]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_icache.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_icache.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40
41 /*
42 * Allocate and initialise an xfs_inode.
43 */
44 struct xfs_inode *
45 xfs_inode_alloc(
46 struct xfs_mount *mp,
47 xfs_ino_t ino)
48 {
49 struct xfs_inode *ip;
50
51 /*
52 * if this didn't occur in transactions, we could use
53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 * code up to do this anyway.
55 */
56 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 if (!ip)
58 return NULL;
59 if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 kmem_zone_free(xfs_inode_zone, ip);
61 return NULL;
62 }
63
64 /* VFS doesn't initialise i_mode! */
65 VFS_I(ip)->i_mode = 0;
66
67 XFS_STATS_INC(mp, vn_active);
68 ASSERT(atomic_read(&ip->i_pincount) == 0);
69 ASSERT(!xfs_isiflocked(ip));
70 ASSERT(ip->i_ino == 0);
71
72 /* initialise the xfs inode */
73 ip->i_ino = ino;
74 ip->i_mount = mp;
75 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
76 ip->i_afp = NULL;
77 ip->i_cowfp = NULL;
78 ip->i_cnextents = 0;
79 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
80 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
81 ip->i_flags = 0;
82 ip->i_delayed_blks = 0;
83 memset(&ip->i_d, 0, sizeof(ip->i_d));
84
85 return ip;
86 }
87
88 STATIC void
89 xfs_inode_free_callback(
90 struct rcu_head *head)
91 {
92 struct inode *inode = container_of(head, struct inode, i_rcu);
93 struct xfs_inode *ip = XFS_I(inode);
94
95 switch (VFS_I(ip)->i_mode & S_IFMT) {
96 case S_IFREG:
97 case S_IFDIR:
98 case S_IFLNK:
99 xfs_idestroy_fork(ip, XFS_DATA_FORK);
100 break;
101 }
102
103 if (ip->i_afp)
104 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
105 if (ip->i_cowfp)
106 xfs_idestroy_fork(ip, XFS_COW_FORK);
107
108 if (ip->i_itemp) {
109 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
110 xfs_inode_item_destroy(ip);
111 ip->i_itemp = NULL;
112 }
113
114 kmem_zone_free(xfs_inode_zone, ip);
115 }
116
117 static void
118 __xfs_inode_free(
119 struct xfs_inode *ip)
120 {
121 /* asserts to verify all state is correct here */
122 ASSERT(atomic_read(&ip->i_pincount) == 0);
123 XFS_STATS_DEC(ip->i_mount, vn_active);
124
125 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
126 }
127
128 void
129 xfs_inode_free(
130 struct xfs_inode *ip)
131 {
132 ASSERT(!xfs_isiflocked(ip));
133
134 /*
135 * Because we use RCU freeing we need to ensure the inode always
136 * appears to be reclaimed with an invalid inode number when in the
137 * free state. The ip->i_flags_lock provides the barrier against lookup
138 * races.
139 */
140 spin_lock(&ip->i_flags_lock);
141 ip->i_flags = XFS_IRECLAIM;
142 ip->i_ino = 0;
143 spin_unlock(&ip->i_flags_lock);
144
145 __xfs_inode_free(ip);
146 }
147
148 /*
149 * Queue a new inode reclaim pass if there are reclaimable inodes and there
150 * isn't a reclaim pass already in progress. By default it runs every 5s based
151 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
152 * tunable, but that can be done if this method proves to be ineffective or too
153 * aggressive.
154 */
155 static void
156 xfs_reclaim_work_queue(
157 struct xfs_mount *mp)
158 {
159
160 rcu_read_lock();
161 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
162 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
163 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
164 }
165 rcu_read_unlock();
166 }
167
168 /*
169 * This is a fast pass over the inode cache to try to get reclaim moving on as
170 * many inodes as possible in a short period of time. It kicks itself every few
171 * seconds, as well as being kicked by the inode cache shrinker when memory
172 * goes low. It scans as quickly as possible avoiding locked inodes or those
173 * already being flushed, and once done schedules a future pass.
174 */
175 void
176 xfs_reclaim_worker(
177 struct work_struct *work)
178 {
179 struct xfs_mount *mp = container_of(to_delayed_work(work),
180 struct xfs_mount, m_reclaim_work);
181
182 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
183 xfs_reclaim_work_queue(mp);
184 }
185
186 static void
187 xfs_perag_set_reclaim_tag(
188 struct xfs_perag *pag)
189 {
190 struct xfs_mount *mp = pag->pag_mount;
191
192 lockdep_assert_held(&pag->pag_ici_lock);
193 if (pag->pag_ici_reclaimable++)
194 return;
195
196 /* propagate the reclaim tag up into the perag radix tree */
197 spin_lock(&mp->m_perag_lock);
198 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
199 XFS_ICI_RECLAIM_TAG);
200 spin_unlock(&mp->m_perag_lock);
201
202 /* schedule periodic background inode reclaim */
203 xfs_reclaim_work_queue(mp);
204
205 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
206 }
207
208 static void
209 xfs_perag_clear_reclaim_tag(
210 struct xfs_perag *pag)
211 {
212 struct xfs_mount *mp = pag->pag_mount;
213
214 lockdep_assert_held(&pag->pag_ici_lock);
215 if (--pag->pag_ici_reclaimable)
216 return;
217
218 /* clear the reclaim tag from the perag radix tree */
219 spin_lock(&mp->m_perag_lock);
220 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
221 XFS_ICI_RECLAIM_TAG);
222 spin_unlock(&mp->m_perag_lock);
223 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
224 }
225
226
227 /*
228 * We set the inode flag atomically with the radix tree tag.
229 * Once we get tag lookups on the radix tree, this inode flag
230 * can go away.
231 */
232 void
233 xfs_inode_set_reclaim_tag(
234 struct xfs_inode *ip)
235 {
236 struct xfs_mount *mp = ip->i_mount;
237 struct xfs_perag *pag;
238
239 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
240 spin_lock(&pag->pag_ici_lock);
241 spin_lock(&ip->i_flags_lock);
242
243 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
244 XFS_ICI_RECLAIM_TAG);
245 xfs_perag_set_reclaim_tag(pag);
246 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
247
248 spin_unlock(&ip->i_flags_lock);
249 spin_unlock(&pag->pag_ici_lock);
250 xfs_perag_put(pag);
251 }
252
253 STATIC void
254 xfs_inode_clear_reclaim_tag(
255 struct xfs_perag *pag,
256 xfs_ino_t ino)
257 {
258 radix_tree_tag_clear(&pag->pag_ici_root,
259 XFS_INO_TO_AGINO(pag->pag_mount, ino),
260 XFS_ICI_RECLAIM_TAG);
261 xfs_perag_clear_reclaim_tag(pag);
262 }
263
264 static void
265 xfs_inew_wait(
266 struct xfs_inode *ip)
267 {
268 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
269 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
270
271 do {
272 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
273 if (!xfs_iflags_test(ip, XFS_INEW))
274 break;
275 schedule();
276 } while (true);
277 finish_wait(wq, &wait.wq_entry);
278 }
279
280 /*
281 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
282 * part of the structure. This is made more complex by the fact we store
283 * information about the on-disk values in the VFS inode and so we can't just
284 * overwrite the values unconditionally. Hence we save the parameters we
285 * need to retain across reinitialisation, and rewrite them into the VFS inode
286 * after reinitialisation even if it fails.
287 */
288 static int
289 xfs_reinit_inode(
290 struct xfs_mount *mp,
291 struct inode *inode)
292 {
293 int error;
294 uint32_t nlink = inode->i_nlink;
295 uint32_t generation = inode->i_generation;
296 uint64_t version = inode->i_version;
297 umode_t mode = inode->i_mode;
298
299 error = inode_init_always(mp->m_super, inode);
300
301 set_nlink(inode, nlink);
302 inode->i_generation = generation;
303 inode->i_version = version;
304 inode->i_mode = mode;
305 return error;
306 }
307
308 /*
309 * Check the validity of the inode we just found it the cache
310 */
311 static int
312 xfs_iget_cache_hit(
313 struct xfs_perag *pag,
314 struct xfs_inode *ip,
315 xfs_ino_t ino,
316 int flags,
317 int lock_flags) __releases(RCU)
318 {
319 struct inode *inode = VFS_I(ip);
320 struct xfs_mount *mp = ip->i_mount;
321 int error;
322
323 /*
324 * check for re-use of an inode within an RCU grace period due to the
325 * radix tree nodes not being updated yet. We monitor for this by
326 * setting the inode number to zero before freeing the inode structure.
327 * If the inode has been reallocated and set up, then the inode number
328 * will not match, so check for that, too.
329 */
330 spin_lock(&ip->i_flags_lock);
331 if (ip->i_ino != ino) {
332 trace_xfs_iget_skip(ip);
333 XFS_STATS_INC(mp, xs_ig_frecycle);
334 error = -EAGAIN;
335 goto out_error;
336 }
337
338
339 /*
340 * If we are racing with another cache hit that is currently
341 * instantiating this inode or currently recycling it out of
342 * reclaimabe state, wait for the initialisation to complete
343 * before continuing.
344 *
345 * XXX(hch): eventually we should do something equivalent to
346 * wait_on_inode to wait for these flags to be cleared
347 * instead of polling for it.
348 */
349 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
350 trace_xfs_iget_skip(ip);
351 XFS_STATS_INC(mp, xs_ig_frecycle);
352 error = -EAGAIN;
353 goto out_error;
354 }
355
356 /*
357 * If lookup is racing with unlink return an error immediately.
358 */
359 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
360 error = -ENOENT;
361 goto out_error;
362 }
363
364 /*
365 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
366 * Need to carefully get it back into useable state.
367 */
368 if (ip->i_flags & XFS_IRECLAIMABLE) {
369 trace_xfs_iget_reclaim(ip);
370
371 if (flags & XFS_IGET_INCORE) {
372 error = -EAGAIN;
373 goto out_error;
374 }
375
376 /*
377 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
378 * from stomping over us while we recycle the inode. We can't
379 * clear the radix tree reclaimable tag yet as it requires
380 * pag_ici_lock to be held exclusive.
381 */
382 ip->i_flags |= XFS_IRECLAIM;
383
384 spin_unlock(&ip->i_flags_lock);
385 rcu_read_unlock();
386
387 error = xfs_reinit_inode(mp, inode);
388 if (error) {
389 bool wake;
390 /*
391 * Re-initializing the inode failed, and we are in deep
392 * trouble. Try to re-add it to the reclaim list.
393 */
394 rcu_read_lock();
395 spin_lock(&ip->i_flags_lock);
396 wake = !!__xfs_iflags_test(ip, XFS_INEW);
397 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
398 if (wake)
399 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
400 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
401 trace_xfs_iget_reclaim_fail(ip);
402 goto out_error;
403 }
404
405 spin_lock(&pag->pag_ici_lock);
406 spin_lock(&ip->i_flags_lock);
407
408 /*
409 * Clear the per-lifetime state in the inode as we are now
410 * effectively a new inode and need to return to the initial
411 * state before reuse occurs.
412 */
413 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
414 ip->i_flags |= XFS_INEW;
415 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
416 inode->i_state = I_NEW;
417
418 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
419 init_rwsem(&inode->i_rwsem);
420
421 spin_unlock(&ip->i_flags_lock);
422 spin_unlock(&pag->pag_ici_lock);
423 } else {
424 /* If the VFS inode is being torn down, pause and try again. */
425 if (!igrab(inode)) {
426 trace_xfs_iget_skip(ip);
427 error = -EAGAIN;
428 goto out_error;
429 }
430
431 /* We've got a live one. */
432 spin_unlock(&ip->i_flags_lock);
433 rcu_read_unlock();
434 trace_xfs_iget_hit(ip);
435 }
436
437 if (lock_flags != 0)
438 xfs_ilock(ip, lock_flags);
439
440 if (!(flags & XFS_IGET_INCORE))
441 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
442 XFS_STATS_INC(mp, xs_ig_found);
443
444 return 0;
445
446 out_error:
447 spin_unlock(&ip->i_flags_lock);
448 rcu_read_unlock();
449 return error;
450 }
451
452
453 static int
454 xfs_iget_cache_miss(
455 struct xfs_mount *mp,
456 struct xfs_perag *pag,
457 xfs_trans_t *tp,
458 xfs_ino_t ino,
459 struct xfs_inode **ipp,
460 int flags,
461 int lock_flags)
462 {
463 struct xfs_inode *ip;
464 int error;
465 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
466 int iflags;
467
468 ip = xfs_inode_alloc(mp, ino);
469 if (!ip)
470 return -ENOMEM;
471
472 error = xfs_iread(mp, tp, ip, flags);
473 if (error)
474 goto out_destroy;
475
476 trace_xfs_iget_miss(ip);
477
478 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
479 error = -ENOENT;
480 goto out_destroy;
481 }
482
483 /*
484 * Preload the radix tree so we can insert safely under the
485 * write spinlock. Note that we cannot sleep inside the preload
486 * region. Since we can be called from transaction context, don't
487 * recurse into the file system.
488 */
489 if (radix_tree_preload(GFP_NOFS)) {
490 error = -EAGAIN;
491 goto out_destroy;
492 }
493
494 /*
495 * Because the inode hasn't been added to the radix-tree yet it can't
496 * be found by another thread, so we can do the non-sleeping lock here.
497 */
498 if (lock_flags) {
499 if (!xfs_ilock_nowait(ip, lock_flags))
500 BUG();
501 }
502
503 /*
504 * These values must be set before inserting the inode into the radix
505 * tree as the moment it is inserted a concurrent lookup (allowed by the
506 * RCU locking mechanism) can find it and that lookup must see that this
507 * is an inode currently under construction (i.e. that XFS_INEW is set).
508 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
509 * memory barrier that ensures this detection works correctly at lookup
510 * time.
511 */
512 iflags = XFS_INEW;
513 if (flags & XFS_IGET_DONTCACHE)
514 iflags |= XFS_IDONTCACHE;
515 ip->i_udquot = NULL;
516 ip->i_gdquot = NULL;
517 ip->i_pdquot = NULL;
518 xfs_iflags_set(ip, iflags);
519
520 /* insert the new inode */
521 spin_lock(&pag->pag_ici_lock);
522 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
523 if (unlikely(error)) {
524 WARN_ON(error != -EEXIST);
525 XFS_STATS_INC(mp, xs_ig_dup);
526 error = -EAGAIN;
527 goto out_preload_end;
528 }
529 spin_unlock(&pag->pag_ici_lock);
530 radix_tree_preload_end();
531
532 *ipp = ip;
533 return 0;
534
535 out_preload_end:
536 spin_unlock(&pag->pag_ici_lock);
537 radix_tree_preload_end();
538 if (lock_flags)
539 xfs_iunlock(ip, lock_flags);
540 out_destroy:
541 __destroy_inode(VFS_I(ip));
542 xfs_inode_free(ip);
543 return error;
544 }
545
546 /*
547 * Look up an inode by number in the given file system.
548 * The inode is looked up in the cache held in each AG.
549 * If the inode is found in the cache, initialise the vfs inode
550 * if necessary.
551 *
552 * If it is not in core, read it in from the file system's device,
553 * add it to the cache and initialise the vfs inode.
554 *
555 * The inode is locked according to the value of the lock_flags parameter.
556 * This flag parameter indicates how and if the inode's IO lock and inode lock
557 * should be taken.
558 *
559 * mp -- the mount point structure for the current file system. It points
560 * to the inode hash table.
561 * tp -- a pointer to the current transaction if there is one. This is
562 * simply passed through to the xfs_iread() call.
563 * ino -- the number of the inode desired. This is the unique identifier
564 * within the file system for the inode being requested.
565 * lock_flags -- flags indicating how to lock the inode. See the comment
566 * for xfs_ilock() for a list of valid values.
567 */
568 int
569 xfs_iget(
570 xfs_mount_t *mp,
571 xfs_trans_t *tp,
572 xfs_ino_t ino,
573 uint flags,
574 uint lock_flags,
575 xfs_inode_t **ipp)
576 {
577 xfs_inode_t *ip;
578 int error;
579 xfs_perag_t *pag;
580 xfs_agino_t agino;
581
582 /*
583 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
584 * doesn't get freed while it's being referenced during a
585 * radix tree traversal here. It assumes this function
586 * aqcuires only the ILOCK (and therefore it has no need to
587 * involve the IOLOCK in this synchronization).
588 */
589 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
590
591 /* reject inode numbers outside existing AGs */
592 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
593 return -EINVAL;
594
595 XFS_STATS_INC(mp, xs_ig_attempts);
596
597 /* get the perag structure and ensure that it's inode capable */
598 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
599 agino = XFS_INO_TO_AGINO(mp, ino);
600
601 again:
602 error = 0;
603 rcu_read_lock();
604 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
605
606 if (ip) {
607 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
608 if (error)
609 goto out_error_or_again;
610 } else {
611 rcu_read_unlock();
612 if (flags & XFS_IGET_INCORE) {
613 error = -ENOENT;
614 goto out_error_or_again;
615 }
616 XFS_STATS_INC(mp, xs_ig_missed);
617
618 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
619 flags, lock_flags);
620 if (error)
621 goto out_error_or_again;
622 }
623 xfs_perag_put(pag);
624
625 *ipp = ip;
626
627 /*
628 * If we have a real type for an on-disk inode, we can setup the inode
629 * now. If it's a new inode being created, xfs_ialloc will handle it.
630 */
631 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
632 xfs_setup_existing_inode(ip);
633 return 0;
634
635 out_error_or_again:
636 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
637 delay(1);
638 goto again;
639 }
640 xfs_perag_put(pag);
641 return error;
642 }
643
644 /*
645 * "Is this a cached inode that's also allocated?"
646 *
647 * Look up an inode by number in the given file system. If the inode is
648 * in cache and isn't in purgatory, return 1 if the inode is allocated
649 * and 0 if it is not. For all other cases (not in cache, being torn
650 * down, etc.), return a negative error code.
651 *
652 * The caller has to prevent inode allocation and freeing activity,
653 * presumably by locking the AGI buffer. This is to ensure that an
654 * inode cannot transition from allocated to freed until the caller is
655 * ready to allow that. If the inode is in an intermediate state (new,
656 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
657 * inode is not in the cache, -ENOENT will be returned. The caller must
658 * deal with these scenarios appropriately.
659 *
660 * This is a specialized use case for the online scrubber; if you're
661 * reading this, you probably want xfs_iget.
662 */
663 int
664 xfs_icache_inode_is_allocated(
665 struct xfs_mount *mp,
666 struct xfs_trans *tp,
667 xfs_ino_t ino,
668 bool *inuse)
669 {
670 struct xfs_inode *ip;
671 int error;
672
673 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
674 if (error)
675 return error;
676
677 *inuse = !!(VFS_I(ip)->i_mode);
678 IRELE(ip);
679 return 0;
680 }
681
682 /*
683 * The inode lookup is done in batches to keep the amount of lock traffic and
684 * radix tree lookups to a minimum. The batch size is a trade off between
685 * lookup reduction and stack usage. This is in the reclaim path, so we can't
686 * be too greedy.
687 */
688 #define XFS_LOOKUP_BATCH 32
689
690 STATIC int
691 xfs_inode_ag_walk_grab(
692 struct xfs_inode *ip,
693 int flags)
694 {
695 struct inode *inode = VFS_I(ip);
696 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
697
698 ASSERT(rcu_read_lock_held());
699
700 /*
701 * check for stale RCU freed inode
702 *
703 * If the inode has been reallocated, it doesn't matter if it's not in
704 * the AG we are walking - we are walking for writeback, so if it
705 * passes all the "valid inode" checks and is dirty, then we'll write
706 * it back anyway. If it has been reallocated and still being
707 * initialised, the XFS_INEW check below will catch it.
708 */
709 spin_lock(&ip->i_flags_lock);
710 if (!ip->i_ino)
711 goto out_unlock_noent;
712
713 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
714 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
715 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
716 goto out_unlock_noent;
717 spin_unlock(&ip->i_flags_lock);
718
719 /* nothing to sync during shutdown */
720 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
721 return -EFSCORRUPTED;
722
723 /* If we can't grab the inode, it must on it's way to reclaim. */
724 if (!igrab(inode))
725 return -ENOENT;
726
727 /* inode is valid */
728 return 0;
729
730 out_unlock_noent:
731 spin_unlock(&ip->i_flags_lock);
732 return -ENOENT;
733 }
734
735 STATIC int
736 xfs_inode_ag_walk(
737 struct xfs_mount *mp,
738 struct xfs_perag *pag,
739 int (*execute)(struct xfs_inode *ip, int flags,
740 void *args),
741 int flags,
742 void *args,
743 int tag,
744 int iter_flags)
745 {
746 uint32_t first_index;
747 int last_error = 0;
748 int skipped;
749 int done;
750 int nr_found;
751
752 restart:
753 done = 0;
754 skipped = 0;
755 first_index = 0;
756 nr_found = 0;
757 do {
758 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
759 int error = 0;
760 int i;
761
762 rcu_read_lock();
763
764 if (tag == -1)
765 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
766 (void **)batch, first_index,
767 XFS_LOOKUP_BATCH);
768 else
769 nr_found = radix_tree_gang_lookup_tag(
770 &pag->pag_ici_root,
771 (void **) batch, first_index,
772 XFS_LOOKUP_BATCH, tag);
773
774 if (!nr_found) {
775 rcu_read_unlock();
776 break;
777 }
778
779 /*
780 * Grab the inodes before we drop the lock. if we found
781 * nothing, nr == 0 and the loop will be skipped.
782 */
783 for (i = 0; i < nr_found; i++) {
784 struct xfs_inode *ip = batch[i];
785
786 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
787 batch[i] = NULL;
788
789 /*
790 * Update the index for the next lookup. Catch
791 * overflows into the next AG range which can occur if
792 * we have inodes in the last block of the AG and we
793 * are currently pointing to the last inode.
794 *
795 * Because we may see inodes that are from the wrong AG
796 * due to RCU freeing and reallocation, only update the
797 * index if it lies in this AG. It was a race that lead
798 * us to see this inode, so another lookup from the
799 * same index will not find it again.
800 */
801 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
802 continue;
803 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
804 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
805 done = 1;
806 }
807
808 /* unlock now we've grabbed the inodes. */
809 rcu_read_unlock();
810
811 for (i = 0; i < nr_found; i++) {
812 if (!batch[i])
813 continue;
814 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
815 xfs_iflags_test(batch[i], XFS_INEW))
816 xfs_inew_wait(batch[i]);
817 error = execute(batch[i], flags, args);
818 IRELE(batch[i]);
819 if (error == -EAGAIN) {
820 skipped++;
821 continue;
822 }
823 if (error && last_error != -EFSCORRUPTED)
824 last_error = error;
825 }
826
827 /* bail out if the filesystem is corrupted. */
828 if (error == -EFSCORRUPTED)
829 break;
830
831 cond_resched();
832
833 } while (nr_found && !done);
834
835 if (skipped) {
836 delay(1);
837 goto restart;
838 }
839 return last_error;
840 }
841
842 /*
843 * Background scanning to trim post-EOF preallocated space. This is queued
844 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
845 */
846 void
847 xfs_queue_eofblocks(
848 struct xfs_mount *mp)
849 {
850 rcu_read_lock();
851 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
852 queue_delayed_work(mp->m_eofblocks_workqueue,
853 &mp->m_eofblocks_work,
854 msecs_to_jiffies(xfs_eofb_secs * 1000));
855 rcu_read_unlock();
856 }
857
858 void
859 xfs_eofblocks_worker(
860 struct work_struct *work)
861 {
862 struct xfs_mount *mp = container_of(to_delayed_work(work),
863 struct xfs_mount, m_eofblocks_work);
864 xfs_icache_free_eofblocks(mp, NULL);
865 xfs_queue_eofblocks(mp);
866 }
867
868 /*
869 * Background scanning to trim preallocated CoW space. This is queued
870 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
871 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
872 */
873 STATIC void
874 xfs_queue_cowblocks(
875 struct xfs_mount *mp)
876 {
877 rcu_read_lock();
878 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
879 queue_delayed_work(mp->m_eofblocks_workqueue,
880 &mp->m_cowblocks_work,
881 msecs_to_jiffies(xfs_cowb_secs * 1000));
882 rcu_read_unlock();
883 }
884
885 void
886 xfs_cowblocks_worker(
887 struct work_struct *work)
888 {
889 struct xfs_mount *mp = container_of(to_delayed_work(work),
890 struct xfs_mount, m_cowblocks_work);
891 xfs_icache_free_cowblocks(mp, NULL);
892 xfs_queue_cowblocks(mp);
893 }
894
895 int
896 xfs_inode_ag_iterator_flags(
897 struct xfs_mount *mp,
898 int (*execute)(struct xfs_inode *ip, int flags,
899 void *args),
900 int flags,
901 void *args,
902 int iter_flags)
903 {
904 struct xfs_perag *pag;
905 int error = 0;
906 int last_error = 0;
907 xfs_agnumber_t ag;
908
909 ag = 0;
910 while ((pag = xfs_perag_get(mp, ag))) {
911 ag = pag->pag_agno + 1;
912 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
913 iter_flags);
914 xfs_perag_put(pag);
915 if (error) {
916 last_error = error;
917 if (error == -EFSCORRUPTED)
918 break;
919 }
920 }
921 return last_error;
922 }
923
924 int
925 xfs_inode_ag_iterator(
926 struct xfs_mount *mp,
927 int (*execute)(struct xfs_inode *ip, int flags,
928 void *args),
929 int flags,
930 void *args)
931 {
932 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
933 }
934
935 int
936 xfs_inode_ag_iterator_tag(
937 struct xfs_mount *mp,
938 int (*execute)(struct xfs_inode *ip, int flags,
939 void *args),
940 int flags,
941 void *args,
942 int tag)
943 {
944 struct xfs_perag *pag;
945 int error = 0;
946 int last_error = 0;
947 xfs_agnumber_t ag;
948
949 ag = 0;
950 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
951 ag = pag->pag_agno + 1;
952 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
953 0);
954 xfs_perag_put(pag);
955 if (error) {
956 last_error = error;
957 if (error == -EFSCORRUPTED)
958 break;
959 }
960 }
961 return last_error;
962 }
963
964 /*
965 * Grab the inode for reclaim exclusively.
966 * Return 0 if we grabbed it, non-zero otherwise.
967 */
968 STATIC int
969 xfs_reclaim_inode_grab(
970 struct xfs_inode *ip,
971 int flags)
972 {
973 ASSERT(rcu_read_lock_held());
974
975 /* quick check for stale RCU freed inode */
976 if (!ip->i_ino)
977 return 1;
978
979 /*
980 * If we are asked for non-blocking operation, do unlocked checks to
981 * see if the inode already is being flushed or in reclaim to avoid
982 * lock traffic.
983 */
984 if ((flags & SYNC_TRYLOCK) &&
985 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
986 return 1;
987
988 /*
989 * The radix tree lock here protects a thread in xfs_iget from racing
990 * with us starting reclaim on the inode. Once we have the
991 * XFS_IRECLAIM flag set it will not touch us.
992 *
993 * Due to RCU lookup, we may find inodes that have been freed and only
994 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
995 * aren't candidates for reclaim at all, so we must check the
996 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
997 */
998 spin_lock(&ip->i_flags_lock);
999 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1000 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1001 /* not a reclaim candidate. */
1002 spin_unlock(&ip->i_flags_lock);
1003 return 1;
1004 }
1005 __xfs_iflags_set(ip, XFS_IRECLAIM);
1006 spin_unlock(&ip->i_flags_lock);
1007 return 0;
1008 }
1009
1010 /*
1011 * Inodes in different states need to be treated differently. The following
1012 * table lists the inode states and the reclaim actions necessary:
1013 *
1014 * inode state iflush ret required action
1015 * --------------- ---------- ---------------
1016 * bad - reclaim
1017 * shutdown EIO unpin and reclaim
1018 * clean, unpinned 0 reclaim
1019 * stale, unpinned 0 reclaim
1020 * clean, pinned(*) 0 requeue
1021 * stale, pinned EAGAIN requeue
1022 * dirty, async - requeue
1023 * dirty, sync 0 reclaim
1024 *
1025 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1026 * handled anyway given the order of checks implemented.
1027 *
1028 * Also, because we get the flush lock first, we know that any inode that has
1029 * been flushed delwri has had the flush completed by the time we check that
1030 * the inode is clean.
1031 *
1032 * Note that because the inode is flushed delayed write by AIL pushing, the
1033 * flush lock may already be held here and waiting on it can result in very
1034 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1035 * the caller should push the AIL first before trying to reclaim inodes to
1036 * minimise the amount of time spent waiting. For background relaim, we only
1037 * bother to reclaim clean inodes anyway.
1038 *
1039 * Hence the order of actions after gaining the locks should be:
1040 * bad => reclaim
1041 * shutdown => unpin and reclaim
1042 * pinned, async => requeue
1043 * pinned, sync => unpin
1044 * stale => reclaim
1045 * clean => reclaim
1046 * dirty, async => requeue
1047 * dirty, sync => flush, wait and reclaim
1048 */
1049 STATIC int
1050 xfs_reclaim_inode(
1051 struct xfs_inode *ip,
1052 struct xfs_perag *pag,
1053 int sync_mode)
1054 {
1055 struct xfs_buf *bp = NULL;
1056 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
1057 int error;
1058
1059 restart:
1060 error = 0;
1061 xfs_ilock(ip, XFS_ILOCK_EXCL);
1062 if (!xfs_iflock_nowait(ip)) {
1063 if (!(sync_mode & SYNC_WAIT))
1064 goto out;
1065 xfs_iflock(ip);
1066 }
1067
1068 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1069 xfs_iunpin_wait(ip);
1070 /* xfs_iflush_abort() drops the flush lock */
1071 xfs_iflush_abort(ip, false);
1072 goto reclaim;
1073 }
1074 if (xfs_ipincount(ip)) {
1075 if (!(sync_mode & SYNC_WAIT))
1076 goto out_ifunlock;
1077 xfs_iunpin_wait(ip);
1078 }
1079 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1080 xfs_ifunlock(ip);
1081 goto reclaim;
1082 }
1083
1084 /*
1085 * Never flush out dirty data during non-blocking reclaim, as it would
1086 * just contend with AIL pushing trying to do the same job.
1087 */
1088 if (!(sync_mode & SYNC_WAIT))
1089 goto out_ifunlock;
1090
1091 /*
1092 * Now we have an inode that needs flushing.
1093 *
1094 * Note that xfs_iflush will never block on the inode buffer lock, as
1095 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1096 * ip->i_lock, and we are doing the exact opposite here. As a result,
1097 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1098 * result in an ABBA deadlock with xfs_ifree_cluster().
1099 *
1100 * As xfs_ifree_cluser() must gather all inodes that are active in the
1101 * cache to mark them stale, if we hit this case we don't actually want
1102 * to do IO here - we want the inode marked stale so we can simply
1103 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1104 * inode, back off and try again. Hopefully the next pass through will
1105 * see the stale flag set on the inode.
1106 */
1107 error = xfs_iflush(ip, &bp);
1108 if (error == -EAGAIN) {
1109 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1110 /* backoff longer than in xfs_ifree_cluster */
1111 delay(2);
1112 goto restart;
1113 }
1114
1115 if (!error) {
1116 error = xfs_bwrite(bp);
1117 xfs_buf_relse(bp);
1118 }
1119
1120 reclaim:
1121 ASSERT(!xfs_isiflocked(ip));
1122
1123 /*
1124 * Because we use RCU freeing we need to ensure the inode always appears
1125 * to be reclaimed with an invalid inode number when in the free state.
1126 * We do this as early as possible under the ILOCK so that
1127 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1128 * detect races with us here. By doing this, we guarantee that once
1129 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1130 * it will see either a valid inode that will serialise correctly, or it
1131 * will see an invalid inode that it can skip.
1132 */
1133 spin_lock(&ip->i_flags_lock);
1134 ip->i_flags = XFS_IRECLAIM;
1135 ip->i_ino = 0;
1136 spin_unlock(&ip->i_flags_lock);
1137
1138 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1139
1140 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1141 /*
1142 * Remove the inode from the per-AG radix tree.
1143 *
1144 * Because radix_tree_delete won't complain even if the item was never
1145 * added to the tree assert that it's been there before to catch
1146 * problems with the inode life time early on.
1147 */
1148 spin_lock(&pag->pag_ici_lock);
1149 if (!radix_tree_delete(&pag->pag_ici_root,
1150 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1151 ASSERT(0);
1152 xfs_perag_clear_reclaim_tag(pag);
1153 spin_unlock(&pag->pag_ici_lock);
1154
1155 /*
1156 * Here we do an (almost) spurious inode lock in order to coordinate
1157 * with inode cache radix tree lookups. This is because the lookup
1158 * can reference the inodes in the cache without taking references.
1159 *
1160 * We make that OK here by ensuring that we wait until the inode is
1161 * unlocked after the lookup before we go ahead and free it.
1162 */
1163 xfs_ilock(ip, XFS_ILOCK_EXCL);
1164 xfs_qm_dqdetach(ip);
1165 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1166
1167 __xfs_inode_free(ip);
1168 return error;
1169
1170 out_ifunlock:
1171 xfs_ifunlock(ip);
1172 out:
1173 xfs_iflags_clear(ip, XFS_IRECLAIM);
1174 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1175 /*
1176 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1177 * a short while. However, this just burns CPU time scanning the tree
1178 * waiting for IO to complete and the reclaim work never goes back to
1179 * the idle state. Instead, return 0 to let the next scheduled
1180 * background reclaim attempt to reclaim the inode again.
1181 */
1182 return 0;
1183 }
1184
1185 /*
1186 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1187 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1188 * then a shut down during filesystem unmount reclaim walk leak all the
1189 * unreclaimed inodes.
1190 */
1191 STATIC int
1192 xfs_reclaim_inodes_ag(
1193 struct xfs_mount *mp,
1194 int flags,
1195 int *nr_to_scan)
1196 {
1197 struct xfs_perag *pag;
1198 int error = 0;
1199 int last_error = 0;
1200 xfs_agnumber_t ag;
1201 int trylock = flags & SYNC_TRYLOCK;
1202 int skipped;
1203
1204 restart:
1205 ag = 0;
1206 skipped = 0;
1207 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1208 unsigned long first_index = 0;
1209 int done = 0;
1210 int nr_found = 0;
1211
1212 ag = pag->pag_agno + 1;
1213
1214 if (trylock) {
1215 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1216 skipped++;
1217 xfs_perag_put(pag);
1218 continue;
1219 }
1220 first_index = pag->pag_ici_reclaim_cursor;
1221 } else
1222 mutex_lock(&pag->pag_ici_reclaim_lock);
1223
1224 do {
1225 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1226 int i;
1227
1228 rcu_read_lock();
1229 nr_found = radix_tree_gang_lookup_tag(
1230 &pag->pag_ici_root,
1231 (void **)batch, first_index,
1232 XFS_LOOKUP_BATCH,
1233 XFS_ICI_RECLAIM_TAG);
1234 if (!nr_found) {
1235 done = 1;
1236 rcu_read_unlock();
1237 break;
1238 }
1239
1240 /*
1241 * Grab the inodes before we drop the lock. if we found
1242 * nothing, nr == 0 and the loop will be skipped.
1243 */
1244 for (i = 0; i < nr_found; i++) {
1245 struct xfs_inode *ip = batch[i];
1246
1247 if (done || xfs_reclaim_inode_grab(ip, flags))
1248 batch[i] = NULL;
1249
1250 /*
1251 * Update the index for the next lookup. Catch
1252 * overflows into the next AG range which can
1253 * occur if we have inodes in the last block of
1254 * the AG and we are currently pointing to the
1255 * last inode.
1256 *
1257 * Because we may see inodes that are from the
1258 * wrong AG due to RCU freeing and
1259 * reallocation, only update the index if it
1260 * lies in this AG. It was a race that lead us
1261 * to see this inode, so another lookup from
1262 * the same index will not find it again.
1263 */
1264 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1265 pag->pag_agno)
1266 continue;
1267 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1268 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1269 done = 1;
1270 }
1271
1272 /* unlock now we've grabbed the inodes. */
1273 rcu_read_unlock();
1274
1275 for (i = 0; i < nr_found; i++) {
1276 if (!batch[i])
1277 continue;
1278 error = xfs_reclaim_inode(batch[i], pag, flags);
1279 if (error && last_error != -EFSCORRUPTED)
1280 last_error = error;
1281 }
1282
1283 *nr_to_scan -= XFS_LOOKUP_BATCH;
1284
1285 cond_resched();
1286
1287 } while (nr_found && !done && *nr_to_scan > 0);
1288
1289 if (trylock && !done)
1290 pag->pag_ici_reclaim_cursor = first_index;
1291 else
1292 pag->pag_ici_reclaim_cursor = 0;
1293 mutex_unlock(&pag->pag_ici_reclaim_lock);
1294 xfs_perag_put(pag);
1295 }
1296
1297 /*
1298 * if we skipped any AG, and we still have scan count remaining, do
1299 * another pass this time using blocking reclaim semantics (i.e
1300 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1301 * ensure that when we get more reclaimers than AGs we block rather
1302 * than spin trying to execute reclaim.
1303 */
1304 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1305 trylock = 0;
1306 goto restart;
1307 }
1308 return last_error;
1309 }
1310
1311 int
1312 xfs_reclaim_inodes(
1313 xfs_mount_t *mp,
1314 int mode)
1315 {
1316 int nr_to_scan = INT_MAX;
1317
1318 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1319 }
1320
1321 /*
1322 * Scan a certain number of inodes for reclaim.
1323 *
1324 * When called we make sure that there is a background (fast) inode reclaim in
1325 * progress, while we will throttle the speed of reclaim via doing synchronous
1326 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1327 * them to be cleaned, which we hope will not be very long due to the
1328 * background walker having already kicked the IO off on those dirty inodes.
1329 */
1330 long
1331 xfs_reclaim_inodes_nr(
1332 struct xfs_mount *mp,
1333 int nr_to_scan)
1334 {
1335 /* kick background reclaimer and push the AIL */
1336 xfs_reclaim_work_queue(mp);
1337 xfs_ail_push_all(mp->m_ail);
1338
1339 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1340 }
1341
1342 /*
1343 * Return the number of reclaimable inodes in the filesystem for
1344 * the shrinker to determine how much to reclaim.
1345 */
1346 int
1347 xfs_reclaim_inodes_count(
1348 struct xfs_mount *mp)
1349 {
1350 struct xfs_perag *pag;
1351 xfs_agnumber_t ag = 0;
1352 int reclaimable = 0;
1353
1354 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1355 ag = pag->pag_agno + 1;
1356 reclaimable += pag->pag_ici_reclaimable;
1357 xfs_perag_put(pag);
1358 }
1359 return reclaimable;
1360 }
1361
1362 STATIC int
1363 xfs_inode_match_id(
1364 struct xfs_inode *ip,
1365 struct xfs_eofblocks *eofb)
1366 {
1367 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1368 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1369 return 0;
1370
1371 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1372 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1373 return 0;
1374
1375 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1376 xfs_get_projid(ip) != eofb->eof_prid)
1377 return 0;
1378
1379 return 1;
1380 }
1381
1382 /*
1383 * A union-based inode filtering algorithm. Process the inode if any of the
1384 * criteria match. This is for global/internal scans only.
1385 */
1386 STATIC int
1387 xfs_inode_match_id_union(
1388 struct xfs_inode *ip,
1389 struct xfs_eofblocks *eofb)
1390 {
1391 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1392 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1393 return 1;
1394
1395 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1396 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1397 return 1;
1398
1399 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1400 xfs_get_projid(ip) == eofb->eof_prid)
1401 return 1;
1402
1403 return 0;
1404 }
1405
1406 STATIC int
1407 xfs_inode_free_eofblocks(
1408 struct xfs_inode *ip,
1409 int flags,
1410 void *args)
1411 {
1412 int ret = 0;
1413 struct xfs_eofblocks *eofb = args;
1414 int match;
1415
1416 if (!xfs_can_free_eofblocks(ip, false)) {
1417 /* inode could be preallocated or append-only */
1418 trace_xfs_inode_free_eofblocks_invalid(ip);
1419 xfs_inode_clear_eofblocks_tag(ip);
1420 return 0;
1421 }
1422
1423 /*
1424 * If the mapping is dirty the operation can block and wait for some
1425 * time. Unless we are waiting, skip it.
1426 */
1427 if (!(flags & SYNC_WAIT) &&
1428 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1429 return 0;
1430
1431 if (eofb) {
1432 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1433 match = xfs_inode_match_id_union(ip, eofb);
1434 else
1435 match = xfs_inode_match_id(ip, eofb);
1436 if (!match)
1437 return 0;
1438
1439 /* skip the inode if the file size is too small */
1440 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1441 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1442 return 0;
1443 }
1444
1445 /*
1446 * If the caller is waiting, return -EAGAIN to keep the background
1447 * scanner moving and revisit the inode in a subsequent pass.
1448 */
1449 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1450 if (flags & SYNC_WAIT)
1451 ret = -EAGAIN;
1452 return ret;
1453 }
1454 ret = xfs_free_eofblocks(ip);
1455 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1456
1457 return ret;
1458 }
1459
1460 static int
1461 __xfs_icache_free_eofblocks(
1462 struct xfs_mount *mp,
1463 struct xfs_eofblocks *eofb,
1464 int (*execute)(struct xfs_inode *ip, int flags,
1465 void *args),
1466 int tag)
1467 {
1468 int flags = SYNC_TRYLOCK;
1469
1470 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1471 flags = SYNC_WAIT;
1472
1473 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1474 eofb, tag);
1475 }
1476
1477 int
1478 xfs_icache_free_eofblocks(
1479 struct xfs_mount *mp,
1480 struct xfs_eofblocks *eofb)
1481 {
1482 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1483 XFS_ICI_EOFBLOCKS_TAG);
1484 }
1485
1486 /*
1487 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1488 * multiple quotas, we don't know exactly which quota caused an allocation
1489 * failure. We make a best effort by including each quota under low free space
1490 * conditions (less than 1% free space) in the scan.
1491 */
1492 static int
1493 __xfs_inode_free_quota_eofblocks(
1494 struct xfs_inode *ip,
1495 int (*execute)(struct xfs_mount *mp,
1496 struct xfs_eofblocks *eofb))
1497 {
1498 int scan = 0;
1499 struct xfs_eofblocks eofb = {0};
1500 struct xfs_dquot *dq;
1501
1502 /*
1503 * Run a sync scan to increase effectiveness and use the union filter to
1504 * cover all applicable quotas in a single scan.
1505 */
1506 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1507
1508 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1509 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1510 if (dq && xfs_dquot_lowsp(dq)) {
1511 eofb.eof_uid = VFS_I(ip)->i_uid;
1512 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1513 scan = 1;
1514 }
1515 }
1516
1517 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1518 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1519 if (dq && xfs_dquot_lowsp(dq)) {
1520 eofb.eof_gid = VFS_I(ip)->i_gid;
1521 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1522 scan = 1;
1523 }
1524 }
1525
1526 if (scan)
1527 execute(ip->i_mount, &eofb);
1528
1529 return scan;
1530 }
1531
1532 int
1533 xfs_inode_free_quota_eofblocks(
1534 struct xfs_inode *ip)
1535 {
1536 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1537 }
1538
1539 static void
1540 __xfs_inode_set_eofblocks_tag(
1541 xfs_inode_t *ip,
1542 void (*execute)(struct xfs_mount *mp),
1543 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1544 int error, unsigned long caller_ip),
1545 int tag)
1546 {
1547 struct xfs_mount *mp = ip->i_mount;
1548 struct xfs_perag *pag;
1549 int tagged;
1550
1551 /*
1552 * Don't bother locking the AG and looking up in the radix trees
1553 * if we already know that we have the tag set.
1554 */
1555 if (ip->i_flags & XFS_IEOFBLOCKS)
1556 return;
1557 spin_lock(&ip->i_flags_lock);
1558 ip->i_flags |= XFS_IEOFBLOCKS;
1559 spin_unlock(&ip->i_flags_lock);
1560
1561 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1562 spin_lock(&pag->pag_ici_lock);
1563
1564 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1565 radix_tree_tag_set(&pag->pag_ici_root,
1566 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1567 if (!tagged) {
1568 /* propagate the eofblocks tag up into the perag radix tree */
1569 spin_lock(&ip->i_mount->m_perag_lock);
1570 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1571 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1572 tag);
1573 spin_unlock(&ip->i_mount->m_perag_lock);
1574
1575 /* kick off background trimming */
1576 execute(ip->i_mount);
1577
1578 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1579 }
1580
1581 spin_unlock(&pag->pag_ici_lock);
1582 xfs_perag_put(pag);
1583 }
1584
1585 void
1586 xfs_inode_set_eofblocks_tag(
1587 xfs_inode_t *ip)
1588 {
1589 trace_xfs_inode_set_eofblocks_tag(ip);
1590 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
1591 trace_xfs_perag_set_eofblocks,
1592 XFS_ICI_EOFBLOCKS_TAG);
1593 }
1594
1595 static void
1596 __xfs_inode_clear_eofblocks_tag(
1597 xfs_inode_t *ip,
1598 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1599 int error, unsigned long caller_ip),
1600 int tag)
1601 {
1602 struct xfs_mount *mp = ip->i_mount;
1603 struct xfs_perag *pag;
1604
1605 spin_lock(&ip->i_flags_lock);
1606 ip->i_flags &= ~XFS_IEOFBLOCKS;
1607 spin_unlock(&ip->i_flags_lock);
1608
1609 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1610 spin_lock(&pag->pag_ici_lock);
1611
1612 radix_tree_tag_clear(&pag->pag_ici_root,
1613 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1614 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1615 /* clear the eofblocks tag from the perag radix tree */
1616 spin_lock(&ip->i_mount->m_perag_lock);
1617 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1618 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1619 tag);
1620 spin_unlock(&ip->i_mount->m_perag_lock);
1621 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1622 }
1623
1624 spin_unlock(&pag->pag_ici_lock);
1625 xfs_perag_put(pag);
1626 }
1627
1628 void
1629 xfs_inode_clear_eofblocks_tag(
1630 xfs_inode_t *ip)
1631 {
1632 trace_xfs_inode_clear_eofblocks_tag(ip);
1633 return __xfs_inode_clear_eofblocks_tag(ip,
1634 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1635 }
1636
1637 /*
1638 * Automatic CoW Reservation Freeing
1639 *
1640 * These functions automatically garbage collect leftover CoW reservations
1641 * that were made on behalf of a cowextsize hint when we start to run out
1642 * of quota or when the reservations sit around for too long. If the file
1643 * has dirty pages or is undergoing writeback, its CoW reservations will
1644 * be retained.
1645 *
1646 * The actual garbage collection piggybacks off the same code that runs
1647 * the speculative EOF preallocation garbage collector.
1648 */
1649 STATIC int
1650 xfs_inode_free_cowblocks(
1651 struct xfs_inode *ip,
1652 int flags,
1653 void *args)
1654 {
1655 int ret;
1656 struct xfs_eofblocks *eofb = args;
1657 int match;
1658 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1659
1660 /*
1661 * Just clear the tag if we have an empty cow fork or none at all. It's
1662 * possible the inode was fully unshared since it was originally tagged.
1663 */
1664 if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1665 trace_xfs_inode_free_cowblocks_invalid(ip);
1666 xfs_inode_clear_cowblocks_tag(ip);
1667 return 0;
1668 }
1669
1670 /*
1671 * If the mapping is dirty or under writeback we cannot touch the
1672 * CoW fork. Leave it alone if we're in the midst of a directio.
1673 */
1674 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1675 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1676 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1677 atomic_read(&VFS_I(ip)->i_dio_count))
1678 return 0;
1679
1680 if (eofb) {
1681 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1682 match = xfs_inode_match_id_union(ip, eofb);
1683 else
1684 match = xfs_inode_match_id(ip, eofb);
1685 if (!match)
1686 return 0;
1687
1688 /* skip the inode if the file size is too small */
1689 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1690 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1691 return 0;
1692 }
1693
1694 /* Free the CoW blocks */
1695 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1696 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1697
1698 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1699
1700 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1701 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1702
1703 return ret;
1704 }
1705
1706 int
1707 xfs_icache_free_cowblocks(
1708 struct xfs_mount *mp,
1709 struct xfs_eofblocks *eofb)
1710 {
1711 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1712 XFS_ICI_COWBLOCKS_TAG);
1713 }
1714
1715 int
1716 xfs_inode_free_quota_cowblocks(
1717 struct xfs_inode *ip)
1718 {
1719 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1720 }
1721
1722 void
1723 xfs_inode_set_cowblocks_tag(
1724 xfs_inode_t *ip)
1725 {
1726 trace_xfs_inode_set_cowblocks_tag(ip);
1727 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1728 trace_xfs_perag_set_cowblocks,
1729 XFS_ICI_COWBLOCKS_TAG);
1730 }
1731
1732 void
1733 xfs_inode_clear_cowblocks_tag(
1734 xfs_inode_t *ip)
1735 {
1736 trace_xfs_inode_clear_cowblocks_tag(ip);
1737 return __xfs_inode_clear_eofblocks_tag(ip,
1738 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1739 }