]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/userfaultfd.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67 };
68
69 struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73 };
74
75 struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80 };
81
82 struct userfaultfd_wait_queue {
83 struct uffd_msg msg;
84 wait_queue_entry_t wq;
85 struct userfaultfd_ctx *ctx;
86 bool waken;
87 };
88
89 struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92 };
93
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 int wake_flags, void *key)
96 {
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
109 goto out;
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The implicit smp_mb__before_spinlock in try_to_wake_up()
113 * renders uwq->waken visible to other CPUs before the task is
114 * waken.
115 */
116 ret = wake_up_state(wq->private, mode);
117 if (ret)
118 /*
119 * Wake only once, autoremove behavior.
120 *
121 * After the effect of list_del_init is visible to the
122 * other CPUs, the waitqueue may disappear from under
123 * us, see the !list_empty_careful() in
124 * handle_userfault(). try_to_wake_up() has an
125 * implicit smp_mb__before_spinlock, and the
126 * wq->private is read before calling the extern
127 * function "wake_up_state" (which in turns calls
128 * try_to_wake_up). While the spin_lock;spin_unlock;
129 * wouldn't be enough, the smp_mb__before_spinlock is
130 * enough to avoid an explicit smp_mb() here.
131 */
132 list_del_init(&wq->entry);
133 out:
134 return ret;
135 }
136
137 /**
138 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139 * context.
140 * @ctx: [in] Pointer to the userfaultfd context.
141 */
142 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
143 {
144 if (!atomic_inc_not_zero(&ctx->refcount))
145 BUG();
146 }
147
148 /**
149 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150 * context.
151 * @ctx: [in] Pointer to userfaultfd context.
152 *
153 * The userfaultfd context reference must have been previously acquired either
154 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155 */
156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
157 {
158 if (atomic_dec_and_test(&ctx->refcount)) {
159 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
160 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
161 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
162 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
163 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
164 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
165 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
166 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
167 mmdrop(ctx->mm);
168 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
169 }
170 }
171
172 static inline void msg_init(struct uffd_msg *msg)
173 {
174 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
175 /*
176 * Must use memset to zero out the paddings or kernel data is
177 * leaked to userland.
178 */
179 memset(msg, 0, sizeof(struct uffd_msg));
180 }
181
182 static inline struct uffd_msg userfault_msg(unsigned long address,
183 unsigned int flags,
184 unsigned long reason)
185 {
186 struct uffd_msg msg;
187 msg_init(&msg);
188 msg.event = UFFD_EVENT_PAGEFAULT;
189 msg.arg.pagefault.address = address;
190 if (flags & FAULT_FLAG_WRITE)
191 /*
192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 * was a read fault, otherwise if set it means it's
196 * a write fault.
197 */
198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199 if (reason & VM_UFFD_WP)
200 /*
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 * a missing fault, otherwise if set it means it's a
205 * write protect fault.
206 */
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208 return msg;
209 }
210
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 struct vm_area_struct *vma,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221 {
222 struct mm_struct *mm = ctx->mm;
223 pte_t *pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 if (!pte)
230 goto out;
231
232 ret = false;
233
234 /*
235 * Lockless access: we're in a wait_event so it's ok if it
236 * changes under us.
237 */
238 if (huge_pte_none(*pte))
239 ret = true;
240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 ret = true;
242 out:
243 return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 struct vm_area_struct *vma,
248 unsigned long address,
249 unsigned long flags,
250 unsigned long reason)
251 {
252 return false; /* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255
256 /*
257 * Verify the pagetables are still not ok after having reigstered into
258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259 * userfault that has already been resolved, if userfaultfd_read and
260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261 * threads.
262 */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 unsigned long address,
265 unsigned long flags,
266 unsigned long reason)
267 {
268 struct mm_struct *mm = ctx->mm;
269 pgd_t *pgd;
270 p4d_t *p4d;
271 pud_t *pud;
272 pmd_t *pmd, _pmd;
273 pte_t *pte;
274 bool ret = true;
275
276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277
278 pgd = pgd_offset(mm, address);
279 if (!pgd_present(*pgd))
280 goto out;
281 p4d = p4d_offset(pgd, address);
282 if (!p4d_present(*p4d))
283 goto out;
284 pud = pud_offset(p4d, address);
285 if (!pud_present(*pud))
286 goto out;
287 pmd = pmd_offset(pud, address);
288 /*
289 * READ_ONCE must function as a barrier with narrower scope
290 * and it must be equivalent to:
291 * _pmd = *pmd; barrier();
292 *
293 * This is to deal with the instability (as in
294 * pmd_trans_unstable) of the pmd.
295 */
296 _pmd = READ_ONCE(*pmd);
297 if (!pmd_present(_pmd))
298 goto out;
299
300 ret = false;
301 if (pmd_trans_huge(_pmd))
302 goto out;
303
304 /*
305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 * and use the standard pte_offset_map() instead of parsing _pmd.
307 */
308 pte = pte_offset_map(pmd, address);
309 /*
310 * Lockless access: we're in a wait_event so it's ok if it
311 * changes under us.
312 */
313 if (pte_none(*pte))
314 ret = true;
315 pte_unmap(pte);
316
317 out:
318 return ret;
319 }
320
321 /*
322 * The locking rules involved in returning VM_FAULT_RETRY depending on
323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325 * recommendation in __lock_page_or_retry is not an understatement.
326 *
327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329 * not set.
330 *
331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332 * set, VM_FAULT_RETRY can still be returned if and only if there are
333 * fatal_signal_pending()s, and the mmap_sem must be released before
334 * returning it.
335 */
336 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
337 {
338 struct mm_struct *mm = vmf->vma->vm_mm;
339 struct userfaultfd_ctx *ctx;
340 struct userfaultfd_wait_queue uwq;
341 int ret;
342 bool must_wait, return_to_userland;
343 long blocking_state;
344
345 ret = VM_FAULT_SIGBUS;
346
347 /*
348 * We don't do userfault handling for the final child pid update.
349 *
350 * We also don't do userfault handling during
351 * coredumping. hugetlbfs has the special
352 * follow_hugetlb_page() to skip missing pages in the
353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 * the no_page_table() helper in follow_page_mask(), but the
355 * shmem_vm_ops->fault method is invoked even during
356 * coredumping without mmap_sem and it ends up here.
357 */
358 if (current->flags & (PF_EXITING|PF_DUMPCORE))
359 goto out;
360
361 /*
362 * Coredumping runs without mmap_sem so we can only check that
363 * the mmap_sem is held, if PF_DUMPCORE was not set.
364 */
365 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
366
367 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
368 if (!ctx)
369 goto out;
370
371 BUG_ON(ctx->mm != mm);
372
373 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
374 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
375
376 /*
377 * If it's already released don't get it. This avoids to loop
378 * in __get_user_pages if userfaultfd_release waits on the
379 * caller of handle_userfault to release the mmap_sem.
380 */
381 if (unlikely(ACCESS_ONCE(ctx->released)))
382 goto out;
383
384 /*
385 * Check that we can return VM_FAULT_RETRY.
386 *
387 * NOTE: it should become possible to return VM_FAULT_RETRY
388 * even if FAULT_FLAG_TRIED is set without leading to gup()
389 * -EBUSY failures, if the userfaultfd is to be extended for
390 * VM_UFFD_WP tracking and we intend to arm the userfault
391 * without first stopping userland access to the memory. For
392 * VM_UFFD_MISSING userfaults this is enough for now.
393 */
394 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
395 /*
396 * Validate the invariant that nowait must allow retry
397 * to be sure not to return SIGBUS erroneously on
398 * nowait invocations.
399 */
400 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
401 #ifdef CONFIG_DEBUG_VM
402 if (printk_ratelimit()) {
403 printk(KERN_WARNING
404 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
405 vmf->flags);
406 dump_stack();
407 }
408 #endif
409 goto out;
410 }
411
412 /*
413 * Handle nowait, not much to do other than tell it to retry
414 * and wait.
415 */
416 ret = VM_FAULT_RETRY;
417 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
418 goto out;
419
420 /* take the reference before dropping the mmap_sem */
421 userfaultfd_ctx_get(ctx);
422
423 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
424 uwq.wq.private = current;
425 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
426 uwq.ctx = ctx;
427 uwq.waken = false;
428
429 return_to_userland =
430 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
431 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
432 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
433 TASK_KILLABLE;
434
435 spin_lock(&ctx->fault_pending_wqh.lock);
436 /*
437 * After the __add_wait_queue the uwq is visible to userland
438 * through poll/read().
439 */
440 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
441 /*
442 * The smp_mb() after __set_current_state prevents the reads
443 * following the spin_unlock to happen before the list_add in
444 * __add_wait_queue.
445 */
446 set_current_state(blocking_state);
447 spin_unlock(&ctx->fault_pending_wqh.lock);
448
449 if (!is_vm_hugetlb_page(vmf->vma))
450 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
451 reason);
452 else
453 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
454 vmf->address,
455 vmf->flags, reason);
456 up_read(&mm->mmap_sem);
457
458 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
459 (return_to_userland ? !signal_pending(current) :
460 !fatal_signal_pending(current)))) {
461 wake_up_poll(&ctx->fd_wqh, POLLIN);
462 schedule();
463 ret |= VM_FAULT_MAJOR;
464
465 /*
466 * False wakeups can orginate even from rwsem before
467 * up_read() however userfaults will wait either for a
468 * targeted wakeup on the specific uwq waitqueue from
469 * wake_userfault() or for signals or for uffd
470 * release.
471 */
472 while (!READ_ONCE(uwq.waken)) {
473 /*
474 * This needs the full smp_store_mb()
475 * guarantee as the state write must be
476 * visible to other CPUs before reading
477 * uwq.waken from other CPUs.
478 */
479 set_current_state(blocking_state);
480 if (READ_ONCE(uwq.waken) ||
481 READ_ONCE(ctx->released) ||
482 (return_to_userland ? signal_pending(current) :
483 fatal_signal_pending(current)))
484 break;
485 schedule();
486 }
487 }
488
489 __set_current_state(TASK_RUNNING);
490
491 if (return_to_userland) {
492 if (signal_pending(current) &&
493 !fatal_signal_pending(current)) {
494 /*
495 * If we got a SIGSTOP or SIGCONT and this is
496 * a normal userland page fault, just let
497 * userland return so the signal will be
498 * handled and gdb debugging works. The page
499 * fault code immediately after we return from
500 * this function is going to release the
501 * mmap_sem and it's not depending on it
502 * (unlike gup would if we were not to return
503 * VM_FAULT_RETRY).
504 *
505 * If a fatal signal is pending we still take
506 * the streamlined VM_FAULT_RETRY failure path
507 * and there's no need to retake the mmap_sem
508 * in such case.
509 */
510 down_read(&mm->mmap_sem);
511 ret = VM_FAULT_NOPAGE;
512 }
513 }
514
515 /*
516 * Here we race with the list_del; list_add in
517 * userfaultfd_ctx_read(), however because we don't ever run
518 * list_del_init() to refile across the two lists, the prev
519 * and next pointers will never point to self. list_add also
520 * would never let any of the two pointers to point to
521 * self. So list_empty_careful won't risk to see both pointers
522 * pointing to self at any time during the list refile. The
523 * only case where list_del_init() is called is the full
524 * removal in the wake function and there we don't re-list_add
525 * and it's fine not to block on the spinlock. The uwq on this
526 * kernel stack can be released after the list_del_init.
527 */
528 if (!list_empty_careful(&uwq.wq.entry)) {
529 spin_lock(&ctx->fault_pending_wqh.lock);
530 /*
531 * No need of list_del_init(), the uwq on the stack
532 * will be freed shortly anyway.
533 */
534 list_del(&uwq.wq.entry);
535 spin_unlock(&ctx->fault_pending_wqh.lock);
536 }
537
538 /*
539 * ctx may go away after this if the userfault pseudo fd is
540 * already released.
541 */
542 userfaultfd_ctx_put(ctx);
543
544 out:
545 return ret;
546 }
547
548 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
549 struct userfaultfd_wait_queue *ewq)
550 {
551 if (WARN_ON_ONCE(current->flags & PF_EXITING))
552 goto out;
553
554 ewq->ctx = ctx;
555 init_waitqueue_entry(&ewq->wq, current);
556
557 spin_lock(&ctx->event_wqh.lock);
558 /*
559 * After the __add_wait_queue the uwq is visible to userland
560 * through poll/read().
561 */
562 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
563 for (;;) {
564 set_current_state(TASK_KILLABLE);
565 if (ewq->msg.event == 0)
566 break;
567 if (ACCESS_ONCE(ctx->released) ||
568 fatal_signal_pending(current)) {
569 /*
570 * &ewq->wq may be queued in fork_event, but
571 * __remove_wait_queue ignores the head
572 * parameter. It would be a problem if it
573 * didn't.
574 */
575 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
576 if (ewq->msg.event == UFFD_EVENT_FORK) {
577 struct userfaultfd_ctx *new;
578
579 new = (struct userfaultfd_ctx *)
580 (unsigned long)
581 ewq->msg.arg.reserved.reserved1;
582
583 userfaultfd_ctx_put(new);
584 }
585 break;
586 }
587
588 spin_unlock(&ctx->event_wqh.lock);
589
590 wake_up_poll(&ctx->fd_wqh, POLLIN);
591 schedule();
592
593 spin_lock(&ctx->event_wqh.lock);
594 }
595 __set_current_state(TASK_RUNNING);
596 spin_unlock(&ctx->event_wqh.lock);
597
598 /*
599 * ctx may go away after this if the userfault pseudo fd is
600 * already released.
601 */
602 out:
603 userfaultfd_ctx_put(ctx);
604 }
605
606 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
607 struct userfaultfd_wait_queue *ewq)
608 {
609 ewq->msg.event = 0;
610 wake_up_locked(&ctx->event_wqh);
611 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
612 }
613
614 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
615 {
616 struct userfaultfd_ctx *ctx = NULL, *octx;
617 struct userfaultfd_fork_ctx *fctx;
618
619 octx = vma->vm_userfaultfd_ctx.ctx;
620 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
621 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
622 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
623 return 0;
624 }
625
626 list_for_each_entry(fctx, fcs, list)
627 if (fctx->orig == octx) {
628 ctx = fctx->new;
629 break;
630 }
631
632 if (!ctx) {
633 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
634 if (!fctx)
635 return -ENOMEM;
636
637 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
638 if (!ctx) {
639 kfree(fctx);
640 return -ENOMEM;
641 }
642
643 atomic_set(&ctx->refcount, 1);
644 ctx->flags = octx->flags;
645 ctx->state = UFFD_STATE_RUNNING;
646 ctx->features = octx->features;
647 ctx->released = false;
648 ctx->mm = vma->vm_mm;
649 atomic_inc(&ctx->mm->mm_count);
650
651 userfaultfd_ctx_get(octx);
652 fctx->orig = octx;
653 fctx->new = ctx;
654 list_add_tail(&fctx->list, fcs);
655 }
656
657 vma->vm_userfaultfd_ctx.ctx = ctx;
658 return 0;
659 }
660
661 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
662 {
663 struct userfaultfd_ctx *ctx = fctx->orig;
664 struct userfaultfd_wait_queue ewq;
665
666 msg_init(&ewq.msg);
667
668 ewq.msg.event = UFFD_EVENT_FORK;
669 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
670
671 userfaultfd_event_wait_completion(ctx, &ewq);
672 }
673
674 void dup_userfaultfd_complete(struct list_head *fcs)
675 {
676 struct userfaultfd_fork_ctx *fctx, *n;
677
678 list_for_each_entry_safe(fctx, n, fcs, list) {
679 dup_fctx(fctx);
680 list_del(&fctx->list);
681 kfree(fctx);
682 }
683 }
684
685 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
686 struct vm_userfaultfd_ctx *vm_ctx)
687 {
688 struct userfaultfd_ctx *ctx;
689
690 ctx = vma->vm_userfaultfd_ctx.ctx;
691 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
692 vm_ctx->ctx = ctx;
693 userfaultfd_ctx_get(ctx);
694 }
695 }
696
697 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
698 unsigned long from, unsigned long to,
699 unsigned long len)
700 {
701 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
702 struct userfaultfd_wait_queue ewq;
703
704 if (!ctx)
705 return;
706
707 if (to & ~PAGE_MASK) {
708 userfaultfd_ctx_put(ctx);
709 return;
710 }
711
712 msg_init(&ewq.msg);
713
714 ewq.msg.event = UFFD_EVENT_REMAP;
715 ewq.msg.arg.remap.from = from;
716 ewq.msg.arg.remap.to = to;
717 ewq.msg.arg.remap.len = len;
718
719 userfaultfd_event_wait_completion(ctx, &ewq);
720 }
721
722 bool userfaultfd_remove(struct vm_area_struct *vma,
723 unsigned long start, unsigned long end)
724 {
725 struct mm_struct *mm = vma->vm_mm;
726 struct userfaultfd_ctx *ctx;
727 struct userfaultfd_wait_queue ewq;
728
729 ctx = vma->vm_userfaultfd_ctx.ctx;
730 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
731 return true;
732
733 userfaultfd_ctx_get(ctx);
734 up_read(&mm->mmap_sem);
735
736 msg_init(&ewq.msg);
737
738 ewq.msg.event = UFFD_EVENT_REMOVE;
739 ewq.msg.arg.remove.start = start;
740 ewq.msg.arg.remove.end = end;
741
742 userfaultfd_event_wait_completion(ctx, &ewq);
743
744 return false;
745 }
746
747 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
748 unsigned long start, unsigned long end)
749 {
750 struct userfaultfd_unmap_ctx *unmap_ctx;
751
752 list_for_each_entry(unmap_ctx, unmaps, list)
753 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
754 unmap_ctx->end == end)
755 return true;
756
757 return false;
758 }
759
760 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
761 unsigned long start, unsigned long end,
762 struct list_head *unmaps)
763 {
764 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
765 struct userfaultfd_unmap_ctx *unmap_ctx;
766 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
767
768 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
769 has_unmap_ctx(ctx, unmaps, start, end))
770 continue;
771
772 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
773 if (!unmap_ctx)
774 return -ENOMEM;
775
776 userfaultfd_ctx_get(ctx);
777 unmap_ctx->ctx = ctx;
778 unmap_ctx->start = start;
779 unmap_ctx->end = end;
780 list_add_tail(&unmap_ctx->list, unmaps);
781 }
782
783 return 0;
784 }
785
786 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
787 {
788 struct userfaultfd_unmap_ctx *ctx, *n;
789 struct userfaultfd_wait_queue ewq;
790
791 list_for_each_entry_safe(ctx, n, uf, list) {
792 msg_init(&ewq.msg);
793
794 ewq.msg.event = UFFD_EVENT_UNMAP;
795 ewq.msg.arg.remove.start = ctx->start;
796 ewq.msg.arg.remove.end = ctx->end;
797
798 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
799
800 list_del(&ctx->list);
801 kfree(ctx);
802 }
803 }
804
805 static int userfaultfd_release(struct inode *inode, struct file *file)
806 {
807 struct userfaultfd_ctx *ctx = file->private_data;
808 struct mm_struct *mm = ctx->mm;
809 struct vm_area_struct *vma, *prev;
810 /* len == 0 means wake all */
811 struct userfaultfd_wake_range range = { .len = 0, };
812 unsigned long new_flags;
813
814 ACCESS_ONCE(ctx->released) = true;
815
816 if (!mmget_not_zero(mm))
817 goto wakeup;
818
819 /*
820 * Flush page faults out of all CPUs. NOTE: all page faults
821 * must be retried without returning VM_FAULT_SIGBUS if
822 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
823 * changes while handle_userfault released the mmap_sem. So
824 * it's critical that released is set to true (above), before
825 * taking the mmap_sem for writing.
826 */
827 down_write(&mm->mmap_sem);
828 prev = NULL;
829 for (vma = mm->mmap; vma; vma = vma->vm_next) {
830 cond_resched();
831 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
832 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
833 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
834 prev = vma;
835 continue;
836 }
837 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
838 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
839 new_flags, vma->anon_vma,
840 vma->vm_file, vma->vm_pgoff,
841 vma_policy(vma),
842 NULL_VM_UFFD_CTX);
843 if (prev)
844 vma = prev;
845 else
846 prev = vma;
847 vma->vm_flags = new_flags;
848 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
849 }
850 up_write(&mm->mmap_sem);
851 mmput(mm);
852 wakeup:
853 /*
854 * After no new page faults can wait on this fault_*wqh, flush
855 * the last page faults that may have been already waiting on
856 * the fault_*wqh.
857 */
858 spin_lock(&ctx->fault_pending_wqh.lock);
859 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
860 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
861 spin_unlock(&ctx->fault_pending_wqh.lock);
862
863 /* Flush pending events that may still wait on event_wqh */
864 wake_up_all(&ctx->event_wqh);
865
866 wake_up_poll(&ctx->fd_wqh, POLLHUP);
867 userfaultfd_ctx_put(ctx);
868 return 0;
869 }
870
871 /* fault_pending_wqh.lock must be hold by the caller */
872 static inline struct userfaultfd_wait_queue *find_userfault_in(
873 wait_queue_head_t *wqh)
874 {
875 wait_queue_entry_t *wq;
876 struct userfaultfd_wait_queue *uwq;
877
878 VM_BUG_ON(!spin_is_locked(&wqh->lock));
879
880 uwq = NULL;
881 if (!waitqueue_active(wqh))
882 goto out;
883 /* walk in reverse to provide FIFO behavior to read userfaults */
884 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
885 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
886 out:
887 return uwq;
888 }
889
890 static inline struct userfaultfd_wait_queue *find_userfault(
891 struct userfaultfd_ctx *ctx)
892 {
893 return find_userfault_in(&ctx->fault_pending_wqh);
894 }
895
896 static inline struct userfaultfd_wait_queue *find_userfault_evt(
897 struct userfaultfd_ctx *ctx)
898 {
899 return find_userfault_in(&ctx->event_wqh);
900 }
901
902 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
903 {
904 struct userfaultfd_ctx *ctx = file->private_data;
905 unsigned int ret;
906
907 poll_wait(file, &ctx->fd_wqh, wait);
908
909 switch (ctx->state) {
910 case UFFD_STATE_WAIT_API:
911 return POLLERR;
912 case UFFD_STATE_RUNNING:
913 /*
914 * poll() never guarantees that read won't block.
915 * userfaults can be waken before they're read().
916 */
917 if (unlikely(!(file->f_flags & O_NONBLOCK)))
918 return POLLERR;
919 /*
920 * lockless access to see if there are pending faults
921 * __pollwait last action is the add_wait_queue but
922 * the spin_unlock would allow the waitqueue_active to
923 * pass above the actual list_add inside
924 * add_wait_queue critical section. So use a full
925 * memory barrier to serialize the list_add write of
926 * add_wait_queue() with the waitqueue_active read
927 * below.
928 */
929 ret = 0;
930 smp_mb();
931 if (waitqueue_active(&ctx->fault_pending_wqh))
932 ret = POLLIN;
933 else if (waitqueue_active(&ctx->event_wqh))
934 ret = POLLIN;
935
936 return ret;
937 default:
938 WARN_ON_ONCE(1);
939 return POLLERR;
940 }
941 }
942
943 static const struct file_operations userfaultfd_fops;
944
945 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
946 struct userfaultfd_ctx *new,
947 struct uffd_msg *msg)
948 {
949 int fd;
950 struct file *file;
951 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
952
953 fd = get_unused_fd_flags(flags);
954 if (fd < 0)
955 return fd;
956
957 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
958 O_RDWR | flags);
959 if (IS_ERR(file)) {
960 put_unused_fd(fd);
961 return PTR_ERR(file);
962 }
963
964 fd_install(fd, file);
965 msg->arg.reserved.reserved1 = 0;
966 msg->arg.fork.ufd = fd;
967
968 return 0;
969 }
970
971 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
972 struct uffd_msg *msg)
973 {
974 ssize_t ret;
975 DECLARE_WAITQUEUE(wait, current);
976 struct userfaultfd_wait_queue *uwq;
977 /*
978 * Handling fork event requires sleeping operations, so
979 * we drop the event_wqh lock, then do these ops, then
980 * lock it back and wake up the waiter. While the lock is
981 * dropped the ewq may go away so we keep track of it
982 * carefully.
983 */
984 LIST_HEAD(fork_event);
985 struct userfaultfd_ctx *fork_nctx = NULL;
986
987 /* always take the fd_wqh lock before the fault_pending_wqh lock */
988 spin_lock(&ctx->fd_wqh.lock);
989 __add_wait_queue(&ctx->fd_wqh, &wait);
990 for (;;) {
991 set_current_state(TASK_INTERRUPTIBLE);
992 spin_lock(&ctx->fault_pending_wqh.lock);
993 uwq = find_userfault(ctx);
994 if (uwq) {
995 /*
996 * Use a seqcount to repeat the lockless check
997 * in wake_userfault() to avoid missing
998 * wakeups because during the refile both
999 * waitqueue could become empty if this is the
1000 * only userfault.
1001 */
1002 write_seqcount_begin(&ctx->refile_seq);
1003
1004 /*
1005 * The fault_pending_wqh.lock prevents the uwq
1006 * to disappear from under us.
1007 *
1008 * Refile this userfault from
1009 * fault_pending_wqh to fault_wqh, it's not
1010 * pending anymore after we read it.
1011 *
1012 * Use list_del() by hand (as
1013 * userfaultfd_wake_function also uses
1014 * list_del_init() by hand) to be sure nobody
1015 * changes __remove_wait_queue() to use
1016 * list_del_init() in turn breaking the
1017 * !list_empty_careful() check in
1018 * handle_userfault(). The uwq->wq.head list
1019 * must never be empty at any time during the
1020 * refile, or the waitqueue could disappear
1021 * from under us. The "wait_queue_head_t"
1022 * parameter of __remove_wait_queue() is unused
1023 * anyway.
1024 */
1025 list_del(&uwq->wq.entry);
1026 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1027
1028 write_seqcount_end(&ctx->refile_seq);
1029
1030 /* careful to always initialize msg if ret == 0 */
1031 *msg = uwq->msg;
1032 spin_unlock(&ctx->fault_pending_wqh.lock);
1033 ret = 0;
1034 break;
1035 }
1036 spin_unlock(&ctx->fault_pending_wqh.lock);
1037
1038 spin_lock(&ctx->event_wqh.lock);
1039 uwq = find_userfault_evt(ctx);
1040 if (uwq) {
1041 *msg = uwq->msg;
1042
1043 if (uwq->msg.event == UFFD_EVENT_FORK) {
1044 fork_nctx = (struct userfaultfd_ctx *)
1045 (unsigned long)
1046 uwq->msg.arg.reserved.reserved1;
1047 list_move(&uwq->wq.entry, &fork_event);
1048 /*
1049 * fork_nctx can be freed as soon as
1050 * we drop the lock, unless we take a
1051 * reference on it.
1052 */
1053 userfaultfd_ctx_get(fork_nctx);
1054 spin_unlock(&ctx->event_wqh.lock);
1055 ret = 0;
1056 break;
1057 }
1058
1059 userfaultfd_event_complete(ctx, uwq);
1060 spin_unlock(&ctx->event_wqh.lock);
1061 ret = 0;
1062 break;
1063 }
1064 spin_unlock(&ctx->event_wqh.lock);
1065
1066 if (signal_pending(current)) {
1067 ret = -ERESTARTSYS;
1068 break;
1069 }
1070 if (no_wait) {
1071 ret = -EAGAIN;
1072 break;
1073 }
1074 spin_unlock(&ctx->fd_wqh.lock);
1075 schedule();
1076 spin_lock(&ctx->fd_wqh.lock);
1077 }
1078 __remove_wait_queue(&ctx->fd_wqh, &wait);
1079 __set_current_state(TASK_RUNNING);
1080 spin_unlock(&ctx->fd_wqh.lock);
1081
1082 if (!ret && msg->event == UFFD_EVENT_FORK) {
1083 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1084 spin_lock(&ctx->event_wqh.lock);
1085 if (!list_empty(&fork_event)) {
1086 /*
1087 * The fork thread didn't abort, so we can
1088 * drop the temporary refcount.
1089 */
1090 userfaultfd_ctx_put(fork_nctx);
1091
1092 uwq = list_first_entry(&fork_event,
1093 typeof(*uwq),
1094 wq.entry);
1095 /*
1096 * If fork_event list wasn't empty and in turn
1097 * the event wasn't already released by fork
1098 * (the event is allocated on fork kernel
1099 * stack), put the event back to its place in
1100 * the event_wq. fork_event head will be freed
1101 * as soon as we return so the event cannot
1102 * stay queued there no matter the current
1103 * "ret" value.
1104 */
1105 list_del(&uwq->wq.entry);
1106 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1107
1108 /*
1109 * Leave the event in the waitqueue and report
1110 * error to userland if we failed to resolve
1111 * the userfault fork.
1112 */
1113 if (likely(!ret))
1114 userfaultfd_event_complete(ctx, uwq);
1115 } else {
1116 /*
1117 * Here the fork thread aborted and the
1118 * refcount from the fork thread on fork_nctx
1119 * has already been released. We still hold
1120 * the reference we took before releasing the
1121 * lock above. If resolve_userfault_fork
1122 * failed we've to drop it because the
1123 * fork_nctx has to be freed in such case. If
1124 * it succeeded we'll hold it because the new
1125 * uffd references it.
1126 */
1127 if (ret)
1128 userfaultfd_ctx_put(fork_nctx);
1129 }
1130 spin_unlock(&ctx->event_wqh.lock);
1131 }
1132
1133 return ret;
1134 }
1135
1136 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1137 size_t count, loff_t *ppos)
1138 {
1139 struct userfaultfd_ctx *ctx = file->private_data;
1140 ssize_t _ret, ret = 0;
1141 struct uffd_msg msg;
1142 int no_wait = file->f_flags & O_NONBLOCK;
1143
1144 if (ctx->state == UFFD_STATE_WAIT_API)
1145 return -EINVAL;
1146
1147 for (;;) {
1148 if (count < sizeof(msg))
1149 return ret ? ret : -EINVAL;
1150 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1151 if (_ret < 0)
1152 return ret ? ret : _ret;
1153 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1154 return ret ? ret : -EFAULT;
1155 ret += sizeof(msg);
1156 buf += sizeof(msg);
1157 count -= sizeof(msg);
1158 /*
1159 * Allow to read more than one fault at time but only
1160 * block if waiting for the very first one.
1161 */
1162 no_wait = O_NONBLOCK;
1163 }
1164 }
1165
1166 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1167 struct userfaultfd_wake_range *range)
1168 {
1169 spin_lock(&ctx->fault_pending_wqh.lock);
1170 /* wake all in the range and autoremove */
1171 if (waitqueue_active(&ctx->fault_pending_wqh))
1172 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1173 range);
1174 if (waitqueue_active(&ctx->fault_wqh))
1175 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1176 spin_unlock(&ctx->fault_pending_wqh.lock);
1177 }
1178
1179 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1180 struct userfaultfd_wake_range *range)
1181 {
1182 unsigned seq;
1183 bool need_wakeup;
1184
1185 /*
1186 * To be sure waitqueue_active() is not reordered by the CPU
1187 * before the pagetable update, use an explicit SMP memory
1188 * barrier here. PT lock release or up_read(mmap_sem) still
1189 * have release semantics that can allow the
1190 * waitqueue_active() to be reordered before the pte update.
1191 */
1192 smp_mb();
1193
1194 /*
1195 * Use waitqueue_active because it's very frequent to
1196 * change the address space atomically even if there are no
1197 * userfaults yet. So we take the spinlock only when we're
1198 * sure we've userfaults to wake.
1199 */
1200 do {
1201 seq = read_seqcount_begin(&ctx->refile_seq);
1202 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1203 waitqueue_active(&ctx->fault_wqh);
1204 cond_resched();
1205 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1206 if (need_wakeup)
1207 __wake_userfault(ctx, range);
1208 }
1209
1210 static __always_inline int validate_range(struct mm_struct *mm,
1211 __u64 start, __u64 len)
1212 {
1213 __u64 task_size = mm->task_size;
1214
1215 if (start & ~PAGE_MASK)
1216 return -EINVAL;
1217 if (len & ~PAGE_MASK)
1218 return -EINVAL;
1219 if (!len)
1220 return -EINVAL;
1221 if (start < mmap_min_addr)
1222 return -EINVAL;
1223 if (start >= task_size)
1224 return -EINVAL;
1225 if (len > task_size - start)
1226 return -EINVAL;
1227 return 0;
1228 }
1229
1230 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1231 {
1232 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1233 vma_is_shmem(vma);
1234 }
1235
1236 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1237 unsigned long arg)
1238 {
1239 struct mm_struct *mm = ctx->mm;
1240 struct vm_area_struct *vma, *prev, *cur;
1241 int ret;
1242 struct uffdio_register uffdio_register;
1243 struct uffdio_register __user *user_uffdio_register;
1244 unsigned long vm_flags, new_flags;
1245 bool found;
1246 bool non_anon_pages;
1247 unsigned long start, end, vma_end;
1248
1249 user_uffdio_register = (struct uffdio_register __user *) arg;
1250
1251 ret = -EFAULT;
1252 if (copy_from_user(&uffdio_register, user_uffdio_register,
1253 sizeof(uffdio_register)-sizeof(__u64)))
1254 goto out;
1255
1256 ret = -EINVAL;
1257 if (!uffdio_register.mode)
1258 goto out;
1259 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1260 UFFDIO_REGISTER_MODE_WP))
1261 goto out;
1262 vm_flags = 0;
1263 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1264 vm_flags |= VM_UFFD_MISSING;
1265 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1266 vm_flags |= VM_UFFD_WP;
1267 /*
1268 * FIXME: remove the below error constraint by
1269 * implementing the wprotect tracking mode.
1270 */
1271 ret = -EINVAL;
1272 goto out;
1273 }
1274
1275 ret = validate_range(mm, uffdio_register.range.start,
1276 uffdio_register.range.len);
1277 if (ret)
1278 goto out;
1279
1280 start = uffdio_register.range.start;
1281 end = start + uffdio_register.range.len;
1282
1283 ret = -ENOMEM;
1284 if (!mmget_not_zero(mm))
1285 goto out;
1286
1287 down_write(&mm->mmap_sem);
1288 vma = find_vma_prev(mm, start, &prev);
1289 if (!vma)
1290 goto out_unlock;
1291
1292 /* check that there's at least one vma in the range */
1293 ret = -EINVAL;
1294 if (vma->vm_start >= end)
1295 goto out_unlock;
1296
1297 /*
1298 * If the first vma contains huge pages, make sure start address
1299 * is aligned to huge page size.
1300 */
1301 if (is_vm_hugetlb_page(vma)) {
1302 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1303
1304 if (start & (vma_hpagesize - 1))
1305 goto out_unlock;
1306 }
1307
1308 /*
1309 * Search for not compatible vmas.
1310 */
1311 found = false;
1312 non_anon_pages = false;
1313 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1314 cond_resched();
1315
1316 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1317 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1318
1319 /* check not compatible vmas */
1320 ret = -EINVAL;
1321 if (!vma_can_userfault(cur))
1322 goto out_unlock;
1323 /*
1324 * If this vma contains ending address, and huge pages
1325 * check alignment.
1326 */
1327 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1328 end > cur->vm_start) {
1329 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1330
1331 ret = -EINVAL;
1332
1333 if (end & (vma_hpagesize - 1))
1334 goto out_unlock;
1335 }
1336
1337 /*
1338 * Check that this vma isn't already owned by a
1339 * different userfaultfd. We can't allow more than one
1340 * userfaultfd to own a single vma simultaneously or we
1341 * wouldn't know which one to deliver the userfaults to.
1342 */
1343 ret = -EBUSY;
1344 if (cur->vm_userfaultfd_ctx.ctx &&
1345 cur->vm_userfaultfd_ctx.ctx != ctx)
1346 goto out_unlock;
1347
1348 /*
1349 * Note vmas containing huge pages
1350 */
1351 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1352 non_anon_pages = true;
1353
1354 found = true;
1355 }
1356 BUG_ON(!found);
1357
1358 if (vma->vm_start < start)
1359 prev = vma;
1360
1361 ret = 0;
1362 do {
1363 cond_resched();
1364
1365 BUG_ON(!vma_can_userfault(vma));
1366 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1367 vma->vm_userfaultfd_ctx.ctx != ctx);
1368
1369 /*
1370 * Nothing to do: this vma is already registered into this
1371 * userfaultfd and with the right tracking mode too.
1372 */
1373 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1374 (vma->vm_flags & vm_flags) == vm_flags)
1375 goto skip;
1376
1377 if (vma->vm_start > start)
1378 start = vma->vm_start;
1379 vma_end = min(end, vma->vm_end);
1380
1381 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1382 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1383 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1384 vma_policy(vma),
1385 ((struct vm_userfaultfd_ctx){ ctx }));
1386 if (prev) {
1387 vma = prev;
1388 goto next;
1389 }
1390 if (vma->vm_start < start) {
1391 ret = split_vma(mm, vma, start, 1);
1392 if (ret)
1393 break;
1394 }
1395 if (vma->vm_end > end) {
1396 ret = split_vma(mm, vma, end, 0);
1397 if (ret)
1398 break;
1399 }
1400 next:
1401 /*
1402 * In the vma_merge() successful mprotect-like case 8:
1403 * the next vma was merged into the current one and
1404 * the current one has not been updated yet.
1405 */
1406 vma->vm_flags = new_flags;
1407 vma->vm_userfaultfd_ctx.ctx = ctx;
1408
1409 skip:
1410 prev = vma;
1411 start = vma->vm_end;
1412 vma = vma->vm_next;
1413 } while (vma && vma->vm_start < end);
1414 out_unlock:
1415 up_write(&mm->mmap_sem);
1416 mmput(mm);
1417 if (!ret) {
1418 /*
1419 * Now that we scanned all vmas we can already tell
1420 * userland which ioctls methods are guaranteed to
1421 * succeed on this range.
1422 */
1423 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
1424 UFFD_API_RANGE_IOCTLS,
1425 &user_uffdio_register->ioctls))
1426 ret = -EFAULT;
1427 }
1428 out:
1429 return ret;
1430 }
1431
1432 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1433 unsigned long arg)
1434 {
1435 struct mm_struct *mm = ctx->mm;
1436 struct vm_area_struct *vma, *prev, *cur;
1437 int ret;
1438 struct uffdio_range uffdio_unregister;
1439 unsigned long new_flags;
1440 bool found;
1441 unsigned long start, end, vma_end;
1442 const void __user *buf = (void __user *)arg;
1443
1444 ret = -EFAULT;
1445 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1446 goto out;
1447
1448 ret = validate_range(mm, uffdio_unregister.start,
1449 uffdio_unregister.len);
1450 if (ret)
1451 goto out;
1452
1453 start = uffdio_unregister.start;
1454 end = start + uffdio_unregister.len;
1455
1456 ret = -ENOMEM;
1457 if (!mmget_not_zero(mm))
1458 goto out;
1459
1460 down_write(&mm->mmap_sem);
1461 vma = find_vma_prev(mm, start, &prev);
1462 if (!vma)
1463 goto out_unlock;
1464
1465 /* check that there's at least one vma in the range */
1466 ret = -EINVAL;
1467 if (vma->vm_start >= end)
1468 goto out_unlock;
1469
1470 /*
1471 * If the first vma contains huge pages, make sure start address
1472 * is aligned to huge page size.
1473 */
1474 if (is_vm_hugetlb_page(vma)) {
1475 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1476
1477 if (start & (vma_hpagesize - 1))
1478 goto out_unlock;
1479 }
1480
1481 /*
1482 * Search for not compatible vmas.
1483 */
1484 found = false;
1485 ret = -EINVAL;
1486 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1487 cond_resched();
1488
1489 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1490 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1491
1492 /*
1493 * Check not compatible vmas, not strictly required
1494 * here as not compatible vmas cannot have an
1495 * userfaultfd_ctx registered on them, but this
1496 * provides for more strict behavior to notice
1497 * unregistration errors.
1498 */
1499 if (!vma_can_userfault(cur))
1500 goto out_unlock;
1501
1502 found = true;
1503 }
1504 BUG_ON(!found);
1505
1506 if (vma->vm_start < start)
1507 prev = vma;
1508
1509 ret = 0;
1510 do {
1511 cond_resched();
1512
1513 BUG_ON(!vma_can_userfault(vma));
1514
1515 /*
1516 * Nothing to do: this vma is already registered into this
1517 * userfaultfd and with the right tracking mode too.
1518 */
1519 if (!vma->vm_userfaultfd_ctx.ctx)
1520 goto skip;
1521
1522 if (vma->vm_start > start)
1523 start = vma->vm_start;
1524 vma_end = min(end, vma->vm_end);
1525
1526 if (userfaultfd_missing(vma)) {
1527 /*
1528 * Wake any concurrent pending userfault while
1529 * we unregister, so they will not hang
1530 * permanently and it avoids userland to call
1531 * UFFDIO_WAKE explicitly.
1532 */
1533 struct userfaultfd_wake_range range;
1534 range.start = start;
1535 range.len = vma_end - start;
1536 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1537 }
1538
1539 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1540 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1541 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1542 vma_policy(vma),
1543 NULL_VM_UFFD_CTX);
1544 if (prev) {
1545 vma = prev;
1546 goto next;
1547 }
1548 if (vma->vm_start < start) {
1549 ret = split_vma(mm, vma, start, 1);
1550 if (ret)
1551 break;
1552 }
1553 if (vma->vm_end > end) {
1554 ret = split_vma(mm, vma, end, 0);
1555 if (ret)
1556 break;
1557 }
1558 next:
1559 /*
1560 * In the vma_merge() successful mprotect-like case 8:
1561 * the next vma was merged into the current one and
1562 * the current one has not been updated yet.
1563 */
1564 vma->vm_flags = new_flags;
1565 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1566
1567 skip:
1568 prev = vma;
1569 start = vma->vm_end;
1570 vma = vma->vm_next;
1571 } while (vma && vma->vm_start < end);
1572 out_unlock:
1573 up_write(&mm->mmap_sem);
1574 mmput(mm);
1575 out:
1576 return ret;
1577 }
1578
1579 /*
1580 * userfaultfd_wake may be used in combination with the
1581 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1582 */
1583 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1584 unsigned long arg)
1585 {
1586 int ret;
1587 struct uffdio_range uffdio_wake;
1588 struct userfaultfd_wake_range range;
1589 const void __user *buf = (void __user *)arg;
1590
1591 ret = -EFAULT;
1592 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1593 goto out;
1594
1595 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1596 if (ret)
1597 goto out;
1598
1599 range.start = uffdio_wake.start;
1600 range.len = uffdio_wake.len;
1601
1602 /*
1603 * len == 0 means wake all and we don't want to wake all here,
1604 * so check it again to be sure.
1605 */
1606 VM_BUG_ON(!range.len);
1607
1608 wake_userfault(ctx, &range);
1609 ret = 0;
1610
1611 out:
1612 return ret;
1613 }
1614
1615 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1616 unsigned long arg)
1617 {
1618 __s64 ret;
1619 struct uffdio_copy uffdio_copy;
1620 struct uffdio_copy __user *user_uffdio_copy;
1621 struct userfaultfd_wake_range range;
1622
1623 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1624
1625 ret = -EFAULT;
1626 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1627 /* don't copy "copy" last field */
1628 sizeof(uffdio_copy)-sizeof(__s64)))
1629 goto out;
1630
1631 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1632 if (ret)
1633 goto out;
1634 /*
1635 * double check for wraparound just in case. copy_from_user()
1636 * will later check uffdio_copy.src + uffdio_copy.len to fit
1637 * in the userland range.
1638 */
1639 ret = -EINVAL;
1640 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1641 goto out;
1642 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1643 goto out;
1644 if (mmget_not_zero(ctx->mm)) {
1645 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1646 uffdio_copy.len);
1647 mmput(ctx->mm);
1648 } else {
1649 return -ESRCH;
1650 }
1651 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1652 return -EFAULT;
1653 if (ret < 0)
1654 goto out;
1655 BUG_ON(!ret);
1656 /* len == 0 would wake all */
1657 range.len = ret;
1658 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1659 range.start = uffdio_copy.dst;
1660 wake_userfault(ctx, &range);
1661 }
1662 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1663 out:
1664 return ret;
1665 }
1666
1667 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1668 unsigned long arg)
1669 {
1670 __s64 ret;
1671 struct uffdio_zeropage uffdio_zeropage;
1672 struct uffdio_zeropage __user *user_uffdio_zeropage;
1673 struct userfaultfd_wake_range range;
1674
1675 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1676
1677 ret = -EFAULT;
1678 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1679 /* don't copy "zeropage" last field */
1680 sizeof(uffdio_zeropage)-sizeof(__s64)))
1681 goto out;
1682
1683 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1684 uffdio_zeropage.range.len);
1685 if (ret)
1686 goto out;
1687 ret = -EINVAL;
1688 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1689 goto out;
1690
1691 if (mmget_not_zero(ctx->mm)) {
1692 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1693 uffdio_zeropage.range.len);
1694 mmput(ctx->mm);
1695 } else {
1696 return -ESRCH;
1697 }
1698 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1699 return -EFAULT;
1700 if (ret < 0)
1701 goto out;
1702 /* len == 0 would wake all */
1703 BUG_ON(!ret);
1704 range.len = ret;
1705 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1706 range.start = uffdio_zeropage.range.start;
1707 wake_userfault(ctx, &range);
1708 }
1709 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1710 out:
1711 return ret;
1712 }
1713
1714 static inline unsigned int uffd_ctx_features(__u64 user_features)
1715 {
1716 /*
1717 * For the current set of features the bits just coincide
1718 */
1719 return (unsigned int)user_features;
1720 }
1721
1722 /*
1723 * userland asks for a certain API version and we return which bits
1724 * and ioctl commands are implemented in this kernel for such API
1725 * version or -EINVAL if unknown.
1726 */
1727 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1728 unsigned long arg)
1729 {
1730 struct uffdio_api uffdio_api;
1731 void __user *buf = (void __user *)arg;
1732 int ret;
1733 __u64 features;
1734
1735 ret = -EINVAL;
1736 if (ctx->state != UFFD_STATE_WAIT_API)
1737 goto out;
1738 ret = -EFAULT;
1739 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1740 goto out;
1741 features = uffdio_api.features;
1742 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1743 memset(&uffdio_api, 0, sizeof(uffdio_api));
1744 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1745 goto out;
1746 ret = -EINVAL;
1747 goto out;
1748 }
1749 /* report all available features and ioctls to userland */
1750 uffdio_api.features = UFFD_API_FEATURES;
1751 uffdio_api.ioctls = UFFD_API_IOCTLS;
1752 ret = -EFAULT;
1753 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1754 goto out;
1755 ctx->state = UFFD_STATE_RUNNING;
1756 /* only enable the requested features for this uffd context */
1757 ctx->features = uffd_ctx_features(features);
1758 ret = 0;
1759 out:
1760 return ret;
1761 }
1762
1763 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1764 unsigned long arg)
1765 {
1766 int ret = -EINVAL;
1767 struct userfaultfd_ctx *ctx = file->private_data;
1768
1769 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1770 return -EINVAL;
1771
1772 switch(cmd) {
1773 case UFFDIO_API:
1774 ret = userfaultfd_api(ctx, arg);
1775 break;
1776 case UFFDIO_REGISTER:
1777 ret = userfaultfd_register(ctx, arg);
1778 break;
1779 case UFFDIO_UNREGISTER:
1780 ret = userfaultfd_unregister(ctx, arg);
1781 break;
1782 case UFFDIO_WAKE:
1783 ret = userfaultfd_wake(ctx, arg);
1784 break;
1785 case UFFDIO_COPY:
1786 ret = userfaultfd_copy(ctx, arg);
1787 break;
1788 case UFFDIO_ZEROPAGE:
1789 ret = userfaultfd_zeropage(ctx, arg);
1790 break;
1791 }
1792 return ret;
1793 }
1794
1795 #ifdef CONFIG_PROC_FS
1796 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1797 {
1798 struct userfaultfd_ctx *ctx = f->private_data;
1799 wait_queue_entry_t *wq;
1800 struct userfaultfd_wait_queue *uwq;
1801 unsigned long pending = 0, total = 0;
1802
1803 spin_lock(&ctx->fault_pending_wqh.lock);
1804 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1805 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1806 pending++;
1807 total++;
1808 }
1809 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1810 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1811 total++;
1812 }
1813 spin_unlock(&ctx->fault_pending_wqh.lock);
1814
1815 /*
1816 * If more protocols will be added, there will be all shown
1817 * separated by a space. Like this:
1818 * protocols: aa:... bb:...
1819 */
1820 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1821 pending, total, UFFD_API, ctx->features,
1822 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1823 }
1824 #endif
1825
1826 static const struct file_operations userfaultfd_fops = {
1827 #ifdef CONFIG_PROC_FS
1828 .show_fdinfo = userfaultfd_show_fdinfo,
1829 #endif
1830 .release = userfaultfd_release,
1831 .poll = userfaultfd_poll,
1832 .read = userfaultfd_read,
1833 .unlocked_ioctl = userfaultfd_ioctl,
1834 .compat_ioctl = userfaultfd_ioctl,
1835 .llseek = noop_llseek,
1836 };
1837
1838 static void init_once_userfaultfd_ctx(void *mem)
1839 {
1840 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1841
1842 init_waitqueue_head(&ctx->fault_pending_wqh);
1843 init_waitqueue_head(&ctx->fault_wqh);
1844 init_waitqueue_head(&ctx->event_wqh);
1845 init_waitqueue_head(&ctx->fd_wqh);
1846 seqcount_init(&ctx->refile_seq);
1847 }
1848
1849 /**
1850 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1851 * @flags: Flags for the userfaultfd file.
1852 *
1853 * This function creates a userfaultfd file pointer, w/out installing
1854 * it into the fd table. This is useful when the userfaultfd file is
1855 * used during the initialization of data structures that require
1856 * extra setup after the userfaultfd creation. So the userfaultfd
1857 * creation is split into the file pointer creation phase, and the
1858 * file descriptor installation phase. In this way races with
1859 * userspace closing the newly installed file descriptor can be
1860 * avoided. Returns a userfaultfd file pointer, or a proper error
1861 * pointer.
1862 */
1863 static struct file *userfaultfd_file_create(int flags)
1864 {
1865 struct file *file;
1866 struct userfaultfd_ctx *ctx;
1867
1868 BUG_ON(!current->mm);
1869
1870 /* Check the UFFD_* constants for consistency. */
1871 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1872 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1873
1874 file = ERR_PTR(-EINVAL);
1875 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1876 goto out;
1877
1878 file = ERR_PTR(-ENOMEM);
1879 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1880 if (!ctx)
1881 goto out;
1882
1883 atomic_set(&ctx->refcount, 1);
1884 ctx->flags = flags;
1885 ctx->features = 0;
1886 ctx->state = UFFD_STATE_WAIT_API;
1887 ctx->released = false;
1888 ctx->mm = current->mm;
1889 /* prevent the mm struct to be freed */
1890 mmgrab(ctx->mm);
1891
1892 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1893 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1894 if (IS_ERR(file)) {
1895 mmdrop(ctx->mm);
1896 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1897 }
1898 out:
1899 return file;
1900 }
1901
1902 SYSCALL_DEFINE1(userfaultfd, int, flags)
1903 {
1904 int fd, error;
1905 struct file *file;
1906
1907 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1908 if (error < 0)
1909 return error;
1910 fd = error;
1911
1912 file = userfaultfd_file_create(flags);
1913 if (IS_ERR(file)) {
1914 error = PTR_ERR(file);
1915 goto err_put_unused_fd;
1916 }
1917 fd_install(fd, file);
1918
1919 return fd;
1920
1921 err_put_unused_fd:
1922 put_unused_fd(fd);
1923
1924 return error;
1925 }
1926
1927 static int __init userfaultfd_init(void)
1928 {
1929 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1930 sizeof(struct userfaultfd_ctx),
1931 0,
1932 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1933 init_once_userfaultfd_ctx);
1934 return 0;
1935 }
1936 __initcall(userfaultfd_init);