]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nilfs2/segment.c
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched...
[mirror_ubuntu-artful-kernel.git] / fs / nilfs2 / segment.c
1 /*
2 * segment.c - NILFS segment constructor.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * Written by Ryusuke Konishi.
17 *
18 */
19
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/bitops.h>
24 #include <linux/bio.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/freezer.h>
29 #include <linux/kthread.h>
30 #include <linux/crc32.h>
31 #include <linux/pagevec.h>
32 #include <linux/slab.h>
33 #include <linux/sched/signal.h>
34
35 #include "nilfs.h"
36 #include "btnode.h"
37 #include "page.h"
38 #include "segment.h"
39 #include "sufile.h"
40 #include "cpfile.h"
41 #include "ifile.h"
42 #include "segbuf.h"
43
44
45 /*
46 * Segment constructor
47 */
48 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
49
50 #define SC_MAX_SEGDELTA 64 /*
51 * Upper limit of the number of segments
52 * appended in collection retry loop
53 */
54
55 /* Construction mode */
56 enum {
57 SC_LSEG_SR = 1, /* Make a logical segment having a super root */
58 SC_LSEG_DSYNC, /*
59 * Flush data blocks of a given file and make
60 * a logical segment without a super root.
61 */
62 SC_FLUSH_FILE, /*
63 * Flush data files, leads to segment writes without
64 * creating a checkpoint.
65 */
66 SC_FLUSH_DAT, /*
67 * Flush DAT file. This also creates segments
68 * without a checkpoint.
69 */
70 };
71
72 /* Stage numbers of dirty block collection */
73 enum {
74 NILFS_ST_INIT = 0,
75 NILFS_ST_GC, /* Collecting dirty blocks for GC */
76 NILFS_ST_FILE,
77 NILFS_ST_IFILE,
78 NILFS_ST_CPFILE,
79 NILFS_ST_SUFILE,
80 NILFS_ST_DAT,
81 NILFS_ST_SR, /* Super root */
82 NILFS_ST_DSYNC, /* Data sync blocks */
83 NILFS_ST_DONE,
84 };
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/nilfs2.h>
88
89 /*
90 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
91 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
92 * the variable must use them because transition of stage count must involve
93 * trace events (trace_nilfs2_collection_stage_transition).
94 *
95 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
96 * produce tracepoint events. It is provided just for making the intention
97 * clear.
98 */
99 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
100 {
101 sci->sc_stage.scnt++;
102 trace_nilfs2_collection_stage_transition(sci);
103 }
104
105 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
106 {
107 sci->sc_stage.scnt = next_scnt;
108 trace_nilfs2_collection_stage_transition(sci);
109 }
110
111 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
112 {
113 return sci->sc_stage.scnt;
114 }
115
116 /* State flags of collection */
117 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
118 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
119 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
120 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
121
122 /* Operations depending on the construction mode and file type */
123 struct nilfs_sc_operations {
124 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
125 struct inode *);
126 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
127 struct inode *);
128 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
129 struct inode *);
130 void (*write_data_binfo)(struct nilfs_sc_info *,
131 struct nilfs_segsum_pointer *,
132 union nilfs_binfo *);
133 void (*write_node_binfo)(struct nilfs_sc_info *,
134 struct nilfs_segsum_pointer *,
135 union nilfs_binfo *);
136 };
137
138 /*
139 * Other definitions
140 */
141 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
142 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
143 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
144 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
145
146 #define nilfs_cnt32_gt(a, b) \
147 (typecheck(__u32, a) && typecheck(__u32, b) && \
148 ((__s32)(b) - (__s32)(a) < 0))
149 #define nilfs_cnt32_ge(a, b) \
150 (typecheck(__u32, a) && typecheck(__u32, b) && \
151 ((__s32)(a) - (__s32)(b) >= 0))
152 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
153 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
154
155 static int nilfs_prepare_segment_lock(struct super_block *sb,
156 struct nilfs_transaction_info *ti)
157 {
158 struct nilfs_transaction_info *cur_ti = current->journal_info;
159 void *save = NULL;
160
161 if (cur_ti) {
162 if (cur_ti->ti_magic == NILFS_TI_MAGIC)
163 return ++cur_ti->ti_count;
164
165 /*
166 * If journal_info field is occupied by other FS,
167 * it is saved and will be restored on
168 * nilfs_transaction_commit().
169 */
170 nilfs_msg(sb, KERN_WARNING, "journal info from a different FS");
171 save = current->journal_info;
172 }
173 if (!ti) {
174 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
175 if (!ti)
176 return -ENOMEM;
177 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
178 } else {
179 ti->ti_flags = 0;
180 }
181 ti->ti_count = 0;
182 ti->ti_save = save;
183 ti->ti_magic = NILFS_TI_MAGIC;
184 current->journal_info = ti;
185 return 0;
186 }
187
188 /**
189 * nilfs_transaction_begin - start indivisible file operations.
190 * @sb: super block
191 * @ti: nilfs_transaction_info
192 * @vacancy_check: flags for vacancy rate checks
193 *
194 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
195 * the segment semaphore, to make a segment construction and write tasks
196 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
197 * The region enclosed by these two functions can be nested. To avoid a
198 * deadlock, the semaphore is only acquired or released in the outermost call.
199 *
200 * This function allocates a nilfs_transaction_info struct to keep context
201 * information on it. It is initialized and hooked onto the current task in
202 * the outermost call. If a pre-allocated struct is given to @ti, it is used
203 * instead; otherwise a new struct is assigned from a slab.
204 *
205 * When @vacancy_check flag is set, this function will check the amount of
206 * free space, and will wait for the GC to reclaim disk space if low capacity.
207 *
208 * Return Value: On success, 0 is returned. On error, one of the following
209 * negative error code is returned.
210 *
211 * %-ENOMEM - Insufficient memory available.
212 *
213 * %-ENOSPC - No space left on device
214 */
215 int nilfs_transaction_begin(struct super_block *sb,
216 struct nilfs_transaction_info *ti,
217 int vacancy_check)
218 {
219 struct the_nilfs *nilfs;
220 int ret = nilfs_prepare_segment_lock(sb, ti);
221 struct nilfs_transaction_info *trace_ti;
222
223 if (unlikely(ret < 0))
224 return ret;
225 if (ret > 0) {
226 trace_ti = current->journal_info;
227
228 trace_nilfs2_transaction_transition(sb, trace_ti,
229 trace_ti->ti_count, trace_ti->ti_flags,
230 TRACE_NILFS2_TRANSACTION_BEGIN);
231 return 0;
232 }
233
234 sb_start_intwrite(sb);
235
236 nilfs = sb->s_fs_info;
237 down_read(&nilfs->ns_segctor_sem);
238 if (vacancy_check && nilfs_near_disk_full(nilfs)) {
239 up_read(&nilfs->ns_segctor_sem);
240 ret = -ENOSPC;
241 goto failed;
242 }
243
244 trace_ti = current->journal_info;
245 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
246 trace_ti->ti_flags,
247 TRACE_NILFS2_TRANSACTION_BEGIN);
248 return 0;
249
250 failed:
251 ti = current->journal_info;
252 current->journal_info = ti->ti_save;
253 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
254 kmem_cache_free(nilfs_transaction_cachep, ti);
255 sb_end_intwrite(sb);
256 return ret;
257 }
258
259 /**
260 * nilfs_transaction_commit - commit indivisible file operations.
261 * @sb: super block
262 *
263 * nilfs_transaction_commit() releases the read semaphore which is
264 * acquired by nilfs_transaction_begin(). This is only performed
265 * in outermost call of this function. If a commit flag is set,
266 * nilfs_transaction_commit() sets a timer to start the segment
267 * constructor. If a sync flag is set, it starts construction
268 * directly.
269 */
270 int nilfs_transaction_commit(struct super_block *sb)
271 {
272 struct nilfs_transaction_info *ti = current->journal_info;
273 struct the_nilfs *nilfs = sb->s_fs_info;
274 int err = 0;
275
276 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
277 ti->ti_flags |= NILFS_TI_COMMIT;
278 if (ti->ti_count > 0) {
279 ti->ti_count--;
280 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
281 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
282 return 0;
283 }
284 if (nilfs->ns_writer) {
285 struct nilfs_sc_info *sci = nilfs->ns_writer;
286
287 if (ti->ti_flags & NILFS_TI_COMMIT)
288 nilfs_segctor_start_timer(sci);
289 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
290 nilfs_segctor_do_flush(sci, 0);
291 }
292 up_read(&nilfs->ns_segctor_sem);
293 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
294 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
295
296 current->journal_info = ti->ti_save;
297
298 if (ti->ti_flags & NILFS_TI_SYNC)
299 err = nilfs_construct_segment(sb);
300 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
301 kmem_cache_free(nilfs_transaction_cachep, ti);
302 sb_end_intwrite(sb);
303 return err;
304 }
305
306 void nilfs_transaction_abort(struct super_block *sb)
307 {
308 struct nilfs_transaction_info *ti = current->journal_info;
309 struct the_nilfs *nilfs = sb->s_fs_info;
310
311 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
312 if (ti->ti_count > 0) {
313 ti->ti_count--;
314 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
315 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
316 return;
317 }
318 up_read(&nilfs->ns_segctor_sem);
319
320 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
321 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
322
323 current->journal_info = ti->ti_save;
324 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
325 kmem_cache_free(nilfs_transaction_cachep, ti);
326 sb_end_intwrite(sb);
327 }
328
329 void nilfs_relax_pressure_in_lock(struct super_block *sb)
330 {
331 struct the_nilfs *nilfs = sb->s_fs_info;
332 struct nilfs_sc_info *sci = nilfs->ns_writer;
333
334 if (!sci || !sci->sc_flush_request)
335 return;
336
337 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
338 up_read(&nilfs->ns_segctor_sem);
339
340 down_write(&nilfs->ns_segctor_sem);
341 if (sci->sc_flush_request &&
342 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
343 struct nilfs_transaction_info *ti = current->journal_info;
344
345 ti->ti_flags |= NILFS_TI_WRITER;
346 nilfs_segctor_do_immediate_flush(sci);
347 ti->ti_flags &= ~NILFS_TI_WRITER;
348 }
349 downgrade_write(&nilfs->ns_segctor_sem);
350 }
351
352 static void nilfs_transaction_lock(struct super_block *sb,
353 struct nilfs_transaction_info *ti,
354 int gcflag)
355 {
356 struct nilfs_transaction_info *cur_ti = current->journal_info;
357 struct the_nilfs *nilfs = sb->s_fs_info;
358 struct nilfs_sc_info *sci = nilfs->ns_writer;
359
360 WARN_ON(cur_ti);
361 ti->ti_flags = NILFS_TI_WRITER;
362 ti->ti_count = 0;
363 ti->ti_save = cur_ti;
364 ti->ti_magic = NILFS_TI_MAGIC;
365 current->journal_info = ti;
366
367 for (;;) {
368 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
369 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
370
371 down_write(&nilfs->ns_segctor_sem);
372 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
373 break;
374
375 nilfs_segctor_do_immediate_flush(sci);
376
377 up_write(&nilfs->ns_segctor_sem);
378 cond_resched();
379 }
380 if (gcflag)
381 ti->ti_flags |= NILFS_TI_GC;
382
383 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
384 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
385 }
386
387 static void nilfs_transaction_unlock(struct super_block *sb)
388 {
389 struct nilfs_transaction_info *ti = current->journal_info;
390 struct the_nilfs *nilfs = sb->s_fs_info;
391
392 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
393 BUG_ON(ti->ti_count > 0);
394
395 up_write(&nilfs->ns_segctor_sem);
396 current->journal_info = ti->ti_save;
397
398 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
399 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
400 }
401
402 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
403 struct nilfs_segsum_pointer *ssp,
404 unsigned int bytes)
405 {
406 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
407 unsigned int blocksize = sci->sc_super->s_blocksize;
408 void *p;
409
410 if (unlikely(ssp->offset + bytes > blocksize)) {
411 ssp->offset = 0;
412 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
413 &segbuf->sb_segsum_buffers));
414 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
415 }
416 p = ssp->bh->b_data + ssp->offset;
417 ssp->offset += bytes;
418 return p;
419 }
420
421 /**
422 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
423 * @sci: nilfs_sc_info
424 */
425 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
426 {
427 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
428 struct buffer_head *sumbh;
429 unsigned int sumbytes;
430 unsigned int flags = 0;
431 int err;
432
433 if (nilfs_doing_gc())
434 flags = NILFS_SS_GC;
435 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
436 if (unlikely(err))
437 return err;
438
439 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
440 sumbytes = segbuf->sb_sum.sumbytes;
441 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
442 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
443 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
444 return 0;
445 }
446
447 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
448 {
449 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
450 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
451 return -E2BIG; /*
452 * The current segment is filled up
453 * (internal code)
454 */
455 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
456 return nilfs_segctor_reset_segment_buffer(sci);
457 }
458
459 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
460 {
461 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
462 int err;
463
464 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
465 err = nilfs_segctor_feed_segment(sci);
466 if (err)
467 return err;
468 segbuf = sci->sc_curseg;
469 }
470 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
471 if (likely(!err))
472 segbuf->sb_sum.flags |= NILFS_SS_SR;
473 return err;
474 }
475
476 /*
477 * Functions for making segment summary and payloads
478 */
479 static int nilfs_segctor_segsum_block_required(
480 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
481 unsigned int binfo_size)
482 {
483 unsigned int blocksize = sci->sc_super->s_blocksize;
484 /* Size of finfo and binfo is enough small against blocksize */
485
486 return ssp->offset + binfo_size +
487 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
488 blocksize;
489 }
490
491 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
492 struct inode *inode)
493 {
494 sci->sc_curseg->sb_sum.nfinfo++;
495 sci->sc_binfo_ptr = sci->sc_finfo_ptr;
496 nilfs_segctor_map_segsum_entry(
497 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
498
499 if (NILFS_I(inode)->i_root &&
500 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
501 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
502 /* skip finfo */
503 }
504
505 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
506 struct inode *inode)
507 {
508 struct nilfs_finfo *finfo;
509 struct nilfs_inode_info *ii;
510 struct nilfs_segment_buffer *segbuf;
511 __u64 cno;
512
513 if (sci->sc_blk_cnt == 0)
514 return;
515
516 ii = NILFS_I(inode);
517
518 if (test_bit(NILFS_I_GCINODE, &ii->i_state))
519 cno = ii->i_cno;
520 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
521 cno = 0;
522 else
523 cno = sci->sc_cno;
524
525 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
526 sizeof(*finfo));
527 finfo->fi_ino = cpu_to_le64(inode->i_ino);
528 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
529 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
530 finfo->fi_cno = cpu_to_le64(cno);
531
532 segbuf = sci->sc_curseg;
533 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
534 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
535 sci->sc_finfo_ptr = sci->sc_binfo_ptr;
536 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
537 }
538
539 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
540 struct buffer_head *bh,
541 struct inode *inode,
542 unsigned int binfo_size)
543 {
544 struct nilfs_segment_buffer *segbuf;
545 int required, err = 0;
546
547 retry:
548 segbuf = sci->sc_curseg;
549 required = nilfs_segctor_segsum_block_required(
550 sci, &sci->sc_binfo_ptr, binfo_size);
551 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
552 nilfs_segctor_end_finfo(sci, inode);
553 err = nilfs_segctor_feed_segment(sci);
554 if (err)
555 return err;
556 goto retry;
557 }
558 if (unlikely(required)) {
559 err = nilfs_segbuf_extend_segsum(segbuf);
560 if (unlikely(err))
561 goto failed;
562 }
563 if (sci->sc_blk_cnt == 0)
564 nilfs_segctor_begin_finfo(sci, inode);
565
566 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
567 /* Substitution to vblocknr is delayed until update_blocknr() */
568 nilfs_segbuf_add_file_buffer(segbuf, bh);
569 sci->sc_blk_cnt++;
570 failed:
571 return err;
572 }
573
574 /*
575 * Callback functions that enumerate, mark, and collect dirty blocks
576 */
577 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
578 struct buffer_head *bh, struct inode *inode)
579 {
580 int err;
581
582 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
583 if (err < 0)
584 return err;
585
586 err = nilfs_segctor_add_file_block(sci, bh, inode,
587 sizeof(struct nilfs_binfo_v));
588 if (!err)
589 sci->sc_datablk_cnt++;
590 return err;
591 }
592
593 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
594 struct buffer_head *bh,
595 struct inode *inode)
596 {
597 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
598 }
599
600 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
601 struct buffer_head *bh,
602 struct inode *inode)
603 {
604 WARN_ON(!buffer_dirty(bh));
605 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
606 }
607
608 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
609 struct nilfs_segsum_pointer *ssp,
610 union nilfs_binfo *binfo)
611 {
612 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
613 sci, ssp, sizeof(*binfo_v));
614 *binfo_v = binfo->bi_v;
615 }
616
617 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
618 struct nilfs_segsum_pointer *ssp,
619 union nilfs_binfo *binfo)
620 {
621 __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
622 sci, ssp, sizeof(*vblocknr));
623 *vblocknr = binfo->bi_v.bi_vblocknr;
624 }
625
626 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
627 .collect_data = nilfs_collect_file_data,
628 .collect_node = nilfs_collect_file_node,
629 .collect_bmap = nilfs_collect_file_bmap,
630 .write_data_binfo = nilfs_write_file_data_binfo,
631 .write_node_binfo = nilfs_write_file_node_binfo,
632 };
633
634 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
635 struct buffer_head *bh, struct inode *inode)
636 {
637 int err;
638
639 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
640 if (err < 0)
641 return err;
642
643 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
644 if (!err)
645 sci->sc_datablk_cnt++;
646 return err;
647 }
648
649 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
650 struct buffer_head *bh, struct inode *inode)
651 {
652 WARN_ON(!buffer_dirty(bh));
653 return nilfs_segctor_add_file_block(sci, bh, inode,
654 sizeof(struct nilfs_binfo_dat));
655 }
656
657 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
658 struct nilfs_segsum_pointer *ssp,
659 union nilfs_binfo *binfo)
660 {
661 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
662 sizeof(*blkoff));
663 *blkoff = binfo->bi_dat.bi_blkoff;
664 }
665
666 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
667 struct nilfs_segsum_pointer *ssp,
668 union nilfs_binfo *binfo)
669 {
670 struct nilfs_binfo_dat *binfo_dat =
671 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
672 *binfo_dat = binfo->bi_dat;
673 }
674
675 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
676 .collect_data = nilfs_collect_dat_data,
677 .collect_node = nilfs_collect_file_node,
678 .collect_bmap = nilfs_collect_dat_bmap,
679 .write_data_binfo = nilfs_write_dat_data_binfo,
680 .write_node_binfo = nilfs_write_dat_node_binfo,
681 };
682
683 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
684 .collect_data = nilfs_collect_file_data,
685 .collect_node = NULL,
686 .collect_bmap = NULL,
687 .write_data_binfo = nilfs_write_file_data_binfo,
688 .write_node_binfo = NULL,
689 };
690
691 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
692 struct list_head *listp,
693 size_t nlimit,
694 loff_t start, loff_t end)
695 {
696 struct address_space *mapping = inode->i_mapping;
697 struct pagevec pvec;
698 pgoff_t index = 0, last = ULONG_MAX;
699 size_t ndirties = 0;
700 int i;
701
702 if (unlikely(start != 0 || end != LLONG_MAX)) {
703 /*
704 * A valid range is given for sync-ing data pages. The
705 * range is rounded to per-page; extra dirty buffers
706 * may be included if blocksize < pagesize.
707 */
708 index = start >> PAGE_SHIFT;
709 last = end >> PAGE_SHIFT;
710 }
711 pagevec_init(&pvec, 0);
712 repeat:
713 if (unlikely(index > last) ||
714 !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
715 min_t(pgoff_t, last - index,
716 PAGEVEC_SIZE - 1) + 1))
717 return ndirties;
718
719 for (i = 0; i < pagevec_count(&pvec); i++) {
720 struct buffer_head *bh, *head;
721 struct page *page = pvec.pages[i];
722
723 if (unlikely(page->index > last))
724 break;
725
726 lock_page(page);
727 if (!page_has_buffers(page))
728 create_empty_buffers(page, i_blocksize(inode), 0);
729 unlock_page(page);
730
731 bh = head = page_buffers(page);
732 do {
733 if (!buffer_dirty(bh) || buffer_async_write(bh))
734 continue;
735 get_bh(bh);
736 list_add_tail(&bh->b_assoc_buffers, listp);
737 ndirties++;
738 if (unlikely(ndirties >= nlimit)) {
739 pagevec_release(&pvec);
740 cond_resched();
741 return ndirties;
742 }
743 } while (bh = bh->b_this_page, bh != head);
744 }
745 pagevec_release(&pvec);
746 cond_resched();
747 goto repeat;
748 }
749
750 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
751 struct list_head *listp)
752 {
753 struct nilfs_inode_info *ii = NILFS_I(inode);
754 struct address_space *mapping = &ii->i_btnode_cache;
755 struct pagevec pvec;
756 struct buffer_head *bh, *head;
757 unsigned int i;
758 pgoff_t index = 0;
759
760 pagevec_init(&pvec, 0);
761
762 while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
763 PAGEVEC_SIZE)) {
764 for (i = 0; i < pagevec_count(&pvec); i++) {
765 bh = head = page_buffers(pvec.pages[i]);
766 do {
767 if (buffer_dirty(bh) &&
768 !buffer_async_write(bh)) {
769 get_bh(bh);
770 list_add_tail(&bh->b_assoc_buffers,
771 listp);
772 }
773 bh = bh->b_this_page;
774 } while (bh != head);
775 }
776 pagevec_release(&pvec);
777 cond_resched();
778 }
779 }
780
781 static void nilfs_dispose_list(struct the_nilfs *nilfs,
782 struct list_head *head, int force)
783 {
784 struct nilfs_inode_info *ii, *n;
785 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
786 unsigned int nv = 0;
787
788 while (!list_empty(head)) {
789 spin_lock(&nilfs->ns_inode_lock);
790 list_for_each_entry_safe(ii, n, head, i_dirty) {
791 list_del_init(&ii->i_dirty);
792 if (force) {
793 if (unlikely(ii->i_bh)) {
794 brelse(ii->i_bh);
795 ii->i_bh = NULL;
796 }
797 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
798 set_bit(NILFS_I_QUEUED, &ii->i_state);
799 list_add_tail(&ii->i_dirty,
800 &nilfs->ns_dirty_files);
801 continue;
802 }
803 ivec[nv++] = ii;
804 if (nv == SC_N_INODEVEC)
805 break;
806 }
807 spin_unlock(&nilfs->ns_inode_lock);
808
809 for (pii = ivec; nv > 0; pii++, nv--)
810 iput(&(*pii)->vfs_inode);
811 }
812 }
813
814 static void nilfs_iput_work_func(struct work_struct *work)
815 {
816 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
817 sc_iput_work);
818 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
819
820 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
821 }
822
823 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
824 struct nilfs_root *root)
825 {
826 int ret = 0;
827
828 if (nilfs_mdt_fetch_dirty(root->ifile))
829 ret++;
830 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
831 ret++;
832 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
833 ret++;
834 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
835 ret++;
836 return ret;
837 }
838
839 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
840 {
841 return list_empty(&sci->sc_dirty_files) &&
842 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
843 sci->sc_nfreesegs == 0 &&
844 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
845 }
846
847 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
848 {
849 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
850 int ret = 0;
851
852 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
853 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
854
855 spin_lock(&nilfs->ns_inode_lock);
856 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
857 ret++;
858
859 spin_unlock(&nilfs->ns_inode_lock);
860 return ret;
861 }
862
863 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
864 {
865 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
866
867 nilfs_mdt_clear_dirty(sci->sc_root->ifile);
868 nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
869 nilfs_mdt_clear_dirty(nilfs->ns_sufile);
870 nilfs_mdt_clear_dirty(nilfs->ns_dat);
871 }
872
873 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
874 {
875 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
876 struct buffer_head *bh_cp;
877 struct nilfs_checkpoint *raw_cp;
878 int err;
879
880 /* XXX: this interface will be changed */
881 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
882 &raw_cp, &bh_cp);
883 if (likely(!err)) {
884 /*
885 * The following code is duplicated with cpfile. But, it is
886 * needed to collect the checkpoint even if it was not newly
887 * created.
888 */
889 mark_buffer_dirty(bh_cp);
890 nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
891 nilfs_cpfile_put_checkpoint(
892 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
893 } else
894 WARN_ON(err == -EINVAL || err == -ENOENT);
895
896 return err;
897 }
898
899 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
900 {
901 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
902 struct buffer_head *bh_cp;
903 struct nilfs_checkpoint *raw_cp;
904 int err;
905
906 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
907 &raw_cp, &bh_cp);
908 if (unlikely(err)) {
909 WARN_ON(err == -EINVAL || err == -ENOENT);
910 goto failed_ibh;
911 }
912 raw_cp->cp_snapshot_list.ssl_next = 0;
913 raw_cp->cp_snapshot_list.ssl_prev = 0;
914 raw_cp->cp_inodes_count =
915 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
916 raw_cp->cp_blocks_count =
917 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
918 raw_cp->cp_nblk_inc =
919 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
920 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
921 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
922
923 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
924 nilfs_checkpoint_clear_minor(raw_cp);
925 else
926 nilfs_checkpoint_set_minor(raw_cp);
927
928 nilfs_write_inode_common(sci->sc_root->ifile,
929 &raw_cp->cp_ifile_inode, 1);
930 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
931 return 0;
932
933 failed_ibh:
934 return err;
935 }
936
937 static void nilfs_fill_in_file_bmap(struct inode *ifile,
938 struct nilfs_inode_info *ii)
939
940 {
941 struct buffer_head *ibh;
942 struct nilfs_inode *raw_inode;
943
944 if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
945 ibh = ii->i_bh;
946 BUG_ON(!ibh);
947 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
948 ibh);
949 nilfs_bmap_write(ii->i_bmap, raw_inode);
950 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
951 }
952 }
953
954 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
955 {
956 struct nilfs_inode_info *ii;
957
958 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
959 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
960 set_bit(NILFS_I_COLLECTED, &ii->i_state);
961 }
962 }
963
964 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
965 struct the_nilfs *nilfs)
966 {
967 struct buffer_head *bh_sr;
968 struct nilfs_super_root *raw_sr;
969 unsigned int isz, srsz;
970
971 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
972 raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
973 isz = nilfs->ns_inode_size;
974 srsz = NILFS_SR_BYTES(isz);
975
976 raw_sr->sr_bytes = cpu_to_le16(srsz);
977 raw_sr->sr_nongc_ctime
978 = cpu_to_le64(nilfs_doing_gc() ?
979 nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
980 raw_sr->sr_flags = 0;
981
982 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
983 NILFS_SR_DAT_OFFSET(isz), 1);
984 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
985 NILFS_SR_CPFILE_OFFSET(isz), 1);
986 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
987 NILFS_SR_SUFILE_OFFSET(isz), 1);
988 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
989 }
990
991 static void nilfs_redirty_inodes(struct list_head *head)
992 {
993 struct nilfs_inode_info *ii;
994
995 list_for_each_entry(ii, head, i_dirty) {
996 if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
997 clear_bit(NILFS_I_COLLECTED, &ii->i_state);
998 }
999 }
1000
1001 static void nilfs_drop_collected_inodes(struct list_head *head)
1002 {
1003 struct nilfs_inode_info *ii;
1004
1005 list_for_each_entry(ii, head, i_dirty) {
1006 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1007 continue;
1008
1009 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
1010 set_bit(NILFS_I_UPDATED, &ii->i_state);
1011 }
1012 }
1013
1014 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1015 struct inode *inode,
1016 struct list_head *listp,
1017 int (*collect)(struct nilfs_sc_info *,
1018 struct buffer_head *,
1019 struct inode *))
1020 {
1021 struct buffer_head *bh, *n;
1022 int err = 0;
1023
1024 if (collect) {
1025 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1026 list_del_init(&bh->b_assoc_buffers);
1027 err = collect(sci, bh, inode);
1028 brelse(bh);
1029 if (unlikely(err))
1030 goto dispose_buffers;
1031 }
1032 return 0;
1033 }
1034
1035 dispose_buffers:
1036 while (!list_empty(listp)) {
1037 bh = list_first_entry(listp, struct buffer_head,
1038 b_assoc_buffers);
1039 list_del_init(&bh->b_assoc_buffers);
1040 brelse(bh);
1041 }
1042 return err;
1043 }
1044
1045 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1046 {
1047 /* Remaining number of blocks within segment buffer */
1048 return sci->sc_segbuf_nblocks -
1049 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1050 }
1051
1052 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1053 struct inode *inode,
1054 const struct nilfs_sc_operations *sc_ops)
1055 {
1056 LIST_HEAD(data_buffers);
1057 LIST_HEAD(node_buffers);
1058 int err;
1059
1060 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1061 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1062
1063 n = nilfs_lookup_dirty_data_buffers(
1064 inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1065 if (n > rest) {
1066 err = nilfs_segctor_apply_buffers(
1067 sci, inode, &data_buffers,
1068 sc_ops->collect_data);
1069 BUG_ON(!err); /* always receive -E2BIG or true error */
1070 goto break_or_fail;
1071 }
1072 }
1073 nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1074
1075 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1076 err = nilfs_segctor_apply_buffers(
1077 sci, inode, &data_buffers, sc_ops->collect_data);
1078 if (unlikely(err)) {
1079 /* dispose node list */
1080 nilfs_segctor_apply_buffers(
1081 sci, inode, &node_buffers, NULL);
1082 goto break_or_fail;
1083 }
1084 sci->sc_stage.flags |= NILFS_CF_NODE;
1085 }
1086 /* Collect node */
1087 err = nilfs_segctor_apply_buffers(
1088 sci, inode, &node_buffers, sc_ops->collect_node);
1089 if (unlikely(err))
1090 goto break_or_fail;
1091
1092 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1093 err = nilfs_segctor_apply_buffers(
1094 sci, inode, &node_buffers, sc_ops->collect_bmap);
1095 if (unlikely(err))
1096 goto break_or_fail;
1097
1098 nilfs_segctor_end_finfo(sci, inode);
1099 sci->sc_stage.flags &= ~NILFS_CF_NODE;
1100
1101 break_or_fail:
1102 return err;
1103 }
1104
1105 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1106 struct inode *inode)
1107 {
1108 LIST_HEAD(data_buffers);
1109 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1110 int err;
1111
1112 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1113 sci->sc_dsync_start,
1114 sci->sc_dsync_end);
1115
1116 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1117 nilfs_collect_file_data);
1118 if (!err) {
1119 nilfs_segctor_end_finfo(sci, inode);
1120 BUG_ON(n > rest);
1121 /* always receive -E2BIG or true error if n > rest */
1122 }
1123 return err;
1124 }
1125
1126 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1127 {
1128 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1129 struct list_head *head;
1130 struct nilfs_inode_info *ii;
1131 size_t ndone;
1132 int err = 0;
1133
1134 switch (nilfs_sc_cstage_get(sci)) {
1135 case NILFS_ST_INIT:
1136 /* Pre-processes */
1137 sci->sc_stage.flags = 0;
1138
1139 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1140 sci->sc_nblk_inc = 0;
1141 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1142 if (mode == SC_LSEG_DSYNC) {
1143 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1144 goto dsync_mode;
1145 }
1146 }
1147
1148 sci->sc_stage.dirty_file_ptr = NULL;
1149 sci->sc_stage.gc_inode_ptr = NULL;
1150 if (mode == SC_FLUSH_DAT) {
1151 nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1152 goto dat_stage;
1153 }
1154 nilfs_sc_cstage_inc(sci); /* Fall through */
1155 case NILFS_ST_GC:
1156 if (nilfs_doing_gc()) {
1157 head = &sci->sc_gc_inodes;
1158 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1159 head, i_dirty);
1160 list_for_each_entry_continue(ii, head, i_dirty) {
1161 err = nilfs_segctor_scan_file(
1162 sci, &ii->vfs_inode,
1163 &nilfs_sc_file_ops);
1164 if (unlikely(err)) {
1165 sci->sc_stage.gc_inode_ptr = list_entry(
1166 ii->i_dirty.prev,
1167 struct nilfs_inode_info,
1168 i_dirty);
1169 goto break_or_fail;
1170 }
1171 set_bit(NILFS_I_COLLECTED, &ii->i_state);
1172 }
1173 sci->sc_stage.gc_inode_ptr = NULL;
1174 }
1175 nilfs_sc_cstage_inc(sci); /* Fall through */
1176 case NILFS_ST_FILE:
1177 head = &sci->sc_dirty_files;
1178 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1179 i_dirty);
1180 list_for_each_entry_continue(ii, head, i_dirty) {
1181 clear_bit(NILFS_I_DIRTY, &ii->i_state);
1182
1183 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1184 &nilfs_sc_file_ops);
1185 if (unlikely(err)) {
1186 sci->sc_stage.dirty_file_ptr =
1187 list_entry(ii->i_dirty.prev,
1188 struct nilfs_inode_info,
1189 i_dirty);
1190 goto break_or_fail;
1191 }
1192 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1193 /* XXX: required ? */
1194 }
1195 sci->sc_stage.dirty_file_ptr = NULL;
1196 if (mode == SC_FLUSH_FILE) {
1197 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1198 return 0;
1199 }
1200 nilfs_sc_cstage_inc(sci);
1201 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1202 /* Fall through */
1203 case NILFS_ST_IFILE:
1204 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1205 &nilfs_sc_file_ops);
1206 if (unlikely(err))
1207 break;
1208 nilfs_sc_cstage_inc(sci);
1209 /* Creating a checkpoint */
1210 err = nilfs_segctor_create_checkpoint(sci);
1211 if (unlikely(err))
1212 break;
1213 /* Fall through */
1214 case NILFS_ST_CPFILE:
1215 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1216 &nilfs_sc_file_ops);
1217 if (unlikely(err))
1218 break;
1219 nilfs_sc_cstage_inc(sci); /* Fall through */
1220 case NILFS_ST_SUFILE:
1221 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1222 sci->sc_nfreesegs, &ndone);
1223 if (unlikely(err)) {
1224 nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1225 sci->sc_freesegs, ndone,
1226 NULL);
1227 break;
1228 }
1229 sci->sc_stage.flags |= NILFS_CF_SUFREED;
1230
1231 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1232 &nilfs_sc_file_ops);
1233 if (unlikely(err))
1234 break;
1235 nilfs_sc_cstage_inc(sci); /* Fall through */
1236 case NILFS_ST_DAT:
1237 dat_stage:
1238 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1239 &nilfs_sc_dat_ops);
1240 if (unlikely(err))
1241 break;
1242 if (mode == SC_FLUSH_DAT) {
1243 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1244 return 0;
1245 }
1246 nilfs_sc_cstage_inc(sci); /* Fall through */
1247 case NILFS_ST_SR:
1248 if (mode == SC_LSEG_SR) {
1249 /* Appending a super root */
1250 err = nilfs_segctor_add_super_root(sci);
1251 if (unlikely(err))
1252 break;
1253 }
1254 /* End of a logical segment */
1255 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1256 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1257 return 0;
1258 case NILFS_ST_DSYNC:
1259 dsync_mode:
1260 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1261 ii = sci->sc_dsync_inode;
1262 if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1263 break;
1264
1265 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1266 if (unlikely(err))
1267 break;
1268 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1269 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1270 return 0;
1271 case NILFS_ST_DONE:
1272 return 0;
1273 default:
1274 BUG();
1275 }
1276
1277 break_or_fail:
1278 return err;
1279 }
1280
1281 /**
1282 * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1283 * @sci: nilfs_sc_info
1284 * @nilfs: nilfs object
1285 */
1286 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1287 struct the_nilfs *nilfs)
1288 {
1289 struct nilfs_segment_buffer *segbuf, *prev;
1290 __u64 nextnum;
1291 int err, alloc = 0;
1292
1293 segbuf = nilfs_segbuf_new(sci->sc_super);
1294 if (unlikely(!segbuf))
1295 return -ENOMEM;
1296
1297 if (list_empty(&sci->sc_write_logs)) {
1298 nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1299 nilfs->ns_pseg_offset, nilfs);
1300 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1301 nilfs_shift_to_next_segment(nilfs);
1302 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1303 }
1304
1305 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1306 nextnum = nilfs->ns_nextnum;
1307
1308 if (nilfs->ns_segnum == nilfs->ns_nextnum)
1309 /* Start from the head of a new full segment */
1310 alloc++;
1311 } else {
1312 /* Continue logs */
1313 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1314 nilfs_segbuf_map_cont(segbuf, prev);
1315 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1316 nextnum = prev->sb_nextnum;
1317
1318 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1319 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1320 segbuf->sb_sum.seg_seq++;
1321 alloc++;
1322 }
1323 }
1324
1325 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1326 if (err)
1327 goto failed;
1328
1329 if (alloc) {
1330 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1331 if (err)
1332 goto failed;
1333 }
1334 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1335
1336 BUG_ON(!list_empty(&sci->sc_segbufs));
1337 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1338 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1339 return 0;
1340
1341 failed:
1342 nilfs_segbuf_free(segbuf);
1343 return err;
1344 }
1345
1346 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1347 struct the_nilfs *nilfs, int nadd)
1348 {
1349 struct nilfs_segment_buffer *segbuf, *prev;
1350 struct inode *sufile = nilfs->ns_sufile;
1351 __u64 nextnextnum;
1352 LIST_HEAD(list);
1353 int err, ret, i;
1354
1355 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1356 /*
1357 * Since the segment specified with nextnum might be allocated during
1358 * the previous construction, the buffer including its segusage may
1359 * not be dirty. The following call ensures that the buffer is dirty
1360 * and will pin the buffer on memory until the sufile is written.
1361 */
1362 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1363 if (unlikely(err))
1364 return err;
1365
1366 for (i = 0; i < nadd; i++) {
1367 /* extend segment info */
1368 err = -ENOMEM;
1369 segbuf = nilfs_segbuf_new(sci->sc_super);
1370 if (unlikely(!segbuf))
1371 goto failed;
1372
1373 /* map this buffer to region of segment on-disk */
1374 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1375 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1376
1377 /* allocate the next next full segment */
1378 err = nilfs_sufile_alloc(sufile, &nextnextnum);
1379 if (unlikely(err))
1380 goto failed_segbuf;
1381
1382 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1383 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1384
1385 list_add_tail(&segbuf->sb_list, &list);
1386 prev = segbuf;
1387 }
1388 list_splice_tail(&list, &sci->sc_segbufs);
1389 return 0;
1390
1391 failed_segbuf:
1392 nilfs_segbuf_free(segbuf);
1393 failed:
1394 list_for_each_entry(segbuf, &list, sb_list) {
1395 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1396 WARN_ON(ret); /* never fails */
1397 }
1398 nilfs_destroy_logs(&list);
1399 return err;
1400 }
1401
1402 static void nilfs_free_incomplete_logs(struct list_head *logs,
1403 struct the_nilfs *nilfs)
1404 {
1405 struct nilfs_segment_buffer *segbuf, *prev;
1406 struct inode *sufile = nilfs->ns_sufile;
1407 int ret;
1408
1409 segbuf = NILFS_FIRST_SEGBUF(logs);
1410 if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1411 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1412 WARN_ON(ret); /* never fails */
1413 }
1414 if (atomic_read(&segbuf->sb_err)) {
1415 /* Case 1: The first segment failed */
1416 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1417 /*
1418 * Case 1a: Partial segment appended into an existing
1419 * segment
1420 */
1421 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1422 segbuf->sb_fseg_end);
1423 else /* Case 1b: New full segment */
1424 set_nilfs_discontinued(nilfs);
1425 }
1426
1427 prev = segbuf;
1428 list_for_each_entry_continue(segbuf, logs, sb_list) {
1429 if (prev->sb_nextnum != segbuf->sb_nextnum) {
1430 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1431 WARN_ON(ret); /* never fails */
1432 }
1433 if (atomic_read(&segbuf->sb_err) &&
1434 segbuf->sb_segnum != nilfs->ns_nextnum)
1435 /* Case 2: extended segment (!= next) failed */
1436 nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1437 prev = segbuf;
1438 }
1439 }
1440
1441 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1442 struct inode *sufile)
1443 {
1444 struct nilfs_segment_buffer *segbuf;
1445 unsigned long live_blocks;
1446 int ret;
1447
1448 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1449 live_blocks = segbuf->sb_sum.nblocks +
1450 (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1451 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1452 live_blocks,
1453 sci->sc_seg_ctime);
1454 WARN_ON(ret); /* always succeed because the segusage is dirty */
1455 }
1456 }
1457
1458 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1459 {
1460 struct nilfs_segment_buffer *segbuf;
1461 int ret;
1462
1463 segbuf = NILFS_FIRST_SEGBUF(logs);
1464 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1465 segbuf->sb_pseg_start -
1466 segbuf->sb_fseg_start, 0);
1467 WARN_ON(ret); /* always succeed because the segusage is dirty */
1468
1469 list_for_each_entry_continue(segbuf, logs, sb_list) {
1470 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1471 0, 0);
1472 WARN_ON(ret); /* always succeed */
1473 }
1474 }
1475
1476 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1477 struct nilfs_segment_buffer *last,
1478 struct inode *sufile)
1479 {
1480 struct nilfs_segment_buffer *segbuf = last;
1481 int ret;
1482
1483 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1484 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1485 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1486 WARN_ON(ret);
1487 }
1488 nilfs_truncate_logs(&sci->sc_segbufs, last);
1489 }
1490
1491
1492 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1493 struct the_nilfs *nilfs, int mode)
1494 {
1495 struct nilfs_cstage prev_stage = sci->sc_stage;
1496 int err, nadd = 1;
1497
1498 /* Collection retry loop */
1499 for (;;) {
1500 sci->sc_nblk_this_inc = 0;
1501 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1502
1503 err = nilfs_segctor_reset_segment_buffer(sci);
1504 if (unlikely(err))
1505 goto failed;
1506
1507 err = nilfs_segctor_collect_blocks(sci, mode);
1508 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1509 if (!err)
1510 break;
1511
1512 if (unlikely(err != -E2BIG))
1513 goto failed;
1514
1515 /* The current segment is filled up */
1516 if (mode != SC_LSEG_SR ||
1517 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1518 break;
1519
1520 nilfs_clear_logs(&sci->sc_segbufs);
1521
1522 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1523 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1524 sci->sc_freesegs,
1525 sci->sc_nfreesegs,
1526 NULL);
1527 WARN_ON(err); /* do not happen */
1528 sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1529 }
1530
1531 err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1532 if (unlikely(err))
1533 return err;
1534
1535 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1536 sci->sc_stage = prev_stage;
1537 }
1538 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1539 return 0;
1540
1541 failed:
1542 return err;
1543 }
1544
1545 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1546 struct buffer_head *new_bh)
1547 {
1548 BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1549
1550 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1551 /* The caller must release old_bh */
1552 }
1553
1554 static int
1555 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1556 struct nilfs_segment_buffer *segbuf,
1557 int mode)
1558 {
1559 struct inode *inode = NULL;
1560 sector_t blocknr;
1561 unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1562 unsigned long nblocks = 0, ndatablk = 0;
1563 const struct nilfs_sc_operations *sc_op = NULL;
1564 struct nilfs_segsum_pointer ssp;
1565 struct nilfs_finfo *finfo = NULL;
1566 union nilfs_binfo binfo;
1567 struct buffer_head *bh, *bh_org;
1568 ino_t ino = 0;
1569 int err = 0;
1570
1571 if (!nfinfo)
1572 goto out;
1573
1574 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1575 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1576 ssp.offset = sizeof(struct nilfs_segment_summary);
1577
1578 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1579 if (bh == segbuf->sb_super_root)
1580 break;
1581 if (!finfo) {
1582 finfo = nilfs_segctor_map_segsum_entry(
1583 sci, &ssp, sizeof(*finfo));
1584 ino = le64_to_cpu(finfo->fi_ino);
1585 nblocks = le32_to_cpu(finfo->fi_nblocks);
1586 ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1587
1588 inode = bh->b_page->mapping->host;
1589
1590 if (mode == SC_LSEG_DSYNC)
1591 sc_op = &nilfs_sc_dsync_ops;
1592 else if (ino == NILFS_DAT_INO)
1593 sc_op = &nilfs_sc_dat_ops;
1594 else /* file blocks */
1595 sc_op = &nilfs_sc_file_ops;
1596 }
1597 bh_org = bh;
1598 get_bh(bh_org);
1599 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1600 &binfo);
1601 if (bh != bh_org)
1602 nilfs_list_replace_buffer(bh_org, bh);
1603 brelse(bh_org);
1604 if (unlikely(err))
1605 goto failed_bmap;
1606
1607 if (ndatablk > 0)
1608 sc_op->write_data_binfo(sci, &ssp, &binfo);
1609 else
1610 sc_op->write_node_binfo(sci, &ssp, &binfo);
1611
1612 blocknr++;
1613 if (--nblocks == 0) {
1614 finfo = NULL;
1615 if (--nfinfo == 0)
1616 break;
1617 } else if (ndatablk > 0)
1618 ndatablk--;
1619 }
1620 out:
1621 return 0;
1622
1623 failed_bmap:
1624 return err;
1625 }
1626
1627 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1628 {
1629 struct nilfs_segment_buffer *segbuf;
1630 int err;
1631
1632 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1633 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1634 if (unlikely(err))
1635 return err;
1636 nilfs_segbuf_fill_in_segsum(segbuf);
1637 }
1638 return 0;
1639 }
1640
1641 static void nilfs_begin_page_io(struct page *page)
1642 {
1643 if (!page || PageWriteback(page))
1644 /*
1645 * For split b-tree node pages, this function may be called
1646 * twice. We ignore the 2nd or later calls by this check.
1647 */
1648 return;
1649
1650 lock_page(page);
1651 clear_page_dirty_for_io(page);
1652 set_page_writeback(page);
1653 unlock_page(page);
1654 }
1655
1656 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1657 {
1658 struct nilfs_segment_buffer *segbuf;
1659 struct page *bd_page = NULL, *fs_page = NULL;
1660
1661 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1662 struct buffer_head *bh;
1663
1664 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1665 b_assoc_buffers) {
1666 if (bh->b_page != bd_page) {
1667 if (bd_page) {
1668 lock_page(bd_page);
1669 clear_page_dirty_for_io(bd_page);
1670 set_page_writeback(bd_page);
1671 unlock_page(bd_page);
1672 }
1673 bd_page = bh->b_page;
1674 }
1675 }
1676
1677 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1678 b_assoc_buffers) {
1679 set_buffer_async_write(bh);
1680 if (bh == segbuf->sb_super_root) {
1681 if (bh->b_page != bd_page) {
1682 lock_page(bd_page);
1683 clear_page_dirty_for_io(bd_page);
1684 set_page_writeback(bd_page);
1685 unlock_page(bd_page);
1686 bd_page = bh->b_page;
1687 }
1688 break;
1689 }
1690 if (bh->b_page != fs_page) {
1691 nilfs_begin_page_io(fs_page);
1692 fs_page = bh->b_page;
1693 }
1694 }
1695 }
1696 if (bd_page) {
1697 lock_page(bd_page);
1698 clear_page_dirty_for_io(bd_page);
1699 set_page_writeback(bd_page);
1700 unlock_page(bd_page);
1701 }
1702 nilfs_begin_page_io(fs_page);
1703 }
1704
1705 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1706 struct the_nilfs *nilfs)
1707 {
1708 int ret;
1709
1710 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1711 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1712 return ret;
1713 }
1714
1715 static void nilfs_end_page_io(struct page *page, int err)
1716 {
1717 if (!page)
1718 return;
1719
1720 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1721 /*
1722 * For b-tree node pages, this function may be called twice
1723 * or more because they might be split in a segment.
1724 */
1725 if (PageDirty(page)) {
1726 /*
1727 * For pages holding split b-tree node buffers, dirty
1728 * flag on the buffers may be cleared discretely.
1729 * In that case, the page is once redirtied for
1730 * remaining buffers, and it must be cancelled if
1731 * all the buffers get cleaned later.
1732 */
1733 lock_page(page);
1734 if (nilfs_page_buffers_clean(page))
1735 __nilfs_clear_page_dirty(page);
1736 unlock_page(page);
1737 }
1738 return;
1739 }
1740
1741 if (!err) {
1742 if (!nilfs_page_buffers_clean(page))
1743 __set_page_dirty_nobuffers(page);
1744 ClearPageError(page);
1745 } else {
1746 __set_page_dirty_nobuffers(page);
1747 SetPageError(page);
1748 }
1749
1750 end_page_writeback(page);
1751 }
1752
1753 static void nilfs_abort_logs(struct list_head *logs, int err)
1754 {
1755 struct nilfs_segment_buffer *segbuf;
1756 struct page *bd_page = NULL, *fs_page = NULL;
1757 struct buffer_head *bh;
1758
1759 if (list_empty(logs))
1760 return;
1761
1762 list_for_each_entry(segbuf, logs, sb_list) {
1763 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1764 b_assoc_buffers) {
1765 if (bh->b_page != bd_page) {
1766 if (bd_page)
1767 end_page_writeback(bd_page);
1768 bd_page = bh->b_page;
1769 }
1770 }
1771
1772 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1773 b_assoc_buffers) {
1774 clear_buffer_async_write(bh);
1775 if (bh == segbuf->sb_super_root) {
1776 if (bh->b_page != bd_page) {
1777 end_page_writeback(bd_page);
1778 bd_page = bh->b_page;
1779 }
1780 break;
1781 }
1782 if (bh->b_page != fs_page) {
1783 nilfs_end_page_io(fs_page, err);
1784 fs_page = bh->b_page;
1785 }
1786 }
1787 }
1788 if (bd_page)
1789 end_page_writeback(bd_page);
1790
1791 nilfs_end_page_io(fs_page, err);
1792 }
1793
1794 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1795 struct the_nilfs *nilfs, int err)
1796 {
1797 LIST_HEAD(logs);
1798 int ret;
1799
1800 list_splice_tail_init(&sci->sc_write_logs, &logs);
1801 ret = nilfs_wait_on_logs(&logs);
1802 nilfs_abort_logs(&logs, ret ? : err);
1803
1804 list_splice_tail_init(&sci->sc_segbufs, &logs);
1805 nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1806 nilfs_free_incomplete_logs(&logs, nilfs);
1807
1808 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1809 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1810 sci->sc_freesegs,
1811 sci->sc_nfreesegs,
1812 NULL);
1813 WARN_ON(ret); /* do not happen */
1814 }
1815
1816 nilfs_destroy_logs(&logs);
1817 }
1818
1819 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1820 struct nilfs_segment_buffer *segbuf)
1821 {
1822 nilfs->ns_segnum = segbuf->sb_segnum;
1823 nilfs->ns_nextnum = segbuf->sb_nextnum;
1824 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1825 + segbuf->sb_sum.nblocks;
1826 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1827 nilfs->ns_ctime = segbuf->sb_sum.ctime;
1828 }
1829
1830 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1831 {
1832 struct nilfs_segment_buffer *segbuf;
1833 struct page *bd_page = NULL, *fs_page = NULL;
1834 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1835 int update_sr = false;
1836
1837 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1838 struct buffer_head *bh;
1839
1840 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1841 b_assoc_buffers) {
1842 set_buffer_uptodate(bh);
1843 clear_buffer_dirty(bh);
1844 if (bh->b_page != bd_page) {
1845 if (bd_page)
1846 end_page_writeback(bd_page);
1847 bd_page = bh->b_page;
1848 }
1849 }
1850 /*
1851 * We assume that the buffers which belong to the same page
1852 * continue over the buffer list.
1853 * Under this assumption, the last BHs of pages is
1854 * identifiable by the discontinuity of bh->b_page
1855 * (page != fs_page).
1856 *
1857 * For B-tree node blocks, however, this assumption is not
1858 * guaranteed. The cleanup code of B-tree node pages needs
1859 * special care.
1860 */
1861 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1862 b_assoc_buffers) {
1863 const unsigned long set_bits = BIT(BH_Uptodate);
1864 const unsigned long clear_bits =
1865 (BIT(BH_Dirty) | BIT(BH_Async_Write) |
1866 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1867 BIT(BH_NILFS_Redirected));
1868
1869 set_mask_bits(&bh->b_state, clear_bits, set_bits);
1870 if (bh == segbuf->sb_super_root) {
1871 if (bh->b_page != bd_page) {
1872 end_page_writeback(bd_page);
1873 bd_page = bh->b_page;
1874 }
1875 update_sr = true;
1876 break;
1877 }
1878 if (bh->b_page != fs_page) {
1879 nilfs_end_page_io(fs_page, 0);
1880 fs_page = bh->b_page;
1881 }
1882 }
1883
1884 if (!nilfs_segbuf_simplex(segbuf)) {
1885 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1886 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1887 sci->sc_lseg_stime = jiffies;
1888 }
1889 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1890 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1891 }
1892 }
1893 /*
1894 * Since pages may continue over multiple segment buffers,
1895 * end of the last page must be checked outside of the loop.
1896 */
1897 if (bd_page)
1898 end_page_writeback(bd_page);
1899
1900 nilfs_end_page_io(fs_page, 0);
1901
1902 nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1903
1904 if (nilfs_doing_gc())
1905 nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1906 else
1907 nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1908
1909 sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1910
1911 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1912 nilfs_set_next_segment(nilfs, segbuf);
1913
1914 if (update_sr) {
1915 nilfs->ns_flushed_device = 0;
1916 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1917 segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1918
1919 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1920 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1921 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1922 nilfs_segctor_clear_metadata_dirty(sci);
1923 } else
1924 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1925 }
1926
1927 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1928 {
1929 int ret;
1930
1931 ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1932 if (!ret) {
1933 nilfs_segctor_complete_write(sci);
1934 nilfs_destroy_logs(&sci->sc_write_logs);
1935 }
1936 return ret;
1937 }
1938
1939 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1940 struct the_nilfs *nilfs)
1941 {
1942 struct nilfs_inode_info *ii, *n;
1943 struct inode *ifile = sci->sc_root->ifile;
1944
1945 spin_lock(&nilfs->ns_inode_lock);
1946 retry:
1947 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1948 if (!ii->i_bh) {
1949 struct buffer_head *ibh;
1950 int err;
1951
1952 spin_unlock(&nilfs->ns_inode_lock);
1953 err = nilfs_ifile_get_inode_block(
1954 ifile, ii->vfs_inode.i_ino, &ibh);
1955 if (unlikely(err)) {
1956 nilfs_msg(sci->sc_super, KERN_WARNING,
1957 "log writer: error %d getting inode block (ino=%lu)",
1958 err, ii->vfs_inode.i_ino);
1959 return err;
1960 }
1961 mark_buffer_dirty(ibh);
1962 nilfs_mdt_mark_dirty(ifile);
1963 spin_lock(&nilfs->ns_inode_lock);
1964 if (likely(!ii->i_bh))
1965 ii->i_bh = ibh;
1966 else
1967 brelse(ibh);
1968 goto retry;
1969 }
1970
1971 clear_bit(NILFS_I_QUEUED, &ii->i_state);
1972 set_bit(NILFS_I_BUSY, &ii->i_state);
1973 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1974 }
1975 spin_unlock(&nilfs->ns_inode_lock);
1976
1977 return 0;
1978 }
1979
1980 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1981 struct the_nilfs *nilfs)
1982 {
1983 struct nilfs_inode_info *ii, *n;
1984 int during_mount = !(sci->sc_super->s_flags & MS_ACTIVE);
1985 int defer_iput = false;
1986
1987 spin_lock(&nilfs->ns_inode_lock);
1988 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
1989 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
1990 test_bit(NILFS_I_DIRTY, &ii->i_state))
1991 continue;
1992
1993 clear_bit(NILFS_I_BUSY, &ii->i_state);
1994 brelse(ii->i_bh);
1995 ii->i_bh = NULL;
1996 list_del_init(&ii->i_dirty);
1997 if (!ii->vfs_inode.i_nlink || during_mount) {
1998 /*
1999 * Defer calling iput() to avoid deadlocks if
2000 * i_nlink == 0 or mount is not yet finished.
2001 */
2002 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
2003 defer_iput = true;
2004 } else {
2005 spin_unlock(&nilfs->ns_inode_lock);
2006 iput(&ii->vfs_inode);
2007 spin_lock(&nilfs->ns_inode_lock);
2008 }
2009 }
2010 spin_unlock(&nilfs->ns_inode_lock);
2011
2012 if (defer_iput)
2013 schedule_work(&sci->sc_iput_work);
2014 }
2015
2016 /*
2017 * Main procedure of segment constructor
2018 */
2019 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2020 {
2021 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2022 int err;
2023
2024 nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2025 sci->sc_cno = nilfs->ns_cno;
2026
2027 err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2028 if (unlikely(err))
2029 goto out;
2030
2031 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2032 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2033
2034 if (nilfs_segctor_clean(sci))
2035 goto out;
2036
2037 do {
2038 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2039
2040 err = nilfs_segctor_begin_construction(sci, nilfs);
2041 if (unlikely(err))
2042 goto out;
2043
2044 /* Update time stamp */
2045 sci->sc_seg_ctime = get_seconds();
2046
2047 err = nilfs_segctor_collect(sci, nilfs, mode);
2048 if (unlikely(err))
2049 goto failed;
2050
2051 /* Avoid empty segment */
2052 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2053 nilfs_segbuf_empty(sci->sc_curseg)) {
2054 nilfs_segctor_abort_construction(sci, nilfs, 1);
2055 goto out;
2056 }
2057
2058 err = nilfs_segctor_assign(sci, mode);
2059 if (unlikely(err))
2060 goto failed;
2061
2062 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2063 nilfs_segctor_fill_in_file_bmap(sci);
2064
2065 if (mode == SC_LSEG_SR &&
2066 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2067 err = nilfs_segctor_fill_in_checkpoint(sci);
2068 if (unlikely(err))
2069 goto failed_to_write;
2070
2071 nilfs_segctor_fill_in_super_root(sci, nilfs);
2072 }
2073 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2074
2075 /* Write partial segments */
2076 nilfs_segctor_prepare_write(sci);
2077
2078 nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2079 nilfs->ns_crc_seed);
2080
2081 err = nilfs_segctor_write(sci, nilfs);
2082 if (unlikely(err))
2083 goto failed_to_write;
2084
2085 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2086 nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2087 /*
2088 * At this point, we avoid double buffering
2089 * for blocksize < pagesize because page dirty
2090 * flag is turned off during write and dirty
2091 * buffers are not properly collected for
2092 * pages crossing over segments.
2093 */
2094 err = nilfs_segctor_wait(sci);
2095 if (err)
2096 goto failed_to_write;
2097 }
2098 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2099
2100 out:
2101 nilfs_segctor_drop_written_files(sci, nilfs);
2102 return err;
2103
2104 failed_to_write:
2105 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2106 nilfs_redirty_inodes(&sci->sc_dirty_files);
2107
2108 failed:
2109 if (nilfs_doing_gc())
2110 nilfs_redirty_inodes(&sci->sc_gc_inodes);
2111 nilfs_segctor_abort_construction(sci, nilfs, err);
2112 goto out;
2113 }
2114
2115 /**
2116 * nilfs_segctor_start_timer - set timer of background write
2117 * @sci: nilfs_sc_info
2118 *
2119 * If the timer has already been set, it ignores the new request.
2120 * This function MUST be called within a section locking the segment
2121 * semaphore.
2122 */
2123 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2124 {
2125 spin_lock(&sci->sc_state_lock);
2126 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2127 sci->sc_timer.expires = jiffies + sci->sc_interval;
2128 add_timer(&sci->sc_timer);
2129 sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2130 }
2131 spin_unlock(&sci->sc_state_lock);
2132 }
2133
2134 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2135 {
2136 spin_lock(&sci->sc_state_lock);
2137 if (!(sci->sc_flush_request & BIT(bn))) {
2138 unsigned long prev_req = sci->sc_flush_request;
2139
2140 sci->sc_flush_request |= BIT(bn);
2141 if (!prev_req)
2142 wake_up(&sci->sc_wait_daemon);
2143 }
2144 spin_unlock(&sci->sc_state_lock);
2145 }
2146
2147 /**
2148 * nilfs_flush_segment - trigger a segment construction for resource control
2149 * @sb: super block
2150 * @ino: inode number of the file to be flushed out.
2151 */
2152 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2153 {
2154 struct the_nilfs *nilfs = sb->s_fs_info;
2155 struct nilfs_sc_info *sci = nilfs->ns_writer;
2156
2157 if (!sci || nilfs_doing_construction())
2158 return;
2159 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2160 /* assign bit 0 to data files */
2161 }
2162
2163 struct nilfs_segctor_wait_request {
2164 wait_queue_t wq;
2165 __u32 seq;
2166 int err;
2167 atomic_t done;
2168 };
2169
2170 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2171 {
2172 struct nilfs_segctor_wait_request wait_req;
2173 int err = 0;
2174
2175 spin_lock(&sci->sc_state_lock);
2176 init_wait(&wait_req.wq);
2177 wait_req.err = 0;
2178 atomic_set(&wait_req.done, 0);
2179 wait_req.seq = ++sci->sc_seq_request;
2180 spin_unlock(&sci->sc_state_lock);
2181
2182 init_waitqueue_entry(&wait_req.wq, current);
2183 add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2184 set_current_state(TASK_INTERRUPTIBLE);
2185 wake_up(&sci->sc_wait_daemon);
2186
2187 for (;;) {
2188 if (atomic_read(&wait_req.done)) {
2189 err = wait_req.err;
2190 break;
2191 }
2192 if (!signal_pending(current)) {
2193 schedule();
2194 continue;
2195 }
2196 err = -ERESTARTSYS;
2197 break;
2198 }
2199 finish_wait(&sci->sc_wait_request, &wait_req.wq);
2200 return err;
2201 }
2202
2203 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2204 {
2205 struct nilfs_segctor_wait_request *wrq, *n;
2206 unsigned long flags;
2207
2208 spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2209 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2210 wq.task_list) {
2211 if (!atomic_read(&wrq->done) &&
2212 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2213 wrq->err = err;
2214 atomic_set(&wrq->done, 1);
2215 }
2216 if (atomic_read(&wrq->done)) {
2217 wrq->wq.func(&wrq->wq,
2218 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2219 0, NULL);
2220 }
2221 }
2222 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2223 }
2224
2225 /**
2226 * nilfs_construct_segment - construct a logical segment
2227 * @sb: super block
2228 *
2229 * Return Value: On success, 0 is retured. On errors, one of the following
2230 * negative error code is returned.
2231 *
2232 * %-EROFS - Read only filesystem.
2233 *
2234 * %-EIO - I/O error
2235 *
2236 * %-ENOSPC - No space left on device (only in a panic state).
2237 *
2238 * %-ERESTARTSYS - Interrupted.
2239 *
2240 * %-ENOMEM - Insufficient memory available.
2241 */
2242 int nilfs_construct_segment(struct super_block *sb)
2243 {
2244 struct the_nilfs *nilfs = sb->s_fs_info;
2245 struct nilfs_sc_info *sci = nilfs->ns_writer;
2246 struct nilfs_transaction_info *ti;
2247 int err;
2248
2249 if (!sci)
2250 return -EROFS;
2251
2252 /* A call inside transactions causes a deadlock. */
2253 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2254
2255 err = nilfs_segctor_sync(sci);
2256 return err;
2257 }
2258
2259 /**
2260 * nilfs_construct_dsync_segment - construct a data-only logical segment
2261 * @sb: super block
2262 * @inode: inode whose data blocks should be written out
2263 * @start: start byte offset
2264 * @end: end byte offset (inclusive)
2265 *
2266 * Return Value: On success, 0 is retured. On errors, one of the following
2267 * negative error code is returned.
2268 *
2269 * %-EROFS - Read only filesystem.
2270 *
2271 * %-EIO - I/O error
2272 *
2273 * %-ENOSPC - No space left on device (only in a panic state).
2274 *
2275 * %-ERESTARTSYS - Interrupted.
2276 *
2277 * %-ENOMEM - Insufficient memory available.
2278 */
2279 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2280 loff_t start, loff_t end)
2281 {
2282 struct the_nilfs *nilfs = sb->s_fs_info;
2283 struct nilfs_sc_info *sci = nilfs->ns_writer;
2284 struct nilfs_inode_info *ii;
2285 struct nilfs_transaction_info ti;
2286 int err = 0;
2287
2288 if (!sci)
2289 return -EROFS;
2290
2291 nilfs_transaction_lock(sb, &ti, 0);
2292
2293 ii = NILFS_I(inode);
2294 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2295 nilfs_test_opt(nilfs, STRICT_ORDER) ||
2296 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2297 nilfs_discontinued(nilfs)) {
2298 nilfs_transaction_unlock(sb);
2299 err = nilfs_segctor_sync(sci);
2300 return err;
2301 }
2302
2303 spin_lock(&nilfs->ns_inode_lock);
2304 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2305 !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2306 spin_unlock(&nilfs->ns_inode_lock);
2307 nilfs_transaction_unlock(sb);
2308 return 0;
2309 }
2310 spin_unlock(&nilfs->ns_inode_lock);
2311 sci->sc_dsync_inode = ii;
2312 sci->sc_dsync_start = start;
2313 sci->sc_dsync_end = end;
2314
2315 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2316 if (!err)
2317 nilfs->ns_flushed_device = 0;
2318
2319 nilfs_transaction_unlock(sb);
2320 return err;
2321 }
2322
2323 #define FLUSH_FILE_BIT (0x1) /* data file only */
2324 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */
2325
2326 /**
2327 * nilfs_segctor_accept - record accepted sequence count of log-write requests
2328 * @sci: segment constructor object
2329 */
2330 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2331 {
2332 spin_lock(&sci->sc_state_lock);
2333 sci->sc_seq_accepted = sci->sc_seq_request;
2334 spin_unlock(&sci->sc_state_lock);
2335 del_timer_sync(&sci->sc_timer);
2336 }
2337
2338 /**
2339 * nilfs_segctor_notify - notify the result of request to caller threads
2340 * @sci: segment constructor object
2341 * @mode: mode of log forming
2342 * @err: error code to be notified
2343 */
2344 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2345 {
2346 /* Clear requests (even when the construction failed) */
2347 spin_lock(&sci->sc_state_lock);
2348
2349 if (mode == SC_LSEG_SR) {
2350 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2351 sci->sc_seq_done = sci->sc_seq_accepted;
2352 nilfs_segctor_wakeup(sci, err);
2353 sci->sc_flush_request = 0;
2354 } else {
2355 if (mode == SC_FLUSH_FILE)
2356 sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2357 else if (mode == SC_FLUSH_DAT)
2358 sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2359
2360 /* re-enable timer if checkpoint creation was not done */
2361 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2362 time_before(jiffies, sci->sc_timer.expires))
2363 add_timer(&sci->sc_timer);
2364 }
2365 spin_unlock(&sci->sc_state_lock);
2366 }
2367
2368 /**
2369 * nilfs_segctor_construct - form logs and write them to disk
2370 * @sci: segment constructor object
2371 * @mode: mode of log forming
2372 */
2373 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2374 {
2375 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2376 struct nilfs_super_block **sbp;
2377 int err = 0;
2378
2379 nilfs_segctor_accept(sci);
2380
2381 if (nilfs_discontinued(nilfs))
2382 mode = SC_LSEG_SR;
2383 if (!nilfs_segctor_confirm(sci))
2384 err = nilfs_segctor_do_construct(sci, mode);
2385
2386 if (likely(!err)) {
2387 if (mode != SC_FLUSH_DAT)
2388 atomic_set(&nilfs->ns_ndirtyblks, 0);
2389 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2390 nilfs_discontinued(nilfs)) {
2391 down_write(&nilfs->ns_sem);
2392 err = -EIO;
2393 sbp = nilfs_prepare_super(sci->sc_super,
2394 nilfs_sb_will_flip(nilfs));
2395 if (likely(sbp)) {
2396 nilfs_set_log_cursor(sbp[0], nilfs);
2397 err = nilfs_commit_super(sci->sc_super,
2398 NILFS_SB_COMMIT);
2399 }
2400 up_write(&nilfs->ns_sem);
2401 }
2402 }
2403
2404 nilfs_segctor_notify(sci, mode, err);
2405 return err;
2406 }
2407
2408 static void nilfs_construction_timeout(unsigned long data)
2409 {
2410 struct task_struct *p = (struct task_struct *)data;
2411
2412 wake_up_process(p);
2413 }
2414
2415 static void
2416 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2417 {
2418 struct nilfs_inode_info *ii, *n;
2419
2420 list_for_each_entry_safe(ii, n, head, i_dirty) {
2421 if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2422 continue;
2423 list_del_init(&ii->i_dirty);
2424 truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2425 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
2426 iput(&ii->vfs_inode);
2427 }
2428 }
2429
2430 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2431 void **kbufs)
2432 {
2433 struct the_nilfs *nilfs = sb->s_fs_info;
2434 struct nilfs_sc_info *sci = nilfs->ns_writer;
2435 struct nilfs_transaction_info ti;
2436 int err;
2437
2438 if (unlikely(!sci))
2439 return -EROFS;
2440
2441 nilfs_transaction_lock(sb, &ti, 1);
2442
2443 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2444 if (unlikely(err))
2445 goto out_unlock;
2446
2447 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2448 if (unlikely(err)) {
2449 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2450 goto out_unlock;
2451 }
2452
2453 sci->sc_freesegs = kbufs[4];
2454 sci->sc_nfreesegs = argv[4].v_nmembs;
2455 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2456
2457 for (;;) {
2458 err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2459 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2460
2461 if (likely(!err))
2462 break;
2463
2464 nilfs_msg(sb, KERN_WARNING, "error %d cleaning segments", err);
2465 set_current_state(TASK_INTERRUPTIBLE);
2466 schedule_timeout(sci->sc_interval);
2467 }
2468 if (nilfs_test_opt(nilfs, DISCARD)) {
2469 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2470 sci->sc_nfreesegs);
2471 if (ret) {
2472 nilfs_msg(sb, KERN_WARNING,
2473 "error %d on discard request, turning discards off for the device",
2474 ret);
2475 nilfs_clear_opt(nilfs, DISCARD);
2476 }
2477 }
2478
2479 out_unlock:
2480 sci->sc_freesegs = NULL;
2481 sci->sc_nfreesegs = 0;
2482 nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2483 nilfs_transaction_unlock(sb);
2484 return err;
2485 }
2486
2487 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2488 {
2489 struct nilfs_transaction_info ti;
2490
2491 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2492 nilfs_segctor_construct(sci, mode);
2493
2494 /*
2495 * Unclosed segment should be retried. We do this using sc_timer.
2496 * Timeout of sc_timer will invoke complete construction which leads
2497 * to close the current logical segment.
2498 */
2499 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2500 nilfs_segctor_start_timer(sci);
2501
2502 nilfs_transaction_unlock(sci->sc_super);
2503 }
2504
2505 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2506 {
2507 int mode = 0;
2508
2509 spin_lock(&sci->sc_state_lock);
2510 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2511 SC_FLUSH_DAT : SC_FLUSH_FILE;
2512 spin_unlock(&sci->sc_state_lock);
2513
2514 if (mode) {
2515 nilfs_segctor_do_construct(sci, mode);
2516
2517 spin_lock(&sci->sc_state_lock);
2518 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2519 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2520 spin_unlock(&sci->sc_state_lock);
2521 }
2522 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2523 }
2524
2525 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2526 {
2527 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2528 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2529 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2530 return SC_FLUSH_FILE;
2531 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2532 return SC_FLUSH_DAT;
2533 }
2534 return SC_LSEG_SR;
2535 }
2536
2537 /**
2538 * nilfs_segctor_thread - main loop of the segment constructor thread.
2539 * @arg: pointer to a struct nilfs_sc_info.
2540 *
2541 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2542 * to execute segment constructions.
2543 */
2544 static int nilfs_segctor_thread(void *arg)
2545 {
2546 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2547 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2548 int timeout = 0;
2549
2550 sci->sc_timer.data = (unsigned long)current;
2551 sci->sc_timer.function = nilfs_construction_timeout;
2552
2553 /* start sync. */
2554 sci->sc_task = current;
2555 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2556 nilfs_msg(sci->sc_super, KERN_INFO,
2557 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2558 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2559
2560 spin_lock(&sci->sc_state_lock);
2561 loop:
2562 for (;;) {
2563 int mode;
2564
2565 if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2566 goto end_thread;
2567
2568 if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2569 mode = SC_LSEG_SR;
2570 else if (sci->sc_flush_request)
2571 mode = nilfs_segctor_flush_mode(sci);
2572 else
2573 break;
2574
2575 spin_unlock(&sci->sc_state_lock);
2576 nilfs_segctor_thread_construct(sci, mode);
2577 spin_lock(&sci->sc_state_lock);
2578 timeout = 0;
2579 }
2580
2581
2582 if (freezing(current)) {
2583 spin_unlock(&sci->sc_state_lock);
2584 try_to_freeze();
2585 spin_lock(&sci->sc_state_lock);
2586 } else {
2587 DEFINE_WAIT(wait);
2588 int should_sleep = 1;
2589
2590 prepare_to_wait(&sci->sc_wait_daemon, &wait,
2591 TASK_INTERRUPTIBLE);
2592
2593 if (sci->sc_seq_request != sci->sc_seq_done)
2594 should_sleep = 0;
2595 else if (sci->sc_flush_request)
2596 should_sleep = 0;
2597 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2598 should_sleep = time_before(jiffies,
2599 sci->sc_timer.expires);
2600
2601 if (should_sleep) {
2602 spin_unlock(&sci->sc_state_lock);
2603 schedule();
2604 spin_lock(&sci->sc_state_lock);
2605 }
2606 finish_wait(&sci->sc_wait_daemon, &wait);
2607 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2608 time_after_eq(jiffies, sci->sc_timer.expires));
2609
2610 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2611 set_nilfs_discontinued(nilfs);
2612 }
2613 goto loop;
2614
2615 end_thread:
2616 spin_unlock(&sci->sc_state_lock);
2617
2618 /* end sync. */
2619 sci->sc_task = NULL;
2620 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2621 return 0;
2622 }
2623
2624 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2625 {
2626 struct task_struct *t;
2627
2628 t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2629 if (IS_ERR(t)) {
2630 int err = PTR_ERR(t);
2631
2632 nilfs_msg(sci->sc_super, KERN_ERR,
2633 "error %d creating segctord thread", err);
2634 return err;
2635 }
2636 wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2637 return 0;
2638 }
2639
2640 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2641 __acquires(&sci->sc_state_lock)
2642 __releases(&sci->sc_state_lock)
2643 {
2644 sci->sc_state |= NILFS_SEGCTOR_QUIT;
2645
2646 while (sci->sc_task) {
2647 wake_up(&sci->sc_wait_daemon);
2648 spin_unlock(&sci->sc_state_lock);
2649 wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2650 spin_lock(&sci->sc_state_lock);
2651 }
2652 }
2653
2654 /*
2655 * Setup & clean-up functions
2656 */
2657 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2658 struct nilfs_root *root)
2659 {
2660 struct the_nilfs *nilfs = sb->s_fs_info;
2661 struct nilfs_sc_info *sci;
2662
2663 sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2664 if (!sci)
2665 return NULL;
2666
2667 sci->sc_super = sb;
2668
2669 nilfs_get_root(root);
2670 sci->sc_root = root;
2671
2672 init_waitqueue_head(&sci->sc_wait_request);
2673 init_waitqueue_head(&sci->sc_wait_daemon);
2674 init_waitqueue_head(&sci->sc_wait_task);
2675 spin_lock_init(&sci->sc_state_lock);
2676 INIT_LIST_HEAD(&sci->sc_dirty_files);
2677 INIT_LIST_HEAD(&sci->sc_segbufs);
2678 INIT_LIST_HEAD(&sci->sc_write_logs);
2679 INIT_LIST_HEAD(&sci->sc_gc_inodes);
2680 INIT_LIST_HEAD(&sci->sc_iput_queue);
2681 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2682 init_timer(&sci->sc_timer);
2683
2684 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2685 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2686 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2687
2688 if (nilfs->ns_interval)
2689 sci->sc_interval = HZ * nilfs->ns_interval;
2690 if (nilfs->ns_watermark)
2691 sci->sc_watermark = nilfs->ns_watermark;
2692 return sci;
2693 }
2694
2695 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2696 {
2697 int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2698
2699 /*
2700 * The segctord thread was stopped and its timer was removed.
2701 * But some tasks remain.
2702 */
2703 do {
2704 struct nilfs_transaction_info ti;
2705
2706 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2707 ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2708 nilfs_transaction_unlock(sci->sc_super);
2709
2710 flush_work(&sci->sc_iput_work);
2711
2712 } while (ret && retrycount-- > 0);
2713 }
2714
2715 /**
2716 * nilfs_segctor_destroy - destroy the segment constructor.
2717 * @sci: nilfs_sc_info
2718 *
2719 * nilfs_segctor_destroy() kills the segctord thread and frees
2720 * the nilfs_sc_info struct.
2721 * Caller must hold the segment semaphore.
2722 */
2723 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2724 {
2725 struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2726 int flag;
2727
2728 up_write(&nilfs->ns_segctor_sem);
2729
2730 spin_lock(&sci->sc_state_lock);
2731 nilfs_segctor_kill_thread(sci);
2732 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2733 || sci->sc_seq_request != sci->sc_seq_done);
2734 spin_unlock(&sci->sc_state_lock);
2735
2736 if (flush_work(&sci->sc_iput_work))
2737 flag = true;
2738
2739 if (flag || !nilfs_segctor_confirm(sci))
2740 nilfs_segctor_write_out(sci);
2741
2742 if (!list_empty(&sci->sc_dirty_files)) {
2743 nilfs_msg(sci->sc_super, KERN_WARNING,
2744 "disposed unprocessed dirty file(s) when stopping log writer");
2745 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2746 }
2747
2748 if (!list_empty(&sci->sc_iput_queue)) {
2749 nilfs_msg(sci->sc_super, KERN_WARNING,
2750 "disposed unprocessed inode(s) in iput queue when stopping log writer");
2751 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2752 }
2753
2754 WARN_ON(!list_empty(&sci->sc_segbufs));
2755 WARN_ON(!list_empty(&sci->sc_write_logs));
2756
2757 nilfs_put_root(sci->sc_root);
2758
2759 down_write(&nilfs->ns_segctor_sem);
2760
2761 del_timer_sync(&sci->sc_timer);
2762 kfree(sci);
2763 }
2764
2765 /**
2766 * nilfs_attach_log_writer - attach log writer
2767 * @sb: super block instance
2768 * @root: root object of the current filesystem tree
2769 *
2770 * This allocates a log writer object, initializes it, and starts the
2771 * log writer.
2772 *
2773 * Return Value: On success, 0 is returned. On error, one of the following
2774 * negative error code is returned.
2775 *
2776 * %-ENOMEM - Insufficient memory available.
2777 */
2778 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2779 {
2780 struct the_nilfs *nilfs = sb->s_fs_info;
2781 int err;
2782
2783 if (nilfs->ns_writer) {
2784 /*
2785 * This happens if the filesystem was remounted
2786 * read/write after nilfs_error degenerated it into a
2787 * read-only mount.
2788 */
2789 nilfs_detach_log_writer(sb);
2790 }
2791
2792 nilfs->ns_writer = nilfs_segctor_new(sb, root);
2793 if (!nilfs->ns_writer)
2794 return -ENOMEM;
2795
2796 err = nilfs_segctor_start_thread(nilfs->ns_writer);
2797 if (err) {
2798 kfree(nilfs->ns_writer);
2799 nilfs->ns_writer = NULL;
2800 }
2801 return err;
2802 }
2803
2804 /**
2805 * nilfs_detach_log_writer - destroy log writer
2806 * @sb: super block instance
2807 *
2808 * This kills log writer daemon, frees the log writer object, and
2809 * destroys list of dirty files.
2810 */
2811 void nilfs_detach_log_writer(struct super_block *sb)
2812 {
2813 struct the_nilfs *nilfs = sb->s_fs_info;
2814 LIST_HEAD(garbage_list);
2815
2816 down_write(&nilfs->ns_segctor_sem);
2817 if (nilfs->ns_writer) {
2818 nilfs_segctor_destroy(nilfs->ns_writer);
2819 nilfs->ns_writer = NULL;
2820 }
2821
2822 /* Force to free the list of dirty files */
2823 spin_lock(&nilfs->ns_inode_lock);
2824 if (!list_empty(&nilfs->ns_dirty_files)) {
2825 list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2826 nilfs_msg(sb, KERN_WARNING,
2827 "disposed unprocessed dirty file(s) when detaching log writer");
2828 }
2829 spin_unlock(&nilfs->ns_inode_lock);
2830 up_write(&nilfs->ns_segctor_sem);
2831
2832 nilfs_dispose_list(nilfs, &garbage_list, 1);
2833 }