]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/super.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include <linux/user_namespace.h>
37 #include "internal.h"
38
39
40 static LIST_HEAD(super_blocks);
41 static DEFINE_SPINLOCK(sb_lock);
42
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47 };
48
49 /*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
58 {
59 struct super_block *sb;
60 long fs_objects = 0;
61 long total_objects;
62 long freed = 0;
63 long dentries;
64 long inodes;
65
66 sb = container_of(shrink, struct super_block, s_shrink);
67
68 /*
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
71 */
72 if (!(sc->gfp_mask & __GFP_FS))
73 return SHRINK_STOP;
74
75 if (!trylock_super(sb))
76 return SHRINK_STOP;
77
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
80
81 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
82 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
83 total_objects = dentries + inodes + fs_objects + 1;
84 if (!total_objects)
85 total_objects = 1;
86
87 /* proportion the scan between the caches */
88 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
90 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
91
92 /*
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
95 *
96 * Ensure that we always scan at least one object - memcg kmem
97 * accounting uses this to fully empty the caches.
98 */
99 sc->nr_to_scan = dentries + 1;
100 freed = prune_dcache_sb(sb, sc);
101 sc->nr_to_scan = inodes + 1;
102 freed += prune_icache_sb(sb, sc);
103
104 if (fs_objects) {
105 sc->nr_to_scan = fs_objects + 1;
106 freed += sb->s_op->free_cached_objects(sb, sc);
107 }
108
109 up_read(&sb->s_umount);
110 return freed;
111 }
112
113 static unsigned long super_cache_count(struct shrinker *shrink,
114 struct shrink_control *sc)
115 {
116 struct super_block *sb;
117 long total_objects = 0;
118
119 sb = container_of(shrink, struct super_block, s_shrink);
120
121 /*
122 * Don't call trylock_super as it is a potential
123 * scalability bottleneck. The counts could get updated
124 * between super_cache_count and super_cache_scan anyway.
125 * Call to super_cache_count with shrinker_rwsem held
126 * ensures the safety of call to list_lru_shrink_count() and
127 * s_op->nr_cached_objects().
128 */
129 if (sb->s_op && sb->s_op->nr_cached_objects)
130 total_objects = sb->s_op->nr_cached_objects(sb, sc);
131
132 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
133 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
134
135 total_objects = vfs_pressure_ratio(total_objects);
136 return total_objects;
137 }
138
139 static void destroy_super_work(struct work_struct *work)
140 {
141 struct super_block *s = container_of(work, struct super_block,
142 destroy_work);
143 int i;
144
145 for (i = 0; i < SB_FREEZE_LEVELS; i++)
146 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
147 kfree(s);
148 }
149
150 static void destroy_super_rcu(struct rcu_head *head)
151 {
152 struct super_block *s = container_of(head, struct super_block, rcu);
153 INIT_WORK(&s->destroy_work, destroy_super_work);
154 schedule_work(&s->destroy_work);
155 }
156
157 /**
158 * destroy_super - frees a superblock
159 * @s: superblock to free
160 *
161 * Frees a superblock.
162 */
163 static void destroy_super(struct super_block *s)
164 {
165 list_lru_destroy(&s->s_dentry_lru);
166 list_lru_destroy(&s->s_inode_lru);
167 security_sb_free(s);
168 WARN_ON(!list_empty(&s->s_mounts));
169 put_user_ns(s->s_user_ns);
170 kfree(s->s_subtype);
171 call_rcu(&s->rcu, destroy_super_rcu);
172 }
173
174 /**
175 * alloc_super - create new superblock
176 * @type: filesystem type superblock should belong to
177 * @flags: the mount flags
178 * @user_ns: User namespace for the super_block
179 *
180 * Allocates and initializes a new &struct super_block. alloc_super()
181 * returns a pointer new superblock or %NULL if allocation had failed.
182 */
183 static struct super_block *alloc_super(struct file_system_type *type, int flags,
184 struct user_namespace *user_ns)
185 {
186 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
187 static const struct super_operations default_op;
188 int i;
189
190 if (!s)
191 return NULL;
192
193 INIT_LIST_HEAD(&s->s_mounts);
194 s->s_user_ns = get_user_ns(user_ns);
195
196 if (security_sb_alloc(s))
197 goto fail;
198
199 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
200 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
201 sb_writers_name[i],
202 &type->s_writers_key[i]))
203 goto fail;
204 }
205 init_waitqueue_head(&s->s_writers.wait_unfrozen);
206 s->s_bdi = &noop_backing_dev_info;
207 s->s_flags = flags;
208 if (s->s_user_ns != &init_user_ns)
209 s->s_iflags |= SB_I_NODEV;
210 INIT_HLIST_NODE(&s->s_instances);
211 INIT_HLIST_BL_HEAD(&s->s_anon);
212 mutex_init(&s->s_sync_lock);
213 INIT_LIST_HEAD(&s->s_inodes);
214 spin_lock_init(&s->s_inode_list_lock);
215 INIT_LIST_HEAD(&s->s_inodes_wb);
216 spin_lock_init(&s->s_inode_wblist_lock);
217
218 if (list_lru_init_memcg(&s->s_dentry_lru))
219 goto fail;
220 if (list_lru_init_memcg(&s->s_inode_lru))
221 goto fail;
222
223 init_rwsem(&s->s_umount);
224 lockdep_set_class(&s->s_umount, &type->s_umount_key);
225 /*
226 * sget() can have s_umount recursion.
227 *
228 * When it cannot find a suitable sb, it allocates a new
229 * one (this one), and tries again to find a suitable old
230 * one.
231 *
232 * In case that succeeds, it will acquire the s_umount
233 * lock of the old one. Since these are clearly distrinct
234 * locks, and this object isn't exposed yet, there's no
235 * risk of deadlocks.
236 *
237 * Annotate this by putting this lock in a different
238 * subclass.
239 */
240 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
241 s->s_count = 1;
242 atomic_set(&s->s_active, 1);
243 mutex_init(&s->s_vfs_rename_mutex);
244 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
245 mutex_init(&s->s_dquot.dqio_mutex);
246 s->s_maxbytes = MAX_NON_LFS;
247 s->s_op = &default_op;
248 s->s_time_gran = 1000000000;
249 s->cleancache_poolid = CLEANCACHE_NO_POOL;
250
251 s->s_shrink.seeks = DEFAULT_SEEKS;
252 s->s_shrink.scan_objects = super_cache_scan;
253 s->s_shrink.count_objects = super_cache_count;
254 s->s_shrink.batch = 1024;
255 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
256 return s;
257
258 fail:
259 destroy_super(s);
260 return NULL;
261 }
262
263 /* Superblock refcounting */
264
265 /*
266 * Drop a superblock's refcount. The caller must hold sb_lock.
267 */
268 static void __put_super(struct super_block *sb)
269 {
270 if (!--sb->s_count) {
271 list_del_init(&sb->s_list);
272 destroy_super(sb);
273 }
274 }
275
276 /**
277 * put_super - drop a temporary reference to superblock
278 * @sb: superblock in question
279 *
280 * Drops a temporary reference, frees superblock if there's no
281 * references left.
282 */
283 static void put_super(struct super_block *sb)
284 {
285 spin_lock(&sb_lock);
286 __put_super(sb);
287 spin_unlock(&sb_lock);
288 }
289
290
291 /**
292 * deactivate_locked_super - drop an active reference to superblock
293 * @s: superblock to deactivate
294 *
295 * Drops an active reference to superblock, converting it into a temporary
296 * one if there is no other active references left. In that case we
297 * tell fs driver to shut it down and drop the temporary reference we
298 * had just acquired.
299 *
300 * Caller holds exclusive lock on superblock; that lock is released.
301 */
302 void deactivate_locked_super(struct super_block *s)
303 {
304 struct file_system_type *fs = s->s_type;
305 if (atomic_dec_and_test(&s->s_active)) {
306 cleancache_invalidate_fs(s);
307 unregister_shrinker(&s->s_shrink);
308 fs->kill_sb(s);
309
310 /*
311 * Since list_lru_destroy() may sleep, we cannot call it from
312 * put_super(), where we hold the sb_lock. Therefore we destroy
313 * the lru lists right now.
314 */
315 list_lru_destroy(&s->s_dentry_lru);
316 list_lru_destroy(&s->s_inode_lru);
317
318 put_filesystem(fs);
319 put_super(s);
320 } else {
321 up_write(&s->s_umount);
322 }
323 }
324
325 EXPORT_SYMBOL(deactivate_locked_super);
326
327 /**
328 * deactivate_super - drop an active reference to superblock
329 * @s: superblock to deactivate
330 *
331 * Variant of deactivate_locked_super(), except that superblock is *not*
332 * locked by caller. If we are going to drop the final active reference,
333 * lock will be acquired prior to that.
334 */
335 void deactivate_super(struct super_block *s)
336 {
337 if (!atomic_add_unless(&s->s_active, -1, 1)) {
338 down_write(&s->s_umount);
339 deactivate_locked_super(s);
340 }
341 }
342
343 EXPORT_SYMBOL(deactivate_super);
344
345 /**
346 * grab_super - acquire an active reference
347 * @s: reference we are trying to make active
348 *
349 * Tries to acquire an active reference. grab_super() is used when we
350 * had just found a superblock in super_blocks or fs_type->fs_supers
351 * and want to turn it into a full-blown active reference. grab_super()
352 * is called with sb_lock held and drops it. Returns 1 in case of
353 * success, 0 if we had failed (superblock contents was already dead or
354 * dying when grab_super() had been called). Note that this is only
355 * called for superblocks not in rundown mode (== ones still on ->fs_supers
356 * of their type), so increment of ->s_count is OK here.
357 */
358 static int grab_super(struct super_block *s) __releases(sb_lock)
359 {
360 s->s_count++;
361 spin_unlock(&sb_lock);
362 down_write(&s->s_umount);
363 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
364 put_super(s);
365 return 1;
366 }
367 up_write(&s->s_umount);
368 put_super(s);
369 return 0;
370 }
371
372 /*
373 * trylock_super - try to grab ->s_umount shared
374 * @sb: reference we are trying to grab
375 *
376 * Try to prevent fs shutdown. This is used in places where we
377 * cannot take an active reference but we need to ensure that the
378 * filesystem is not shut down while we are working on it. It returns
379 * false if we cannot acquire s_umount or if we lose the race and
380 * filesystem already got into shutdown, and returns true with the s_umount
381 * lock held in read mode in case of success. On successful return,
382 * the caller must drop the s_umount lock when done.
383 *
384 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
385 * The reason why it's safe is that we are OK with doing trylock instead
386 * of down_read(). There's a couple of places that are OK with that, but
387 * it's very much not a general-purpose interface.
388 */
389 bool trylock_super(struct super_block *sb)
390 {
391 if (down_read_trylock(&sb->s_umount)) {
392 if (!hlist_unhashed(&sb->s_instances) &&
393 sb->s_root && (sb->s_flags & MS_BORN))
394 return true;
395 up_read(&sb->s_umount);
396 }
397
398 return false;
399 }
400
401 /**
402 * generic_shutdown_super - common helper for ->kill_sb()
403 * @sb: superblock to kill
404 *
405 * generic_shutdown_super() does all fs-independent work on superblock
406 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
407 * that need destruction out of superblock, call generic_shutdown_super()
408 * and release aforementioned objects. Note: dentries and inodes _are_
409 * taken care of and do not need specific handling.
410 *
411 * Upon calling this function, the filesystem may no longer alter or
412 * rearrange the set of dentries belonging to this super_block, nor may it
413 * change the attachments of dentries to inodes.
414 */
415 void generic_shutdown_super(struct super_block *sb)
416 {
417 const struct super_operations *sop = sb->s_op;
418
419 if (sb->s_root) {
420 shrink_dcache_for_umount(sb);
421 sync_filesystem(sb);
422 sb->s_flags &= ~MS_ACTIVE;
423
424 fsnotify_unmount_inodes(sb);
425 cgroup_writeback_umount();
426
427 evict_inodes(sb);
428
429 if (sb->s_dio_done_wq) {
430 destroy_workqueue(sb->s_dio_done_wq);
431 sb->s_dio_done_wq = NULL;
432 }
433
434 if (sop->put_super)
435 sop->put_super(sb);
436
437 if (!list_empty(&sb->s_inodes)) {
438 printk("VFS: Busy inodes after unmount of %s. "
439 "Self-destruct in 5 seconds. Have a nice day...\n",
440 sb->s_id);
441 }
442 }
443 spin_lock(&sb_lock);
444 /* should be initialized for __put_super_and_need_restart() */
445 hlist_del_init(&sb->s_instances);
446 spin_unlock(&sb_lock);
447 up_write(&sb->s_umount);
448 if (sb->s_bdi != &noop_backing_dev_info) {
449 bdi_put(sb->s_bdi);
450 sb->s_bdi = &noop_backing_dev_info;
451 }
452 }
453
454 EXPORT_SYMBOL(generic_shutdown_super);
455
456 /**
457 * sget_userns - find or create a superblock
458 * @type: filesystem type superblock should belong to
459 * @test: comparison callback
460 * @set: setup callback
461 * @flags: mount flags
462 * @user_ns: User namespace for the super_block
463 * @data: argument to each of them
464 */
465 struct super_block *sget_userns(struct file_system_type *type,
466 int (*test)(struct super_block *,void *),
467 int (*set)(struct super_block *,void *),
468 int flags, struct user_namespace *user_ns,
469 void *data)
470 {
471 struct super_block *s = NULL;
472 struct super_block *old;
473 int err;
474
475 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) &&
476 !(type->fs_flags & FS_USERNS_MOUNT) &&
477 !capable(CAP_SYS_ADMIN))
478 return ERR_PTR(-EPERM);
479 retry:
480 spin_lock(&sb_lock);
481 if (test) {
482 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
483 if (!test(old, data))
484 continue;
485 if (user_ns != old->s_user_ns) {
486 spin_unlock(&sb_lock);
487 if (s) {
488 up_write(&s->s_umount);
489 destroy_super(s);
490 }
491 return ERR_PTR(-EBUSY);
492 }
493 if (!grab_super(old))
494 goto retry;
495 if (s) {
496 up_write(&s->s_umount);
497 destroy_super(s);
498 s = NULL;
499 }
500 return old;
501 }
502 }
503 if (!s) {
504 spin_unlock(&sb_lock);
505 s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns);
506 if (!s)
507 return ERR_PTR(-ENOMEM);
508 goto retry;
509 }
510
511 err = set(s, data);
512 if (err) {
513 spin_unlock(&sb_lock);
514 up_write(&s->s_umount);
515 destroy_super(s);
516 return ERR_PTR(err);
517 }
518 s->s_type = type;
519 strlcpy(s->s_id, type->name, sizeof(s->s_id));
520 list_add_tail(&s->s_list, &super_blocks);
521 hlist_add_head(&s->s_instances, &type->fs_supers);
522 spin_unlock(&sb_lock);
523 get_filesystem(type);
524 register_shrinker(&s->s_shrink);
525 return s;
526 }
527
528 EXPORT_SYMBOL(sget_userns);
529
530 /**
531 * sget - find or create a superblock
532 * @type: filesystem type superblock should belong to
533 * @test: comparison callback
534 * @set: setup callback
535 * @flags: mount flags
536 * @data: argument to each of them
537 */
538 struct super_block *sget(struct file_system_type *type,
539 int (*test)(struct super_block *,void *),
540 int (*set)(struct super_block *,void *),
541 int flags,
542 void *data)
543 {
544 struct user_namespace *user_ns = current_user_ns();
545
546 /* We don't yet pass the user namespace of the parent
547 * mount through to here so always use &init_user_ns
548 * until that changes.
549 */
550 if (flags & MS_SUBMOUNT)
551 user_ns = &init_user_ns;
552
553 /* Ensure the requestor has permissions over the target filesystem */
554 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
555 return ERR_PTR(-EPERM);
556
557 return sget_userns(type, test, set, flags, user_ns, data);
558 }
559
560 EXPORT_SYMBOL(sget);
561
562 void drop_super(struct super_block *sb)
563 {
564 up_read(&sb->s_umount);
565 put_super(sb);
566 }
567
568 EXPORT_SYMBOL(drop_super);
569
570 void drop_super_exclusive(struct super_block *sb)
571 {
572 up_write(&sb->s_umount);
573 put_super(sb);
574 }
575 EXPORT_SYMBOL(drop_super_exclusive);
576
577 /**
578 * iterate_supers - call function for all active superblocks
579 * @f: function to call
580 * @arg: argument to pass to it
581 *
582 * Scans the superblock list and calls given function, passing it
583 * locked superblock and given argument.
584 */
585 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
586 {
587 struct super_block *sb, *p = NULL;
588
589 spin_lock(&sb_lock);
590 list_for_each_entry(sb, &super_blocks, s_list) {
591 if (hlist_unhashed(&sb->s_instances))
592 continue;
593 sb->s_count++;
594 spin_unlock(&sb_lock);
595
596 down_read(&sb->s_umount);
597 if (sb->s_root && (sb->s_flags & MS_BORN))
598 f(sb, arg);
599 up_read(&sb->s_umount);
600
601 spin_lock(&sb_lock);
602 if (p)
603 __put_super(p);
604 p = sb;
605 }
606 if (p)
607 __put_super(p);
608 spin_unlock(&sb_lock);
609 }
610
611 /**
612 * iterate_supers_type - call function for superblocks of given type
613 * @type: fs type
614 * @f: function to call
615 * @arg: argument to pass to it
616 *
617 * Scans the superblock list and calls given function, passing it
618 * locked superblock and given argument.
619 */
620 void iterate_supers_type(struct file_system_type *type,
621 void (*f)(struct super_block *, void *), void *arg)
622 {
623 struct super_block *sb, *p = NULL;
624
625 spin_lock(&sb_lock);
626 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
627 sb->s_count++;
628 spin_unlock(&sb_lock);
629
630 down_read(&sb->s_umount);
631 if (sb->s_root && (sb->s_flags & MS_BORN))
632 f(sb, arg);
633 up_read(&sb->s_umount);
634
635 spin_lock(&sb_lock);
636 if (p)
637 __put_super(p);
638 p = sb;
639 }
640 if (p)
641 __put_super(p);
642 spin_unlock(&sb_lock);
643 }
644
645 EXPORT_SYMBOL(iterate_supers_type);
646
647 static struct super_block *__get_super(struct block_device *bdev, bool excl)
648 {
649 struct super_block *sb;
650
651 if (!bdev)
652 return NULL;
653
654 spin_lock(&sb_lock);
655 rescan:
656 list_for_each_entry(sb, &super_blocks, s_list) {
657 if (hlist_unhashed(&sb->s_instances))
658 continue;
659 if (sb->s_bdev == bdev) {
660 sb->s_count++;
661 spin_unlock(&sb_lock);
662 if (!excl)
663 down_read(&sb->s_umount);
664 else
665 down_write(&sb->s_umount);
666 /* still alive? */
667 if (sb->s_root && (sb->s_flags & MS_BORN))
668 return sb;
669 if (!excl)
670 up_read(&sb->s_umount);
671 else
672 up_write(&sb->s_umount);
673 /* nope, got unmounted */
674 spin_lock(&sb_lock);
675 __put_super(sb);
676 goto rescan;
677 }
678 }
679 spin_unlock(&sb_lock);
680 return NULL;
681 }
682
683 /**
684 * get_super - get the superblock of a device
685 * @bdev: device to get the superblock for
686 *
687 * Scans the superblock list and finds the superblock of the file system
688 * mounted on the device given. %NULL is returned if no match is found.
689 */
690 struct super_block *get_super(struct block_device *bdev)
691 {
692 return __get_super(bdev, false);
693 }
694 EXPORT_SYMBOL(get_super);
695
696 static struct super_block *__get_super_thawed(struct block_device *bdev,
697 bool excl)
698 {
699 while (1) {
700 struct super_block *s = __get_super(bdev, excl);
701 if (!s || s->s_writers.frozen == SB_UNFROZEN)
702 return s;
703 if (!excl)
704 up_read(&s->s_umount);
705 else
706 up_write(&s->s_umount);
707 wait_event(s->s_writers.wait_unfrozen,
708 s->s_writers.frozen == SB_UNFROZEN);
709 put_super(s);
710 }
711 }
712
713 /**
714 * get_super_thawed - get thawed superblock of a device
715 * @bdev: device to get the superblock for
716 *
717 * Scans the superblock list and finds the superblock of the file system
718 * mounted on the device. The superblock is returned once it is thawed
719 * (or immediately if it was not frozen). %NULL is returned if no match
720 * is found.
721 */
722 struct super_block *get_super_thawed(struct block_device *bdev)
723 {
724 return __get_super_thawed(bdev, false);
725 }
726 EXPORT_SYMBOL(get_super_thawed);
727
728 /**
729 * get_super_exclusive_thawed - get thawed superblock of a device
730 * @bdev: device to get the superblock for
731 *
732 * Scans the superblock list and finds the superblock of the file system
733 * mounted on the device. The superblock is returned once it is thawed
734 * (or immediately if it was not frozen) and s_umount semaphore is held
735 * in exclusive mode. %NULL is returned if no match is found.
736 */
737 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
738 {
739 return __get_super_thawed(bdev, true);
740 }
741 EXPORT_SYMBOL(get_super_exclusive_thawed);
742
743 /**
744 * get_active_super - get an active reference to the superblock of a device
745 * @bdev: device to get the superblock for
746 *
747 * Scans the superblock list and finds the superblock of the file system
748 * mounted on the device given. Returns the superblock with an active
749 * reference or %NULL if none was found.
750 */
751 struct super_block *get_active_super(struct block_device *bdev)
752 {
753 struct super_block *sb;
754
755 if (!bdev)
756 return NULL;
757
758 restart:
759 spin_lock(&sb_lock);
760 list_for_each_entry(sb, &super_blocks, s_list) {
761 if (hlist_unhashed(&sb->s_instances))
762 continue;
763 if (sb->s_bdev == bdev) {
764 if (!grab_super(sb))
765 goto restart;
766 up_write(&sb->s_umount);
767 return sb;
768 }
769 }
770 spin_unlock(&sb_lock);
771 return NULL;
772 }
773
774 struct super_block *user_get_super(dev_t dev)
775 {
776 struct super_block *sb;
777
778 spin_lock(&sb_lock);
779 rescan:
780 list_for_each_entry(sb, &super_blocks, s_list) {
781 if (hlist_unhashed(&sb->s_instances))
782 continue;
783 if (sb->s_dev == dev) {
784 sb->s_count++;
785 spin_unlock(&sb_lock);
786 down_read(&sb->s_umount);
787 /* still alive? */
788 if (sb->s_root && (sb->s_flags & MS_BORN))
789 return sb;
790 up_read(&sb->s_umount);
791 /* nope, got unmounted */
792 spin_lock(&sb_lock);
793 __put_super(sb);
794 goto rescan;
795 }
796 }
797 spin_unlock(&sb_lock);
798 return NULL;
799 }
800
801 /**
802 * do_remount_sb - asks filesystem to change mount options.
803 * @sb: superblock in question
804 * @flags: numeric part of options
805 * @data: the rest of options
806 * @force: whether or not to force the change
807 *
808 * Alters the mount options of a mounted file system.
809 */
810 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
811 {
812 int retval;
813 int remount_ro;
814
815 if (sb->s_writers.frozen != SB_UNFROZEN)
816 return -EBUSY;
817
818 #ifdef CONFIG_BLOCK
819 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
820 return -EACCES;
821 #endif
822
823 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
824
825 if (remount_ro) {
826 if (!hlist_empty(&sb->s_pins)) {
827 up_write(&sb->s_umount);
828 group_pin_kill(&sb->s_pins);
829 down_write(&sb->s_umount);
830 if (!sb->s_root)
831 return 0;
832 if (sb->s_writers.frozen != SB_UNFROZEN)
833 return -EBUSY;
834 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
835 }
836 }
837 shrink_dcache_sb(sb);
838
839 /* If we are remounting RDONLY and current sb is read/write,
840 make sure there are no rw files opened */
841 if (remount_ro) {
842 if (force) {
843 sb->s_readonly_remount = 1;
844 smp_wmb();
845 } else {
846 retval = sb_prepare_remount_readonly(sb);
847 if (retval)
848 return retval;
849 }
850 }
851
852 if (sb->s_op->remount_fs) {
853 retval = sb->s_op->remount_fs(sb, &flags, data);
854 if (retval) {
855 if (!force)
856 goto cancel_readonly;
857 /* If forced remount, go ahead despite any errors */
858 WARN(1, "forced remount of a %s fs returned %i\n",
859 sb->s_type->name, retval);
860 }
861 }
862 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
863 /* Needs to be ordered wrt mnt_is_readonly() */
864 smp_wmb();
865 sb->s_readonly_remount = 0;
866
867 /*
868 * Some filesystems modify their metadata via some other path than the
869 * bdev buffer cache (eg. use a private mapping, or directories in
870 * pagecache, etc). Also file data modifications go via their own
871 * mappings. So If we try to mount readonly then copy the filesystem
872 * from bdev, we could get stale data, so invalidate it to give a best
873 * effort at coherency.
874 */
875 if (remount_ro && sb->s_bdev)
876 invalidate_bdev(sb->s_bdev);
877 return 0;
878
879 cancel_readonly:
880 sb->s_readonly_remount = 0;
881 return retval;
882 }
883
884 static void do_emergency_remount(struct work_struct *work)
885 {
886 struct super_block *sb, *p = NULL;
887
888 spin_lock(&sb_lock);
889 list_for_each_entry(sb, &super_blocks, s_list) {
890 if (hlist_unhashed(&sb->s_instances))
891 continue;
892 sb->s_count++;
893 spin_unlock(&sb_lock);
894 down_write(&sb->s_umount);
895 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
896 !(sb->s_flags & MS_RDONLY)) {
897 /*
898 * What lock protects sb->s_flags??
899 */
900 do_remount_sb(sb, MS_RDONLY, NULL, 1);
901 }
902 up_write(&sb->s_umount);
903 spin_lock(&sb_lock);
904 if (p)
905 __put_super(p);
906 p = sb;
907 }
908 if (p)
909 __put_super(p);
910 spin_unlock(&sb_lock);
911 kfree(work);
912 printk("Emergency Remount complete\n");
913 }
914
915 void emergency_remount(void)
916 {
917 struct work_struct *work;
918
919 work = kmalloc(sizeof(*work), GFP_ATOMIC);
920 if (work) {
921 INIT_WORK(work, do_emergency_remount);
922 schedule_work(work);
923 }
924 }
925
926 /*
927 * Unnamed block devices are dummy devices used by virtual
928 * filesystems which don't use real block-devices. -- jrs
929 */
930
931 static DEFINE_IDA(unnamed_dev_ida);
932 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
933 /* Many userspace utilities consider an FSID of 0 invalid.
934 * Always return at least 1 from get_anon_bdev.
935 */
936 static int unnamed_dev_start = 1;
937
938 int get_anon_bdev(dev_t *p)
939 {
940 int dev;
941 int error;
942
943 retry:
944 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
945 return -ENOMEM;
946 spin_lock(&unnamed_dev_lock);
947 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
948 if (!error)
949 unnamed_dev_start = dev + 1;
950 spin_unlock(&unnamed_dev_lock);
951 if (error == -EAGAIN)
952 /* We raced and lost with another CPU. */
953 goto retry;
954 else if (error)
955 return -EAGAIN;
956
957 if (dev >= (1 << MINORBITS)) {
958 spin_lock(&unnamed_dev_lock);
959 ida_remove(&unnamed_dev_ida, dev);
960 if (unnamed_dev_start > dev)
961 unnamed_dev_start = dev;
962 spin_unlock(&unnamed_dev_lock);
963 return -EMFILE;
964 }
965 *p = MKDEV(0, dev & MINORMASK);
966 return 0;
967 }
968 EXPORT_SYMBOL(get_anon_bdev);
969
970 void free_anon_bdev(dev_t dev)
971 {
972 int slot = MINOR(dev);
973 spin_lock(&unnamed_dev_lock);
974 ida_remove(&unnamed_dev_ida, slot);
975 if (slot < unnamed_dev_start)
976 unnamed_dev_start = slot;
977 spin_unlock(&unnamed_dev_lock);
978 }
979 EXPORT_SYMBOL(free_anon_bdev);
980
981 int set_anon_super(struct super_block *s, void *data)
982 {
983 return get_anon_bdev(&s->s_dev);
984 }
985
986 EXPORT_SYMBOL(set_anon_super);
987
988 void kill_anon_super(struct super_block *sb)
989 {
990 dev_t dev = sb->s_dev;
991 generic_shutdown_super(sb);
992 free_anon_bdev(dev);
993 }
994
995 EXPORT_SYMBOL(kill_anon_super);
996
997 void kill_litter_super(struct super_block *sb)
998 {
999 if (sb->s_root)
1000 d_genocide(sb->s_root);
1001 kill_anon_super(sb);
1002 }
1003
1004 EXPORT_SYMBOL(kill_litter_super);
1005
1006 static int ns_test_super(struct super_block *sb, void *data)
1007 {
1008 return sb->s_fs_info == data;
1009 }
1010
1011 static int ns_set_super(struct super_block *sb, void *data)
1012 {
1013 sb->s_fs_info = data;
1014 return set_anon_super(sb, NULL);
1015 }
1016
1017 struct dentry *mount_ns(struct file_system_type *fs_type,
1018 int flags, void *data, void *ns, struct user_namespace *user_ns,
1019 int (*fill_super)(struct super_block *, void *, int))
1020 {
1021 struct super_block *sb;
1022
1023 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1024 * over the namespace.
1025 */
1026 if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1027 return ERR_PTR(-EPERM);
1028
1029 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1030 user_ns, ns);
1031 if (IS_ERR(sb))
1032 return ERR_CAST(sb);
1033
1034 if (!sb->s_root) {
1035 int err;
1036 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1037 if (err) {
1038 deactivate_locked_super(sb);
1039 return ERR_PTR(err);
1040 }
1041
1042 sb->s_flags |= MS_ACTIVE;
1043 }
1044
1045 return dget(sb->s_root);
1046 }
1047
1048 EXPORT_SYMBOL(mount_ns);
1049
1050 #ifdef CONFIG_BLOCK
1051 static int set_bdev_super(struct super_block *s, void *data)
1052 {
1053 s->s_bdev = data;
1054 s->s_dev = s->s_bdev->bd_dev;
1055 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1056
1057 return 0;
1058 }
1059
1060 static int test_bdev_super(struct super_block *s, void *data)
1061 {
1062 return (void *)s->s_bdev == data;
1063 }
1064
1065 struct dentry *mount_bdev(struct file_system_type *fs_type,
1066 int flags, const char *dev_name, void *data,
1067 int (*fill_super)(struct super_block *, void *, int))
1068 {
1069 struct block_device *bdev;
1070 struct super_block *s;
1071 fmode_t mode = FMODE_READ | FMODE_EXCL;
1072 int error = 0;
1073
1074 if (!(flags & MS_RDONLY))
1075 mode |= FMODE_WRITE;
1076
1077 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1078 if (IS_ERR(bdev))
1079 return ERR_CAST(bdev);
1080
1081 if (current_user_ns() != &init_user_ns) {
1082 /*
1083 * For userns mounts, disallow mounting if bdev is open for
1084 * writing
1085 */
1086 if (!atomic_dec_unless_positive(&bdev->bd_inode->i_writecount)) {
1087 error = -EBUSY;
1088 goto error_bdev;
1089 }
1090 if (bdev->bd_contains != bdev &&
1091 !atomic_dec_unless_positive(&bdev->bd_contains->bd_inode->i_writecount)) {
1092 atomic_inc(&bdev->bd_inode->i_writecount);
1093 error = -EBUSY;
1094 goto error_bdev;
1095 }
1096 }
1097
1098 /*
1099 * once the super is inserted into the list by sget, s_umount
1100 * will protect the lockfs code from trying to start a snapshot
1101 * while we are mounting
1102 */
1103 mutex_lock(&bdev->bd_fsfreeze_mutex);
1104 if (bdev->bd_fsfreeze_count > 0) {
1105 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1106 error = -EBUSY;
1107 goto error_inc;
1108 }
1109 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1110 bdev);
1111 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1112 if (IS_ERR(s))
1113 goto error_s;
1114
1115 if (s->s_root) {
1116 if ((flags ^ s->s_flags) & MS_RDONLY) {
1117 deactivate_locked_super(s);
1118 error = -EBUSY;
1119 goto error_inc;
1120 }
1121
1122 /*
1123 * s_umount nests inside bd_mutex during
1124 * __invalidate_device(). blkdev_put() acquires
1125 * bd_mutex and can't be called under s_umount. Drop
1126 * s_umount temporarily. This is safe as we're
1127 * holding an active reference.
1128 */
1129 up_write(&s->s_umount);
1130 blkdev_put(bdev, mode);
1131 down_write(&s->s_umount);
1132 } else {
1133 s->s_mode = mode;
1134 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1135 sb_set_blocksize(s, block_size(bdev));
1136 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1137 if (error) {
1138 deactivate_locked_super(s);
1139 goto error;
1140 }
1141
1142 s->s_flags |= MS_ACTIVE;
1143 bdev->bd_super = s;
1144 }
1145
1146 return dget(s->s_root);
1147
1148 error_s:
1149 error = PTR_ERR(s);
1150 error_inc:
1151 if (current_user_ns() != &init_user_ns) {
1152 atomic_inc(&bdev->bd_inode->i_writecount);
1153 if (bdev->bd_contains != bdev)
1154 atomic_inc(&bdev->bd_contains->bd_inode->i_writecount);
1155 }
1156 error_bdev:
1157 blkdev_put(bdev, mode);
1158 error:
1159 return ERR_PTR(error);
1160 }
1161 EXPORT_SYMBOL(mount_bdev);
1162
1163 void kill_block_super(struct super_block *sb)
1164 {
1165 struct block_device *bdev = sb->s_bdev;
1166 fmode_t mode = sb->s_mode;
1167
1168 bdev->bd_super = NULL;
1169 generic_shutdown_super(sb);
1170 sync_blockdev(bdev);
1171 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1172 if (sb->s_user_ns != &init_user_ns) {
1173 atomic_inc(&bdev->bd_inode->i_writecount);
1174 if (bdev->bd_contains != bdev)
1175 atomic_inc(&bdev->bd_contains->bd_inode->i_writecount);
1176 }
1177 blkdev_put(bdev, mode | FMODE_EXCL);
1178 }
1179
1180 EXPORT_SYMBOL(kill_block_super);
1181 #endif
1182
1183 struct dentry *mount_nodev(struct file_system_type *fs_type,
1184 int flags, void *data,
1185 int (*fill_super)(struct super_block *, void *, int))
1186 {
1187 int error;
1188 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1189
1190 if (IS_ERR(s))
1191 return ERR_CAST(s);
1192
1193 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1194 if (error) {
1195 deactivate_locked_super(s);
1196 return ERR_PTR(error);
1197 }
1198 s->s_flags |= MS_ACTIVE;
1199 return dget(s->s_root);
1200 }
1201 EXPORT_SYMBOL(mount_nodev);
1202
1203 static int compare_single(struct super_block *s, void *p)
1204 {
1205 return 1;
1206 }
1207
1208 struct dentry *mount_single(struct file_system_type *fs_type,
1209 int flags, void *data,
1210 int (*fill_super)(struct super_block *, void *, int))
1211 {
1212 struct super_block *s;
1213 int error;
1214
1215 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1216 if (IS_ERR(s))
1217 return ERR_CAST(s);
1218 if (!s->s_root) {
1219 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1220 if (error) {
1221 deactivate_locked_super(s);
1222 return ERR_PTR(error);
1223 }
1224 s->s_flags |= MS_ACTIVE;
1225 } else {
1226 do_remount_sb(s, flags, data, 0);
1227 }
1228 return dget(s->s_root);
1229 }
1230 EXPORT_SYMBOL(mount_single);
1231
1232 struct dentry *
1233 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1234 {
1235 struct dentry *root;
1236 struct super_block *sb;
1237 char *secdata = NULL;
1238 int error = -ENOMEM;
1239
1240 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1241 secdata = alloc_secdata();
1242 if (!secdata)
1243 goto out;
1244
1245 error = security_sb_copy_data(data, secdata);
1246 if (error)
1247 goto out_free_secdata;
1248 }
1249
1250 root = type->mount(type, flags, name, data);
1251 if (IS_ERR(root)) {
1252 error = PTR_ERR(root);
1253 goto out_free_secdata;
1254 }
1255 sb = root->d_sb;
1256 BUG_ON(!sb);
1257 WARN_ON(!sb->s_bdi);
1258 sb->s_flags |= MS_BORN;
1259
1260 error = security_sb_kern_mount(sb, flags, secdata);
1261 if (error)
1262 goto out_sb;
1263
1264 /*
1265 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1266 * but s_maxbytes was an unsigned long long for many releases. Throw
1267 * this warning for a little while to try and catch filesystems that
1268 * violate this rule.
1269 */
1270 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1271 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1272
1273 up_write(&sb->s_umount);
1274 free_secdata(secdata);
1275 return root;
1276 out_sb:
1277 dput(root);
1278 deactivate_locked_super(sb);
1279 out_free_secdata:
1280 free_secdata(secdata);
1281 out:
1282 return ERR_PTR(error);
1283 }
1284
1285 /*
1286 * Setup private BDI for given superblock. It gets automatically cleaned up
1287 * in generic_shutdown_super().
1288 */
1289 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1290 {
1291 struct backing_dev_info *bdi;
1292 int err;
1293 va_list args;
1294
1295 bdi = bdi_alloc(GFP_KERNEL);
1296 if (!bdi)
1297 return -ENOMEM;
1298
1299 bdi->name = sb->s_type->name;
1300
1301 va_start(args, fmt);
1302 err = bdi_register_va(bdi, fmt, args);
1303 va_end(args);
1304 if (err) {
1305 bdi_put(bdi);
1306 return err;
1307 }
1308 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1309 sb->s_bdi = bdi;
1310
1311 return 0;
1312 }
1313 EXPORT_SYMBOL(super_setup_bdi_name);
1314
1315 /*
1316 * Setup private BDI for given superblock. I gets automatically cleaned up
1317 * in generic_shutdown_super().
1318 */
1319 int super_setup_bdi(struct super_block *sb)
1320 {
1321 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1322
1323 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1324 atomic_long_inc_return(&bdi_seq));
1325 }
1326 EXPORT_SYMBOL(super_setup_bdi);
1327
1328 /*
1329 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1330 * instead.
1331 */
1332 void __sb_end_write(struct super_block *sb, int level)
1333 {
1334 percpu_up_read(sb->s_writers.rw_sem + level-1);
1335 }
1336 EXPORT_SYMBOL(__sb_end_write);
1337
1338 /*
1339 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1340 * instead.
1341 */
1342 int __sb_start_write(struct super_block *sb, int level, bool wait)
1343 {
1344 bool force_trylock = false;
1345 int ret = 1;
1346
1347 #ifdef CONFIG_LOCKDEP
1348 /*
1349 * We want lockdep to tell us about possible deadlocks with freezing
1350 * but it's it bit tricky to properly instrument it. Getting a freeze
1351 * protection works as getting a read lock but there are subtle
1352 * problems. XFS for example gets freeze protection on internal level
1353 * twice in some cases, which is OK only because we already hold a
1354 * freeze protection also on higher level. Due to these cases we have
1355 * to use wait == F (trylock mode) which must not fail.
1356 */
1357 if (wait) {
1358 int i;
1359
1360 for (i = 0; i < level - 1; i++)
1361 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1362 force_trylock = true;
1363 break;
1364 }
1365 }
1366 #endif
1367 if (wait && !force_trylock)
1368 percpu_down_read(sb->s_writers.rw_sem + level-1);
1369 else
1370 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1371
1372 WARN_ON(force_trylock && !ret);
1373 return ret;
1374 }
1375 EXPORT_SYMBOL(__sb_start_write);
1376
1377 /**
1378 * sb_wait_write - wait until all writers to given file system finish
1379 * @sb: the super for which we wait
1380 * @level: type of writers we wait for (normal vs page fault)
1381 *
1382 * This function waits until there are no writers of given type to given file
1383 * system.
1384 */
1385 static void sb_wait_write(struct super_block *sb, int level)
1386 {
1387 percpu_down_write(sb->s_writers.rw_sem + level-1);
1388 }
1389
1390 /*
1391 * We are going to return to userspace and forget about these locks, the
1392 * ownership goes to the caller of thaw_super() which does unlock().
1393 */
1394 static void lockdep_sb_freeze_release(struct super_block *sb)
1395 {
1396 int level;
1397
1398 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1399 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1400 }
1401
1402 /*
1403 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1404 */
1405 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1406 {
1407 int level;
1408
1409 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1410 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1411 }
1412
1413 static void sb_freeze_unlock(struct super_block *sb)
1414 {
1415 int level;
1416
1417 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1418 percpu_up_write(sb->s_writers.rw_sem + level);
1419 }
1420
1421 /**
1422 * freeze_super - lock the filesystem and force it into a consistent state
1423 * @sb: the super to lock
1424 *
1425 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1426 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1427 * -EBUSY.
1428 *
1429 * During this function, sb->s_writers.frozen goes through these values:
1430 *
1431 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1432 *
1433 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1434 * writes should be blocked, though page faults are still allowed. We wait for
1435 * all writes to complete and then proceed to the next stage.
1436 *
1437 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1438 * but internal fs threads can still modify the filesystem (although they
1439 * should not dirty new pages or inodes), writeback can run etc. After waiting
1440 * for all running page faults we sync the filesystem which will clean all
1441 * dirty pages and inodes (no new dirty pages or inodes can be created when
1442 * sync is running).
1443 *
1444 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1445 * modification are blocked (e.g. XFS preallocation truncation on inode
1446 * reclaim). This is usually implemented by blocking new transactions for
1447 * filesystems that have them and need this additional guard. After all
1448 * internal writers are finished we call ->freeze_fs() to finish filesystem
1449 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1450 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1451 *
1452 * sb->s_writers.frozen is protected by sb->s_umount.
1453 */
1454 int freeze_super(struct super_block *sb)
1455 {
1456 int ret;
1457
1458 atomic_inc(&sb->s_active);
1459 down_write(&sb->s_umount);
1460 if (sb->s_writers.frozen != SB_UNFROZEN) {
1461 deactivate_locked_super(sb);
1462 return -EBUSY;
1463 }
1464
1465 if (!(sb->s_flags & MS_BORN)) {
1466 up_write(&sb->s_umount);
1467 return 0; /* sic - it's "nothing to do" */
1468 }
1469
1470 if (sb->s_flags & MS_RDONLY) {
1471 /* Nothing to do really... */
1472 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1473 up_write(&sb->s_umount);
1474 return 0;
1475 }
1476
1477 sb->s_writers.frozen = SB_FREEZE_WRITE;
1478 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1479 up_write(&sb->s_umount);
1480 sb_wait_write(sb, SB_FREEZE_WRITE);
1481 down_write(&sb->s_umount);
1482
1483 /* Now we go and block page faults... */
1484 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1485 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1486
1487 /* All writers are done so after syncing there won't be dirty data */
1488 sync_filesystem(sb);
1489
1490 /* Now wait for internal filesystem counter */
1491 sb->s_writers.frozen = SB_FREEZE_FS;
1492 sb_wait_write(sb, SB_FREEZE_FS);
1493
1494 if (sb->s_op->freeze_fs) {
1495 ret = sb->s_op->freeze_fs(sb);
1496 if (ret) {
1497 printk(KERN_ERR
1498 "VFS:Filesystem freeze failed\n");
1499 sb->s_writers.frozen = SB_UNFROZEN;
1500 sb_freeze_unlock(sb);
1501 wake_up(&sb->s_writers.wait_unfrozen);
1502 deactivate_locked_super(sb);
1503 return ret;
1504 }
1505 }
1506 /*
1507 * For debugging purposes so that fs can warn if it sees write activity
1508 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1509 */
1510 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1511 lockdep_sb_freeze_release(sb);
1512 up_write(&sb->s_umount);
1513 return 0;
1514 }
1515 EXPORT_SYMBOL(freeze_super);
1516
1517 /**
1518 * thaw_super -- unlock filesystem
1519 * @sb: the super to thaw
1520 *
1521 * Unlocks the filesystem and marks it writeable again after freeze_super().
1522 */
1523 int thaw_super(struct super_block *sb)
1524 {
1525 int error;
1526
1527 down_write(&sb->s_umount);
1528 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1529 up_write(&sb->s_umount);
1530 return -EINVAL;
1531 }
1532
1533 if (sb->s_flags & MS_RDONLY) {
1534 sb->s_writers.frozen = SB_UNFROZEN;
1535 goto out;
1536 }
1537
1538 lockdep_sb_freeze_acquire(sb);
1539
1540 if (sb->s_op->unfreeze_fs) {
1541 error = sb->s_op->unfreeze_fs(sb);
1542 if (error) {
1543 printk(KERN_ERR
1544 "VFS:Filesystem thaw failed\n");
1545 lockdep_sb_freeze_release(sb);
1546 up_write(&sb->s_umount);
1547 return error;
1548 }
1549 }
1550
1551 sb->s_writers.frozen = SB_UNFROZEN;
1552 sb_freeze_unlock(sb);
1553 out:
1554 wake_up(&sb->s_writers.wait_unfrozen);
1555 deactivate_locked_super(sb);
1556 return 0;
1557 }
1558 EXPORT_SYMBOL(thaw_super);