)
826 {
827 struct fs_struct *fs = current->fs;
828
829 if (nd->flags & LOOKUP_RCU) {
830 unsigned seq;
831
832 do {
833 seq = read_seqcount_begin(&fs->seq);
834 nd->root = fs->root;
835 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
836 } while (read_seqcount_retry(&fs->seq, seq));
837 } else {
838 get_fs_root(fs, &nd->root);
839 }
840 }
841
842 static void path_put_conditional(struct path *path, struct nameidata *nd)
843 {
844 dput(path->dentry);
845 if (path->mnt != nd->path.mnt)
846 mntput(path->mnt);
847 }
848
849 static inline void path_to_nameidata(const struct path *path,
850 struct nameidata *nd)
851 {
852 if (!(nd->flags & LOOKUP_RCU)) {
853 dput(nd->path.dentry);
854 if (nd->path.mnt != path->mnt)
855 mntput(nd->path.mnt);
856 }
857 nd->path.mnt = path->mnt;
858 nd->path.dentry = path->dentry;
859 }
860
861 static int nd_jump_root(struct nameidata *nd)
862 {
863 if (nd->flags & LOOKUP_RCU) {
864 struct dentry *d;
865 nd->path = nd->root;
866 d = nd->path.dentry;
867 nd->inode = d->d_inode;
868 nd->seq = nd->root_seq;
869 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
870 return -ECHILD;
871 } else {
872 path_put(&nd->path);
873 nd->path = nd->root;
874 path_get(&nd->path);
875 nd->inode = nd->path.dentry->d_inode;
876 }
877 nd->flags |= LOOKUP_JUMPED;
878 return 0;
879 }
880
881 /*
882 * Helper to directly jump to a known parsed path from ->get_link,
883 * caller must have taken a reference to path beforehand.
884 */
885 void nd_jump_link(struct path *path)
886 {
887 struct nameidata *nd = current->nameidata;
888 path_put(&nd->path);
889
890 nd->path = *path;
891 nd->inode = nd->path.dentry->d_inode;
892 nd->flags |= LOOKUP_JUMPED;
893 }
894
895 static inline void put_link(struct nameidata *nd)
896 {
897 struct saved *last = nd->stack + --nd->depth;
898 do_delayed_call(&last->done);
899 if (!(nd->flags & LOOKUP_RCU))
900 path_put(&last->link);
901 }
902
903 int sysctl_protected_symlinks __read_mostly = 1;
904 int sysctl_protected_hardlinks __read_mostly = 1;
905
906 /**
907 * may_follow_link - Check symlink following for unsafe situations
908 * @nd: nameidata pathwalk data
909 *
910 * In the case of the sysctl_protected_symlinks sysctl being enabled,
911 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
912 * in a sticky world-writable directory. This is to protect privileged
913 * processes from failing races against path names that may change out
914 * from under them by way of other users creating malicious symlinks.
915 * It will permit symlinks to be followed only when outside a sticky
916 * world-writable directory, or when the uid of the symlink and follower
917 * match, or when the directory owner matches the symlink's owner.
918 *
919 * Returns 0 if following the symlink is allowed, -ve on error.
920 */
921 static inline int may_follow_link(struct nameidata *nd)
922 {
923 const struct inode *inode;
924 const struct inode *parent;
925 kuid_t puid;
926
927 if (!sysctl_protected_symlinks)
928 return 0;
929
930 /* Allowed if owner and follower match. */
931 inode = nd->link_inode;
932 if (uid_eq(current_cred()->fsuid, inode->i_uid))
933 return 0;
934
935 /* Allowed if parent directory not sticky and world-writable. */
936 parent = nd->inode;
937 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
938 return 0;
939
940 /* Allowed if parent directory and link owner match. */
941 puid = parent->i_uid;
942 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
943 return 0;
944
945 if (nd->flags & LOOKUP_RCU)
946 return -ECHILD;
947
948 audit_log_link_denied("follow_link", &nd->stack[0].link);
949 return -EACCES;
950 }
951
952 /**
953 * safe_hardlink_source - Check for safe hardlink conditions
954 * @inode: the source inode to hardlink from
955 *
956 * Return false if at least one of the following conditions:
957 * - inode is not a regular file
958 * - inode is setuid
959 * - inode is setgid and group-exec
960 * - access failure for read and write
961 *
962 * Otherwise returns true.
963 */
964 static bool safe_hardlink_source(struct inode *inode)
965 {
966 umode_t mode = inode->i_mode;
967
968 /* Special files should not get pinned to the filesystem. */
969 if (!S_ISREG(mode))
970 return false;
971
972 /* Setuid files should not get pinned to the filesystem. */
973 if (mode & S_ISUID)
974 return false;
975
976 /* Executable setgid files should not get pinned to the filesystem. */
977 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
978 return false;
979
980 /* Hardlinking to unreadable or unwritable sources is dangerous. */
981 if (inode_permission(inode, MAY_READ | MAY_WRITE))
982 return false;
983
984 return true;
985 }
986
987 /**
988 * may_linkat - Check permissions for creating a hardlink
989 * @link: the source to hardlink from
990 *
991 * Block hardlink when all of:
992 * - sysctl_protected_hardlinks enabled
993 * - fsuid does not match inode
994 * - hardlink source is unsafe (see safe_hardlink_source() above)
995 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
996 *
997 * Returns 0 if successful, -ve on error.
998 */
999 static int may_linkat(struct path *link)
1000 {
1001 struct inode *inode;
1002
1003 if (!sysctl_protected_hardlinks)
1004 return 0;
1005
1006 inode = link->dentry->d_inode;
1007
1008 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1009 * otherwise, it must be a safe source.
1010 */
1011 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1012 return 0;
1013
1014 audit_log_link_denied("linkat", link);
1015 return -EPERM;
1016 }
1017
1018 static __always_inline
1019 const char *get_link(struct nameidata *nd)
1020 {
1021 struct saved *last = nd->stack + nd->depth - 1;
1022 struct dentry *dentry = last->link.dentry;
1023 struct inode *inode = nd->link_inode;
1024 int error;
1025 const char *res;
1026
1027 if (!(nd->flags & LOOKUP_RCU)) {
1028 touch_atime(&last->link);
1029 cond_resched();
1030 } else if (atime_needs_update_rcu(&last->link, inode)) {
1031 if (unlikely(unlazy_walk(nd)))
1032 return ERR_PTR(-ECHILD);
1033 touch_atime(&last->link);
1034 }
1035
1036 error = security_inode_follow_link(dentry, inode,
1037 nd->flags & LOOKUP_RCU);
1038 if (unlikely(error))
1039 return ERR_PTR(error);
1040
1041 nd->last_type = LAST_BIND;
1042 res = inode->i_link;
1043 if (!res) {
1044 const char * (*get)(struct dentry *, struct inode *,
1045 struct delayed_call *);
1046 get = inode->i_op->get_link;
1047 if (nd->flags & LOOKUP_RCU) {
1048 res = get(NULL, inode, &last->done);
1049 if (res == ERR_PTR(-ECHILD)) {
1050 if (unlikely(unlazy_walk(nd)))
1051 return ERR_PTR(-ECHILD);
1052 res = get(dentry, inode, &last->done);
1053 }
1054 } else {
1055 res = get(dentry, inode, &last->done);
1056 }
1057 if (IS_ERR_OR_NULL(res))
1058 return res;
1059 }
1060 if (*res == '/') {
1061 if (!nd->root.mnt)
1062 set_root(nd);
1063 if (unlikely(nd_jump_root(nd)))
1064 return ERR_PTR(-ECHILD);
1065 while (unlikely(*++res == '/'))
1066 ;
1067 }
1068 if (!*res)
1069 res = NULL;
1070 return res;
1071 }
1072
1073 /*
1074 * follow_up - Find the mountpoint of path's vfsmount
1075 *
1076 * Given a path, find the mountpoint of its source file system.
1077 * Replace @path with the path of the mountpoint in the parent mount.
1078 * Up is towards /.
1079 *
1080 * Return 1 if we went up a level and 0 if we were already at the
1081 * root.
1082 */
1083 int follow_up(struct path *path)
1084 {
1085 struct mount *mnt = real_mount(path->mnt);
1086 struct mount *parent;
1087 struct dentry *mountpoint;
1088
1089 read_seqlock_excl(&mount_lock);
1090 parent = mnt->mnt_parent;
1091 if (parent == mnt) {
1092 read_sequnlock_excl(&mount_lock);
1093 return 0;
1094 }
1095 mntget(&parent->mnt);
1096 mountpoint = dget(mnt->mnt_mountpoint);
1097 read_sequnlock_excl(&mount_lock);
1098 dput(path->dentry);
1099 path->dentry = mountpoint;
1100 mntput(path->mnt);
1101 path->mnt = &parent->mnt;
1102 return 1;
1103 }
1104 EXPORT_SYMBOL(follow_up);
1105
1106 /*
1107 * Perform an automount
1108 * - return -EISDIR to tell follow_managed() to stop and return the path we
1109 * were called with.
1110 */
1111 static int follow_automount(struct path *path, struct nameidata *nd,
1112 bool *need_mntput)
1113 {
1114 struct vfsmount *mnt;
1115 int err;
1116
1117 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1118 return -EREMOTE;
1119
1120 /* We don't want to mount if someone's just doing a stat -
1121 * unless they're stat'ing a directory and appended a '/' to
1122 * the name.
1123 *
1124 * We do, however, want to mount if someone wants to open or
1125 * create a file of any type under the mountpoint, wants to
1126 * traverse through the mountpoint or wants to open the
1127 * mounted directory. Also, autofs may mark negative dentries
1128 * as being automount points. These will need the attentions
1129 * of the daemon to instantiate them before they can be used.
1130 */
1131 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1132 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1133 path->dentry->d_inode)
1134 return -EISDIR;
1135
1136 if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1137 return -EACCES;
1138
1139 nd->total_link_count++;
1140 if (nd->total_link_count >= 40)
1141 return -ELOOP;
1142
1143 mnt = path->dentry->d_op->d_automount(path);
1144 if (IS_ERR(mnt)) {
1145 /*
1146 * The filesystem is allowed to return -EISDIR here to indicate
1147 * it doesn't want to automount. For instance, autofs would do
1148 * this so that its userspace daemon can mount on this dentry.
1149 *
1150 * However, we can only permit this if it's a terminal point in
1151 * the path being looked up; if it wasn't then the remainder of
1152 * the path is inaccessible and we should say so.
1153 */
1154 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1155 return -EREMOTE;
1156 return PTR_ERR(mnt);
1157 }
1158
1159 if (!mnt) /* mount collision */
1160 return 0;
1161
1162 if (!*need_mntput) {
1163 /* lock_mount() may release path->mnt on error */
1164 mntget(path->mnt);
1165 *need_mntput = true;
1166 }
1167 err = finish_automount(mnt, path);
1168
1169 switch (err) {
1170 case -EBUSY:
1171 /* Someone else made a mount here whilst we were busy */
1172 return 0;
1173 case 0:
1174 path_put(path);
1175 path->mnt = mnt;
1176 path->dentry = dget(mnt->mnt_root);
1177 return 0;
1178 default:
1179 return err;
1180 }
1181
1182 }
1183
1184 /*
1185 * Handle a dentry that is managed in some way.
1186 * - Flagged for transit management (autofs)
1187 * - Flagged as mountpoint
1188 * - Flagged as automount point
1189 *
1190 * This may only be called in refwalk mode.
1191 *
1192 * Serialization is taken care of in namespace.c
1193 */
1194 static int follow_managed(struct path *path, struct nameidata *nd)
1195 {
1196 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1197 unsigned managed;
1198 bool need_mntput = false;
1199 int ret = 0;
1200
1201 /* Given that we're not holding a lock here, we retain the value in a
1202 * local variable for each dentry as we look at it so that we don't see
1203 * the components of that value change under us */
1204 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1205 managed &= DCACHE_MANAGED_DENTRY,
1206 unlikely(managed != 0)) {
1207 /* Allow the filesystem to manage the transit without i_mutex
1208 * being held. */
1209 if (managed & DCACHE_MANAGE_TRANSIT) {
1210 BUG_ON(!path->dentry->d_op);
1211 BUG_ON(!path->dentry->d_op->d_manage);
1212 ret = path->dentry->d_op->d_manage(path, false);
1213 if (ret < 0)
1214 break;
1215 }
1216
1217 /* Transit to a mounted filesystem. */
1218 if (managed & DCACHE_MOUNTED) {
1219 struct vfsmount *mounted = lookup_mnt(path);
1220 if (mounted) {
1221 dput(path->dentry);
1222 if (need_mntput)
1223 mntput(path->mnt);
1224 path->mnt = mounted;
1225 path->dentry = dget(mounted->mnt_root);
1226 need_mntput = true;
1227 continue;
1228 }
1229
1230 /* Something is mounted on this dentry in another
1231 * namespace and/or whatever was mounted there in this
1232 * namespace got unmounted before lookup_mnt() could
1233 * get it */
1234 }
1235
1236 /* Handle an automount point */
1237 if (managed & DCACHE_NEED_AUTOMOUNT) {
1238 ret = follow_automount(path, nd, &need_mntput);
1239 if (ret < 0)
1240 break;
1241 continue;
1242 }
1243
1244 /* We didn't change the current path point */
1245 break;
1246 }
1247
1248 if (need_mntput && path->mnt == mnt)
1249 mntput(path->mnt);
1250 if (ret == -EISDIR || !ret)
1251 ret = 1;
1252 if (need_mntput)
1253 nd->flags |= LOOKUP_JUMPED;
1254 if (unlikely(ret < 0))
1255 path_put_conditional(path, nd);
1256 return ret;
1257 }
1258
1259 int follow_down_one(struct path *path)
1260 {
1261 struct vfsmount *mounted;
1262
1263 mounted = lookup_mnt(path);
1264 if (mounted) {
1265 dput(path->dentry);
1266 mntput(path->mnt);
1267 path->mnt = mounted;
1268 path->dentry = dget(mounted->mnt_root);
1269 return 1;
1270 }
1271 return 0;
1272 }
1273 EXPORT_SYMBOL(follow_down_one);
1274
1275 static inline int managed_dentry_rcu(const struct path *path)
1276 {
1277 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1278 path->dentry->d_op->d_manage(path, true) : 0;
1279 }
1280
1281 /*
1282 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1283 * we meet a managed dentry that would need blocking.
1284 */
1285 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1286 struct inode **inode, unsigned *seqp)
1287 {
1288 for (;;) {
1289 struct mount *mounted;
1290 /*
1291 * Don't forget we might have a non-mountpoint managed dentry
1292 * that wants to block transit.
1293 */
1294 switch (managed_dentry_rcu(path)) {
1295 case -ECHILD:
1296 default:
1297 return false;
1298 case -EISDIR:
1299 return true;
1300 case 0:
1301 break;
1302 }
1303
1304 if (!d_mountpoint(path->dentry))
1305 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1306
1307 mounted = __lookup_mnt(path->mnt, path->dentry);
1308 if (!mounted)
1309 break;
1310 path->mnt = &mounted->mnt;
1311 path->dentry = mounted->mnt.mnt_root;
1312 nd->flags |= LOOKUP_JUMPED;
1313 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1314 /*
1315 * Update the inode too. We don't need to re-check the
1316 * dentry sequence number here after this d_inode read,
1317 * because a mount-point is always pinned.
1318 */
1319 *inode = path->dentry->d_inode;
1320 }
1321 return !read_seqretry(&mount_lock, nd->m_seq) &&
1322 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1323 }
1324
1325 static int follow_dotdot_rcu(struct nameidata *nd)
1326 {
1327 struct inode *inode = nd->inode;
1328
1329 while (1) {
1330 if (path_equal(&nd->path, &nd->root))
1331 break;
1332 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1333 struct dentry *old = nd->path.dentry;
1334 struct dentry *parent = old->d_parent;
1335 unsigned seq;
1336
1337 inode = parent->d_inode;
1338 seq = read_seqcount_begin(&parent->d_seq);
1339 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1340 return -ECHILD;
1341 nd->path.dentry = parent;
1342 nd->seq = seq;
1343 if (unlikely(!path_connected(&nd->path)))
1344 return -ENOENT;
1345 break;
1346 } else {
1347 struct mount *mnt = real_mount(nd->path.mnt);
1348 struct mount *mparent = mnt->mnt_parent;
1349 struct dentry *mountpoint = mnt->mnt_mountpoint;
1350 struct inode *inode2 = mountpoint->d_inode;
1351 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1352 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1353 return -ECHILD;
1354 if (&mparent->mnt == nd->path.mnt)
1355 break;
1356 /* we know that mountpoint was pinned */
1357 nd->path.dentry = mountpoint;
1358 nd->path.mnt = &mparent->mnt;
1359 inode = inode2;
1360 nd->seq = seq;
1361 }
1362 }
1363 while (unlikely(d_mountpoint(nd->path.dentry))) {
1364 struct mount *mounted;
1365 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1366 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1367 return -ECHILD;
1368 if (!mounted)
1369 break;
1370 nd->path.mnt = &mounted->mnt;
1371 nd->path.dentry = mounted->mnt.mnt_root;
1372 inode = nd->path.dentry->d_inode;
1373 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1374 }
1375 nd->inode = inode;
1376 return 0;
1377 }
1378
1379 /*
1380 * Follow down to the covering mount currently visible to userspace. At each
1381 * point, the filesystem owning that dentry may be queried as to whether the
1382 * caller is permitted to proceed or not.
1383 */
1384 int follow_down(struct path *path)
1385 {
1386 unsigned managed;
1387 int ret;
1388
1389 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1390 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1391 /* Allow the filesystem to manage the transit without i_mutex
1392 * being held.
1393 *
1394 * We indicate to the filesystem if someone is trying to mount
1395 * something here. This gives autofs the chance to deny anyone
1396 * other than its daemon the right to mount on its
1397 * superstructure.
1398 *
1399 * The filesystem may sleep at this point.
1400 */
1401 if (managed & DCACHE_MANAGE_TRANSIT) {
1402 BUG_ON(!path->dentry->d_op);
1403 BUG_ON(!path->dentry->d_op->d_manage);
1404 ret = path->dentry->d_op->d_manage(path, false);
1405 if (ret < 0)
1406 return ret == -EISDIR ? 0 : ret;
1407 }
1408
1409 /* Transit to a mounted filesystem. */
1410 if (managed & DCACHE_MOUNTED) {
1411 struct vfsmount *mounted = lookup_mnt(path);
1412 if (!mounted)
1413 break;
1414 dput(path->dentry);
1415 mntput(path->mnt);
1416 path->mnt = mounted;
1417 path->dentry = dget(mounted->mnt_root);
1418 continue;
1419 }
1420
1421 /* Don't handle automount points here */
1422 break;
1423 }
1424 return 0;
1425 }
1426 EXPORT_SYMBOL(follow_down);
1427
1428 /*
1429 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1430 */
1431 static void follow_mount(struct path *path)
1432 {
1433 while (d_mountpoint(path->dentry)) {
1434 struct vfsmount *mounted = lookup_mnt(path);
1435 if (!mounted)
1436 break;
1437 dput(path->dentry);
1438 mntput(path->mnt);
1439 path->mnt = mounted;
1440 path->dentry = dget(mounted->mnt_root);
1441 }
1442 }
1443
1444 static int path_parent_directory(struct path *path)
1445 {
1446 struct dentry *old = path->dentry;
1447 /* rare case of legitimate dget_parent()... */
1448 path->dentry = dget_parent(path->dentry);
1449 dput(old);
1450 if (unlikely(!path_connected(path)))
1451 return -ENOENT;
1452 return 0;
1453 }
1454
1455 static int follow_dotdot(struct nameidata *nd)
1456 {
1457 while(1) {
1458 if (nd->path.dentry == nd->root.dentry &&
1459 nd->path.mnt == nd->root.mnt) {
1460 break;
1461 }
1462 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1463 int ret = path_parent_directory(&nd->path);
1464 if (ret)
1465 return ret;
1466 break;
1467 }
1468 if (!follow_up(&nd->path))
1469 break;
1470 }
1471 follow_mount(&nd->path);
1472 nd->inode = nd->path.dentry->d_inode;
1473 return 0;
1474 }
1475
1476 /*
1477 * This looks up the name in dcache and possibly revalidates the found dentry.
1478 * NULL is returned if the dentry does not exist in the cache.
1479 */
1480 static struct dentry *lookup_dcache(const struct qstr *name,
1481 struct dentry *dir,
1482 unsigned int flags)
1483 {
1484 struct dentry *dentry = d_lookup(dir, name);
1485 if (dentry) {
1486 int error = d_revalidate(dentry, flags);
1487 if (unlikely(error <= 0)) {
1488 if (!error)
1489 d_invalidate(dentry);
1490 dput(dentry);
1491 return ERR_PTR(error);
1492 }
1493 }
1494 return dentry;
1495 }
1496
1497 /*
1498 * Call i_op->lookup on the dentry. The dentry must be negative and
1499 * unhashed.
1500 *
1501 * dir->d_inode->i_mutex must be held
1502 */
1503 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1504 unsigned int flags)
1505 {
1506 struct dentry *old;
1507
1508 /* Don't create child dentry for a dead directory. */
1509 if (unlikely(IS_DEADDIR(dir))) {
1510 dput(dentry);
1511 return ERR_PTR(-ENOENT);
1512 }
1513
1514 old = dir->i_op->lookup(dir, dentry, flags);
1515 if (unlikely(old)) {
1516 dput(dentry);
1517 dentry = old;
1518 }
1519 return dentry;
1520 }
1521
1522 static struct dentry *__lookup_hash(const struct qstr *name,
1523 struct dentry *base, unsigned int flags)
1524 {
1525 struct dentry *dentry = lookup_dcache(name, base, flags);
1526
1527 if (dentry)
1528 return dentry;
1529
1530 dentry = d_alloc(base, name);
1531 if (unlikely(!dentry))
1532 return ERR_PTR(-ENOMEM);
1533
1534 return lookup_real(base->d_inode, dentry, flags);
1535 }
1536
1537 static int lookup_fast(struct nameidata *nd,
1538 struct path *path, struct inode **inode,
1539 unsigned *seqp)
1540 {
1541 struct vfsmount *mnt = nd->path.mnt;
1542 struct dentry *dentry, *parent = nd->path.dentry;
1543 int status = 1;
1544 int err;
1545
1546 /*
1547 * Rename seqlock is not required here because in the off chance
1548 * of a false negative due to a concurrent rename, the caller is
1549 * going to fall back to non-racy lookup.
1550 */
1551 if (nd->flags & LOOKUP_RCU) {
1552 unsigned seq;
1553 bool negative;
1554 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1555 if (unlikely(!dentry)) {
1556 if (unlazy_walk(nd))
1557 return -ECHILD;
1558 return 0;
1559 }
1560
1561 /*
1562 * This sequence count validates that the inode matches
1563 * the dentry name information from lookup.
1564 */
1565 *inode = d_backing_inode(dentry);
1566 negative = d_is_negative(dentry);
1567 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1568 return -ECHILD;
1569
1570 /*
1571 * This sequence count validates that the parent had no
1572 * changes while we did the lookup of the dentry above.
1573 *
1574 * The memory barrier in read_seqcount_begin of child is
1575 * enough, we can use __read_seqcount_retry here.
1576 */
1577 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1578 return -ECHILD;
1579
1580 *seqp = seq;
1581 status = d_revalidate(dentry, nd->flags);
1582 if (likely(status > 0)) {
1583 /*
1584 * Note: do negative dentry check after revalidation in
1585 * case that drops it.
1586 */
1587 if (unlikely(negative))
1588 return -ENOENT;
1589 path->mnt = mnt;
1590 path->dentry = dentry;
1591 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1592 return 1;
1593 }
1594 if (unlazy_child(nd, dentry, seq))
1595 return -ECHILD;
1596 if (unlikely(status == -ECHILD))
1597 /* we'd been told to redo it in non-rcu mode */
1598 status = d_revalidate(dentry, nd->flags);
1599 } else {
1600 dentry = __d_lookup(parent, &nd->last);
1601 if (unlikely(!dentry))
1602 return 0;
1603 status = d_revalidate(dentry, nd->flags);
1604 }
1605 if (unlikely(status <= 0)) {
1606 if (!status)
1607 d_invalidate(dentry);
1608 dput(dentry);
1609 return status;
1610 }
1611 if (unlikely(d_is_negative(dentry))) {
1612 dput(dentry);
1613 return -ENOENT;
1614 }
1615
1616 path->mnt = mnt;
1617 path->dentry = dentry;
1618 err = follow_managed(path, nd);
1619 if (likely(err > 0))
1620 *inode = d_backing_inode(path->dentry);
1621 return err;
1622 }
1623
1624 /* Fast lookup failed, do it the slow way */
1625 static struct dentry *lookup_slow(const struct qstr *name,
1626 struct dentry *dir,
1627 unsigned int flags)
1628 {
1629 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1630 struct inode *inode = dir->d_inode;
1631 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1632
1633 inode_lock_shared(inode);
1634 /* Don't go there if it's already dead */
1635 if (unlikely(IS_DEADDIR(inode)))
1636 goto out;
1637 again:
1638 dentry = d_alloc_parallel(dir, name, &wq);
1639 if (IS_ERR(dentry))
1640 goto out;
1641 if (unlikely(!d_in_lookup(dentry))) {
1642 if (!(flags & LOOKUP_NO_REVAL)) {
1643 int error = d_revalidate(dentry, flags);
1644 if (unlikely(error <= 0)) {
1645 if (!error) {
1646 d_invalidate(dentry);
1647 dput(dentry);
1648 goto again;
1649 }
1650 dput(dentry);
1651 dentry = ERR_PTR(error);
1652 }
1653 }
1654 } else {
1655 old = inode->i_op->lookup(inode, dentry, flags);
1656 d_lookup_done(dentry);
1657 if (unlikely(old)) {
1658 dput(dentry);
1659 dentry = old;
1660 }
1661 }
1662 out:
1663 inode_unlock_shared(inode);
1664 return dentry;
1665 }
1666
1667 static inline int may_lookup(struct nameidata *nd)
1668 {
1669 if (nd->flags & LOOKUP_RCU) {
1670 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1671 if (err != -ECHILD)
1672 return err;
1673 if (unlazy_walk(nd))
1674 return -ECHILD;
1675 }
1676 return inode_permission(nd->inode, MAY_EXEC);
1677 }
1678
1679 static inline int handle_dots(struct nameidata *nd, int type)
1680 {
1681 if (type == LAST_DOTDOT) {
1682 if (!nd->root.mnt)
1683 set_root(nd);
1684 if (nd->flags & LOOKUP_RCU) {
1685 return follow_dotdot_rcu(nd);
1686 } else
1687 return follow_dotdot(nd);
1688 }
1689 return 0;
1690 }
1691
1692 static int pick_link(struct nameidata *nd, struct path *link,
1693 struct inode *inode, unsigned seq)
1694 {
1695 int error;
1696 struct saved *last;
1697 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1698 path_to_nameidata(link, nd);
1699 return -ELOOP;
1700 }
1701 if (!(nd->flags & LOOKUP_RCU)) {
1702 if (link->mnt == nd->path.mnt)
1703 mntget(link->mnt);
1704 }
1705 error = nd_alloc_stack(nd);
1706 if (unlikely(error)) {
1707 if (error == -ECHILD) {
1708 if (unlikely(!legitimize_path(nd, link, seq))) {
1709 drop_links(nd);
1710 nd->depth = 0;
1711 nd->flags &= ~LOOKUP_RCU;
1712 nd->path.mnt = NULL;
1713 nd->path.dentry = NULL;
1714 if (!(nd->flags & LOOKUP_ROOT))
1715 nd->root.mnt = NULL;
1716 rcu_read_unlock();
1717 } else if (likely(unlazy_walk(nd)) == 0)
1718 error = nd_alloc_stack(nd);
1719 }
1720 if (error) {
1721 path_put(link);
1722 return error;
1723 }
1724 }
1725
1726 last = nd->stack + nd->depth++;
1727 last->link = *link;
1728 clear_delayed_call(&last->done);
1729 nd->link_inode = inode;
1730 last->seq = seq;
1731 return 1;
1732 }
1733
1734 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1735
1736 /*
1737 * Do we need to follow links? We _really_ want to be able
1738 * to do this check without having to look at inode->i_op,
1739 * so we keep a cache of "no, this doesn't need follow_link"
1740 * for the common case.
1741 */
1742 static inline int step_into(struct nameidata *nd, struct path *path,
1743 int flags, struct inode *inode, unsigned seq)
1744 {
1745 if (!(flags & WALK_MORE) && nd->depth)
1746 put_link(nd);
1747 if (likely(!d_is_symlink(path->dentry)) ||
1748 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1749 /* not a symlink or should not follow */
1750 path_to_nameidata(path, nd);
1751 nd->inode = inode;
1752 nd->seq = seq;
1753 return 0;
1754 }
1755 /* make sure that d_is_symlink above matches inode */
1756 if (nd->flags & LOOKUP_RCU) {
1757 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1758 return -ECHILD;
1759 }
1760 return pick_link(nd, path, inode, seq);
1761 }
1762
1763 static int walk_component(struct nameidata *nd, int flags)
1764 {
1765 struct path path;
1766 struct inode *inode;
1767 unsigned seq;
1768 int err;
1769 /*
1770 * "." and ".." are special - ".." especially so because it has
1771 * to be able to know about the current root directory and
1772 * parent relationships.
1773 */
1774 if (unlikely(nd->last_type != LAST_NORM)) {
1775 err = handle_dots(nd, nd->last_type);
1776 if (!(flags & WALK_MORE) && nd->depth)
1777 put_link(nd);
1778 return err;
1779 }
1780 err = lookup_fast(nd, &path, &inode, &seq);
1781 if (unlikely(err <= 0)) {
1782 if (err < 0)
1783 return err;
1784 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1785 nd->flags);
1786 if (IS_ERR(path.dentry))
1787 return PTR_ERR(path.dentry);
1788
1789 path.mnt = nd->path.mnt;
1790 err = follow_managed(&path, nd);
1791 if (unlikely(err < 0))
1792 return err;
1793
1794 if (unlikely(d_is_negative(path.dentry))) {
1795 path_to_nameidata(&path, nd);
1796 return -ENOENT;
1797 }
1798
1799 seq = 0; /* we are already out of RCU mode */
1800 inode = d_backing_inode(path.dentry);
1801 }
1802
1803 return step_into(nd, &path, flags, inode, seq);
1804 }
1805
1806 /*
1807 * We can do the critical dentry name comparison and hashing
1808 * operations one word at a time, but we are limited to:
1809 *
1810 * - Architectures with fast unaligned word accesses. We could
1811 * do a "get_unaligned()" if this helps and is sufficiently
1812 * fast.
1813 *
1814 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1815 * do not trap on the (extremely unlikely) case of a page
1816 * crossing operation.
1817 *
1818 * - Furthermore, we need an efficient 64-bit compile for the
1819 * 64-bit case in order to generate the "number of bytes in
1820 * the final mask". Again, that could be replaced with a
1821 * efficient population count instruction or similar.
1822 */
1823 #ifdef CONFIG_DCACHE_WORD_ACCESS
1824
1825 #include <asm/word-at-a-time.h>
1826
1827 #ifdef HASH_MIX
1828
1829 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1830
1831 #elif defined(CONFIG_64BIT)
1832 /*
1833 * Register pressure in the mixing function is an issue, particularly
1834 * on 32-bit x86, but almost any function requires one state value and
1835 * one temporary. Instead, use a function designed for two state values
1836 * and no temporaries.
1837 *
1838 * This function cannot create a collision in only two iterations, so
1839 * we have two iterations to achieve avalanche. In those two iterations,
1840 * we have six layers of mixing, which is enough to spread one bit's
1841 * influence out to 2^6 = 64 state bits.
1842 *
1843 * Rotate constants are scored by considering either 64 one-bit input
1844 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1845 * probability of that delta causing a change to each of the 128 output
1846 * bits, using a sample of random initial states.
1847 *
1848 * The Shannon entropy of the computed probabilities is then summed
1849 * to produce a score. Ideally, any input change has a 50% chance of
1850 * toggling any given output bit.
1851 *
1852 * Mixing scores (in bits) for (12,45):
1853 * Input delta: 1-bit 2-bit
1854 * 1 round: 713.3 42542.6
1855 * 2 rounds: 2753.7 140389.8
1856 * 3 rounds: 5954.1 233458.2
1857 * 4 rounds: 7862.6 256672.2
1858 * Perfect: 8192 258048
1859 * (64*128) (64*63/2 * 128)
1860 */
1861 #define HASH_MIX(x, y, a) \
1862 ( x ^= (a), \
1863 y ^= x, x = rol64(x,12),\
1864 x += y, y = rol64(y,45),\
1865 y *= 9 )
1866
1867 /*
1868 * Fold two longs into one 32-bit hash value. This must be fast, but
1869 * latency isn't quite as critical, as there is a fair bit of additional
1870 * work done before the hash value is used.
1871 */
1872 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1873 {
1874 y ^= x * GOLDEN_RATIO_64;
1875 y *= GOLDEN_RATIO_64;
1876 return y >> 32;
1877 }
1878
1879 #else /* 32-bit case */
1880
1881 /*
1882 * Mixing scores (in bits) for (7,20):
1883 * Input delta: 1-bit 2-bit
1884 * 1 round: 330.3 9201.6
1885 * 2 rounds: 1246.4 25475.4
1886 * 3 rounds: 1907.1 31295.1
1887 * 4 rounds: 2042.3 31718.6
1888 * Perfect: 2048 31744
1889 * (32*64) (32*31/2 * 64)
1890 */
1891 #define HASH_MIX(x, y, a) \
1892 ( x ^= (a), \
1893 y ^= x, x = rol32(x, 7),\
1894 x += y, y = rol32(y,20),\
1895 y *= 9 )
1896
1897 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1898 {
1899 /* Use arch-optimized multiply if one exists */
1900 return __hash_32(y ^ __hash_32(x));
1901 }
1902
1903 #endif
1904
1905 /*
1906 * Return the hash of a string of known length. This is carfully
1907 * designed to match hash_name(), which is the more critical function.
1908 * In particular, we must end by hashing a final word containing 0..7
1909 * payload bytes, to match the way that hash_name() iterates until it
1910 * finds the delimiter after the name.
1911 */
1912 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1913 {
1914 unsigned long a, x = 0, y = (unsigned long)salt;
1915
1916 for (;;) {
1917 if (!len)
1918 goto done;
1919 a = load_unaligned_zeropad(name);
1920 if (len < sizeof(unsigned long))
1921 break;
1922 HASH_MIX(x, y, a);
1923 name += sizeof(unsigned long);
1924 len -= sizeof(unsigned long);
1925 }
1926 x ^= a & bytemask_from_count(len);
1927 done:
1928 return fold_hash(x, y);
1929 }
1930 EXPORT_SYMBOL(full_name_hash);
1931
1932 /* Return the "hash_len" (hash and length) of a null-terminated string */
1933 u64 hashlen_string(const void *salt, const char *name)
1934 {
1935 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1936 unsigned long adata, mask, len;
1937 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1938
1939 len = 0;
1940 goto inside;
1941
1942 do {
1943 HASH_MIX(x, y, a);
1944 len += sizeof(unsigned long);
1945 inside:
1946 a = load_unaligned_zeropad(name+len);
1947 } while (!has_zero(a, &adata, &constants));
1948
1949 adata = prep_zero_mask(a, adata, &constants);
1950 mask = create_zero_mask(adata);
1951 x ^= a & zero_bytemask(mask);
1952
1953 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1954 }
1955 EXPORT_SYMBOL(hashlen_string);
1956
1957 /*
1958 * Calculate the length and hash of the path component, and
1959 * return the "hash_len" as the result.
1960 */
1961 static inline u64 hash_name(const void *salt, const char *name)
1962 {
1963 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1964 unsigned long adata, bdata, mask, len;
1965 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1966
1967 len = 0;
1968 goto inside;
1969
1970 do {
1971 HASH_MIX(x, y, a);
1972 len += sizeof(unsigned long);
1973 inside:
1974 a = load_unaligned_zeropad(name+len);
1975 b = a ^ REPEAT_BYTE('/');
1976 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1977
1978 adata = prep_zero_mask(a, adata, &constants);
1979 bdata = prep_zero_mask(b, bdata, &constants);
1980 mask = create_zero_mask(adata | bdata);
1981 x ^= a & zero_bytemask(mask);
1982
1983 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1984 }
1985
1986 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1987
1988 /* Return the hash of a string of known length */
1989 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1990 {
1991 unsigned long hash = init_name_hash(salt);
1992 while (len--)
1993 hash = partial_name_hash((unsigned char)*name++, hash);
1994 return end_name_hash(hash);
1995 }
1996 EXPORT_SYMBOL(full_name_hash);
1997
1998 /* Return the "hash_len" (hash and length) of a null-terminated string */
1999 u64 hashlen_string(const void *salt, const char *name)
2000 {
2001 unsigned long hash = init_name_hash(salt);
2002 unsigned long len = 0, c;
2003
2004 c = (unsigned char)*name;
2005 while (c) {
2006 len++;
2007 hash = partial_name_hash(c, hash);
2008 c = (unsigned char)name[len];
2009 }
2010 return hashlen_create(end_name_hash(hash), len);
2011 }
2012 EXPORT_SYMBOL(hashlen_string);
2013
2014 /*
2015 * We know there's a real path component here of at least
2016 * one character.
2017 */
2018 static inline u64 hash_name(const void *salt, const char *name)
2019 {
2020 unsigned long hash = init_name_hash(salt);
2021 unsigned long len = 0, c;
2022
2023 c = (unsigned char)*name;
2024 do {
2025 len++;
2026 hash = partial_name_hash(c, hash);
2027 c = (unsigned char)name[len];
2028 } while (c && c != '/');
2029 return hashlen_create(end_name_hash(hash), len);
2030 }
2031
2032 #endif
2033
2034 /*
2035 * Name resolution.
2036 * This is the basic name resolution function, turning a pathname into
2037 * the final dentry. We expect 'base' to be positive and a directory.
2038 *
2039 * Returns 0 and nd will have valid dentry and mnt on success.
2040 * Returns error and drops reference to input namei data on failure.
2041 */
2042 static int link_path_walk(const char *name, struct nameidata *nd)
2043 {
2044 int err;
2045
2046 while (*name=='/')
2047 name++;
2048 if (!*name)
2049 return 0;
2050
2051 /* At this point we know we have a real path component. */
2052 for(;;) {
2053 u64 hash_len;
2054 int type;
2055
2056 err = may_lookup(nd);
2057 if (err)
2058 return err;
2059
2060 hash_len = hash_name(nd->path.dentry, name);
2061
2062 type = LAST_NORM;
2063 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2064 case 2:
2065 if (name[1] == '.') {
2066 type = LAST_DOTDOT;
2067 nd->flags |= LOOKUP_JUMPED;
2068 }
2069 break;
2070 case 1:
2071 type = LAST_DOT;
2072 }
2073 if (likely(type == LAST_NORM)) {
2074 struct dentry *parent = nd->path.dentry;
2075 nd->flags &= ~LOOKUP_JUMPED;
2076 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2077 struct qstr this = { { .hash_len = hash_len }, .name = name };
2078 err = parent->d_op->d_hash(parent, &this);
2079 if (err < 0)
2080 return err;
2081 hash_len = this.hash_len;
2082 name = this.name;
2083 }
2084 }
2085
2086 nd->last.hash_len = hash_len;
2087 nd->last.name = name;
2088 nd->last_type = type;
2089
2090 name += hashlen_len(hash_len);
2091 if (!*name)
2092 goto OK;
2093 /*
2094 * If it wasn't NUL, we know it was '/'. Skip that
2095 * slash, and continue until no more slashes.
2096 */
2097 do {
2098 name++;
2099 } while (unlikely(*name == '/'));
2100 if (unlikely(!*name)) {
2101 OK:
2102 /* pathname body, done */
2103 if (!nd->depth)
2104 return 0;
2105 name = nd->stack[nd->depth - 1].name;
2106 /* trailing symlink, done */
2107 if (!name)
2108 return 0;
2109 /* last component of nested symlink */
2110 err = walk_component(nd, WALK_FOLLOW);
2111 } else {
2112 /* not the last component */
2113 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2114 }
2115 if (err < 0)
2116 return err;
2117
2118 if (err) {
2119 const char *s = get_link(nd);
2120
2121 if (IS_ERR(s))
2122 return PTR_ERR(s);
2123 err = 0;
2124 if (unlikely(!s)) {
2125 /* jumped */
2126 put_link(nd);
2127 } else {
2128 nd->stack[nd->depth - 1].name = name;
2129 name = s;
2130 continue;
2131 }
2132 }
2133 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2134 if (nd->flags & LOOKUP_RCU) {
2135 if (unlazy_walk(nd))
2136 return -ECHILD;
2137 }
2138 return -ENOTDIR;
2139 }
2140 }
2141 }
2142
2143 static const char *path_init(struct nameidata *nd, unsigned flags)
2144 {
2145 const char *s = nd->name->name;
2146
2147 if (!*s)
2148 flags &= ~LOOKUP_RCU;
2149
2150 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2151 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2152 nd->depth = 0;
2153 if (flags & LOOKUP_ROOT) {
2154 struct dentry *root = nd->root.dentry;
2155 struct inode *inode = root->d_inode;
2156 if (*s && unlikely(!d_can_lookup(root)))
2157 return ERR_PTR(-ENOTDIR);
2158 nd->path = nd->root;
2159 nd->inode = inode;
2160 if (flags & LOOKUP_RCU) {
2161 rcu_read_lock();
2162 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2163 nd->root_seq = nd->seq;
2164 nd->m_seq = read_seqbegin(&mount_lock);
2165 } else {
2166 path_get(&nd->path);
2167 }
2168 return s;
2169 }
2170
2171 nd->root.mnt = NULL;
2172 nd->path.mnt = NULL;
2173 nd->path.dentry = NULL;
2174
2175 nd->m_seq = read_seqbegin(&mount_lock);
2176 if (*s == '/') {
2177 if (flags & LOOKUP_RCU)
2178 rcu_read_lock();
2179 set_root(nd);
2180 if (likely(!nd_jump_root(nd)))
2181 return s;
2182 nd->root.mnt = NULL;
2183 rcu_read_unlock();
2184 return ERR_PTR(-ECHILD);
2185 } else if (nd->dfd == AT_FDCWD) {
2186 if (flags & LOOKUP_RCU) {
2187 struct fs_struct *fs = current->fs;
2188 unsigned seq;
2189
2190 rcu_read_lock();
2191
2192 do {
2193 seq = read_seqcount_begin(&fs->seq);
2194 nd->path = fs->pwd;
2195 nd->inode = nd->path.dentry->d_inode;
2196 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2197 } while (read_seqcount_retry(&fs->seq, seq));
2198 } else {
2199 get_fs_pwd(current->fs, &nd->path);
2200 nd->inode = nd->path.dentry->d_inode;
2201 }
2202 return s;
2203 } else {
2204 /* Caller must check execute permissions on the starting path component */
2205 struct fd f = fdget_raw(nd->dfd);
2206 struct dentry *dentry;
2207
2208 if (!f.file)
2209 return ERR_PTR(-EBADF);
2210
2211 dentry = f.file->f_path.dentry;
2212
2213 if (*s) {
2214 if (!d_can_lookup(dentry)) {
2215 fdput(f);
2216 return ERR_PTR(-ENOTDIR);
2217 }
2218 }
2219
2220 nd->path = f.file->f_path;
2221 if (flags & LOOKUP_RCU) {
2222 rcu_read_lock();
2223 nd->inode = nd->path.dentry->d_inode;
2224 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2225 } else {
2226 path_get(&nd->path);
2227 nd->inode = nd->path.dentry->d_inode;
2228 }
2229 fdput(f);
2230 return s;
2231 }
2232 }
2233
2234 static const char *trailing_symlink(struct nameidata *nd)
2235 {
2236 const char *s;
2237 int error = may_follow_link(nd);
2238 if (unlikely(error))
2239 return ERR_PTR(error);
2240 nd->flags |= LOOKUP_PARENT;
2241 nd->stack[0].name = NULL;
2242 s = get_link(nd);
2243 return s ? s : "";
2244 }
2245
2246 static inline int lookup_last(struct nameidata *nd)
2247 {
2248 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2249 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2250
2251 nd->flags &= ~LOOKUP_PARENT;
2252 return walk_component(nd, 0);
2253 }
2254
2255 static int handle_lookup_down(struct nameidata *nd)
2256 {
2257 struct path path = nd->path;
2258 struct inode *inode = nd->inode;
2259 unsigned seq = nd->seq;
2260 int err;
2261
2262 if (nd->flags & LOOKUP_RCU) {
2263 /*
2264 * don't bother with unlazy_walk on failure - we are
2265 * at the very beginning of walk, so we lose nothing
2266 * if we simply redo everything in non-RCU mode
2267 */
2268 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2269 return -ECHILD;
2270 } else {
2271 dget(path.dentry);
2272 err = follow_managed(&path, nd);
2273 if (unlikely(err < 0))
2274 return err;
2275 inode = d_backing_inode(path.dentry);
2276 seq = 0;
2277 }
2278 path_to_nameidata(&path, nd);
2279 nd->inode = inode;
2280 nd->seq = seq;
2281 return 0;
2282 }
2283
2284 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2285 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2286 {
2287 const char *s = path_init(nd, flags);
2288 int err;
2289
2290 if (IS_ERR(s))
2291 return PTR_ERR(s);
2292
2293 if (unlikely(flags & LOOKUP_DOWN)) {
2294 err = handle_lookup_down(nd);
2295 if (unlikely(err < 0)) {
2296 terminate_walk(nd);
2297 return err;
2298 }
2299 }
2300
2301 while (!(err = link_path_walk(s, nd))
2302 && ((err = lookup_last(nd)) > 0)) {
2303 s = trailing_symlink(nd);
2304 if (IS_ERR(s)) {
2305 err = PTR_ERR(s);
2306 break;
2307 }
2308 }
2309 if (!err)
2310 err = complete_walk(nd);
2311
2312 if (!err && nd->flags & LOOKUP_DIRECTORY)
2313 if (!d_can_lookup(nd->path.dentry))
2314 err = -ENOTDIR;
2315 if (!err) {
2316 *path = nd->path;
2317 nd->path.mnt = NULL;
2318 nd->path.dentry = NULL;
2319 }
2320 terminate_walk(nd);
2321 return err;
2322 }
2323
2324 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2325 struct path *path, struct path *root)
2326 {
2327 int retval;
2328 struct nameidata nd;
2329 if (IS_ERR(name))
2330 return PTR_ERR(name);
2331 if (unlikely(root)) {
2332 nd.root = *root;
2333 flags |= LOOKUP_ROOT;
2334 }
2335 set_nameidata(&nd, dfd, name);
2336 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2337 if (unlikely(retval == -ECHILD))
2338 retval = path_lookupat(&nd, flags, path);
2339 if (unlikely(retval == -ESTALE))
2340 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2341
2342 if (likely(!retval))
2343 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2344 restore_nameidata();
2345 putname(name);
2346 return retval;
2347 }
2348
2349 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2350 static int path_parentat(struct nameidata *nd, unsigned flags,
2351 struct path *parent)
2352 {
2353 const char *s = path_init(nd, flags);
2354 int err;
2355 if (IS_ERR(s))
2356 return PTR_ERR(s);
2357 err = link_path_walk(s, nd);
2358 if (!err)
2359 err = complete_walk(nd);
2360 if (!err) {
2361 *parent = nd->path;
2362 nd->path.mnt = NULL;
2363 nd->path.dentry = NULL;
2364 }
2365 terminate_walk(nd);
2366 return err;
2367 }
2368
2369 static struct filename *filename_parentat(int dfd, struct filename *name,
2370 unsigned int flags, struct path *parent,
2371 struct qstr *last, int *type)
2372 {
2373 int retval;
2374 struct nameidata nd;
2375
2376 if (IS_ERR(name))
2377 return name;
2378 set_nameidata(&nd, dfd, name);
2379 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2380 if (unlikely(retval == -ECHILD))
2381 retval = path_parentat(&nd, flags, parent);
2382 if (unlikely(retval == -ESTALE))
2383 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2384 if (likely(!retval)) {
2385 *last = nd.last;
2386 *type = nd.last_type;
2387 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2388 } else {
2389 putname(name);
2390 name = ERR_PTR(retval);
2391 }
2392 restore_nameidata();
2393 return name;
2394 }
2395
2396 /* does lookup, returns the object with parent locked */
2397 struct dentry *kern_path_locked(const char *name, struct path *path)
2398 {
2399 struct filename *filename;
2400 struct dentry *d;
2401 struct qstr last;
2402 int type;
2403
2404 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2405 &last, &type);
2406 if (IS_ERR(filename))
2407 return ERR_CAST(filename);
2408 if (unlikely(type != LAST_NORM)) {
2409 path_put(path);
2410 putname(filename);
2411 return ERR_PTR(-EINVAL);
2412 }
2413 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2414 d = __lookup_hash(&last, path->dentry, 0);
2415 if (IS_ERR(d)) {
2416 inode_unlock(path->dentry->d_inode);
2417 path_put(path);
2418 }
2419 putname(filename);
2420 return d;
2421 }
2422
2423 int kern_path(const char *name, unsigned int flags, struct path *path)
2424 {
2425 return filename_lookup(AT_FDCWD, getname_kernel(name),
2426 flags, path, NULL);
2427 }
2428 EXPORT_SYMBOL(kern_path);
2429
2430 /**
2431 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2432 * @dentry: pointer to dentry of the base directory
2433 * @mnt: pointer to vfs mount of the base directory
2434 * @name: pointer to file name
2435 * @flags: lookup flags
2436 * @path: pointer to struct path to fill
2437 */
2438 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2439 const char *name, unsigned int flags,
2440 struct path *path)
2441 {
2442 struct path root = {.mnt = mnt, .dentry = dentry};
2443 /* the first argument of filename_lookup() is ignored with root */
2444 return filename_lookup(AT_FDCWD, getname_kernel(name),
2445 flags , path, &root);
2446 }
2447 EXPORT_SYMBOL(vfs_path_lookup);
2448
2449 /**
2450 * lookup_one_len - filesystem helper to lookup single pathname component
2451 * @name: pathname component to lookup
2452 * @base: base directory to lookup from
2453 * @len: maximum length @len should be interpreted to
2454 *
2455 * Note that this routine is purely a helper for filesystem usage and should
2456 * not be called by generic code.
2457 *
2458 * The caller must hold base->i_mutex.
2459 */
2460 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2461 {
2462 struct qstr this;
2463 unsigned int c;
2464 int err;
2465
2466 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2467
2468 this.name = name;
2469 this.len = len;
2470 this.hash = full_name_hash(base, name, len);
2471 if (!len)
2472 return ERR_PTR(-EACCES);
2473
2474 if (unlikely(name[0] == '.')) {
2475 if (len < 2 || (len == 2 && name[1] == '.'))
2476 return ERR_PTR(-EACCES);
2477 }
2478
2479 while (len--) {
2480 c = *(const unsigned char *)name++;
2481 if (c == '/' || c == '\0')
2482 return ERR_PTR(-EACCES);
2483 }
2484 /*
2485 * See if the low-level filesystem might want
2486 * to use its own hash..
2487 */
2488 if (base->d_flags & DCACHE_OP_HASH) {
2489 int err = base->d_op->d_hash(base, &this);
2490 if (err < 0)
2491 return ERR_PTR(err);
2492 }
2493
2494 err = inode_permission(base->d_inode, MAY_EXEC);
2495 if (err)
2496 return ERR_PTR(err);
2497
2498 return __lookup_hash(&this, base, 0);
2499 }
2500 EXPORT_SYMBOL(lookup_one_len);
2501
2502 /**
2503 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2504 * @name: pathname component to lookup
2505 * @base: base directory to lookup from
2506 * @len: maximum length @len should be interpreted to
2507 *
2508 * Note that this routine is purely a helper for filesystem usage and should
2509 * not be called by generic code.
2510 *
2511 * Unlike lookup_one_len, it should be called without the parent
2512 * i_mutex held, and will take the i_mutex itself if necessary.
2513 */
2514 struct dentry *lookup_one_len_unlocked(const char *name,
2515 struct dentry *base, int len)
2516 {
2517 struct qstr this;
2518 unsigned int c;
2519 int err;
2520 struct dentry *ret;
2521
2522 this.name = name;
2523 this.len = len;
2524 this.hash = full_name_hash(base, name, len);
2525 if (!len)
2526 return ERR_PTR(-EACCES);
2527
2528 if (unlikely(name[0] == '.')) {
2529 if (len < 2 || (len == 2 && name[1] == '.'))
2530 return ERR_PTR(-EACCES);
2531 }
2532
2533 while (len--) {
2534 c = *(const unsigned char *)name++;
2535 if (c == '/' || c == '\0')
2536 return ERR_PTR(-EACCES);
2537 }
2538 /*
2539 * See if the low-level filesystem might want
2540 * to use its own hash..
2541 */
2542 if (base->d_flags & DCACHE_OP_HASH) {
2543 int err = base->d_op->d_hash(base, &this);
2544 if (err < 0)
2545 return ERR_PTR(err);
2546 }
2547
2548 err = inode_permission(base->d_inode, MAY_EXEC);
2549 if (err)
2550 return ERR_PTR(err);
2551
2552 ret = lookup_dcache(&this, base, 0);
2553 if (!ret)
2554 ret = lookup_slow(&this, base, 0);
2555 return ret;
2556 }
2557 EXPORT_SYMBOL(lookup_one_len_unlocked);
2558
2559 #ifdef CONFIG_UNIX98_PTYS
2560 int path_pts(struct path *path)
2561 {
2562 /* Find something mounted on "pts" in the same directory as
2563 * the input path.
2564 */
2565 struct dentry *child, *parent;
2566 struct qstr this;
2567 int ret;
2568
2569 ret = path_parent_directory(path);
2570 if (ret)
2571 return ret;
2572
2573 parent = path->dentry;
2574 this.name = "pts";
2575 this.len = 3;
2576 child = d_hash_and_lookup(parent, &this);
2577 if (!child)
2578 return -ENOENT;
2579
2580 path->dentry = child;
2581 dput(parent);
2582 follow_mount(path);
2583 return 0;
2584 }
2585 #endif
2586
2587 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2588 struct path *path, int *empty)
2589 {
2590 return filename_lookup(dfd, getname_flags(name, flags, empty),
2591 flags, path, NULL);
2592 }
2593 EXPORT_SYMBOL(user_path_at_empty);
2594
2595 /**
2596 * mountpoint_last - look up last component for umount
2597 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2598 *
2599 * This is a special lookup_last function just for umount. In this case, we
2600 * need to resolve the path without doing any revalidation.
2601 *
2602 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2603 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2604 * in almost all cases, this lookup will be served out of the dcache. The only
2605 * cases where it won't are if nd->last refers to a symlink or the path is
2606 * bogus and it doesn't exist.
2607 *
2608 * Returns:
2609 * -error: if there was an error during lookup. This includes -ENOENT if the
2610 * lookup found a negative dentry.
2611 *
2612 * 0: if we successfully resolved nd->last and found it to not to be a
2613 * symlink that needs to be followed.
2614 *
2615 * 1: if we successfully resolved nd->last and found it to be a symlink
2616 * that needs to be followed.
2617 */
2618 static int
2619 mountpoint_last(struct nameidata *nd)
2620 {
2621 int error = 0;
2622 struct dentry *dir = nd->path.dentry;
2623 struct path path;
2624
2625 /* If we're in rcuwalk, drop out of it to handle last component */
2626 if (nd->flags & LOOKUP_RCU) {
2627 if (unlazy_walk(nd))
2628 return -ECHILD;
2629 }
2630
2631 nd->flags &= ~LOOKUP_PARENT;
2632
2633 if (unlikely(nd->last_type != LAST_NORM)) {
2634 error = handle_dots(nd, nd->last_type);
2635 if (error)
2636 return error;
2637 path.dentry = dget(nd->path.dentry);
2638 } else {
2639 path.dentry = d_lookup(dir, &nd->last);
2640 if (!path.dentry) {
2641 /*
2642 * No cached dentry. Mounted dentries are pinned in the
2643 * cache, so that means that this dentry is probably
2644 * a symlink or the path doesn't actually point
2645 * to a mounted dentry.
2646 */
2647 path.dentry = lookup_slow(&nd->last, dir,
2648 nd->flags | LOOKUP_NO_REVAL);
2649 if (IS_ERR(path.dentry))
2650 return PTR_ERR(path.dentry);
2651 }
2652 }
2653 if (d_is_negative(path.dentry)) {
2654 dput(path.dentry);
2655 return -ENOENT;
2656 }
2657 path.mnt = nd->path.mnt;
2658 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2659 }
2660
2661 /**
2662 * path_mountpoint - look up a path to be umounted
2663 * @nd: lookup context
2664 * @flags: lookup flags
2665 * @path: pointer to container for result
2666 *
2667 * Look up the given name, but don't attempt to revalidate the last component.
2668 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2669 */
2670 static int
2671 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2672 {
2673 const char *s = path_init(nd, flags);
2674 int err;
2675 if (IS_ERR(s))
2676 return PTR_ERR(s);
2677 while (!(err = link_path_walk(s, nd)) &&
2678 (err = mountpoint_last(nd)) > 0) {
2679 s = trailing_symlink(nd);
2680 if (IS_ERR(s)) {
2681 err = PTR_ERR(s);
2682 break;
2683 }
2684 }
2685 if (!err) {
2686 *path = nd->path;
2687 nd->path.mnt = NULL;
2688 nd->path.dentry = NULL;
2689 follow_mount(path);
2690 }
2691 terminate_walk(nd);
2692 return err;
2693 }
2694
2695 static int
2696 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2697 unsigned int flags)
2698 {
2699 struct nameidata nd;
2700 int error;
2701 if (IS_ERR(name))
2702 return PTR_ERR(name);
2703 set_nameidata(&nd, dfd, name);
2704 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2705 if (unlikely(error == -ECHILD))
2706 error = path_mountpoint(&nd, flags, path);
2707 if (unlikely(error == -ESTALE))
2708 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2709 if (likely(!error))
2710 audit_inode(name, path->dentry, 0);
2711 restore_nameidata();
2712 putname(name);
2713 return error;
2714 }
2715
2716 /**
2717 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2718 * @dfd: directory file descriptor
2719 * @name: pathname from userland
2720 * @flags: lookup flags
2721 * @path: pointer to container to hold result
2722 *
2723 * A umount is a special case for path walking. We're not actually interested
2724 * in the inode in this situation, and ESTALE errors can be a problem. We
2725 * simply want track down the dentry and vfsmount attached at the mountpoint
2726 * and avoid revalidating the last component.
2727 *
2728 * Returns 0 and populates "path" on success.
2729 */
2730 int
2731 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2732 struct path *path)
2733 {
2734 return filename_mountpoint(dfd, getname(name), path, flags);
2735 }
2736
2737 int
2738 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2739 unsigned int flags)
2740 {
2741 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2742 }
2743 EXPORT_SYMBOL(kern_path_mountpoint);
2744
2745 int __check_sticky(struct inode *dir, struct inode *inode)
2746 {
2747 kuid_t fsuid = current_fsuid();
2748
2749 if (uid_eq(inode->i_uid, fsuid))
2750 return 0;
2751 if (uid_eq(dir->i_uid, fsuid))
2752 return 0;
2753 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2754 }
2755 EXPORT_SYMBOL(__check_sticky);
2756
2757 /*
2758 * Check whether we can remove a link victim from directory dir, check
2759 * whether the type of victim is right.
2760 * 1. We can't do it if dir is read-only (done in permission())
2761 * 2. We should have write and exec permissions on dir
2762 * 3. We can't remove anything from append-only dir
2763 * 4. We can't do anything with immutable dir (done in permission())
2764 * 5. If the sticky bit on dir is set we should either
2765 * a. be owner of dir, or
2766 * b. be owner of victim, or
2767 * c. have CAP_FOWNER capability
2768 * 6. If the victim is append-only or immutable we can't do antyhing with
2769 * links pointing to it.
2770 * 7. If the victim has an unknown uid or gid we can't change the inode.
2771 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2772 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2773 * 10. We can't remove a root or mountpoint.
2774 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2775 * nfs_async_unlink().
2776 */
2777 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2778 {
2779 struct inode *inode = d_backing_inode(victim);
2780 int error;
2781
2782 if (d_is_negative(victim))
2783 return -ENOENT;
2784 BUG_ON(!inode);
2785
2786 BUG_ON(victim->d_parent->d_inode != dir);
2787 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2788
2789 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2790 if (error)
2791 return error;
2792 if (IS_APPEND(dir))
2793 return -EPERM;
2794
2795 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2796 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2797 return -EPERM;
2798 if (isdir) {
2799 if (!d_is_dir(victim))
2800 return -ENOTDIR;
2801 if (IS_ROOT(victim))
2802 return -EBUSY;
2803 } else if (d_is_dir(victim))
2804 return -EISDIR;
2805 if (IS_DEADDIR(dir))
2806 return -ENOENT;
2807 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2808 return -EBUSY;
2809 return 0;
2810 }
2811
2812 /* Check whether we can create an object with dentry child in directory
2813 * dir.
2814 * 1. We can't do it if child already exists (open has special treatment for
2815 * this case, but since we are inlined it's OK)
2816 * 2. We can't do it if dir is read-only (done in permission())
2817 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2818 * 4. We should have write and exec permissions on dir
2819 * 5. We can't do it if dir is immutable (done in permission())
2820 */
2821 static inline int may_create(struct inode *dir, struct dentry *child)
2822 {
2823 struct user_namespace *s_user_ns;
2824 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2825 if (child->d_inode)
2826 return -EEXIST;
2827 if (IS_DEADDIR(dir))
2828 return -ENOENT;
2829 s_user_ns = dir->i_sb->s_user_ns;
2830 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2831 !kgid_has_mapping(s_user_ns, current_fsgid()))
2832 return -EOVERFLOW;
2833 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2834 }
2835
2836 /*
2837 * p1 and p2 should be directories on the same fs.
2838 */
2839 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2840 {
2841 struct dentry *p;
2842
2843 if (p1 == p2) {
2844 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2845 return NULL;
2846 }
2847
2848 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2849
2850 p = d_ancestor(p2, p1);
2851 if (p) {
2852 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2853 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2854 return p;
2855 }
2856
2857 p = d_ancestor(p1, p2);
2858 if (p) {
2859 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2860 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2861 return p;
2862 }
2863
2864 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2865 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2866 return NULL;
2867 }
2868 EXPORT_SYMBOL(lock_rename);
2869
2870 void unlock_rename(struct dentry *p1, struct dentry *p2)
2871 {
2872 inode_unlock(p1->d_inode);
2873 if (p1 != p2) {
2874 inode_unlock(p2->d_inode);
2875 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2876 }
2877 }
2878 EXPORT_SYMBOL(unlock_rename);
2879
2880 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2881 bool want_excl)
2882 {
2883 int error = may_create(dir, dentry);
2884 if (error)
2885 return error;
2886
2887 if (!dir->i_op->create)
2888 return -EACCES; /* shouldn't it be ENOSYS? */
2889 mode &= S_IALLUGO;
2890 mode |= S_IFREG;
2891 error = security_inode_create(dir, dentry, mode);
2892 if (error)
2893 return error;
2894 error = dir->i_op->create(dir, dentry, mode, want_excl);
2895 if (!error)
2896 fsnotify_create(dir, dentry);
2897 return error;
2898 }
2899 EXPORT_SYMBOL(vfs_create);
2900
2901 bool may_open_dev(const struct path *path)
2902 {
2903 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2904 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2905 }
2906
2907 static int may_open(const struct path *path, int acc_mode, int flag)
2908 {
2909 struct dentry *dentry = path->dentry;
2910 struct inode *inode = dentry->d_inode;
2911 int error;
2912
2913 if (!inode)
2914 return -ENOENT;
2915
2916 switch (inode->i_mode & S_IFMT) {
2917 case S_IFLNK:
2918 return -ELOOP;
2919 case S_IFDIR:
2920 if (acc_mode & MAY_WRITE)
2921 return -EISDIR;
2922 break;
2923 case S_IFBLK:
2924 case S_IFCHR:
2925 if (!may_open_dev(path))
2926 return -EACCES;
2927 /*FALLTHRU*/
2928 case S_IFIFO:
2929 case S_IFSOCK:
2930 flag &= ~O_TRUNC;
2931 break;
2932 }
2933
2934 error = inode_permission(inode, MAY_OPEN | acc_mode);
2935 if (error)
2936 return error;
2937
2938 /*
2939 * An append-only file must be opened in append mode for writing.
2940 */
2941 if (IS_APPEND(inode)) {
2942 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2943 return -EPERM;
2944 if (flag & O_TRUNC)
2945 return -EPERM;
2946 }
2947
2948 /* O_NOATIME can only be set by the owner or superuser */
2949 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2950 return -EPERM;
2951
2952 return 0;
2953 }
2954
2955 static int handle_truncate(struct file *filp)
2956 {
2957 const struct path *path = &filp->f_path;
2958 struct inode *inode = path->dentry->d_inode;
2959 int error = get_write_access(inode);
2960 if (error)
2961 return error;
2962 /*
2963 * Refuse to truncate files with mandatory locks held on them.
2964 */
2965 error = locks_verify_locked(filp);
2966 if (!error)
2967 error = security_path_truncate(path);
2968 if (!error) {
2969 error = do_truncate(path->dentry, 0,
2970 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2971 filp);
2972 }
2973 put_write_access(inode);
2974 return error;
2975 }
2976
2977 static inline int open_to_namei_flags(int flag)
2978 {
2979 if ((flag & O_ACCMODE) == 3)
2980 flag--;
2981 return flag;
2982 }
2983
2984 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2985 {
2986 struct user_namespace *s_user_ns;
2987 int error = security_path_mknod(dir, dentry, mode, 0);
2988 if (error)
2989 return error;
2990
2991 s_user_ns = dir->dentry->d_sb->s_user_ns;
2992 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2993 !kgid_has_mapping(s_user_ns, current_fsgid()))
2994 return -EOVERFLOW;
2995
2996 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2997 if (error)
2998 return error;
2999
3000 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3001 }
3002
3003 /*
3004 * Attempt to atomically look up, create and open a file from a negative
3005 * dentry.
3006 *
3007 * Returns 0 if successful. The file will have been created and attached to
3008 * @file by the filesystem calling finish_open().
3009 *
3010 * Returns 1 if the file was looked up only or didn't need creating. The
3011 * caller will need to perform the open themselves. @path will have been
3012 * updated to point to the new dentry. This may be negative.
3013 *
3014 * Returns an error code otherwise.
3015 */
3016 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3017 struct path *path, struct file *file,
3018 const struct open_flags *op,
3019 int open_flag, umode_t mode,
3020 int *opened)
3021 {
3022 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3023 struct inode *dir = nd->path.dentry->d_inode;
3024 int error;
3025
3026 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3027 open_flag &= ~O_TRUNC;
3028
3029 if (nd->flags & LOOKUP_DIRECTORY)
3030 open_flag |= O_DIRECTORY;
3031
3032 file->f_path.dentry = DENTRY_NOT_SET;
3033 file->f_path.mnt = nd->path.mnt;
3034 error = dir->i_op->atomic_open(dir, dentry, file,
3035 open_to_namei_flags(open_flag),
3036 mode, opened);
3037 d_lookup_done(dentry);
3038 if (!error) {
3039 /*
3040 * We didn't have the inode before the open, so check open
3041 * permission here.
3042 */
3043 int acc_mode = op->acc_mode;
3044 if (*opened & FILE_CREATED) {
3045 WARN_ON(!(open_flag & O_CREAT));
3046 fsnotify_create(dir, dentry);
3047 acc_mode = 0;
3048 }
3049 error = may_open(&file->f_path, acc_mode, open_flag);
3050 if (WARN_ON(error > 0))
3051 error = -EINVAL;
3052 } else if (error > 0) {
3053 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3054 error = -EIO;
3055 } else {
3056 if (file->f_path.dentry) {
3057 dput(dentry);
3058 dentry = file->f_path.dentry;
3059 }
3060 if (*opened & FILE_CREATED)
3061 fsnotify_create(dir, dentry);
3062 if (unlikely(d_is_negative(dentry))) {
3063 error = -ENOENT;
3064 } else {
3065 path->dentry = dentry;
3066 path->mnt = nd->path.mnt;
3067 return 1;
3068 }
3069 }
3070 }
3071 dput(dentry);
3072 return error;
3073 }
3074
3075 /*
3076 * Look up and maybe create and open the last component.
3077 *
3078 * Must be called with i_mutex held on parent.
3079 *
3080 * Returns 0 if the file was successfully atomically created (if necessary) and
3081 * opened. In this case the file will be returned attached to @file.
3082 *
3083 * Returns 1 if the file was not completely opened at this time, though lookups
3084 * and creations will have been performed and the dentry returned in @path will
3085 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3086 * specified then a negative dentry may be returned.
3087 *
3088 * An error code is returned otherwise.
3089 *
3090 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3091 * cleared otherwise prior to returning.
3092 */
3093 static int lookup_open(struct nameidata *nd, struct path *path,
3094 struct file *file,
3095 const struct open_flags *op,
3096 bool got_write, int *opened)
3097 {
3098 struct dentry *dir = nd->path.dentry;
3099 struct inode *dir_inode = dir->d_inode;
3100 int open_flag = op->open_flag;
3101 struct dentry *dentry;
3102 int error, create_error = 0;
3103 umode_t mode = op->mode;
3104 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3105
3106 if (unlikely(IS_DEADDIR(dir_inode)))
3107 return -ENOENT;
3108
3109 *opened &= ~FILE_CREATED;
3110 dentry = d_lookup(dir, &nd->last);
3111 for (;;) {
3112 if (!dentry) {
3113 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3114 if (IS_ERR(dentry))
3115 return PTR_ERR(dentry);
3116 }
3117 if (d_in_lookup(dentry))
3118 break;
3119
3120 error = d_revalidate(dentry, nd->flags);
3121 if (likely(error > 0))
3122 break;
3123 if (error)
3124 goto out_dput;
3125 d_invalidate(dentry);
3126 dput(dentry);
3127 dentry = NULL;
3128 }
3129 if (dentry->d_inode) {
3130 /* Cached positive dentry: will open in f_op->open */
3131 goto out_no_open;
3132 }
3133
3134 /*
3135 * Checking write permission is tricky, bacuse we don't know if we are
3136 * going to actually need it: O_CREAT opens should work as long as the
3137 * file exists. But checking existence breaks atomicity. The trick is
3138 * to check access and if not granted clear O_CREAT from the flags.
3139 *
3140 * Another problem is returing the "right" error value (e.g. for an
3141 * O_EXCL open we want to return EEXIST not EROFS).
3142 */
3143 if (open_flag & O_CREAT) {
3144 if (!IS_POSIXACL(dir->d_inode))
3145 mode &= ~current_umask();
3146 if (unlikely(!got_write)) {
3147 create_error = -EROFS;
3148 open_flag &= ~O_CREAT;
3149 if (open_flag & (O_EXCL | O_TRUNC))
3150 goto no_open;
3151 /* No side effects, safe to clear O_CREAT */
3152 } else {
3153 create_error = may_o_create(&nd->path, dentry, mode);
3154 if (create_error) {
3155 open_flag &= ~O_CREAT;
3156 if (open_flag & O_EXCL)
3157 goto no_open;
3158 }
3159 }
3160 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3161 unlikely(!got_write)) {
3162 /*
3163 * No O_CREATE -> atomicity not a requirement -> fall
3164 * back to lookup + open
3165 */
3166 goto no_open;
3167 }
3168
3169 if (dir_inode->i_op->atomic_open) {
3170 error = atomic_open(nd, dentry, path, file, op, open_flag,
3171 mode, opened);
3172 if (unlikely(error == -ENOENT) && create_error)
3173 error = create_error;
3174 return error;
3175 }
3176
3177 no_open:
3178 if (d_in_lookup(dentry)) {
3179 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3180 nd->flags);
3181 d_lookup_done(dentry);
3182 if (unlikely(res)) {
3183 if (IS_ERR(res)) {
3184 error = PTR_ERR(res);
3185 goto out_dput;
3186 }
3187 dput(dentry);
3188 dentry = res;
3189 }
3190 }
3191
3192 /* Negative dentry, just create the file */
3193 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3194 *opened |= FILE_CREATED;
3195 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3196 if (!dir_inode->i_op->create) {
3197 error = -EACCES;
3198 goto out_dput;
3199 }
3200 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3201 open_flag & O_EXCL);
3202 if (error)
3203 goto out_dput;
3204 fsnotify_create(dir_inode, dentry);
3205 }
3206 if (unlikely(create_error) && !dentry->d_inode) {
3207 error = create_error;
3208 goto out_dput;
3209 }
3210 out_no_open:
3211 path->dentry = dentry;
3212 path->mnt = nd->path.mnt;
3213 return 1;
3214
3215 out_dput:
3216 dput(dentry);
3217 return error;
3218 }
3219
3220 /*
3221 * Handle the last step of open()
3222 */
3223 static int do_last(struct nameidata *nd,
3224 struct file *file, const struct open_flags *op,
3225 int *opened)
3226 {
3227 struct dentry *dir = nd->path.dentry;
3228 int open_flag = op->open_flag;
3229 bool will_truncate = (open_flag & O_TRUNC) != 0;
3230 bool got_write = false;
3231 int acc_mode = op->acc_mode;
3232 unsigned seq;
3233 struct inode *inode;
3234 struct path path;
3235 int error;
3236
3237 nd->flags &= ~LOOKUP_PARENT;
3238 nd->flags |= op->intent;
3239
3240 if (nd->last_type != LAST_NORM) {
3241 error = handle_dots(nd, nd->last_type);
3242 if (unlikely(error))
3243 return error;
3244 goto finish_open;
3245 }
3246
3247 if (!(open_flag & O_CREAT)) {
3248 if (nd->last.name[nd->last.len])
3249 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3250 /* we _can_ be in RCU mode here */
3251 error = lookup_fast(nd, &path, &inode, &seq);
3252 if (likely(error > 0))
3253 goto finish_lookup;
3254
3255 if (error < 0)
3256 return error;
3257
3258 BUG_ON(nd->inode != dir->d_inode);
3259 BUG_ON(nd->flags & LOOKUP_RCU);
3260 } else {
3261 /* create side of things */
3262 /*
3263 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3264 * has been cleared when we got to the last component we are
3265 * about to look up
3266 */
3267 error = complete_walk(nd);
3268 if (error)
3269 return error;
3270
3271 audit_inode(nd->name, dir, LOOKUP_PARENT);
3272 /* trailing slashes? */
3273 if (unlikely(nd->last.name[nd->last.len]))
3274 return -EISDIR;
3275 }
3276
3277 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3278 error = mnt_want_write(nd->path.mnt);
3279 if (!error)
3280 got_write = true;
3281 /*
3282 * do _not_ fail yet - we might not need that or fail with
3283 * a different error; let lookup_open() decide; we'll be
3284 * dropping this one anyway.
3285 */
3286 }
3287 if (open_flag & O_CREAT)
3288 inode_lock(dir->d_inode);
3289 else
3290 inode_lock_shared(dir->d_inode);
3291 error = lookup_open(nd, &path, file, op, got_write, opened);
3292 if (open_flag & O_CREAT)
3293 inode_unlock(dir->d_inode);
3294 else
3295 inode_unlock_shared(dir->d_inode);
3296
3297 if (error <= 0) {
3298 if (error)
3299 goto out;
3300
3301 if ((*opened & FILE_CREATED) ||
3302 !S_ISREG(file_inode(file)->i_mode))
3303 will_truncate = false;
3304
3305 audit_inode(nd->name, file->f_path.dentry, 0);
3306 goto opened;
3307 }
3308
3309 if (*opened & FILE_CREATED) {
3310 /* Don't check for write permission, don't truncate */
3311 open_flag &= ~O_TRUNC;
3312 will_truncate = false;
3313 acc_mode = 0;
3314 path_to_nameidata(&path, nd);
3315 goto finish_open_created;
3316 }
3317
3318 /*
3319 * If atomic_open() acquired write access it is dropped now due to
3320 * possible mount and symlink following (this might be optimized away if
3321 * necessary...)
3322 */
3323 if (got_write) {
3324 mnt_drop_write(nd->path.mnt);
3325 got_write = false;
3326 }
3327
3328 error = follow_managed(&path, nd);
3329 if (unlikely(error < 0))
3330 return error;
3331
3332 if (unlikely(d_is_negative(path.dentry))) {
3333 path_to_nameidata(&path, nd);
3334 return -ENOENT;
3335 }
3336
3337 /*
3338 * create/update audit record if it already exists.
3339 */
3340 audit_inode(nd->name, path.dentry, 0);
3341
3342 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3343 path_to_nameidata(&path, nd);
3344 return -EEXIST;
3345 }
3346
3347 seq = 0; /* out of RCU mode, so the value doesn't matter */
3348 inode = d_backing_inode(path.dentry);
3349 finish_lookup:
3350 error = step_into(nd, &path, 0, inode, seq);
3351 if (unlikely(error))
3352 return error;
3353 finish_open:
3354 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3355 error = complete_walk(nd);
3356 if (error)
3357 return error;
3358 audit_inode(nd->name, nd->path.dentry, 0);
3359 error = -EISDIR;
3360 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3361 goto out;
3362 error = -ENOTDIR;
3363 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3364 goto out;
3365 if (!d_is_reg(nd->path.dentry))
3366 will_truncate = false;
3367
3368 if (will_truncate) {
3369 error = mnt_want_write(nd->path.mnt);
3370 if (error)
3371 goto out;
3372 got_write = true;
3373 }
3374 finish_open_created:
3375 error = may_open(&nd->path, acc_mode, open_flag);
3376 if (error)
3377 goto out;
3378 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3379 error = vfs_open(&nd->path, file, current_cred());
3380 if (error)
3381 goto out;
3382 *opened |= FILE_OPENED;
3383 opened:
3384 error = open_check_o_direct(file);
3385 if (!error)
3386 error = ima_file_check(file, op->acc_mode, *opened);
3387 if (!error && will_truncate)
3388 error = handle_truncate(file);
3389 out:
3390 if (unlikely(error) && (*opened & FILE_OPENED))
3391 fput(file);
3392 if (unlikely(error > 0)) {
3393 WARN_ON(1);
3394 error = -EINVAL;
3395 }
3396 if (got_write)
3397 mnt_drop_write(nd->path.mnt);
3398 return error;
3399 }
3400
3401 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3402 {
3403 struct dentry *child = NULL;
3404 struct inode *dir = dentry->d_inode;
3405 struct inode *inode;
3406 int error;
3407
3408 /* we want directory to be writable */
3409 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3410 if (error)
3411 goto out_err;
3412 error = -EOPNOTSUPP;
3413 if (!dir->i_op->tmpfile)
3414 goto out_err;
3415 error = -ENOMEM;
3416 child = d_alloc(dentry, &slash_name);
3417 if (unlikely(!child))
3418 goto out_err;
3419 error = dir->i_op->tmpfile(dir, child, mode);
3420 if (error)
3421 goto out_err;
3422 error = -ENOENT;
3423 inode = child->d_inode;
3424 if (unlikely(!inode))
3425 goto out_err;
3426 if (!(open_flag & O_EXCL)) {
3427 spin_lock(&inode->i_lock);
3428 inode->i_state |= I_LINKABLE;
3429 spin_unlock(&inode->i_lock);
3430 }
3431 return child;
3432
3433 out_err:
3434 dput(child);
3435 return ERR_PTR(error);
3436 }
3437 EXPORT_SYMBOL(vfs_tmpfile);
3438
3439 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3440 const struct open_flags *op,
3441 struct file *file, int *opened)
3442 {
3443 struct dentry *child;
3444 struct path path;
3445 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3446 if (unlikely(error))
3447 return error;
3448 error = mnt_want_write(path.mnt);
3449 if (unlikely(error))
3450 goto out;
3451 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3452 error = PTR_ERR(child);
3453 if (unlikely(IS_ERR(child)))
3454 goto out2;
3455 dput(path.dentry);
3456 path.dentry = child;
3457 audit_inode(nd->name, child, 0);
3458 /* Don't check for other permissions, the inode was just created */
3459 error = may_open(&path, 0, op->open_flag);
3460 if (error)
3461 goto out2;
3462 file->f_path.mnt = path.mnt;
3463 error = finish_open(file, child, NULL, opened);
3464 if (error)
3465 goto out2;
3466 error = open_check_o_direct(file);
3467 if (error)
3468 fput(file);
3469 out2:
3470 mnt_drop_write(path.mnt);
3471 out:
3472 path_put(&path);
3473 return error;
3474 }
3475
3476 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3477 {
3478 struct path path;
3479 int error = path_lookupat(nd, flags, &path);
3480 if (!error) {
3481 audit_inode(nd->name, path.dentry, 0);
3482 error = vfs_open(&path, file, current_cred());
3483 path_put(&path);
3484 }
3485 return error;
3486 }
3487
3488 static struct file *path_openat(struct nameidata *nd,
3489 const struct open_flags *op, unsigned flags)
3490 {
3491 const char *s;
3492 struct file *file;
3493 int opened = 0;
3494 int error;
3495
3496 file = get_empty_filp();
3497 if (IS_ERR(file))
3498 return file;
3499
3500 file->f_flags = op->open_flag;
3501
3502 if (unlikely(file->f_flags & __O_TMPFILE)) {
3503 error = do_tmpfile(nd, flags, op, file, &opened);
3504 goto out2;
3505 }
3506
3507 if (unlikely(file->f_flags & O_PATH)) {
3508 error = do_o_path(nd, flags, file);
3509 if (!error)
3510 opened |= FILE_OPENED;
3511 goto out2;
3512 }
3513
3514 s = path_init(nd, flags);
3515 if (IS_ERR(s)) {
3516 put_filp(file);
3517 return ERR_CAST(s);
3518 }
3519 while (!(error = link_path_walk(s, nd)) &&
3520 (error = do_last(nd, file, op, &opened)) > 0) {
3521 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3522 s = trailing_symlink(nd);
3523 if (IS_ERR(s)) {
3524 error = PTR_ERR(s);
3525 break;
3526 }
3527 }
3528 terminate_walk(nd);
3529 out2:
3530 if (!(opened & FILE_OPENED)) {
3531 BUG_ON(!error);
3532 put_filp(file);
3533 }
3534 if (unlikely(error)) {
3535 if (error == -EOPENSTALE) {
3536 if (flags & LOOKUP_RCU)
3537 error = -ECHILD;
3538 else
3539 error = -ESTALE;
3540 }
3541 file = ERR_PTR(error);
3542 }
3543 return file;
3544 }
3545
3546 struct file *do_filp_open(int dfd, struct filename *pathname,
3547 const struct open_flags *op)
3548 {
3549 struct nameidata nd;
3550 int flags = op->lookup_flags;
3551 struct file *filp;
3552
3553 set_nameidata(&nd, dfd, pathname);
3554 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3555 if (unlikely(filp == ERR_PTR(-ECHILD)))
3556 filp = path_openat(&nd, op, flags);
3557 if (unlikely(filp == ERR_PTR(-ESTALE)))
3558 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3559 restore_nameidata();
3560 return filp;
3561 }
3562
3563 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3564 const char *name, const struct open_flags *op)
3565 {
3566 struct nameidata nd;
3567 struct file *file;
3568 struct filename *filename;
3569 int flags = op->lookup_flags | LOOKUP_ROOT;
3570
3571 nd.root.mnt = mnt;
3572 nd.root.dentry = dentry;
3573
3574 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3575 return ERR_PTR(-ELOOP);
3576
3577 filename = getname_kernel(name);
3578 if (IS_ERR(filename))
3579 return ERR_CAST(filename);
3580
3581 set_nameidata(&nd, -1, filename);
3582 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3583 if (unlikely(file == ERR_PTR(-ECHILD)))
3584 file = path_openat(&nd, op, flags);
3585 if (unlikely(file == ERR_PTR(-ESTALE)))
3586 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3587 restore_nameidata();
3588 putname(filename);
3589 return file;
3590 }
3591
3592 static struct dentry *filename_create(int dfd, struct filename *name,
3593 struct path *path, unsigned int lookup_flags)
3594 {
3595 struct dentry *dentry = ERR_PTR(-EEXIST);
3596 struct qstr last;
3597 int type;
3598 int err2;
3599 int error;
3600 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3601
3602 /*
3603 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3604 * other flags passed in are ignored!
3605 */
3606 lookup_flags &= LOOKUP_REVAL;
3607
3608 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3609 if (IS_ERR(name))
3610 return ERR_CAST(name);
3611
3612 /*
3613 * Yucky last component or no last component at all?
3614 * (foo/., foo/.., /////)
3615 */
3616 if (unlikely(type != LAST_NORM))
3617 goto out;
3618
3619 /* don't fail immediately if it's r/o, at least try to report other errors */
3620 err2 = mnt_want_write(path->mnt);
3621 /*
3622 * Do the final lookup.
3623 */
3624 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3625 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3626 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3627 if (IS_ERR(dentry))
3628 goto unlock;
3629
3630 error = -EEXIST;
3631 if (d_is_positive(dentry))
3632 goto fail;
3633
3634 /*
3635 * Special case - lookup gave negative, but... we had foo/bar/
3636 * From the vfs_mknod() POV we just have a negative dentry -
3637 * all is fine. Let's be bastards - you had / on the end, you've
3638 * been asking for (non-existent) directory. -ENOENT for you.
3639 */
3640 if (unlikely(!is_dir && last.name[last.len])) {
3641 error = -ENOENT;
3642 goto fail;
3643 }
3644 if (unlikely(err2)) {
3645 error = err2;
3646 goto fail;
3647 }
3648 putname(name);
3649 return dentry;
3650 fail:
3651 dput(dentry);
3652 dentry = ERR_PTR(error);
3653 unlock:
3654 inode_unlock(path->dentry->d_inode);
3655 if (!err2)
3656 mnt_drop_write(path->mnt);
3657 out:
3658 path_put(path);
3659 putname(name);
3660 return dentry;
3661 }
3662
3663 struct dentry *kern_path_create(int dfd, const char *pathname,
3664 struct path *path, unsigned int lookup_flags)
3665 {
3666 return filename_create(dfd, getname_kernel(pathname),
3667 path, lookup_flags);
3668 }
3669 EXPORT_SYMBOL(kern_path_create);
3670
3671 void done_path_create(struct path *path, struct dentry *dentry)
3672 {
3673 dput(dentry);
3674 inode_unlock(path->dentry->d_inode);
3675 mnt_drop_write(path->mnt);
3676 path_put(path);
3677 }
3678 EXPORT_SYMBOL(done_path_create);
3679
3680 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3681 struct path *path, unsigned int lookup_flags)
3682 {
3683 return filename_create(dfd, getname(pathname), path, lookup_flags);
3684 }
3685 EXPORT_SYMBOL(user_path_create);
3686
3687 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3688 {
3689 int error = may_create(dir, dentry);
3690
3691 if (error)
3692 return error;
3693
3694 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3695 return -EPERM;
3696
3697 if (!dir->i_op->mknod)
3698 return -EPERM;
3699
3700 error = devcgroup_inode_mknod(mode, dev);
3701 if (error)
3702 return error;
3703
3704 error = security_inode_mknod(dir, dentry, mode, dev);
3705 if (error)
3706 return error;
3707
3708 error = dir->i_op->mknod(dir, dentry, mode, dev);
3709 if (!error)
3710 fsnotify_create(dir, dentry);
3711 return error;
3712 }
3713 EXPORT_SYMBOL(vfs_mknod);
3714
3715 static int may_mknod(umode_t mode)
3716 {
3717 switch (mode & S_IFMT) {
3718 case S_IFREG:
3719 case S_IFCHR:
3720 case S_IFBLK:
3721 case S_IFIFO:
3722 case S_IFSOCK:
3723 case 0: /* zero mode translates to S_IFREG */
3724 return 0;
3725 case S_IFDIR:
3726 return -EPERM;
3727 default:
3728 return -EINVAL;
3729 }
3730 }
3731
3732 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3733 unsigned, dev)
3734 {
3735 struct dentry *dentry;
3736 struct path path;
3737 int error;
3738 unsigned int lookup_flags = 0;
3739
3740 error = may_mknod(mode);
3741 if (error)
3742 return error;
3743 retry:
3744 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3745 if (IS_ERR(dentry))
3746 return PTR_ERR(dentry);
3747
3748 if (!IS_POSIXACL(path.dentry->d_inode))
3749 mode &= ~current_umask();
3750 error = security_path_mknod(&path, dentry, mode, dev);
3751 if (error)
3752 goto out;
3753 switch (mode & S_IFMT) {
3754 case 0: case S_IFREG:
3755 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3756 if (!error)
3757 ima_post_path_mknod(dentry);
3758 break;
3759 case S_IFCHR: case S_IFBLK:
3760 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3761 new_decode_dev(dev));
3762 break;
3763 case S_IFIFO: case S_IFSOCK:
3764 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3765 break;
3766 }
3767 out:
3768 done_path_create(&path, dentry);
3769 if (retry_estale(error, lookup_flags)) {
3770 lookup_flags |= LOOKUP_REVAL;
3771 goto retry;
3772 }
3773 return error;
3774 }
3775
3776 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3777 {
3778 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3779 }
3780
3781 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3782 {
3783 int error = may_create(dir, dentry);
3784 unsigned max_links = dir->i_sb->s_max_links;
3785
3786 if (error)
3787 return error;
3788
3789 if (!dir->i_op->mkdir)
3790 return -EPERM;
3791
3792 mode &= (S_IRWXUGO|S_ISVTX);
3793 error = security_inode_mkdir(dir, dentry, mode);
3794 if (error)
3795 return error;
3796
3797 if (max_links && dir->i_nlink >= max_links)
3798 return -EMLINK;
3799
3800 error = dir->i_op->mkdir(dir, dentry, mode);
3801 if (!error)
3802 fsnotify_mkdir(dir, dentry);
3803 return error;
3804 }
3805 EXPORT_SYMBOL(vfs_mkdir);
3806
3807 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3808 {
3809 struct dentry *dentry;
3810 struct path path;
3811 int error;
3812 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3813
3814 retry:
3815 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3816 if (IS_ERR(dentry))
3817 return PTR_ERR(dentry);
3818
3819 if (!IS_POSIXACL(path.dentry->d_inode))
3820 mode &= ~current_umask();
3821 error = security_path_mkdir(&path, dentry, mode);
3822 if (!error)
3823 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3824 done_path_create(&path, dentry);
3825 if (retry_estale(error, lookup_flags)) {
3826 lookup_flags |= LOOKUP_REVAL;
3827 goto retry;
3828 }
3829 return error;
3830 }
3831
3832 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3833 {
3834 return sys_mkdirat(AT_FDCWD, pathname, mode);
3835 }
3836
3837 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3838 {
3839 int error = may_delete(dir, dentry, 1);
3840
3841 if (error)
3842 return error;
3843
3844 if (!dir->i_op->rmdir)
3845 return -EPERM;
3846
3847 dget(dentry);
3848 inode_lock(dentry->d_inode);
3849
3850 error = -EBUSY;
3851 if (is_local_mountpoint(dentry))
3852 goto out;
3853
3854 error = security_inode_rmdir(dir, dentry);
3855 if (error)
3856 goto out;
3857
3858 shrink_dcache_parent(dentry);
3859 error = dir->i_op->rmdir(dir, dentry);
3860 if (error)
3861 goto out;
3862
3863 dentry->d_inode->i_flags |= S_DEAD;
3864 dont_mount(dentry);
3865 detach_mounts(dentry);
3866
3867 out:
3868 inode_unlock(dentry->d_inode);
3869 dput(dentry);
3870 if (!error)
3871 d_delete(dentry);
3872 return error;
3873 }
3874 EXPORT_SYMBOL(vfs_rmdir);
3875
3876 static long do_rmdir(int dfd, const char __user *pathname)
3877 {
3878 int error = 0;
3879 struct filename *name;
3880 struct dentry *dentry;
3881 struct path path;
3882 struct qstr last;
3883 int type;
3884 unsigned int lookup_flags = 0;
3885 retry:
3886 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3887 &path, &last, &type);
3888 if (IS_ERR(name))
3889 return PTR_ERR(name);
3890
3891 switch (type) {
3892 case LAST_DOTDOT:
3893 error = -ENOTEMPTY;
3894 goto exit1;
3895 case LAST_DOT:
3896 error = -EINVAL;
3897 goto exit1;
3898 case LAST_ROOT:
3899 error = -EBUSY;
3900 goto exit1;
3901 }
3902
3903 error = mnt_want_write(path.mnt);
3904 if (error)
3905 goto exit1;
3906
3907 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3908 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3909 error = PTR_ERR(dentry);
3910 if (IS_ERR(dentry))
3911 goto exit2;
3912 if (!dentry->d_inode) {
3913 error = -ENOENT;
3914 goto exit3;
3915 }
3916 error = security_path_rmdir(&path, dentry);
3917 if (error)
3918 goto exit3;
3919 error = vfs_rmdir(path.dentry->d_inode, dentry);
3920 exit3:
3921 dput(dentry);
3922 exit2:
3923 inode_unlock(path.dentry->d_inode);
3924 mnt_drop_write(path.mnt);
3925 exit1:
3926 path_put(&path);
3927 putname(name);
3928 if (retry_estale(error, lookup_flags)) {
3929 lookup_flags |= LOOKUP_REVAL;
3930 goto retry;
3931 }
3932 return error;
3933 }
3934
3935 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3936 {
3937 return do_rmdir(AT_FDCWD, pathname);
3938 }
3939
3940 /**
3941 * vfs_unlink - unlink a filesystem object
3942 * @dir: parent directory
3943 * @dentry: victim
3944 * @delegated_inode: returns victim inode, if the inode is delegated.
3945 *
3946 * The caller must hold dir->i_mutex.
3947 *
3948 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3949 * return a reference to the inode in delegated_inode. The caller
3950 * should then break the delegation on that inode and retry. Because
3951 * breaking a delegation may take a long time, the caller should drop
3952 * dir->i_mutex before doing so.
3953 *
3954 * Alternatively, a caller may pass NULL for delegated_inode. This may
3955 * be appropriate for callers that expect the underlying filesystem not
3956 * to be NFS exported.
3957 */
3958 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3959 {
3960 struct inode *target = dentry->d_inode;
3961 int error = may_delete(dir, dentry, 0);
3962
3963 if (error)
3964 return error;
3965
3966 if (!dir->i_op->unlink)
3967 return -EPERM;
3968
3969 inode_lock(target);
3970 if (is_local_mountpoint(dentry))
3971 error = -EBUSY;
3972 else {
3973 error = security_inode_unlink(dir, dentry);
3974 if (!error) {
3975 error = try_break_deleg(target, delegated_inode);
3976 if (error)
3977 goto out;
3978 error = dir->i_op->unlink(dir, dentry);
3979 if (!error) {
3980 dont_mount(dentry);
3981 detach_mounts(dentry);
3982 }
3983 }
3984 }
3985 out:
3986 inode_unlock(target);
3987
3988 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3989 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3990 fsnotify_link_count(target);
3991 d_delete(dentry);
3992 }
3993
3994 return error;
3995 }
3996 EXPORT_SYMBOL(vfs_unlink);
3997
3998 /*
3999 * Make sure that the actual truncation of the file will occur outside its
4000 * directory's i_mutex. Truncate can take a long time if there is a lot of
4001 * writeout happening, and we don't want to prevent access to the directory
4002 * while waiting on the I/O.
4003 */
4004 static long do_unlinkat(int dfd, const char __user *pathname)
4005 {
4006 int error;
4007 struct filename *name;
4008 struct dentry *dentry;
4009 struct path path;
4010 struct qstr last;
4011 int type;
4012 struct inode *inode = NULL;
4013 struct inode *delegated_inode = NULL;
4014 unsigned int lookup_flags = 0;
4015 retry:
4016 name = filename_parentat(dfd, getname(pathname), lookup_flags,
4017 &path, &last, &type);
4018 if (IS_ERR(name))
4019 return PTR_ERR(name);
4020
4021 error = -EISDIR;
4022 if (type != LAST_NORM)
4023 goto exit1;
4024
4025 error = mnt_want_write(path.mnt);
4026 if (error)
4027 goto exit1;
4028 retry_deleg:
4029 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4030 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4031 error = PTR_ERR(dentry);
4032 if (!IS_ERR(dentry)) {
4033 /* Why not before? Because we want correct error value */
4034 if (last.name[last.len])
4035 goto slashes;
4036 inode = dentry->d_inode;
4037 if (d_is_negative(dentry))
4038 goto slashes;
4039 ihold(inode);
4040 error = security_path_unlink(&path, dentry);
4041 if (error)
4042 goto exit2;
4043 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4044 exit2:
4045 dput(dentry);
4046 }
4047 inode_unlock(path.dentry->d_inode);
4048 if (inode)
4049 iput(inode); /* truncate the inode here */
4050 inode = NULL;
4051 if (delegated_inode) {
4052 error = break_deleg_wait(&delegated_inode);
4053 if (!error)
4054 goto retry_deleg;
4055 }
4056 mnt_drop_write(path.mnt);
4057 exit1:
4058 path_put(&path);
4059 putname(name);
4060 if (retry_estale(error, lookup_flags)) {
4061 lookup_flags |= LOOKUP_REVAL;
4062 inode = NULL;
4063 goto retry;
4064 }
4065 return error;
4066
4067 slashes:
4068 if (d_is_negative(dentry))
4069 error = -ENOENT;
4070 else if (d_is_dir(dentry))
4071 error = -EISDIR;
4072 else
4073 error = -ENOTDIR;
4074 goto exit2;
4075 }
4076
4077 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4078 {
4079 if ((flag & ~AT_REMOVEDIR) != 0)
4080 return -EINVAL;
4081
4082 if (flag & AT_REMOVEDIR)
4083 return do_rmdir(dfd, pathname);
4084
4085 return do_unlinkat(dfd, pathname);
4086 }
4087
4088 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4089 {
4090 return do_unlinkat(AT_FDCWD, pathname);
4091 }
4092
4093 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4094 {
4095 int error = may_create(dir, dentry);
4096
4097 if (error)
4098 return error;
4099
4100 if (!dir->i_op->symlink)
4101 return -EPERM;
4102
4103 error = security_inode_symlink(dir, dentry, oldname);
4104 if (error)
4105 return error;
4106
4107 error = dir->i_op->symlink(dir, dentry, oldname);
4108 if (!error)
4109 fsnotify_create(dir, dentry);
4110 return error;
4111 }
4112 EXPORT_SYMBOL(vfs_symlink);
4113
4114 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4115 int, newdfd, const char __user *, newname)
4116 {
4117 int error;
4118 struct filename *from;
4119 struct dentry *dentry;
4120 struct path path;
4121 unsigned int lookup_flags = 0;
4122
4123 from = getname(oldname);
4124 if (IS_ERR(from))
4125 return PTR_ERR(from);
4126 retry:
4127 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4128 error = PTR_ERR(dentry);
4129 if (IS_ERR(dentry))
4130 goto out_putname;
4131
4132 error = security_path_symlink(&path, dentry, from->name);
4133 if (!error)
4134 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4135 done_path_create(&path, dentry);
4136 if (retry_estale(error, lookup_flags)) {
4137 lookup_flags |= LOOKUP_REVAL;
4138 goto retry;
4139 }
4140 out_putname:
4141 putname(from);
4142 return error;
4143 }
4144
4145 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4146 {
4147 return sys_symlinkat(oldname, AT_FDCWD, newname);
4148 }
4149
4150 /**
4151 * vfs_link - create a new link
4152 * @old_dentry: object to be linked
4153 * @dir: new parent
4154 * @new_dentry: where to create the new link
4155 * @delegated_inode: returns inode needing a delegation break
4156 *
4157 * The caller must hold dir->i_mutex
4158 *
4159 * If vfs_link discovers a delegation on the to-be-linked file in need
4160 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4161 * inode in delegated_inode. The caller should then break the delegation
4162 * and retry. Because breaking a delegation may take a long time, the
4163 * caller should drop the i_mutex before doing so.
4164 *
4165 * Alternatively, a caller may pass NULL for delegated_inode. This may
4166 * be appropriate for callers that expect the underlying filesystem not
4167 * to be NFS exported.
4168 */
4169 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4170 {
4171 struct inode *inode = old_dentry->d_inode;
4172 unsigned max_links = dir->i_sb->s_max_links;
4173 int error;
4174
4175 if (!inode)
4176 return -ENOENT;
4177
4178 error = may_create(dir, new_dentry);
4179 if (error)
4180 return error;
4181
4182 if (dir->i_sb != inode->i_sb)
4183 return -EXDEV;
4184
4185 /*
4186 * A link to an append-only or immutable file cannot be created.
4187 */
4188 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4189 return -EPERM;
4190 /*
4191 * Updating the link count will likely cause i_uid and i_gid to
4192 * be writen back improperly if their true value is unknown to
4193 * the vfs.
4194 */
4195 if (HAS_UNMAPPED_ID(inode))
4196 return -EPERM;
4197 if (!dir->i_op->link)
4198 return -EPERM;
4199 if (S_ISDIR(inode->i_mode))
4200 return -EPERM;
4201
4202 error = security_inode_link(old_dentry, dir, new_dentry);
4203 if (error)
4204 return error;
4205
4206 inode_lock(inode);
4207 /* Make sure we don't allow creating hardlink to an unlinked file */
4208 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4209 error = -ENOENT;
4210 else if (max_links && inode->i_nlink >= max_links)
4211 error = -EMLINK;
4212 else {
4213 error = try_break_deleg(inode, delegated_inode);
4214 if (!error)
4215 error = dir->i_op->link(old_dentry, dir, new_dentry);
4216 }
4217
4218 if (!error && (inode->i_state & I_LINKABLE)) {
4219 spin_lock(&inode->i_lock);
4220 inode->i_state &= ~I_LINKABLE;
4221 spin_unlock(&inode->i_lock);
4222 }
4223 inode_unlock(inode);
4224 if (!error)
4225 fsnotify_link(dir, inode, new_dentry);
4226 return error;
4227 }
4228 EXPORT_SYMBOL(vfs_link);
4229
4230 /*
4231 * Hardlinks are often used in delicate situations. We avoid
4232 * security-related surprises by not following symlinks on the
4233 * newname. --KAB
4234 *
4235 * We don't follow them on the oldname either to be compatible
4236 * with linux 2.0, and to avoid hard-linking to directories
4237 * and other special files. --ADM
4238 */
4239 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4240 int, newdfd, const char __user *, newname, int, flags)
4241 {
4242 struct dentry *new_dentry;
4243 struct path old_path, new_path;
4244 struct inode *delegated_inode = NULL;
4245 int how = 0;
4246 int error;
4247
4248 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4249 return -EINVAL;
4250 /*
4251 * To use null names we require CAP_DAC_READ_SEARCH
4252 * This ensures that not everyone will be able to create
4253 * handlink using the passed filedescriptor.
4254 */
4255 if (flags & AT_EMPTY_PATH) {
4256 if (!capable(CAP_DAC_READ_SEARCH))
4257 return -ENOENT;
4258 how = LOOKUP_EMPTY;
4259 }
4260
4261 if (flags & AT_SYMLINK_FOLLOW)
4262 how |= LOOKUP_FOLLOW;
4263 retry:
4264 error = user_path_at(olddfd, oldname, how, &old_path);
4265 if (error)
4266 return error;
4267
4268 new_dentry = user_path_create(newdfd, newname, &new_path,
4269 (how & LOOKUP_REVAL));
4270 error = PTR_ERR(new_dentry);
4271 if (IS_ERR(new_dentry))
4272 goto out;
4273
4274 error = -EXDEV;
4275 if (old_path.mnt != new_path.mnt)
4276 goto out_dput;
4277 error = may_linkat(&old_path);
4278 if (unlikely(error))
4279 goto out_dput;
4280 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4281 if (error)
4282 goto out_dput;
4283 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4284 out_dput:
4285 done_path_create(&new_path, new_dentry);
4286 if (delegated_inode) {
4287 error = break_deleg_wait(&delegated_inode);
4288 if (!error) {
4289 path_put(&old_path);
4290 goto retry;
4291 }
4292 }
4293 if (retry_estale(error, how)) {
4294 path_put(&old_path);
4295 how |= LOOKUP_REVAL;
4296 goto retry;
4297 }
4298 out:
4299 path_put(&old_path);
4300
4301 return error;
4302 }
4303
4304 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4305 {
4306 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4307 }
4308
4309 /**
4310 * vfs_rename - rename a filesystem object
4311 * @old_dir: parent of source
4312 * @old_dentry: source
4313 * @new_dir: parent of destination
4314 * @new_dentry: destination
4315 * @delegated_inode: returns an inode needing a delegation break
4316 * @flags: rename flags
4317 *
4318 * The caller must hold multiple mutexes--see lock_rename()).
4319 *
4320 * If vfs_rename discovers a delegation in need of breaking at either
4321 * the source or destination, it will return -EWOULDBLOCK and return a
4322 * reference to the inode in delegated_inode. The caller should then
4323 * break the delegation and retry. Because breaking a delegation may
4324 * take a long time, the caller should drop all locks before doing
4325 * so.
4326 *
4327 * Alternatively, a caller may pass NULL for delegated_inode. This may
4328 * be appropriate for callers that expect the underlying filesystem not
4329 * to be NFS exported.
4330 *
4331 * The worst of all namespace operations - renaming directory. "Perverted"
4332 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4333 * Problems:
4334 *
4335 * a) we can get into loop creation.
4336 * b) race potential - two innocent renames can create a loop together.
4337 * That's where 4.4 screws up. Current fix: serialization on
4338 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4339 * story.
4340 * c) we have to lock _four_ objects - parents and victim (if it exists),
4341 * and source (if it is not a directory).
4342 * And that - after we got ->i_mutex on parents (until then we don't know
4343 * whether the target exists). Solution: try to be smart with locking
4344 * order for inodes. We rely on the fact that tree topology may change
4345 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4346 * move will be locked. Thus we can rank directories by the tree
4347 * (ancestors first) and rank all non-directories after them.
4348 * That works since everybody except rename does "lock parent, lookup,
4349 * lock child" and rename is under ->s_vfs_rename_mutex.
4350 * HOWEVER, it relies on the assumption that any object with ->lookup()
4351 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4352 * we'd better make sure that there's no link(2) for them.
4353 * d) conversion from fhandle to dentry may come in the wrong moment - when
4354 * we are removing the target. Solution: we will have to grab ->i_mutex
4355 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4356 * ->i_mutex on parents, which works but leads to some truly excessive
4357 * locking].
4358 */
4359 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4360 struct inode *new_dir, struct dentry *new_dentry,
4361 struct inode **delegated_inode, unsigned int flags)
4362 {
4363 int error;
4364 bool is_dir = d_is_dir(old_dentry);
4365 struct inode *source = old_dentry->d_inode;
4366 struct inode *target = new_dentry->d_inode;
4367 bool new_is_dir = false;
4368 unsigned max_links = new_dir->i_sb->s_max_links;
4369 struct name_snapshot old_name;
4370
4371 if (source == target)
4372 return 0;
4373
4374 error = may_delete(old_dir, old_dentry, is_dir);
4375 if (error)
4376 return error;
4377
4378 if (!target) {
4379 error = may_create(new_dir, new_dentry);
4380 } else {
4381 new_is_dir = d_is_dir(new_dentry);
4382
4383 if (!(flags & RENAME_EXCHANGE))
4384 error = may_delete(new_dir, new_dentry, is_dir);
4385 else
4386 error = may_delete(new_dir, new_dentry, new_is_dir);
4387 }
4388 if (error)
4389 return error;
4390
4391 if (!old_dir->i_op->rename)
4392 return -EPERM;
4393
4394 /*
4395 * If we are going to change the parent - check write permissions,
4396 * we'll need to flip '..'.
4397 */
4398 if (new_dir != old_dir) {
4399 if (is_dir) {
4400 error = inode_permission(source, MAY_WRITE);
4401 if (error)
4402 return error;
4403 }
4404 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4405 error = inode_permission(target, MAY_WRITE);
4406 if (error)
4407 return error;
4408 }
4409 }
4410
4411 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4412 flags);
4413 if (error)
4414 return error;
4415
4416 take_dentry_name_snapshot(&old_name, old_dentry);
4417 dget(new_dentry);
4418 if (!is_dir || (flags & RENAME_EXCHANGE))
4419 lock_two_nondirectories(source, target);
4420 else if (target)
4421 inode_lock(target);
4422
4423 error = -EBUSY;
4424 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4425 goto out;
4426
4427 if (max_links && new_dir != old_dir) {
4428 error = -EMLINK;
4429 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4430 goto out;
4431 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4432 old_dir->i_nlink >= max_links)
4433 goto out;
4434 }
4435 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4436 shrink_dcache_parent(new_dentry);
4437 if (!is_dir) {
4438 error = try_break_deleg(source, delegated_inode);
4439 if (error)
4440 goto out;
4441 }
4442 if (target && !new_is_dir) {
4443 error = try_break_deleg(target, delegated_inode);
4444 if (error)
4445 goto out;
4446 }
4447 error = old_dir->i_op->rename(old_dir, old_dentry,
4448 new_dir, new_dentry, flags);
4449 if (error)
4450 goto out;
4451
4452 if (!(flags & RENAME_EXCHANGE) && target) {
4453 if (is_dir)
4454 target->i_flags |= S_DEAD;
4455 dont_mount(new_dentry);
4456 detach_mounts(new_dentry);
4457 }
4458 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4459 if (!(flags & RENAME_EXCHANGE))
4460 d_move(old_dentry, new_dentry);
4461 else
4462 d_exchange(old_dentry, new_dentry);
4463 }
4464 out:
4465 if (!is_dir || (flags & RENAME_EXCHANGE))
4466 unlock_two_nondirectories(source, target);
4467 else if (target)
4468 inode_unlock(target);
4469 dput(new_dentry);
4470 if (!error) {
4471 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4472 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4473 if (flags & RENAME_EXCHANGE) {
4474 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4475 new_is_dir, NULL, new_dentry);
4476 }
4477 }
4478 release_dentry_name_snapshot(&old_name);
4479
4480 return error;
4481 }
4482 EXPORT_SYMBOL(vfs_rename);
4483
4484 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4485 int, newdfd, const char __user *, newname, unsigned int, flags)
4486 {
4487 struct dentry *old_dentry, *new_dentry;
4488 struct dentry *trap;
4489 struct path old_path, new_path;
4490 struct qstr old_last, new_last;
4491 int old_type, new_type;
4492 struct inode *delegated_inode = NULL;
4493 struct filename *from;
4494 struct filename *to;
4495 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4496 bool should_retry = false;
4497 int error;
4498
4499 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4500 return -EINVAL;
4501
4502 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4503 (flags & RENAME_EXCHANGE))
4504 return -EINVAL;
4505
4506 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4507 return -EPERM;
4508
4509 if (flags & RENAME_EXCHANGE)
4510 target_flags = 0;
4511
4512 retry:
4513 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4514 &old_path, &old_last, &old_type);
4515 if (IS_ERR(from)) {
4516 error = PTR_ERR(from);
4517 goto exit;
4518 }
4519
4520 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4521 &new_path, &new_last, &new_type);
4522 if (IS_ERR(to)) {
4523 error = PTR_ERR(to);
4524 goto exit1;
4525 }
4526
4527 error = -EXDEV;
4528 if (old_path.mnt != new_path.mnt)
4529 goto exit2;
4530
4531 error = -EBUSY;
4532 if (old_type != LAST_NORM)
4533 goto exit2;
4534
4535 if (flags & RENAME_NOREPLACE)
4536 error = -EEXIST;
4537 if (new_type != LAST_NORM)
4538 goto exit2;
4539
4540 error = mnt_want_write(old_path.mnt);
4541 if (error)
4542 goto exit2;
4543
4544 retry_deleg:
4545 trap = lock_rename(new_path.dentry, old_path.dentry);
4546
4547 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4548 error = PTR_ERR(old_dentry);
4549 if (IS_ERR(old_dentry))
4550 goto exit3;
4551 /* source must exist */
4552 error = -ENOENT;
4553 if (d_is_negative(old_dentry))
4554 goto exit4;
4555 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4556 error = PTR_ERR(new_dentry);
4557 if (IS_ERR(new_dentry))
4558 goto exit4;
4559 error = -EEXIST;
4560 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4561 goto exit5;
4562 if (flags & RENAME_EXCHANGE) {
4563 error = -ENOENT;
4564 if (d_is_negative(new_dentry))
4565 goto exit5;
4566
4567 if (!d_is_dir(new_dentry)) {
4568 error = -ENOTDIR;
4569 if (new_last.name[new_last.len])
4570 goto exit5;
4571 }
4572 }
4573 /* unless the source is a directory trailing slashes give -ENOTDIR */
4574 if (!d_is_dir(old_dentry)) {
4575 error = -ENOTDIR;
4576 if (old_last.name[old_last.len])
4577 goto exit5;
4578 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4579 goto exit5;
4580 }
4581 /* source should not be ancestor of target */
4582 error = -EINVAL;
4583 if (old_dentry == trap)
4584 goto exit5;
4585 /* target should not be an ancestor of source */
4586 if (!(flags & RENAME_EXCHANGE))
4587 error = -ENOTEMPTY;
4588 if (new_dentry == trap)
4589 goto exit5;
4590
4591 error = security_path_rename(&old_path, old_dentry,
4592 &new_path, new_dentry, flags);
4593 if (error)
4594 goto exit5;
4595 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4596 new_path.dentry->d_inode, new_dentry,
4597 &delegated_inode, flags);
4598 exit5:
4599 dput(new_dentry);
4600 exit4:
4601 dput(old_dentry);
4602 exit3:
4603 unlock_rename(new_path.dentry, old_path.dentry);
4604 if (delegated_inode) {
4605 error = break_deleg_wait(&delegated_inode);
4606 if (!error)
4607 goto retry_deleg;
4608 }
4609 mnt_drop_write(old_path.mnt);
4610 exit2:
4611 if (retry_estale(error, lookup_flags))
4612 should_retry = true;
4613 path_put(&new_path);
4614 putname(to);
4615 exit1:
4616 path_put(&old_path);
4617 putname(from);
4618 if (should_retry) {
4619 should_retry = false;
4620 lookup_flags |= LOOKUP_REVAL;
4621 goto retry;
4622 }
4623 exit:
4624 return error;
4625 }
4626
4627 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4628 int, newdfd, const char __user *, newname)
4629 {
4630 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4631 }
4632
4633 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4634 {
4635 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4636 }
4637
4638 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4639 {
4640 int error = may_create(dir, dentry);
4641 if (error)
4642 return error;
4643
4644 if (!dir->i_op->mknod)
4645 return -EPERM;
4646
4647 return dir->i_op->mknod(dir, dentry,
4648 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4649 }
4650 EXPORT_SYMBOL(vfs_whiteout);
4651
4652 int readlink_copy(char __user *buffer, int buflen, const char *link)
4653 {
4654 int len = PTR_ERR(link);
4655 if (IS_ERR(link))
4656 goto out;
4657
4658 len = strlen(link);
4659 if (len > (unsigned) buflen)
4660 len = buflen;
4661 if (copy_to_user(buffer, link, len))
4662 len = -EFAULT;
4663 out:
4664 return len;
4665 }
4666
4667 /*
4668 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4669 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4670 * for any given inode is up to filesystem.
4671 */
4672 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4673 int buflen)
4674 {
4675 DEFINE_DELAYED_CALL(done);
4676 struct inode *inode = d_inode(dentry);
4677 const char *link = inode->i_link;
4678 int res;
4679
4680 if (!link) {
4681 link = inode->i_op->get_link(dentry, inode, &done);
4682 if (IS_ERR(link))
4683 return PTR_ERR(link);
4684 }
4685 res = readlink_copy(buffer, buflen, link);
4686 do_delayed_call(&done);
4687 return res;
4688 }
4689
4690 /**
4691 * vfs_readlink - copy symlink body into userspace buffer
4692 * @dentry: dentry on which to get symbolic link
4693 * @buffer: user memory pointer
4694 * @buflen: size of buffer
4695 *
4696 * Does not touch atime. That's up to the caller if necessary
4697 *
4698 * Does not call security hook.
4699 */
4700 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4701 {
4702 struct inode *inode = d_inode(dentry);
4703
4704 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4705 if (unlikely(inode->i_op->readlink))
4706 return inode->i_op->readlink(dentry, buffer, buflen);
4707
4708 if (!d_is_symlink(dentry))
4709 return -EINVAL;
4710
4711 spin_lock(&inode->i_lock);
4712 inode->i_opflags |= IOP_DEFAULT_READLINK;
4713 spin_unlock(&inode->i_lock);
4714 }
4715
4716 return generic_readlink(dentry, buffer, buflen);
4717 }
4718 EXPORT_SYMBOL(vfs_readlink);
4719
4720 /**
4721 * vfs_get_link - get symlink body
4722 * @dentry: dentry on which to get symbolic link
4723 * @done: caller needs to free returned data with this
4724 *
4725 * Calls security hook and i_op->get_link() on the supplied inode.
4726 *
4727 * It does not touch atime. That's up to the caller if necessary.
4728 *
4729 * Does not work on "special" symlinks like /proc/$$/fd/N
4730 */
4731 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4732 {
4733 const char *res = ERR_PTR(-EINVAL);
4734 struct inode *inode = d_inode(dentry);
4735
4736 if (d_is_symlink(dentry)) {
4737 res = ERR_PTR(security_inode_readlink(dentry));
4738 if (!res)
4739 res = inode->i_op->get_link(dentry, inode, done);
4740 }
4741 return res;
4742 }
4743 EXPORT_SYMBOL(vfs_get_link);
4744
4745 /* get the link contents into pagecache */
4746 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4747 struct delayed_call *callback)
4748 {
4749 char *kaddr;
4750 struct page *page;
4751 struct address_space *mapping = inode->i_mapping;
4752
4753 if (!dentry) {
4754 page = find_get_page(mapping, 0);
4755 if (!page)
4756 return ERR_PTR(-ECHILD);
4757 if (!PageUptodate(page)) {
4758 put_page(page);
4759 return ERR_PTR(-ECHILD);
4760 }
4761 } else {
4762 page = read_mapping_page(mapping, 0, NULL);
4763 if (IS_ERR(page))
4764 return (char*)page;
4765 }
4766 set_delayed_call(callback, page_put_link, page);
4767 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4768 kaddr = page_address(page);
4769 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4770 return kaddr;
4771 }
4772
4773 EXPORT_SYMBOL(page_get_link);
4774
4775 void page_put_link(void *arg)
4776 {
4777 put_page(arg);
4778 }
4779 EXPORT_SYMBOL(page_put_link);
4780
4781 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4782 {
4783 DEFINE_DELAYED_CALL(done);
4784 int res = readlink_copy(buffer, buflen,
4785 page_get_link(dentry, d_inode(dentry),
4786 &done));
4787 do_delayed_call(&done);
4788 return res;
4789 }
4790 EXPORT_SYMBOL(page_readlink);
4791
4792 /*
4793 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4794 */
4795 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4796 {
4797 struct address_space *mapping = inode->i_mapping;
4798 struct page *page;
4799 void *fsdata;
4800 int err;
4801 unsigned int flags = 0;
4802 if (nofs)
4803 flags |= AOP_FLAG_NOFS;
4804
4805 retry:
4806 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4807 flags, &page, &fsdata);
4808 if (err)
4809 goto fail;
4810
4811 memcpy(page_address(page), symname, len-1);
4812
4813 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4814 page, fsdata);
4815 if (err < 0)
4816 goto fail;
4817 if (err < len-1)
4818 goto retry;
4819
4820 mark_inode_dirty(inode);
4821 return 0;
4822 fail:
4823 return err;
4824 }
4825 EXPORT_SYMBOL(__page_symlink);
4826
4827 int page_symlink(struct inode *inode, const char *symname, int len)
4828 {
4829 return __page_symlink(inode, symname, len,
4830 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4831 }
4832 EXPORT_SYMBOL(page_symlink);
4833
4834 const struct inode_operations page_symlink_inode_operations = {
4835 .get_link = page_get_link,
4836 };
4837 EXPORT_SYMBOL(page_symlink_inode_operations);