]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namespace.c
Revert "UBUNTU: SAUCE: Import aufs driver"
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29
30 #include "pnode.h"
31 #include "internal.h"
32
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76
77 /*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93 }
94
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 int res;
105
106 retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 spin_lock(&mnt_id_lock);
109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 if (!res)
111 mnt_id_start = mnt->mnt_id + 1;
112 spin_unlock(&mnt_id_lock);
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117 }
118
119 static void mnt_free_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_id;
122 spin_lock(&mnt_id_lock);
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
126 spin_unlock(&mnt_id_lock);
127 }
128
129 /*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 int res;
137
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
143 &mnt->mnt_group_id);
144 if (!res)
145 mnt_group_start = mnt->mnt_group_id + 1;
146
147 return res;
148 }
149
150 /*
151 * Release a peer group ID
152 */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 int id = mnt->mnt_group_id;
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
159 mnt->mnt_group_id = 0;
160 }
161
162 /*
163 * vfsmount lock must be held for read
164 */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 preempt_disable();
171 mnt->mnt_count += n;
172 preempt_enable();
173 #endif
174 }
175
176 /*
177 * vfsmount lock must be held for write
178 */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 unsigned int count = 0;
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 }
188
189 return count;
190 #else
191 return mnt->mnt_count;
192 #endif
193 }
194
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201 }
202
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
207 int err;
208
209 err = mnt_alloc_id(mnt);
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 if (!mnt->mnt_devname)
216 goto out_free_id;
217 }
218
219 #ifdef CONFIG_SMP
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
222 goto out_free_devname;
223
224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
228 #endif
229
230 INIT_HLIST_NODE(&mnt->mnt_hash);
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 INIT_LIST_HEAD(&mnt->mnt_umounting);
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440 int mnt_want_write_file(struct file *file)
441 {
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
452 /**
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
459 */
460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 preempt_disable();
463 mnt_dec_writers(real_mount(mnt));
464 preempt_enable();
465 }
466
467 /**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482 void __mnt_drop_write_file(struct file *file)
483 {
484 __mnt_drop_write(file->f_path.mnt);
485 }
486
487 void mnt_drop_write_file(struct file *file)
488 {
489 mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 int ret = 0;
496
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 /*
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
502 */
503 smp_mb();
504
505 /*
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
520 */
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
533 }
534
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
540 }
541
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 struct mount *mnt;
545 int err = 0;
546
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
573 unlock_mount_hash();
574
575 return err;
576 }
577
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583 #endif
584 kmem_cache_free(mnt_cache, mnt);
585 }
586
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591
592 /* call under rcu_read_lock */
593 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return 1;
598 if (bastard == NULL)
599 return 0;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return 0;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return 1;
607 }
608 return -1;
609 }
610
611 /* call under rcu_read_lock */
612 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613 {
614 int res = __legitimize_mnt(bastard, seq);
615 if (likely(!res))
616 return true;
617 if (unlikely(res < 0)) {
618 rcu_read_unlock();
619 mntput(bastard);
620 rcu_read_lock();
621 }
622 return false;
623 }
624
625 /*
626 * find the first mount at @dentry on vfsmount @mnt.
627 * call under rcu_read_lock()
628 */
629 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
630 {
631 struct hlist_head *head = m_hash(mnt, dentry);
632 struct mount *p;
633
634 hlist_for_each_entry_rcu(p, head, mnt_hash)
635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 return p;
637 return NULL;
638 }
639
640 /*
641 * lookup_mnt - Return the first child mount mounted at path
642 *
643 * "First" means first mounted chronologically. If you create the
644 * following mounts:
645 *
646 * mount /dev/sda1 /mnt
647 * mount /dev/sda2 /mnt
648 * mount /dev/sda3 /mnt
649 *
650 * Then lookup_mnt() on the base /mnt dentry in the root mount will
651 * return successively the root dentry and vfsmount of /dev/sda1, then
652 * /dev/sda2, then /dev/sda3, then NULL.
653 *
654 * lookup_mnt takes a reference to the found vfsmount.
655 */
656 struct vfsmount *lookup_mnt(const struct path *path)
657 {
658 struct mount *child_mnt;
659 struct vfsmount *m;
660 unsigned seq;
661
662 rcu_read_lock();
663 do {
664 seq = read_seqbegin(&mount_lock);
665 child_mnt = __lookup_mnt(path->mnt, path->dentry);
666 m = child_mnt ? &child_mnt->mnt : NULL;
667 } while (!legitimize_mnt(m, seq));
668 rcu_read_unlock();
669 return m;
670 }
671
672 /*
673 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
674 * current mount namespace.
675 *
676 * The common case is dentries are not mountpoints at all and that
677 * test is handled inline. For the slow case when we are actually
678 * dealing with a mountpoint of some kind, walk through all of the
679 * mounts in the current mount namespace and test to see if the dentry
680 * is a mountpoint.
681 *
682 * The mount_hashtable is not usable in the context because we
683 * need to identify all mounts that may be in the current mount
684 * namespace not just a mount that happens to have some specified
685 * parent mount.
686 */
687 bool __is_local_mountpoint(struct dentry *dentry)
688 {
689 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
690 struct mount *mnt;
691 bool is_covered = false;
692
693 if (!d_mountpoint(dentry))
694 goto out;
695
696 down_read(&namespace_sem);
697 list_for_each_entry(mnt, &ns->list, mnt_list) {
698 is_covered = (mnt->mnt_mountpoint == dentry);
699 if (is_covered)
700 break;
701 }
702 up_read(&namespace_sem);
703 out:
704 return is_covered;
705 }
706
707 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
708 {
709 struct hlist_head *chain = mp_hash(dentry);
710 struct mountpoint *mp;
711
712 hlist_for_each_entry(mp, chain, m_hash) {
713 if (mp->m_dentry == dentry) {
714 /* might be worth a WARN_ON() */
715 if (d_unlinked(dentry))
716 return ERR_PTR(-ENOENT);
717 mp->m_count++;
718 return mp;
719 }
720 }
721 return NULL;
722 }
723
724 static struct mountpoint *get_mountpoint(struct dentry *dentry)
725 {
726 struct mountpoint *mp, *new = NULL;
727 int ret;
728
729 if (d_mountpoint(dentry)) {
730 mountpoint:
731 read_seqlock_excl(&mount_lock);
732 mp = lookup_mountpoint(dentry);
733 read_sequnlock_excl(&mount_lock);
734 if (mp)
735 goto done;
736 }
737
738 if (!new)
739 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
740 if (!new)
741 return ERR_PTR(-ENOMEM);
742
743
744 /* Exactly one processes may set d_mounted */
745 ret = d_set_mounted(dentry);
746
747 /* Someone else set d_mounted? */
748 if (ret == -EBUSY)
749 goto mountpoint;
750
751 /* The dentry is not available as a mountpoint? */
752 mp = ERR_PTR(ret);
753 if (ret)
754 goto done;
755
756 /* Add the new mountpoint to the hash table */
757 read_seqlock_excl(&mount_lock);
758 new->m_dentry = dentry;
759 new->m_count = 1;
760 hlist_add_head(&new->m_hash, mp_hash(dentry));
761 INIT_HLIST_HEAD(&new->m_list);
762 read_sequnlock_excl(&mount_lock);
763
764 mp = new;
765 new = NULL;
766 done:
767 kfree(new);
768 return mp;
769 }
770
771 static void put_mountpoint(struct mountpoint *mp)
772 {
773 if (!--mp->m_count) {
774 struct dentry *dentry = mp->m_dentry;
775 BUG_ON(!hlist_empty(&mp->m_list));
776 spin_lock(&dentry->d_lock);
777 dentry->d_flags &= ~DCACHE_MOUNTED;
778 spin_unlock(&dentry->d_lock);
779 hlist_del(&mp->m_hash);
780 kfree(mp);
781 }
782 }
783
784 static inline int check_mnt(struct mount *mnt)
785 {
786 return mnt->mnt_ns == current->nsproxy->mnt_ns;
787 }
788
789 /*
790 * vfsmount lock must be held for write
791 */
792 static void touch_mnt_namespace(struct mnt_namespace *ns)
793 {
794 if (ns) {
795 ns->event = ++event;
796 wake_up_interruptible(&ns->poll);
797 }
798 }
799
800 /*
801 * vfsmount lock must be held for write
802 */
803 static void __touch_mnt_namespace(struct mnt_namespace *ns)
804 {
805 if (ns && ns->event != event) {
806 ns->event = event;
807 wake_up_interruptible(&ns->poll);
808 }
809 }
810
811 /*
812 * vfsmount lock must be held for write
813 */
814 static void unhash_mnt(struct mount *mnt)
815 {
816 mnt->mnt_parent = mnt;
817 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
818 list_del_init(&mnt->mnt_child);
819 hlist_del_init_rcu(&mnt->mnt_hash);
820 hlist_del_init(&mnt->mnt_mp_list);
821 put_mountpoint(mnt->mnt_mp);
822 mnt->mnt_mp = NULL;
823 }
824
825 /*
826 * vfsmount lock must be held for write
827 */
828 static void detach_mnt(struct mount *mnt, struct path *old_path)
829 {
830 old_path->dentry = mnt->mnt_mountpoint;
831 old_path->mnt = &mnt->mnt_parent->mnt;
832 unhash_mnt(mnt);
833 }
834
835 /*
836 * vfsmount lock must be held for write
837 */
838 static void umount_mnt(struct mount *mnt)
839 {
840 /* old mountpoint will be dropped when we can do that */
841 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
842 unhash_mnt(mnt);
843 }
844
845 /*
846 * vfsmount lock must be held for write
847 */
848 void mnt_set_mountpoint(struct mount *mnt,
849 struct mountpoint *mp,
850 struct mount *child_mnt)
851 {
852 mp->m_count++;
853 mnt_add_count(mnt, 1); /* essentially, that's mntget */
854 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
855 child_mnt->mnt_parent = mnt;
856 child_mnt->mnt_mp = mp;
857 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
858 }
859
860 static void __attach_mnt(struct mount *mnt, struct mount *parent)
861 {
862 hlist_add_head_rcu(&mnt->mnt_hash,
863 m_hash(&parent->mnt, mnt->mnt_mountpoint));
864 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
865 }
866
867 /*
868 * vfsmount lock must be held for write
869 */
870 static void attach_mnt(struct mount *mnt,
871 struct mount *parent,
872 struct mountpoint *mp)
873 {
874 mnt_set_mountpoint(parent, mp, mnt);
875 __attach_mnt(mnt, parent);
876 }
877
878 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
879 {
880 struct mountpoint *old_mp = mnt->mnt_mp;
881 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
882 struct mount *old_parent = mnt->mnt_parent;
883
884 list_del_init(&mnt->mnt_child);
885 hlist_del_init(&mnt->mnt_mp_list);
886 hlist_del_init_rcu(&mnt->mnt_hash);
887
888 attach_mnt(mnt, parent, mp);
889
890 put_mountpoint(old_mp);
891
892 /*
893 * Safely avoid even the suggestion this code might sleep or
894 * lock the mount hash by taking advantage of the knowledge that
895 * mnt_change_mountpoint will not release the final reference
896 * to a mountpoint.
897 *
898 * During mounting, the mount passed in as the parent mount will
899 * continue to use the old mountpoint and during unmounting, the
900 * old mountpoint will continue to exist until namespace_unlock,
901 * which happens well after mnt_change_mountpoint.
902 */
903 spin_lock(&old_mountpoint->d_lock);
904 old_mountpoint->d_lockref.count--;
905 spin_unlock(&old_mountpoint->d_lock);
906
907 mnt_add_count(old_parent, -1);
908 }
909
910 /*
911 * vfsmount lock must be held for write
912 */
913 static void commit_tree(struct mount *mnt)
914 {
915 struct mount *parent = mnt->mnt_parent;
916 struct mount *m;
917 LIST_HEAD(head);
918 struct mnt_namespace *n = parent->mnt_ns;
919
920 BUG_ON(parent == mnt);
921
922 list_add_tail(&head, &mnt->mnt_list);
923 list_for_each_entry(m, &head, mnt_list)
924 m->mnt_ns = n;
925
926 list_splice(&head, n->list.prev);
927
928 n->mounts += n->pending_mounts;
929 n->pending_mounts = 0;
930
931 __attach_mnt(mnt, parent);
932 touch_mnt_namespace(n);
933 }
934
935 static struct mount *next_mnt(struct mount *p, struct mount *root)
936 {
937 struct list_head *next = p->mnt_mounts.next;
938 if (next == &p->mnt_mounts) {
939 while (1) {
940 if (p == root)
941 return NULL;
942 next = p->mnt_child.next;
943 if (next != &p->mnt_parent->mnt_mounts)
944 break;
945 p = p->mnt_parent;
946 }
947 }
948 return list_entry(next, struct mount, mnt_child);
949 }
950
951 static struct mount *skip_mnt_tree(struct mount *p)
952 {
953 struct list_head *prev = p->mnt_mounts.prev;
954 while (prev != &p->mnt_mounts) {
955 p = list_entry(prev, struct mount, mnt_child);
956 prev = p->mnt_mounts.prev;
957 }
958 return p;
959 }
960
961 struct vfsmount *
962 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
963 {
964 struct mount *mnt;
965 struct dentry *root;
966
967 if (!type)
968 return ERR_PTR(-ENODEV);
969
970 mnt = alloc_vfsmnt(name);
971 if (!mnt)
972 return ERR_PTR(-ENOMEM);
973
974 if (flags & MS_KERNMOUNT)
975 mnt->mnt.mnt_flags = MNT_INTERNAL;
976
977 root = mount_fs(type, flags, name, data);
978 if (IS_ERR(root)) {
979 mnt_free_id(mnt);
980 free_vfsmnt(mnt);
981 return ERR_CAST(root);
982 }
983
984 mnt->mnt.mnt_root = root;
985 mnt->mnt.mnt_sb = root->d_sb;
986 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
987 mnt->mnt_parent = mnt;
988 lock_mount_hash();
989 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
990 unlock_mount_hash();
991 return &mnt->mnt;
992 }
993 EXPORT_SYMBOL_GPL(vfs_kern_mount);
994
995 struct vfsmount *
996 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
997 const char *name, void *data)
998 {
999 /* Until it is worked out how to pass the user namespace
1000 * through from the parent mount to the submount don't support
1001 * unprivileged mounts with submounts.
1002 */
1003 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1004 return ERR_PTR(-EPERM);
1005
1006 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1007 }
1008 EXPORT_SYMBOL_GPL(vfs_submount);
1009
1010 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1011 int flag)
1012 {
1013 struct super_block *sb = old->mnt.mnt_sb;
1014 struct mount *mnt;
1015 int err;
1016
1017 mnt = alloc_vfsmnt(old->mnt_devname);
1018 if (!mnt)
1019 return ERR_PTR(-ENOMEM);
1020
1021 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1022 mnt->mnt_group_id = 0; /* not a peer of original */
1023 else
1024 mnt->mnt_group_id = old->mnt_group_id;
1025
1026 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1027 err = mnt_alloc_group_id(mnt);
1028 if (err)
1029 goto out_free;
1030 }
1031
1032 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1033 /* Don't allow unprivileged users to change mount flags */
1034 if (flag & CL_UNPRIVILEGED) {
1035 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1036
1037 if (mnt->mnt.mnt_flags & MNT_READONLY)
1038 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1039
1040 if (mnt->mnt.mnt_flags & MNT_NODEV)
1041 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1042
1043 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1044 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1045
1046 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1047 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1048 }
1049
1050 /* Don't allow unprivileged users to reveal what is under a mount */
1051 if ((flag & CL_UNPRIVILEGED) &&
1052 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1053 mnt->mnt.mnt_flags |= MNT_LOCKED;
1054
1055 atomic_inc(&sb->s_active);
1056 mnt->mnt.mnt_sb = sb;
1057 mnt->mnt.mnt_root = dget(root);
1058 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1059 mnt->mnt_parent = mnt;
1060 lock_mount_hash();
1061 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1062 unlock_mount_hash();
1063
1064 if ((flag & CL_SLAVE) ||
1065 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1066 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1067 mnt->mnt_master = old;
1068 CLEAR_MNT_SHARED(mnt);
1069 } else if (!(flag & CL_PRIVATE)) {
1070 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1071 list_add(&mnt->mnt_share, &old->mnt_share);
1072 if (IS_MNT_SLAVE(old))
1073 list_add(&mnt->mnt_slave, &old->mnt_slave);
1074 mnt->mnt_master = old->mnt_master;
1075 } else {
1076 CLEAR_MNT_SHARED(mnt);
1077 }
1078 if (flag & CL_MAKE_SHARED)
1079 set_mnt_shared(mnt);
1080
1081 /* stick the duplicate mount on the same expiry list
1082 * as the original if that was on one */
1083 if (flag & CL_EXPIRE) {
1084 if (!list_empty(&old->mnt_expire))
1085 list_add(&mnt->mnt_expire, &old->mnt_expire);
1086 }
1087
1088 return mnt;
1089
1090 out_free:
1091 mnt_free_id(mnt);
1092 free_vfsmnt(mnt);
1093 return ERR_PTR(err);
1094 }
1095
1096 static void cleanup_mnt(struct mount *mnt)
1097 {
1098 /*
1099 * This probably indicates that somebody messed
1100 * up a mnt_want/drop_write() pair. If this
1101 * happens, the filesystem was probably unable
1102 * to make r/w->r/o transitions.
1103 */
1104 /*
1105 * The locking used to deal with mnt_count decrement provides barriers,
1106 * so mnt_get_writers() below is safe.
1107 */
1108 WARN_ON(mnt_get_writers(mnt));
1109 if (unlikely(mnt->mnt_pins.first))
1110 mnt_pin_kill(mnt);
1111 fsnotify_vfsmount_delete(&mnt->mnt);
1112 dput(mnt->mnt.mnt_root);
1113 deactivate_super(mnt->mnt.mnt_sb);
1114 mnt_free_id(mnt);
1115 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1116 }
1117
1118 static void __cleanup_mnt(struct rcu_head *head)
1119 {
1120 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1121 }
1122
1123 static LLIST_HEAD(delayed_mntput_list);
1124 static void delayed_mntput(struct work_struct *unused)
1125 {
1126 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1127 struct llist_node *next;
1128
1129 for (; node; node = next) {
1130 next = llist_next(node);
1131 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1132 }
1133 }
1134 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1135
1136 static void mntput_no_expire(struct mount *mnt)
1137 {
1138 rcu_read_lock();
1139 mnt_add_count(mnt, -1);
1140 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1141 rcu_read_unlock();
1142 return;
1143 }
1144 lock_mount_hash();
1145 if (mnt_get_count(mnt)) {
1146 rcu_read_unlock();
1147 unlock_mount_hash();
1148 return;
1149 }
1150 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1151 rcu_read_unlock();
1152 unlock_mount_hash();
1153 return;
1154 }
1155 mnt->mnt.mnt_flags |= MNT_DOOMED;
1156 rcu_read_unlock();
1157
1158 list_del(&mnt->mnt_instance);
1159
1160 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1161 struct mount *p, *tmp;
1162 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1163 umount_mnt(p);
1164 }
1165 }
1166 unlock_mount_hash();
1167
1168 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1169 struct task_struct *task = current;
1170 if (likely(!(task->flags & PF_KTHREAD))) {
1171 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1172 if (!task_work_add(task, &mnt->mnt_rcu, true))
1173 return;
1174 }
1175 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1176 schedule_delayed_work(&delayed_mntput_work, 1);
1177 return;
1178 }
1179 cleanup_mnt(mnt);
1180 }
1181
1182 void mntput(struct vfsmount *mnt)
1183 {
1184 if (mnt) {
1185 struct mount *m = real_mount(mnt);
1186 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1187 if (unlikely(m->mnt_expiry_mark))
1188 m->mnt_expiry_mark = 0;
1189 mntput_no_expire(m);
1190 }
1191 }
1192 EXPORT_SYMBOL(mntput);
1193
1194 struct vfsmount *mntget(struct vfsmount *mnt)
1195 {
1196 if (mnt)
1197 mnt_add_count(real_mount(mnt), 1);
1198 return mnt;
1199 }
1200 EXPORT_SYMBOL(mntget);
1201
1202 /* path_is_mountpoint() - Check if path is a mount in the current
1203 * namespace.
1204 *
1205 * d_mountpoint() can only be used reliably to establish if a dentry is
1206 * not mounted in any namespace and that common case is handled inline.
1207 * d_mountpoint() isn't aware of the possibility there may be multiple
1208 * mounts using a given dentry in a different namespace. This function
1209 * checks if the passed in path is a mountpoint rather than the dentry
1210 * alone.
1211 */
1212 bool path_is_mountpoint(const struct path *path)
1213 {
1214 unsigned seq;
1215 bool res;
1216
1217 if (!d_mountpoint(path->dentry))
1218 return false;
1219
1220 rcu_read_lock();
1221 do {
1222 seq = read_seqbegin(&mount_lock);
1223 res = __path_is_mountpoint(path);
1224 } while (read_seqretry(&mount_lock, seq));
1225 rcu_read_unlock();
1226
1227 return res;
1228 }
1229 EXPORT_SYMBOL(path_is_mountpoint);
1230
1231 struct vfsmount *mnt_clone_internal(const struct path *path)
1232 {
1233 struct mount *p;
1234 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1235 if (IS_ERR(p))
1236 return ERR_CAST(p);
1237 p->mnt.mnt_flags |= MNT_INTERNAL;
1238 return &p->mnt;
1239 }
1240
1241 #ifdef CONFIG_PROC_FS
1242 /* iterator; we want it to have access to namespace_sem, thus here... */
1243 static void *m_start(struct seq_file *m, loff_t *pos)
1244 {
1245 struct proc_mounts *p = m->private;
1246
1247 down_read(&namespace_sem);
1248 if (p->cached_event == p->ns->event) {
1249 void *v = p->cached_mount;
1250 if (*pos == p->cached_index)
1251 return v;
1252 if (*pos == p->cached_index + 1) {
1253 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1254 return p->cached_mount = v;
1255 }
1256 }
1257
1258 p->cached_event = p->ns->event;
1259 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1260 p->cached_index = *pos;
1261 return p->cached_mount;
1262 }
1263
1264 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1265 {
1266 struct proc_mounts *p = m->private;
1267
1268 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1269 p->cached_index = *pos;
1270 return p->cached_mount;
1271 }
1272
1273 static void m_stop(struct seq_file *m, void *v)
1274 {
1275 up_read(&namespace_sem);
1276 }
1277
1278 static int m_show(struct seq_file *m, void *v)
1279 {
1280 struct proc_mounts *p = m->private;
1281 struct mount *r = list_entry(v, struct mount, mnt_list);
1282 return p->show(m, &r->mnt);
1283 }
1284
1285 const struct seq_operations mounts_op = {
1286 .start = m_start,
1287 .next = m_next,
1288 .stop = m_stop,
1289 .show = m_show,
1290 };
1291 #endif /* CONFIG_PROC_FS */
1292
1293 /**
1294 * may_umount_tree - check if a mount tree is busy
1295 * @mnt: root of mount tree
1296 *
1297 * This is called to check if a tree of mounts has any
1298 * open files, pwds, chroots or sub mounts that are
1299 * busy.
1300 */
1301 int may_umount_tree(struct vfsmount *m)
1302 {
1303 struct mount *mnt = real_mount(m);
1304 int actual_refs = 0;
1305 int minimum_refs = 0;
1306 struct mount *p;
1307 BUG_ON(!m);
1308
1309 /* write lock needed for mnt_get_count */
1310 lock_mount_hash();
1311 for (p = mnt; p; p = next_mnt(p, mnt)) {
1312 actual_refs += mnt_get_count(p);
1313 minimum_refs += 2;
1314 }
1315 unlock_mount_hash();
1316
1317 if (actual_refs > minimum_refs)
1318 return 0;
1319
1320 return 1;
1321 }
1322
1323 EXPORT_SYMBOL(may_umount_tree);
1324
1325 /**
1326 * may_umount - check if a mount point is busy
1327 * @mnt: root of mount
1328 *
1329 * This is called to check if a mount point has any
1330 * open files, pwds, chroots or sub mounts. If the
1331 * mount has sub mounts this will return busy
1332 * regardless of whether the sub mounts are busy.
1333 *
1334 * Doesn't take quota and stuff into account. IOW, in some cases it will
1335 * give false negatives. The main reason why it's here is that we need
1336 * a non-destructive way to look for easily umountable filesystems.
1337 */
1338 int may_umount(struct vfsmount *mnt)
1339 {
1340 int ret = 1;
1341 down_read(&namespace_sem);
1342 lock_mount_hash();
1343 if (propagate_mount_busy(real_mount(mnt), 2))
1344 ret = 0;
1345 unlock_mount_hash();
1346 up_read(&namespace_sem);
1347 return ret;
1348 }
1349
1350 EXPORT_SYMBOL(may_umount);
1351
1352 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1353
1354 static void namespace_unlock(void)
1355 {
1356 struct hlist_head head;
1357
1358 hlist_move_list(&unmounted, &head);
1359
1360 up_write(&namespace_sem);
1361
1362 if (likely(hlist_empty(&head)))
1363 return;
1364
1365 synchronize_rcu();
1366
1367 group_pin_kill(&head);
1368 }
1369
1370 static inline void namespace_lock(void)
1371 {
1372 down_write(&namespace_sem);
1373 }
1374
1375 enum umount_tree_flags {
1376 UMOUNT_SYNC = 1,
1377 UMOUNT_PROPAGATE = 2,
1378 UMOUNT_CONNECTED = 4,
1379 };
1380
1381 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1382 {
1383 /* Leaving mounts connected is only valid for lazy umounts */
1384 if (how & UMOUNT_SYNC)
1385 return true;
1386
1387 /* A mount without a parent has nothing to be connected to */
1388 if (!mnt_has_parent(mnt))
1389 return true;
1390
1391 /* Because the reference counting rules change when mounts are
1392 * unmounted and connected, umounted mounts may not be
1393 * connected to mounted mounts.
1394 */
1395 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1396 return true;
1397
1398 /* Has it been requested that the mount remain connected? */
1399 if (how & UMOUNT_CONNECTED)
1400 return false;
1401
1402 /* Is the mount locked such that it needs to remain connected? */
1403 if (IS_MNT_LOCKED(mnt))
1404 return false;
1405
1406 /* By default disconnect the mount */
1407 return true;
1408 }
1409
1410 /*
1411 * mount_lock must be held
1412 * namespace_sem must be held for write
1413 */
1414 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1415 {
1416 LIST_HEAD(tmp_list);
1417 struct mount *p;
1418
1419 if (how & UMOUNT_PROPAGATE)
1420 propagate_mount_unlock(mnt);
1421
1422 /* Gather the mounts to umount */
1423 for (p = mnt; p; p = next_mnt(p, mnt)) {
1424 p->mnt.mnt_flags |= MNT_UMOUNT;
1425 list_move(&p->mnt_list, &tmp_list);
1426 }
1427
1428 /* Hide the mounts from mnt_mounts */
1429 list_for_each_entry(p, &tmp_list, mnt_list) {
1430 list_del_init(&p->mnt_child);
1431 }
1432
1433 /* Add propogated mounts to the tmp_list */
1434 if (how & UMOUNT_PROPAGATE)
1435 propagate_umount(&tmp_list);
1436
1437 while (!list_empty(&tmp_list)) {
1438 struct mnt_namespace *ns;
1439 bool disconnect;
1440 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1441 list_del_init(&p->mnt_expire);
1442 list_del_init(&p->mnt_list);
1443 ns = p->mnt_ns;
1444 if (ns) {
1445 ns->mounts--;
1446 __touch_mnt_namespace(ns);
1447 }
1448 p->mnt_ns = NULL;
1449 if (how & UMOUNT_SYNC)
1450 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1451
1452 disconnect = disconnect_mount(p, how);
1453
1454 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1455 disconnect ? &unmounted : NULL);
1456 if (mnt_has_parent(p)) {
1457 mnt_add_count(p->mnt_parent, -1);
1458 if (!disconnect) {
1459 /* Don't forget about p */
1460 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1461 } else {
1462 umount_mnt(p);
1463 }
1464 }
1465 change_mnt_propagation(p, MS_PRIVATE);
1466 }
1467 }
1468
1469 static void shrink_submounts(struct mount *mnt);
1470
1471 static int do_umount(struct mount *mnt, int flags)
1472 {
1473 struct super_block *sb = mnt->mnt.mnt_sb;
1474 int retval;
1475
1476 retval = security_sb_umount(&mnt->mnt, flags);
1477 if (retval)
1478 return retval;
1479
1480 /*
1481 * Allow userspace to request a mountpoint be expired rather than
1482 * unmounting unconditionally. Unmount only happens if:
1483 * (1) the mark is already set (the mark is cleared by mntput())
1484 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1485 */
1486 if (flags & MNT_EXPIRE) {
1487 if (&mnt->mnt == current->fs->root.mnt ||
1488 flags & (MNT_FORCE | MNT_DETACH))
1489 return -EINVAL;
1490
1491 /*
1492 * probably don't strictly need the lock here if we examined
1493 * all race cases, but it's a slowpath.
1494 */
1495 lock_mount_hash();
1496 if (mnt_get_count(mnt) != 2) {
1497 unlock_mount_hash();
1498 return -EBUSY;
1499 }
1500 unlock_mount_hash();
1501
1502 if (!xchg(&mnt->mnt_expiry_mark, 1))
1503 return -EAGAIN;
1504 }
1505
1506 /*
1507 * If we may have to abort operations to get out of this
1508 * mount, and they will themselves hold resources we must
1509 * allow the fs to do things. In the Unix tradition of
1510 * 'Gee thats tricky lets do it in userspace' the umount_begin
1511 * might fail to complete on the first run through as other tasks
1512 * must return, and the like. Thats for the mount program to worry
1513 * about for the moment.
1514 */
1515
1516 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1517 sb->s_op->umount_begin(sb);
1518 }
1519
1520 /*
1521 * No sense to grab the lock for this test, but test itself looks
1522 * somewhat bogus. Suggestions for better replacement?
1523 * Ho-hum... In principle, we might treat that as umount + switch
1524 * to rootfs. GC would eventually take care of the old vfsmount.
1525 * Actually it makes sense, especially if rootfs would contain a
1526 * /reboot - static binary that would close all descriptors and
1527 * call reboot(9). Then init(8) could umount root and exec /reboot.
1528 */
1529 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1530 /*
1531 * Special case for "unmounting" root ...
1532 * we just try to remount it readonly.
1533 */
1534 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1535 return -EPERM;
1536 down_write(&sb->s_umount);
1537 if (!(sb->s_flags & MS_RDONLY))
1538 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1539 up_write(&sb->s_umount);
1540 return retval;
1541 }
1542
1543 namespace_lock();
1544 lock_mount_hash();
1545 event++;
1546
1547 if (flags & MNT_DETACH) {
1548 if (!list_empty(&mnt->mnt_list))
1549 umount_tree(mnt, UMOUNT_PROPAGATE);
1550 retval = 0;
1551 } else {
1552 shrink_submounts(mnt);
1553 retval = -EBUSY;
1554 if (!propagate_mount_busy(mnt, 2)) {
1555 if (!list_empty(&mnt->mnt_list))
1556 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1557 retval = 0;
1558 }
1559 }
1560 unlock_mount_hash();
1561 namespace_unlock();
1562 return retval;
1563 }
1564
1565 /*
1566 * __detach_mounts - lazily unmount all mounts on the specified dentry
1567 *
1568 * During unlink, rmdir, and d_drop it is possible to loose the path
1569 * to an existing mountpoint, and wind up leaking the mount.
1570 * detach_mounts allows lazily unmounting those mounts instead of
1571 * leaking them.
1572 *
1573 * The caller may hold dentry->d_inode->i_mutex.
1574 */
1575 void __detach_mounts(struct dentry *dentry)
1576 {
1577 struct mountpoint *mp;
1578 struct mount *mnt;
1579
1580 namespace_lock();
1581 lock_mount_hash();
1582 mp = lookup_mountpoint(dentry);
1583 if (IS_ERR_OR_NULL(mp))
1584 goto out_unlock;
1585
1586 event++;
1587 while (!hlist_empty(&mp->m_list)) {
1588 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1589 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1590 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1591 umount_mnt(mnt);
1592 }
1593 else umount_tree(mnt, UMOUNT_CONNECTED);
1594 }
1595 put_mountpoint(mp);
1596 out_unlock:
1597 unlock_mount_hash();
1598 namespace_unlock();
1599 }
1600
1601 /*
1602 * Is the caller allowed to modify his namespace?
1603 */
1604 static inline bool may_mount(void)
1605 {
1606 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1607 }
1608
1609 static inline bool may_mandlock(void)
1610 {
1611 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1612 return false;
1613 #endif
1614 return capable(CAP_SYS_ADMIN);
1615 }
1616
1617 /*
1618 * Now umount can handle mount points as well as block devices.
1619 * This is important for filesystems which use unnamed block devices.
1620 *
1621 * We now support a flag for forced unmount like the other 'big iron'
1622 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1623 */
1624
1625 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1626 {
1627 struct path path;
1628 struct mount *mnt;
1629 int retval;
1630 int lookup_flags = 0;
1631
1632 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1633 return -EINVAL;
1634
1635 if (!may_mount())
1636 return -EPERM;
1637
1638 if (!(flags & UMOUNT_NOFOLLOW))
1639 lookup_flags |= LOOKUP_FOLLOW;
1640
1641 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1642 if (retval)
1643 goto out;
1644 mnt = real_mount(path.mnt);
1645 retval = -EINVAL;
1646 if (path.dentry != path.mnt->mnt_root)
1647 goto dput_and_out;
1648 if (!check_mnt(mnt))
1649 goto dput_and_out;
1650 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1651 goto dput_and_out;
1652 retval = -EPERM;
1653 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1654 goto dput_and_out;
1655
1656 retval = do_umount(mnt, flags);
1657 dput_and_out:
1658 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1659 dput(path.dentry);
1660 mntput_no_expire(mnt);
1661 out:
1662 return retval;
1663 }
1664
1665 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1666
1667 /*
1668 * The 2.0 compatible umount. No flags.
1669 */
1670 SYSCALL_DEFINE1(oldumount, char __user *, name)
1671 {
1672 return sys_umount(name, 0);
1673 }
1674
1675 #endif
1676
1677 static bool is_mnt_ns_file(struct dentry *dentry)
1678 {
1679 /* Is this a proxy for a mount namespace? */
1680 return dentry->d_op == &ns_dentry_operations &&
1681 dentry->d_fsdata == &mntns_operations;
1682 }
1683
1684 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1685 {
1686 return container_of(ns, struct mnt_namespace, ns);
1687 }
1688
1689 static bool mnt_ns_loop(struct dentry *dentry)
1690 {
1691 /* Could bind mounting the mount namespace inode cause a
1692 * mount namespace loop?
1693 */
1694 struct mnt_namespace *mnt_ns;
1695 if (!is_mnt_ns_file(dentry))
1696 return false;
1697
1698 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1699 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1700 }
1701
1702 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1703 int flag)
1704 {
1705 struct mount *res, *p, *q, *r, *parent;
1706
1707 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1708 return ERR_PTR(-EINVAL);
1709
1710 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1711 return ERR_PTR(-EINVAL);
1712
1713 res = q = clone_mnt(mnt, dentry, flag);
1714 if (IS_ERR(q))
1715 return q;
1716
1717 q->mnt_mountpoint = mnt->mnt_mountpoint;
1718
1719 p = mnt;
1720 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1721 struct mount *s;
1722 if (!is_subdir(r->mnt_mountpoint, dentry))
1723 continue;
1724
1725 for (s = r; s; s = next_mnt(s, r)) {
1726 if (!(flag & CL_COPY_UNBINDABLE) &&
1727 IS_MNT_UNBINDABLE(s)) {
1728 s = skip_mnt_tree(s);
1729 continue;
1730 }
1731 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1732 is_mnt_ns_file(s->mnt.mnt_root)) {
1733 s = skip_mnt_tree(s);
1734 continue;
1735 }
1736 while (p != s->mnt_parent) {
1737 p = p->mnt_parent;
1738 q = q->mnt_parent;
1739 }
1740 p = s;
1741 parent = q;
1742 q = clone_mnt(p, p->mnt.mnt_root, flag);
1743 if (IS_ERR(q))
1744 goto out;
1745 lock_mount_hash();
1746 list_add_tail(&q->mnt_list, &res->mnt_list);
1747 attach_mnt(q, parent, p->mnt_mp);
1748 unlock_mount_hash();
1749 }
1750 }
1751 return res;
1752 out:
1753 if (res) {
1754 lock_mount_hash();
1755 umount_tree(res, UMOUNT_SYNC);
1756 unlock_mount_hash();
1757 }
1758 return q;
1759 }
1760
1761 /* Caller should check returned pointer for errors */
1762
1763 struct vfsmount *collect_mounts(const struct path *path)
1764 {
1765 struct mount *tree;
1766 namespace_lock();
1767 if (!check_mnt(real_mount(path->mnt)))
1768 tree = ERR_PTR(-EINVAL);
1769 else
1770 tree = copy_tree(real_mount(path->mnt), path->dentry,
1771 CL_COPY_ALL | CL_PRIVATE);
1772 namespace_unlock();
1773 if (IS_ERR(tree))
1774 return ERR_CAST(tree);
1775 return &tree->mnt;
1776 }
1777
1778 void drop_collected_mounts(struct vfsmount *mnt)
1779 {
1780 namespace_lock();
1781 lock_mount_hash();
1782 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1783 unlock_mount_hash();
1784 namespace_unlock();
1785 }
1786
1787 /**
1788 * clone_private_mount - create a private clone of a path
1789 *
1790 * This creates a new vfsmount, which will be the clone of @path. The new will
1791 * not be attached anywhere in the namespace and will be private (i.e. changes
1792 * to the originating mount won't be propagated into this).
1793 *
1794 * Release with mntput().
1795 */
1796 struct vfsmount *clone_private_mount(const struct path *path)
1797 {
1798 struct mount *old_mnt = real_mount(path->mnt);
1799 struct mount *new_mnt;
1800
1801 if (IS_MNT_UNBINDABLE(old_mnt))
1802 return ERR_PTR(-EINVAL);
1803
1804 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1805 if (IS_ERR(new_mnt))
1806 return ERR_CAST(new_mnt);
1807
1808 return &new_mnt->mnt;
1809 }
1810 EXPORT_SYMBOL_GPL(clone_private_mount);
1811
1812 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1813 struct vfsmount *root)
1814 {
1815 struct mount *mnt;
1816 int res = f(root, arg);
1817 if (res)
1818 return res;
1819 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1820 res = f(&mnt->mnt, arg);
1821 if (res)
1822 return res;
1823 }
1824 return 0;
1825 }
1826
1827 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1828 {
1829 struct mount *p;
1830
1831 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1832 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1833 mnt_release_group_id(p);
1834 }
1835 }
1836
1837 static int invent_group_ids(struct mount *mnt, bool recurse)
1838 {
1839 struct mount *p;
1840
1841 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1842 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1843 int err = mnt_alloc_group_id(p);
1844 if (err) {
1845 cleanup_group_ids(mnt, p);
1846 return err;
1847 }
1848 }
1849 }
1850
1851 return 0;
1852 }
1853
1854 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1855 {
1856 unsigned int max = READ_ONCE(sysctl_mount_max);
1857 unsigned int mounts = 0, old, pending, sum;
1858 struct mount *p;
1859
1860 for (p = mnt; p; p = next_mnt(p, mnt))
1861 mounts++;
1862
1863 old = ns->mounts;
1864 pending = ns->pending_mounts;
1865 sum = old + pending;
1866 if ((old > sum) ||
1867 (pending > sum) ||
1868 (max < sum) ||
1869 (mounts > (max - sum)))
1870 return -ENOSPC;
1871
1872 ns->pending_mounts = pending + mounts;
1873 return 0;
1874 }
1875
1876 /*
1877 * @source_mnt : mount tree to be attached
1878 * @nd : place the mount tree @source_mnt is attached
1879 * @parent_nd : if non-null, detach the source_mnt from its parent and
1880 * store the parent mount and mountpoint dentry.
1881 * (done when source_mnt is moved)
1882 *
1883 * NOTE: in the table below explains the semantics when a source mount
1884 * of a given type is attached to a destination mount of a given type.
1885 * ---------------------------------------------------------------------------
1886 * | BIND MOUNT OPERATION |
1887 * |**************************************************************************
1888 * | source-->| shared | private | slave | unbindable |
1889 * | dest | | | | |
1890 * | | | | | | |
1891 * | v | | | | |
1892 * |**************************************************************************
1893 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1894 * | | | | | |
1895 * |non-shared| shared (+) | private | slave (*) | invalid |
1896 * ***************************************************************************
1897 * A bind operation clones the source mount and mounts the clone on the
1898 * destination mount.
1899 *
1900 * (++) the cloned mount is propagated to all the mounts in the propagation
1901 * tree of the destination mount and the cloned mount is added to
1902 * the peer group of the source mount.
1903 * (+) the cloned mount is created under the destination mount and is marked
1904 * as shared. The cloned mount is added to the peer group of the source
1905 * mount.
1906 * (+++) the mount is propagated to all the mounts in the propagation tree
1907 * of the destination mount and the cloned mount is made slave
1908 * of the same master as that of the source mount. The cloned mount
1909 * is marked as 'shared and slave'.
1910 * (*) the cloned mount is made a slave of the same master as that of the
1911 * source mount.
1912 *
1913 * ---------------------------------------------------------------------------
1914 * | MOVE MOUNT OPERATION |
1915 * |**************************************************************************
1916 * | source-->| shared | private | slave | unbindable |
1917 * | dest | | | | |
1918 * | | | | | | |
1919 * | v | | | | |
1920 * |**************************************************************************
1921 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1922 * | | | | | |
1923 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1924 * ***************************************************************************
1925 *
1926 * (+) the mount is moved to the destination. And is then propagated to
1927 * all the mounts in the propagation tree of the destination mount.
1928 * (+*) the mount is moved to the destination.
1929 * (+++) the mount is moved to the destination and is then propagated to
1930 * all the mounts belonging to the destination mount's propagation tree.
1931 * the mount is marked as 'shared and slave'.
1932 * (*) the mount continues to be a slave at the new location.
1933 *
1934 * if the source mount is a tree, the operations explained above is
1935 * applied to each mount in the tree.
1936 * Must be called without spinlocks held, since this function can sleep
1937 * in allocations.
1938 */
1939 static int attach_recursive_mnt(struct mount *source_mnt,
1940 struct mount *dest_mnt,
1941 struct mountpoint *dest_mp,
1942 struct path *parent_path)
1943 {
1944 HLIST_HEAD(tree_list);
1945 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1946 struct mountpoint *smp;
1947 struct mount *child, *p;
1948 struct hlist_node *n;
1949 int err;
1950
1951 /* Preallocate a mountpoint in case the new mounts need
1952 * to be tucked under other mounts.
1953 */
1954 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1955 if (IS_ERR(smp))
1956 return PTR_ERR(smp);
1957
1958 /* Is there space to add these mounts to the mount namespace? */
1959 if (!parent_path) {
1960 err = count_mounts(ns, source_mnt);
1961 if (err)
1962 goto out;
1963 }
1964
1965 if (IS_MNT_SHARED(dest_mnt)) {
1966 err = invent_group_ids(source_mnt, true);
1967 if (err)
1968 goto out;
1969 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1970 lock_mount_hash();
1971 if (err)
1972 goto out_cleanup_ids;
1973 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1974 set_mnt_shared(p);
1975 } else {
1976 lock_mount_hash();
1977 }
1978 if (parent_path) {
1979 detach_mnt(source_mnt, parent_path);
1980 attach_mnt(source_mnt, dest_mnt, dest_mp);
1981 touch_mnt_namespace(source_mnt->mnt_ns);
1982 } else {
1983 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1984 commit_tree(source_mnt);
1985 }
1986
1987 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1988 struct mount *q;
1989 hlist_del_init(&child->mnt_hash);
1990 q = __lookup_mnt(&child->mnt_parent->mnt,
1991 child->mnt_mountpoint);
1992 if (q)
1993 mnt_change_mountpoint(child, smp, q);
1994 commit_tree(child);
1995 }
1996 put_mountpoint(smp);
1997 unlock_mount_hash();
1998
1999 return 0;
2000
2001 out_cleanup_ids:
2002 while (!hlist_empty(&tree_list)) {
2003 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2004 child->mnt_parent->mnt_ns->pending_mounts = 0;
2005 umount_tree(child, UMOUNT_SYNC);
2006 }
2007 unlock_mount_hash();
2008 cleanup_group_ids(source_mnt, NULL);
2009 out:
2010 ns->pending_mounts = 0;
2011
2012 read_seqlock_excl(&mount_lock);
2013 put_mountpoint(smp);
2014 read_sequnlock_excl(&mount_lock);
2015
2016 return err;
2017 }
2018
2019 static struct mountpoint *lock_mount(struct path *path)
2020 {
2021 struct vfsmount *mnt;
2022 struct dentry *dentry = path->dentry;
2023 retry:
2024 inode_lock(dentry->d_inode);
2025 if (unlikely(cant_mount(dentry))) {
2026 inode_unlock(dentry->d_inode);
2027 return ERR_PTR(-ENOENT);
2028 }
2029 namespace_lock();
2030 mnt = lookup_mnt(path);
2031 if (likely(!mnt)) {
2032 struct mountpoint *mp = get_mountpoint(dentry);
2033 if (IS_ERR(mp)) {
2034 namespace_unlock();
2035 inode_unlock(dentry->d_inode);
2036 return mp;
2037 }
2038 return mp;
2039 }
2040 namespace_unlock();
2041 inode_unlock(path->dentry->d_inode);
2042 path_put(path);
2043 path->mnt = mnt;
2044 dentry = path->dentry = dget(mnt->mnt_root);
2045 goto retry;
2046 }
2047
2048 static void unlock_mount(struct mountpoint *where)
2049 {
2050 struct dentry *dentry = where->m_dentry;
2051
2052 read_seqlock_excl(&mount_lock);
2053 put_mountpoint(where);
2054 read_sequnlock_excl(&mount_lock);
2055
2056 namespace_unlock();
2057 inode_unlock(dentry->d_inode);
2058 }
2059
2060 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2061 {
2062 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2063 return -EINVAL;
2064
2065 if (d_is_dir(mp->m_dentry) !=
2066 d_is_dir(mnt->mnt.mnt_root))
2067 return -ENOTDIR;
2068
2069 return attach_recursive_mnt(mnt, p, mp, NULL);
2070 }
2071
2072 /*
2073 * Sanity check the flags to change_mnt_propagation.
2074 */
2075
2076 static int flags_to_propagation_type(int flags)
2077 {
2078 int type = flags & ~(MS_REC | MS_SILENT);
2079
2080 /* Fail if any non-propagation flags are set */
2081 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2082 return 0;
2083 /* Only one propagation flag should be set */
2084 if (!is_power_of_2(type))
2085 return 0;
2086 return type;
2087 }
2088
2089 /*
2090 * recursively change the type of the mountpoint.
2091 */
2092 static int do_change_type(struct path *path, int flag)
2093 {
2094 struct mount *m;
2095 struct mount *mnt = real_mount(path->mnt);
2096 int recurse = flag & MS_REC;
2097 int type;
2098 int err = 0;
2099
2100 if (path->dentry != path->mnt->mnt_root)
2101 return -EINVAL;
2102
2103 type = flags_to_propagation_type(flag);
2104 if (!type)
2105 return -EINVAL;
2106
2107 namespace_lock();
2108 if (type == MS_SHARED) {
2109 err = invent_group_ids(mnt, recurse);
2110 if (err)
2111 goto out_unlock;
2112 }
2113
2114 lock_mount_hash();
2115 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2116 change_mnt_propagation(m, type);
2117 unlock_mount_hash();
2118
2119 out_unlock:
2120 namespace_unlock();
2121 return err;
2122 }
2123
2124 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2125 {
2126 struct mount *child;
2127 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2128 if (!is_subdir(child->mnt_mountpoint, dentry))
2129 continue;
2130
2131 if (child->mnt.mnt_flags & MNT_LOCKED)
2132 return true;
2133 }
2134 return false;
2135 }
2136
2137 /*
2138 * do loopback mount.
2139 */
2140 static int do_loopback(struct path *path, const char *old_name,
2141 int recurse)
2142 {
2143 struct path old_path;
2144 struct mount *mnt = NULL, *old, *parent;
2145 struct mountpoint *mp;
2146 int err;
2147 if (!old_name || !*old_name)
2148 return -EINVAL;
2149 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2150 if (err)
2151 return err;
2152
2153 err = -EINVAL;
2154 if (mnt_ns_loop(old_path.dentry))
2155 goto out;
2156
2157 mp = lock_mount(path);
2158 err = PTR_ERR(mp);
2159 if (IS_ERR(mp))
2160 goto out;
2161
2162 old = real_mount(old_path.mnt);
2163 parent = real_mount(path->mnt);
2164
2165 err = -EINVAL;
2166 if (IS_MNT_UNBINDABLE(old))
2167 goto out2;
2168
2169 if (!check_mnt(parent))
2170 goto out2;
2171
2172 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2173 goto out2;
2174
2175 if (!recurse && has_locked_children(old, old_path.dentry))
2176 goto out2;
2177
2178 if (recurse)
2179 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2180 else
2181 mnt = clone_mnt(old, old_path.dentry, 0);
2182
2183 if (IS_ERR(mnt)) {
2184 err = PTR_ERR(mnt);
2185 goto out2;
2186 }
2187
2188 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2189
2190 err = graft_tree(mnt, parent, mp);
2191 if (err) {
2192 lock_mount_hash();
2193 umount_tree(mnt, UMOUNT_SYNC);
2194 unlock_mount_hash();
2195 }
2196 out2:
2197 unlock_mount(mp);
2198 out:
2199 path_put(&old_path);
2200 return err;
2201 }
2202
2203 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2204 {
2205 int error = 0;
2206 int readonly_request = 0;
2207
2208 if (ms_flags & MS_RDONLY)
2209 readonly_request = 1;
2210 if (readonly_request == __mnt_is_readonly(mnt))
2211 return 0;
2212
2213 if (readonly_request)
2214 error = mnt_make_readonly(real_mount(mnt));
2215 else
2216 __mnt_unmake_readonly(real_mount(mnt));
2217 return error;
2218 }
2219
2220 /*
2221 * change filesystem flags. dir should be a physical root of filesystem.
2222 * If you've mounted a non-root directory somewhere and want to do remount
2223 * on it - tough luck.
2224 */
2225 static int do_remount(struct path *path, int flags, int mnt_flags,
2226 void *data)
2227 {
2228 int err;
2229 struct super_block *sb = path->mnt->mnt_sb;
2230 struct mount *mnt = real_mount(path->mnt);
2231
2232 if (!check_mnt(mnt))
2233 return -EINVAL;
2234
2235 if (path->dentry != path->mnt->mnt_root)
2236 return -EINVAL;
2237
2238 /* Don't allow changing of locked mnt flags.
2239 *
2240 * No locks need to be held here while testing the various
2241 * MNT_LOCK flags because those flags can never be cleared
2242 * once they are set.
2243 */
2244 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2245 !(mnt_flags & MNT_READONLY)) {
2246 return -EPERM;
2247 }
2248 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2249 !(mnt_flags & MNT_NODEV)) {
2250 return -EPERM;
2251 }
2252 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2253 !(mnt_flags & MNT_NOSUID)) {
2254 return -EPERM;
2255 }
2256 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2257 !(mnt_flags & MNT_NOEXEC)) {
2258 return -EPERM;
2259 }
2260 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2261 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2262 return -EPERM;
2263 }
2264
2265 err = security_sb_remount(sb, data);
2266 if (err)
2267 return err;
2268
2269 down_write(&sb->s_umount);
2270 if (flags & MS_BIND)
2271 err = change_mount_flags(path->mnt, flags);
2272 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2273 err = -EPERM;
2274 else
2275 err = do_remount_sb(sb, flags, data, 0);
2276 if (!err) {
2277 lock_mount_hash();
2278 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2279 mnt->mnt.mnt_flags = mnt_flags;
2280 touch_mnt_namespace(mnt->mnt_ns);
2281 unlock_mount_hash();
2282 }
2283 up_write(&sb->s_umount);
2284 return err;
2285 }
2286
2287 static inline int tree_contains_unbindable(struct mount *mnt)
2288 {
2289 struct mount *p;
2290 for (p = mnt; p; p = next_mnt(p, mnt)) {
2291 if (IS_MNT_UNBINDABLE(p))
2292 return 1;
2293 }
2294 return 0;
2295 }
2296
2297 static int do_move_mount(struct path *path, const char *old_name)
2298 {
2299 struct path old_path, parent_path;
2300 struct mount *p;
2301 struct mount *old;
2302 struct mountpoint *mp;
2303 int err;
2304 if (!old_name || !*old_name)
2305 return -EINVAL;
2306 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2307 if (err)
2308 return err;
2309
2310 mp = lock_mount(path);
2311 err = PTR_ERR(mp);
2312 if (IS_ERR(mp))
2313 goto out;
2314
2315 old = real_mount(old_path.mnt);
2316 p = real_mount(path->mnt);
2317
2318 err = -EINVAL;
2319 if (!check_mnt(p) || !check_mnt(old))
2320 goto out1;
2321
2322 if (old->mnt.mnt_flags & MNT_LOCKED)
2323 goto out1;
2324
2325 err = -EINVAL;
2326 if (old_path.dentry != old_path.mnt->mnt_root)
2327 goto out1;
2328
2329 if (!mnt_has_parent(old))
2330 goto out1;
2331
2332 if (d_is_dir(path->dentry) !=
2333 d_is_dir(old_path.dentry))
2334 goto out1;
2335 /*
2336 * Don't move a mount residing in a shared parent.
2337 */
2338 if (IS_MNT_SHARED(old->mnt_parent))
2339 goto out1;
2340 /*
2341 * Don't move a mount tree containing unbindable mounts to a destination
2342 * mount which is shared.
2343 */
2344 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2345 goto out1;
2346 err = -ELOOP;
2347 for (; mnt_has_parent(p); p = p->mnt_parent)
2348 if (p == old)
2349 goto out1;
2350
2351 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2352 if (err)
2353 goto out1;
2354
2355 /* if the mount is moved, it should no longer be expire
2356 * automatically */
2357 list_del_init(&old->mnt_expire);
2358 out1:
2359 unlock_mount(mp);
2360 out:
2361 if (!err)
2362 path_put(&parent_path);
2363 path_put(&old_path);
2364 return err;
2365 }
2366
2367 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2368 {
2369 int err;
2370 const char *subtype = strchr(fstype, '.');
2371 if (subtype) {
2372 subtype++;
2373 err = -EINVAL;
2374 if (!subtype[0])
2375 goto err;
2376 } else
2377 subtype = "";
2378
2379 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2380 err = -ENOMEM;
2381 if (!mnt->mnt_sb->s_subtype)
2382 goto err;
2383 return mnt;
2384
2385 err:
2386 mntput(mnt);
2387 return ERR_PTR(err);
2388 }
2389
2390 /*
2391 * add a mount into a namespace's mount tree
2392 */
2393 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2394 {
2395 struct mountpoint *mp;
2396 struct mount *parent;
2397 int err;
2398
2399 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2400
2401 mp = lock_mount(path);
2402 if (IS_ERR(mp))
2403 return PTR_ERR(mp);
2404
2405 parent = real_mount(path->mnt);
2406 err = -EINVAL;
2407 if (unlikely(!check_mnt(parent))) {
2408 /* that's acceptable only for automounts done in private ns */
2409 if (!(mnt_flags & MNT_SHRINKABLE))
2410 goto unlock;
2411 /* ... and for those we'd better have mountpoint still alive */
2412 if (!parent->mnt_ns)
2413 goto unlock;
2414 }
2415
2416 /* Refuse the same filesystem on the same mount point */
2417 err = -EBUSY;
2418 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2419 path->mnt->mnt_root == path->dentry)
2420 goto unlock;
2421
2422 err = -EINVAL;
2423 if (d_is_symlink(newmnt->mnt.mnt_root))
2424 goto unlock;
2425
2426 newmnt->mnt.mnt_flags = mnt_flags;
2427 err = graft_tree(newmnt, parent, mp);
2428
2429 unlock:
2430 unlock_mount(mp);
2431 return err;
2432 }
2433
2434 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2435
2436 /*
2437 * create a new mount for userspace and request it to be added into the
2438 * namespace's tree
2439 */
2440 static int do_new_mount(struct path *path, const char *fstype, int flags,
2441 int mnt_flags, const char *name, void *data)
2442 {
2443 struct file_system_type *type;
2444 struct vfsmount *mnt;
2445 int err;
2446
2447 if (!fstype)
2448 return -EINVAL;
2449
2450 type = get_fs_type(fstype);
2451 if (!type)
2452 return -ENODEV;
2453
2454 mnt = vfs_kern_mount(type, flags, name, data);
2455 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2456 !mnt->mnt_sb->s_subtype)
2457 mnt = fs_set_subtype(mnt, fstype);
2458
2459 put_filesystem(type);
2460 if (IS_ERR(mnt))
2461 return PTR_ERR(mnt);
2462
2463 if (mount_too_revealing(mnt, &mnt_flags)) {
2464 mntput(mnt);
2465 return -EPERM;
2466 }
2467
2468 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2469 if (err)
2470 mntput(mnt);
2471 return err;
2472 }
2473
2474 int finish_automount(struct vfsmount *m, struct path *path)
2475 {
2476 struct mount *mnt = real_mount(m);
2477 int err;
2478 /* The new mount record should have at least 2 refs to prevent it being
2479 * expired before we get a chance to add it
2480 */
2481 BUG_ON(mnt_get_count(mnt) < 2);
2482
2483 if (m->mnt_sb == path->mnt->mnt_sb &&
2484 m->mnt_root == path->dentry) {
2485 err = -ELOOP;
2486 goto fail;
2487 }
2488
2489 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2490 if (!err)
2491 return 0;
2492 fail:
2493 /* remove m from any expiration list it may be on */
2494 if (!list_empty(&mnt->mnt_expire)) {
2495 namespace_lock();
2496 list_del_init(&mnt->mnt_expire);
2497 namespace_unlock();
2498 }
2499 mntput(m);
2500 mntput(m);
2501 return err;
2502 }
2503
2504 /**
2505 * mnt_set_expiry - Put a mount on an expiration list
2506 * @mnt: The mount to list.
2507 * @expiry_list: The list to add the mount to.
2508 */
2509 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2510 {
2511 namespace_lock();
2512
2513 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2514
2515 namespace_unlock();
2516 }
2517 EXPORT_SYMBOL(mnt_set_expiry);
2518
2519 /*
2520 * process a list of expirable mountpoints with the intent of discarding any
2521 * mountpoints that aren't in use and haven't been touched since last we came
2522 * here
2523 */
2524 void mark_mounts_for_expiry(struct list_head *mounts)
2525 {
2526 struct mount *mnt, *next;
2527 LIST_HEAD(graveyard);
2528
2529 if (list_empty(mounts))
2530 return;
2531
2532 namespace_lock();
2533 lock_mount_hash();
2534
2535 /* extract from the expiration list every vfsmount that matches the
2536 * following criteria:
2537 * - only referenced by its parent vfsmount
2538 * - still marked for expiry (marked on the last call here; marks are
2539 * cleared by mntput())
2540 */
2541 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2542 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2543 propagate_mount_busy(mnt, 1))
2544 continue;
2545 list_move(&mnt->mnt_expire, &graveyard);
2546 }
2547 while (!list_empty(&graveyard)) {
2548 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2549 touch_mnt_namespace(mnt->mnt_ns);
2550 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2551 }
2552 unlock_mount_hash();
2553 namespace_unlock();
2554 }
2555
2556 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2557
2558 /*
2559 * Ripoff of 'select_parent()'
2560 *
2561 * search the list of submounts for a given mountpoint, and move any
2562 * shrinkable submounts to the 'graveyard' list.
2563 */
2564 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2565 {
2566 struct mount *this_parent = parent;
2567 struct list_head *next;
2568 int found = 0;
2569
2570 repeat:
2571 next = this_parent->mnt_mounts.next;
2572 resume:
2573 while (next != &this_parent->mnt_mounts) {
2574 struct list_head *tmp = next;
2575 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2576
2577 next = tmp->next;
2578 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2579 continue;
2580 /*
2581 * Descend a level if the d_mounts list is non-empty.
2582 */
2583 if (!list_empty(&mnt->mnt_mounts)) {
2584 this_parent = mnt;
2585 goto repeat;
2586 }
2587
2588 if (!propagate_mount_busy(mnt, 1)) {
2589 list_move_tail(&mnt->mnt_expire, graveyard);
2590 found++;
2591 }
2592 }
2593 /*
2594 * All done at this level ... ascend and resume the search
2595 */
2596 if (this_parent != parent) {
2597 next = this_parent->mnt_child.next;
2598 this_parent = this_parent->mnt_parent;
2599 goto resume;
2600 }
2601 return found;
2602 }
2603
2604 /*
2605 * process a list of expirable mountpoints with the intent of discarding any
2606 * submounts of a specific parent mountpoint
2607 *
2608 * mount_lock must be held for write
2609 */
2610 static void shrink_submounts(struct mount *mnt)
2611 {
2612 LIST_HEAD(graveyard);
2613 struct mount *m;
2614
2615 /* extract submounts of 'mountpoint' from the expiration list */
2616 while (select_submounts(mnt, &graveyard)) {
2617 while (!list_empty(&graveyard)) {
2618 m = list_first_entry(&graveyard, struct mount,
2619 mnt_expire);
2620 touch_mnt_namespace(m->mnt_ns);
2621 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2622 }
2623 }
2624 }
2625
2626 /*
2627 * Some copy_from_user() implementations do not return the exact number of
2628 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2629 * Note that this function differs from copy_from_user() in that it will oops
2630 * on bad values of `to', rather than returning a short copy.
2631 */
2632 static long exact_copy_from_user(void *to, const void __user * from,
2633 unsigned long n)
2634 {
2635 char *t = to;
2636 const char __user *f = from;
2637 char c;
2638
2639 if (!access_ok(VERIFY_READ, from, n))
2640 return n;
2641
2642 while (n) {
2643 if (__get_user(c, f)) {
2644 memset(t, 0, n);
2645 break;
2646 }
2647 *t++ = c;
2648 f++;
2649 n--;
2650 }
2651 return n;
2652 }
2653
2654 void *copy_mount_options(const void __user * data)
2655 {
2656 int i;
2657 unsigned long size;
2658 char *copy;
2659
2660 if (!data)
2661 return NULL;
2662
2663 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2664 if (!copy)
2665 return ERR_PTR(-ENOMEM);
2666
2667 /* We only care that *some* data at the address the user
2668 * gave us is valid. Just in case, we'll zero
2669 * the remainder of the page.
2670 */
2671 /* copy_from_user cannot cross TASK_SIZE ! */
2672 size = TASK_SIZE - (unsigned long)data;
2673 if (size > PAGE_SIZE)
2674 size = PAGE_SIZE;
2675
2676 i = size - exact_copy_from_user(copy, data, size);
2677 if (!i) {
2678 kfree(copy);
2679 return ERR_PTR(-EFAULT);
2680 }
2681 if (i != PAGE_SIZE)
2682 memset(copy + i, 0, PAGE_SIZE - i);
2683 return copy;
2684 }
2685
2686 char *copy_mount_string(const void __user *data)
2687 {
2688 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2689 }
2690
2691 /*
2692 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2693 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2694 *
2695 * data is a (void *) that can point to any structure up to
2696 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2697 * information (or be NULL).
2698 *
2699 * Pre-0.97 versions of mount() didn't have a flags word.
2700 * When the flags word was introduced its top half was required
2701 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2702 * Therefore, if this magic number is present, it carries no information
2703 * and must be discarded.
2704 */
2705 long do_mount(const char *dev_name, const char __user *dir_name,
2706 const char *type_page, unsigned long flags, void *data_page)
2707 {
2708 struct path path;
2709 int retval = 0;
2710 int mnt_flags = 0;
2711
2712 /* Discard magic */
2713 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2714 flags &= ~MS_MGC_MSK;
2715
2716 /* Basic sanity checks */
2717 if (data_page)
2718 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2719
2720 /* ... and get the mountpoint */
2721 retval = user_path(dir_name, &path);
2722 if (retval)
2723 return retval;
2724
2725 retval = security_sb_mount(dev_name, &path,
2726 type_page, flags, data_page);
2727 if (!retval && !may_mount())
2728 retval = -EPERM;
2729 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2730 retval = -EPERM;
2731 if (retval)
2732 goto dput_out;
2733
2734 /* Default to relatime unless overriden */
2735 if (!(flags & MS_NOATIME))
2736 mnt_flags |= MNT_RELATIME;
2737
2738 /* Separate the per-mountpoint flags */
2739 if (flags & MS_NOSUID)
2740 mnt_flags |= MNT_NOSUID;
2741 if (flags & MS_NODEV)
2742 mnt_flags |= MNT_NODEV;
2743 if (flags & MS_NOEXEC)
2744 mnt_flags |= MNT_NOEXEC;
2745 if (flags & MS_NOATIME)
2746 mnt_flags |= MNT_NOATIME;
2747 if (flags & MS_NODIRATIME)
2748 mnt_flags |= MNT_NODIRATIME;
2749 if (flags & MS_STRICTATIME)
2750 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2751 if (flags & MS_RDONLY)
2752 mnt_flags |= MNT_READONLY;
2753
2754 /* The default atime for remount is preservation */
2755 if ((flags & MS_REMOUNT) &&
2756 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2757 MS_STRICTATIME)) == 0)) {
2758 mnt_flags &= ~MNT_ATIME_MASK;
2759 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2760 }
2761
2762 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2763 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2764 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2765
2766 if (flags & MS_REMOUNT)
2767 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2768 data_page);
2769 else if (flags & MS_BIND)
2770 retval = do_loopback(&path, dev_name, flags & MS_REC);
2771 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2772 retval = do_change_type(&path, flags);
2773 else if (flags & MS_MOVE)
2774 retval = do_move_mount(&path, dev_name);
2775 else
2776 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2777 dev_name, data_page);
2778 dput_out:
2779 path_put(&path);
2780 return retval;
2781 }
2782
2783 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2784 {
2785 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2786 }
2787
2788 static void dec_mnt_namespaces(struct ucounts *ucounts)
2789 {
2790 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2791 }
2792
2793 static void free_mnt_ns(struct mnt_namespace *ns)
2794 {
2795 ns_free_inum(&ns->ns);
2796 dec_mnt_namespaces(ns->ucounts);
2797 put_user_ns(ns->user_ns);
2798 kfree(ns);
2799 }
2800
2801 /*
2802 * Assign a sequence number so we can detect when we attempt to bind
2803 * mount a reference to an older mount namespace into the current
2804 * mount namespace, preventing reference counting loops. A 64bit
2805 * number incrementing at 10Ghz will take 12,427 years to wrap which
2806 * is effectively never, so we can ignore the possibility.
2807 */
2808 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2809
2810 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2811 {
2812 struct mnt_namespace *new_ns;
2813 struct ucounts *ucounts;
2814 int ret;
2815
2816 ucounts = inc_mnt_namespaces(user_ns);
2817 if (!ucounts)
2818 return ERR_PTR(-ENOSPC);
2819
2820 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2821 if (!new_ns) {
2822 dec_mnt_namespaces(ucounts);
2823 return ERR_PTR(-ENOMEM);
2824 }
2825 ret = ns_alloc_inum(&new_ns->ns);
2826 if (ret) {
2827 kfree(new_ns);
2828 dec_mnt_namespaces(ucounts);
2829 return ERR_PTR(ret);
2830 }
2831 new_ns->ns.ops = &mntns_operations;
2832 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2833 atomic_set(&new_ns->count, 1);
2834 new_ns->root = NULL;
2835 INIT_LIST_HEAD(&new_ns->list);
2836 init_waitqueue_head(&new_ns->poll);
2837 new_ns->event = 0;
2838 new_ns->user_ns = get_user_ns(user_ns);
2839 new_ns->ucounts = ucounts;
2840 new_ns->mounts = 0;
2841 new_ns->pending_mounts = 0;
2842 return new_ns;
2843 }
2844
2845 __latent_entropy
2846 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2847 struct user_namespace *user_ns, struct fs_struct *new_fs)
2848 {
2849 struct mnt_namespace *new_ns;
2850 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2851 struct mount *p, *q;
2852 struct mount *old;
2853 struct mount *new;
2854 int copy_flags;
2855
2856 BUG_ON(!ns);
2857
2858 if (likely(!(flags & CLONE_NEWNS))) {
2859 get_mnt_ns(ns);
2860 return ns;
2861 }
2862
2863 old = ns->root;
2864
2865 new_ns = alloc_mnt_ns(user_ns);
2866 if (IS_ERR(new_ns))
2867 return new_ns;
2868
2869 namespace_lock();
2870 /* First pass: copy the tree topology */
2871 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2872 if (user_ns != ns->user_ns)
2873 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2874 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2875 if (IS_ERR(new)) {
2876 namespace_unlock();
2877 free_mnt_ns(new_ns);
2878 return ERR_CAST(new);
2879 }
2880 new_ns->root = new;
2881 list_add_tail(&new_ns->list, &new->mnt_list);
2882
2883 /*
2884 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2885 * as belonging to new namespace. We have already acquired a private
2886 * fs_struct, so tsk->fs->lock is not needed.
2887 */
2888 p = old;
2889 q = new;
2890 while (p) {
2891 q->mnt_ns = new_ns;
2892 new_ns->mounts++;
2893 if (new_fs) {
2894 if (&p->mnt == new_fs->root.mnt) {
2895 new_fs->root.mnt = mntget(&q->mnt);
2896 rootmnt = &p->mnt;
2897 }
2898 if (&p->mnt == new_fs->pwd.mnt) {
2899 new_fs->pwd.mnt = mntget(&q->mnt);
2900 pwdmnt = &p->mnt;
2901 }
2902 }
2903 p = next_mnt(p, old);
2904 q = next_mnt(q, new);
2905 if (!q)
2906 break;
2907 while (p->mnt.mnt_root != q->mnt.mnt_root)
2908 p = next_mnt(p, old);
2909 }
2910 namespace_unlock();
2911
2912 if (rootmnt)
2913 mntput(rootmnt);
2914 if (pwdmnt)
2915 mntput(pwdmnt);
2916
2917 return new_ns;
2918 }
2919
2920 /**
2921 * create_mnt_ns - creates a private namespace and adds a root filesystem
2922 * @mnt: pointer to the new root filesystem mountpoint
2923 */
2924 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2925 {
2926 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2927 if (!IS_ERR(new_ns)) {
2928 struct mount *mnt = real_mount(m);
2929 mnt->mnt_ns = new_ns;
2930 new_ns->root = mnt;
2931 new_ns->mounts++;
2932 list_add(&mnt->mnt_list, &new_ns->list);
2933 } else {
2934 mntput(m);
2935 }
2936 return new_ns;
2937 }
2938
2939 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2940 {
2941 struct mnt_namespace *ns;
2942 struct super_block *s;
2943 struct path path;
2944 int err;
2945
2946 ns = create_mnt_ns(mnt);
2947 if (IS_ERR(ns))
2948 return ERR_CAST(ns);
2949
2950 err = vfs_path_lookup(mnt->mnt_root, mnt,
2951 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2952
2953 put_mnt_ns(ns);
2954
2955 if (err)
2956 return ERR_PTR(err);
2957
2958 /* trade a vfsmount reference for active sb one */
2959 s = path.mnt->mnt_sb;
2960 atomic_inc(&s->s_active);
2961 mntput(path.mnt);
2962 /* lock the sucker */
2963 down_write(&s->s_umount);
2964 /* ... and return the root of (sub)tree on it */
2965 return path.dentry;
2966 }
2967 EXPORT_SYMBOL(mount_subtree);
2968
2969 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2970 char __user *, type, unsigned long, flags, void __user *, data)
2971 {
2972 int ret;
2973 char *kernel_type;
2974 char *kernel_dev;
2975 void *options;
2976
2977 kernel_type = copy_mount_string(type);
2978 ret = PTR_ERR(kernel_type);
2979 if (IS_ERR(kernel_type))
2980 goto out_type;
2981
2982 kernel_dev = copy_mount_string(dev_name);
2983 ret = PTR_ERR(kernel_dev);
2984 if (IS_ERR(kernel_dev))
2985 goto out_dev;
2986
2987 options = copy_mount_options(data);
2988 ret = PTR_ERR(options);
2989 if (IS_ERR(options))
2990 goto out_data;
2991
2992 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
2993
2994 kfree(options);
2995 out_data:
2996 kfree(kernel_dev);
2997 out_dev:
2998 kfree(kernel_type);
2999 out_type:
3000 return ret;
3001 }
3002
3003 /*
3004 * Return true if path is reachable from root
3005 *
3006 * namespace_sem or mount_lock is held
3007 */
3008 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3009 const struct path *root)
3010 {
3011 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3012 dentry = mnt->mnt_mountpoint;
3013 mnt = mnt->mnt_parent;
3014 }
3015 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3016 }
3017
3018 bool path_is_under(const struct path *path1, const struct path *path2)
3019 {
3020 bool res;
3021 read_seqlock_excl(&mount_lock);
3022 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3023 read_sequnlock_excl(&mount_lock);
3024 return res;
3025 }
3026 EXPORT_SYMBOL(path_is_under);
3027
3028 /*
3029 * pivot_root Semantics:
3030 * Moves the root file system of the current process to the directory put_old,
3031 * makes new_root as the new root file system of the current process, and sets
3032 * root/cwd of all processes which had them on the current root to new_root.
3033 *
3034 * Restrictions:
3035 * The new_root and put_old must be directories, and must not be on the
3036 * same file system as the current process root. The put_old must be
3037 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3038 * pointed to by put_old must yield the same directory as new_root. No other
3039 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3040 *
3041 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3042 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3043 * in this situation.
3044 *
3045 * Notes:
3046 * - we don't move root/cwd if they are not at the root (reason: if something
3047 * cared enough to change them, it's probably wrong to force them elsewhere)
3048 * - it's okay to pick a root that isn't the root of a file system, e.g.
3049 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3050 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3051 * first.
3052 */
3053 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3054 const char __user *, put_old)
3055 {
3056 struct path new, old, parent_path, root_parent, root;
3057 struct mount *new_mnt, *root_mnt, *old_mnt;
3058 struct mountpoint *old_mp, *root_mp;
3059 int error;
3060
3061 if (!may_mount())
3062 return -EPERM;
3063
3064 error = user_path_dir(new_root, &new);
3065 if (error)
3066 goto out0;
3067
3068 error = user_path_dir(put_old, &old);
3069 if (error)
3070 goto out1;
3071
3072 error = security_sb_pivotroot(&old, &new);
3073 if (error)
3074 goto out2;
3075
3076 get_fs_root(current->fs, &root);
3077 old_mp = lock_mount(&old);
3078 error = PTR_ERR(old_mp);
3079 if (IS_ERR(old_mp))
3080 goto out3;
3081
3082 error = -EINVAL;
3083 new_mnt = real_mount(new.mnt);
3084 root_mnt = real_mount(root.mnt);
3085 old_mnt = real_mount(old.mnt);
3086 if (IS_MNT_SHARED(old_mnt) ||
3087 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3088 IS_MNT_SHARED(root_mnt->mnt_parent))
3089 goto out4;
3090 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3091 goto out4;
3092 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3093 goto out4;
3094 error = -ENOENT;
3095 if (d_unlinked(new.dentry))
3096 goto out4;
3097 error = -EBUSY;
3098 if (new_mnt == root_mnt || old_mnt == root_mnt)
3099 goto out4; /* loop, on the same file system */
3100 error = -EINVAL;
3101 if (root.mnt->mnt_root != root.dentry)
3102 goto out4; /* not a mountpoint */
3103 if (!mnt_has_parent(root_mnt))
3104 goto out4; /* not attached */
3105 root_mp = root_mnt->mnt_mp;
3106 if (new.mnt->mnt_root != new.dentry)
3107 goto out4; /* not a mountpoint */
3108 if (!mnt_has_parent(new_mnt))
3109 goto out4; /* not attached */
3110 /* make sure we can reach put_old from new_root */
3111 if (!is_path_reachable(old_mnt, old.dentry, &new))
3112 goto out4;
3113 /* make certain new is below the root */
3114 if (!is_path_reachable(new_mnt, new.dentry, &root))
3115 goto out4;
3116 root_mp->m_count++; /* pin it so it won't go away */
3117 lock_mount_hash();
3118 detach_mnt(new_mnt, &parent_path);
3119 detach_mnt(root_mnt, &root_parent);
3120 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3121 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3122 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3123 }
3124 /* mount old root on put_old */
3125 attach_mnt(root_mnt, old_mnt, old_mp);
3126 /* mount new_root on / */
3127 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3128 touch_mnt_namespace(current->nsproxy->mnt_ns);
3129 /* A moved mount should not expire automatically */
3130 list_del_init(&new_mnt->mnt_expire);
3131 put_mountpoint(root_mp);
3132 unlock_mount_hash();
3133 chroot_fs_refs(&root, &new);
3134 error = 0;
3135 out4:
3136 unlock_mount(old_mp);
3137 if (!error) {
3138 path_put(&root_parent);
3139 path_put(&parent_path);
3140 }
3141 out3:
3142 path_put(&root);
3143 out2:
3144 path_put(&old);
3145 out1:
3146 path_put(&new);
3147 out0:
3148 return error;
3149 }
3150
3151 static void __init init_mount_tree(void)
3152 {
3153 struct vfsmount *mnt;
3154 struct mnt_namespace *ns;
3155 struct path root;
3156 struct file_system_type *type;
3157
3158 type = get_fs_type("rootfs");
3159 if (!type)
3160 panic("Can't find rootfs type");
3161 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3162 put_filesystem(type);
3163 if (IS_ERR(mnt))
3164 panic("Can't create rootfs");
3165
3166 ns = create_mnt_ns(mnt);
3167 if (IS_ERR(ns))
3168 panic("Can't allocate initial namespace");
3169
3170 init_task.nsproxy->mnt_ns = ns;
3171 get_mnt_ns(ns);
3172
3173 root.mnt = mnt;
3174 root.dentry = mnt->mnt_root;
3175 mnt->mnt_flags |= MNT_LOCKED;
3176
3177 set_fs_pwd(current->fs, &root);
3178 set_fs_root(current->fs, &root);
3179 }
3180
3181 void __init mnt_init(void)
3182 {
3183 int err;
3184
3185 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3186 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3187
3188 mount_hashtable = alloc_large_system_hash("Mount-cache",
3189 sizeof(struct hlist_head),
3190 mhash_entries, 19,
3191 HASH_ZERO,
3192 &m_hash_shift, &m_hash_mask, 0, 0);
3193 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3194 sizeof(struct hlist_head),
3195 mphash_entries, 19,
3196 HASH_ZERO,
3197 &mp_hash_shift, &mp_hash_mask, 0, 0);
3198
3199 if (!mount_hashtable || !mountpoint_hashtable)
3200 panic("Failed to allocate mount hash table\n");
3201
3202 kernfs_init();
3203
3204 err = sysfs_init();
3205 if (err)
3206 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3207 __func__, err);
3208 fs_kobj = kobject_create_and_add("fs", NULL);
3209 if (!fs_kobj)
3210 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3211 init_rootfs();
3212 init_mount_tree();
3213 }
3214
3215 void put_mnt_ns(struct mnt_namespace *ns)
3216 {
3217 if (!atomic_dec_and_test(&ns->count))
3218 return;
3219 drop_collected_mounts(&ns->root->mnt);
3220 free_mnt_ns(ns);
3221 }
3222
3223 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3224 {
3225 struct vfsmount *mnt;
3226 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3227 if (!IS_ERR(mnt)) {
3228 /*
3229 * it is a longterm mount, don't release mnt until
3230 * we unmount before file sys is unregistered
3231 */
3232 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3233 }
3234 return mnt;
3235 }
3236 EXPORT_SYMBOL_GPL(kern_mount_data);
3237
3238 void kern_unmount(struct vfsmount *mnt)
3239 {
3240 /* release long term mount so mount point can be released */
3241 if (!IS_ERR_OR_NULL(mnt)) {
3242 real_mount(mnt)->mnt_ns = NULL;
3243 synchronize_rcu(); /* yecchhh... */
3244 mntput(mnt);
3245 }
3246 }
3247 EXPORT_SYMBOL(kern_unmount);
3248
3249 bool our_mnt(struct vfsmount *mnt)
3250 {
3251 return check_mnt(real_mount(mnt));
3252 }
3253
3254 bool current_chrooted(void)
3255 {
3256 /* Does the current process have a non-standard root */
3257 struct path ns_root;
3258 struct path fs_root;
3259 bool chrooted;
3260
3261 /* Find the namespace root */
3262 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3263 ns_root.dentry = ns_root.mnt->mnt_root;
3264 path_get(&ns_root);
3265 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3266 ;
3267
3268 get_fs_root(current->fs, &fs_root);
3269
3270 chrooted = !path_equal(&fs_root, &ns_root);
3271
3272 path_put(&fs_root);
3273 path_put(&ns_root);
3274
3275 return chrooted;
3276 }
3277
3278 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3279 int *new_mnt_flags)
3280 {
3281 int new_flags = *new_mnt_flags;
3282 struct mount *mnt;
3283 bool visible = false;
3284
3285 down_read(&namespace_sem);
3286 list_for_each_entry(mnt, &ns->list, mnt_list) {
3287 struct mount *child;
3288 int mnt_flags;
3289
3290 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3291 continue;
3292
3293 /* This mount is not fully visible if it's root directory
3294 * is not the root directory of the filesystem.
3295 */
3296 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3297 continue;
3298
3299 /* A local view of the mount flags */
3300 mnt_flags = mnt->mnt.mnt_flags;
3301
3302 /* Don't miss readonly hidden in the superblock flags */
3303 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3304 mnt_flags |= MNT_LOCK_READONLY;
3305
3306 /* Verify the mount flags are equal to or more permissive
3307 * than the proposed new mount.
3308 */
3309 if ((mnt_flags & MNT_LOCK_READONLY) &&
3310 !(new_flags & MNT_READONLY))
3311 continue;
3312 if ((mnt_flags & MNT_LOCK_ATIME) &&
3313 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3314 continue;
3315
3316 /* This mount is not fully visible if there are any
3317 * locked child mounts that cover anything except for
3318 * empty directories.
3319 */
3320 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3321 struct inode *inode = child->mnt_mountpoint->d_inode;
3322 /* Only worry about locked mounts */
3323 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3324 continue;
3325 /* Is the directory permanetly empty? */
3326 if (!is_empty_dir_inode(inode))
3327 goto next;
3328 }
3329 /* Preserve the locked attributes */
3330 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3331 MNT_LOCK_ATIME);
3332 visible = true;
3333 goto found;
3334 next: ;
3335 }
3336 found:
3337 up_read(&namespace_sem);
3338 return visible;
3339 }
3340
3341 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3342 {
3343 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3344 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3345 unsigned long s_iflags;
3346
3347 if (ns->user_ns == &init_user_ns)
3348 return false;
3349
3350 /* Can this filesystem be too revealing? */
3351 s_iflags = mnt->mnt_sb->s_iflags;
3352 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3353 return false;
3354
3355 if ((s_iflags & required_iflags) != required_iflags) {
3356 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3357 required_iflags);
3358 return true;
3359 }
3360
3361 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3362 }
3363
3364 bool mnt_may_suid(struct vfsmount *mnt)
3365 {
3366 /*
3367 * Foreign mounts (accessed via fchdir or through /proc
3368 * symlinks) are always treated as if they are nosuid. This
3369 * prevents namespaces from trusting potentially unsafe
3370 * suid/sgid bits, file caps, or security labels that originate
3371 * in other namespaces.
3372 */
3373 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3374 current_in_userns(mnt->mnt_sb->s_user_ns);
3375 }
3376
3377 static struct ns_common *mntns_get(struct task_struct *task)
3378 {
3379 struct ns_common *ns = NULL;
3380 struct nsproxy *nsproxy;
3381
3382 task_lock(task);
3383 nsproxy = task->nsproxy;
3384 if (nsproxy) {
3385 ns = &nsproxy->mnt_ns->ns;
3386 get_mnt_ns(to_mnt_ns(ns));
3387 }
3388 task_unlock(task);
3389
3390 return ns;
3391 }
3392
3393 static void mntns_put(struct ns_common *ns)
3394 {
3395 put_mnt_ns(to_mnt_ns(ns));
3396 }
3397
3398 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3399 {
3400 struct fs_struct *fs = current->fs;
3401 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3402 struct path root;
3403 int err;
3404
3405 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3406 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3407 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3408 return -EPERM;
3409
3410 if (fs->users != 1)
3411 return -EINVAL;
3412
3413 get_mnt_ns(mnt_ns);
3414 old_mnt_ns = nsproxy->mnt_ns;
3415 nsproxy->mnt_ns = mnt_ns;
3416
3417 /* Find the root */
3418 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3419 "/", LOOKUP_DOWN, &root);
3420 if (err) {
3421 /* revert to old namespace */
3422 nsproxy->mnt_ns = old_mnt_ns;
3423 put_mnt_ns(mnt_ns);
3424 return err;
3425 }
3426
3427 put_mnt_ns(old_mnt_ns);
3428
3429 /* Update the pwd and root */
3430 set_fs_pwd(fs, &root);
3431 set_fs_root(fs, &root);
3432
3433 path_put(&root);
3434 return 0;
3435 }
3436
3437 static struct user_namespace *mntns_owner(struct ns_common *ns)
3438 {
3439 return to_mnt_ns(ns)->user_ns;
3440 }
3441
3442 const struct proc_ns_operations mntns_operations = {
3443 .name = "mnt",
3444 .type = CLONE_NEWNS,
3445 .get = mntns_get,
3446 .put = mntns_put,
3447 .install = mntns_install,
3448 .owner = mntns_owner,
3449 };