]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
prctl: Add force disable speculation
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * Define 'struct task_struct' and provide the main scheduler
6 * APIs (schedule(), wakeup variants, etc.)
7 */
8
9 #include <uapi/linux/sched.h>
10
11 #include <asm/current.h>
12
13 #include <linux/pid.h>
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/kcov.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/seccomp.h>
21 #include <linux/nodemask.h>
22 #include <linux/rcupdate.h>
23 #include <linux/resource.h>
24 #include <linux/latencytop.h>
25 #include <linux/sched/prio.h>
26 #include <linux/signal_types.h>
27 #include <linux/mm_types_task.h>
28 #include <linux/task_io_accounting.h>
29
30 /* task_struct member predeclarations (sorted alphabetically): */
31 struct audit_context;
32 struct backing_dev_info;
33 struct bio_list;
34 struct blk_plug;
35 struct cfs_rq;
36 struct fs_struct;
37 struct futex_pi_state;
38 struct io_context;
39 struct mempolicy;
40 struct nameidata;
41 struct nsproxy;
42 struct perf_event_context;
43 struct pid_namespace;
44 struct pipe_inode_info;
45 struct rcu_node;
46 struct reclaim_state;
47 struct robust_list_head;
48 struct sched_attr;
49 struct sched_param;
50 struct seq_file;
51 struct sighand_struct;
52 struct signal_struct;
53 struct task_delay_info;
54 struct task_group;
55
56 /*
57 * Task state bitmask. NOTE! These bits are also
58 * encoded in fs/proc/array.c: get_task_state().
59 *
60 * We have two separate sets of flags: task->state
61 * is about runnability, while task->exit_state are
62 * about the task exiting. Confusing, but this way
63 * modifying one set can't modify the other one by
64 * mistake.
65 */
66
67 /* Used in tsk->state: */
68 #define TASK_RUNNING 0
69 #define TASK_INTERRUPTIBLE 1
70 #define TASK_UNINTERRUPTIBLE 2
71 #define __TASK_STOPPED 4
72 #define __TASK_TRACED 8
73 /* Used in tsk->exit_state: */
74 #define EXIT_DEAD 16
75 #define EXIT_ZOMBIE 32
76 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
77 /* Used in tsk->state again: */
78 #define TASK_DEAD 64
79 #define TASK_WAKEKILL 128
80 #define TASK_WAKING 256
81 #define TASK_PARKED 512
82 #define TASK_NOLOAD 1024
83 #define TASK_NEW 2048
84 #define TASK_STATE_MAX 4096
85
86 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
87
88 /* Convenience macros for the sake of set_current_state: */
89 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
91 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
92
93 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94
95 /* Convenience macros for the sake of wake_up(): */
96 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
98
99 /* get_task_state(): */
100 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 #define __set_current_state(state_value) \
117 do { \
118 current->task_state_change = _THIS_IP_; \
119 current->state = (state_value); \
120 } while (0)
121 #define set_current_state(state_value) \
122 do { \
123 current->task_state_change = _THIS_IP_; \
124 smp_store_mb(current->state, (state_value)); \
125 } while (0)
126
127 #else
128 /*
129 * set_current_state() includes a barrier so that the write of current->state
130 * is correctly serialised wrt the caller's subsequent test of whether to
131 * actually sleep:
132 *
133 * for (;;) {
134 * set_current_state(TASK_UNINTERRUPTIBLE);
135 * if (!need_sleep)
136 * break;
137 *
138 * schedule();
139 * }
140 * __set_current_state(TASK_RUNNING);
141 *
142 * If the caller does not need such serialisation (because, for instance, the
143 * condition test and condition change and wakeup are under the same lock) then
144 * use __set_current_state().
145 *
146 * The above is typically ordered against the wakeup, which does:
147 *
148 * need_sleep = false;
149 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
150 *
151 * Where wake_up_state() (and all other wakeup primitives) imply enough
152 * barriers to order the store of the variable against wakeup.
153 *
154 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
157 *
158 * This is obviously fine, since they both store the exact same value.
159 *
160 * Also see the comments of try_to_wake_up().
161 */
162 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163 #define set_current_state(state_value) smp_store_mb(current->state, (state_value))
164 #endif
165
166 /* Task command name length: */
167 #define TASK_COMM_LEN 16
168
169 extern cpumask_var_t cpu_isolated_map;
170
171 extern void scheduler_tick(void);
172
173 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
174
175 extern long schedule_timeout(long timeout);
176 extern long schedule_timeout_interruptible(long timeout);
177 extern long schedule_timeout_killable(long timeout);
178 extern long schedule_timeout_uninterruptible(long timeout);
179 extern long schedule_timeout_idle(long timeout);
180 asmlinkage void schedule(void);
181 extern void schedule_preempt_disabled(void);
182
183 extern int __must_check io_schedule_prepare(void);
184 extern void io_schedule_finish(int token);
185 extern long io_schedule_timeout(long timeout);
186 extern void io_schedule(void);
187
188 /**
189 * struct prev_cputime - snapshot of system and user cputime
190 * @utime: time spent in user mode
191 * @stime: time spent in system mode
192 * @lock: protects the above two fields
193 *
194 * Stores previous user/system time values such that we can guarantee
195 * monotonicity.
196 */
197 struct prev_cputime {
198 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
199 u64 utime;
200 u64 stime;
201 raw_spinlock_t lock;
202 #endif
203 };
204
205 /**
206 * struct task_cputime - collected CPU time counts
207 * @utime: time spent in user mode, in nanoseconds
208 * @stime: time spent in kernel mode, in nanoseconds
209 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
210 *
211 * This structure groups together three kinds of CPU time that are tracked for
212 * threads and thread groups. Most things considering CPU time want to group
213 * these counts together and treat all three of them in parallel.
214 */
215 struct task_cputime {
216 u64 utime;
217 u64 stime;
218 unsigned long long sum_exec_runtime;
219 };
220
221 /* Alternate field names when used on cache expirations: */
222 #define virt_exp utime
223 #define prof_exp stime
224 #define sched_exp sum_exec_runtime
225
226 enum vtime_state {
227 /* Task is sleeping or running in a CPU with VTIME inactive: */
228 VTIME_INACTIVE = 0,
229 /* Task runs in userspace in a CPU with VTIME active: */
230 VTIME_USER,
231 /* Task runs in kernelspace in a CPU with VTIME active: */
232 VTIME_SYS,
233 };
234
235 struct vtime {
236 seqcount_t seqcount;
237 unsigned long long starttime;
238 enum vtime_state state;
239 u64 utime;
240 u64 stime;
241 u64 gtime;
242 };
243
244 struct sched_info {
245 #ifdef CONFIG_SCHED_INFO
246 /* Cumulative counters: */
247
248 /* # of times we have run on this CPU: */
249 unsigned long pcount;
250
251 /* Time spent waiting on a runqueue: */
252 unsigned long long run_delay;
253
254 /* Timestamps: */
255
256 /* When did we last run on a CPU? */
257 unsigned long long last_arrival;
258
259 /* When were we last queued to run? */
260 unsigned long long last_queued;
261
262 #endif /* CONFIG_SCHED_INFO */
263 };
264
265 /*
266 * Integer metrics need fixed point arithmetic, e.g., sched/fair
267 * has a few: load, load_avg, util_avg, freq, and capacity.
268 *
269 * We define a basic fixed point arithmetic range, and then formalize
270 * all these metrics based on that basic range.
271 */
272 # define SCHED_FIXEDPOINT_SHIFT 10
273 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
274
275 struct load_weight {
276 unsigned long weight;
277 u32 inv_weight;
278 };
279
280 /*
281 * The load_avg/util_avg accumulates an infinite geometric series
282 * (see __update_load_avg() in kernel/sched/fair.c).
283 *
284 * [load_avg definition]
285 *
286 * load_avg = runnable% * scale_load_down(load)
287 *
288 * where runnable% is the time ratio that a sched_entity is runnable.
289 * For cfs_rq, it is the aggregated load_avg of all runnable and
290 * blocked sched_entities.
291 *
292 * load_avg may also take frequency scaling into account:
293 *
294 * load_avg = runnable% * scale_load_down(load) * freq%
295 *
296 * where freq% is the CPU frequency normalized to the highest frequency.
297 *
298 * [util_avg definition]
299 *
300 * util_avg = running% * SCHED_CAPACITY_SCALE
301 *
302 * where running% is the time ratio that a sched_entity is running on
303 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
304 * and blocked sched_entities.
305 *
306 * util_avg may also factor frequency scaling and CPU capacity scaling:
307 *
308 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
309 *
310 * where freq% is the same as above, and capacity% is the CPU capacity
311 * normalized to the greatest capacity (due to uarch differences, etc).
312 *
313 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
314 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
315 * we therefore scale them to as large a range as necessary. This is for
316 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
317 *
318 * [Overflow issue]
319 *
320 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
321 * with the highest load (=88761), always runnable on a single cfs_rq,
322 * and should not overflow as the number already hits PID_MAX_LIMIT.
323 *
324 * For all other cases (including 32-bit kernels), struct load_weight's
325 * weight will overflow first before we do, because:
326 *
327 * Max(load_avg) <= Max(load.weight)
328 *
329 * Then it is the load_weight's responsibility to consider overflow
330 * issues.
331 */
332 struct sched_avg {
333 u64 last_update_time;
334 u64 load_sum;
335 u32 util_sum;
336 u32 period_contrib;
337 unsigned long load_avg;
338 unsigned long util_avg;
339 };
340
341 struct sched_statistics {
342 #ifdef CONFIG_SCHEDSTATS
343 u64 wait_start;
344 u64 wait_max;
345 u64 wait_count;
346 u64 wait_sum;
347 u64 iowait_count;
348 u64 iowait_sum;
349
350 u64 sleep_start;
351 u64 sleep_max;
352 s64 sum_sleep_runtime;
353
354 u64 block_start;
355 u64 block_max;
356 u64 exec_max;
357 u64 slice_max;
358
359 u64 nr_migrations_cold;
360 u64 nr_failed_migrations_affine;
361 u64 nr_failed_migrations_running;
362 u64 nr_failed_migrations_hot;
363 u64 nr_forced_migrations;
364
365 u64 nr_wakeups;
366 u64 nr_wakeups_sync;
367 u64 nr_wakeups_migrate;
368 u64 nr_wakeups_local;
369 u64 nr_wakeups_remote;
370 u64 nr_wakeups_affine;
371 u64 nr_wakeups_affine_attempts;
372 u64 nr_wakeups_passive;
373 u64 nr_wakeups_idle;
374 #endif
375 };
376
377 struct sched_entity {
378 /* For load-balancing: */
379 struct load_weight load;
380 struct rb_node run_node;
381 struct list_head group_node;
382 unsigned int on_rq;
383
384 u64 exec_start;
385 u64 sum_exec_runtime;
386 u64 vruntime;
387 u64 prev_sum_exec_runtime;
388
389 u64 nr_migrations;
390
391 struct sched_statistics statistics;
392
393 #ifdef CONFIG_FAIR_GROUP_SCHED
394 int depth;
395 struct sched_entity *parent;
396 /* rq on which this entity is (to be) queued: */
397 struct cfs_rq *cfs_rq;
398 /* rq "owned" by this entity/group: */
399 struct cfs_rq *my_q;
400 #endif
401
402 #ifdef CONFIG_SMP
403 /*
404 * Per entity load average tracking.
405 *
406 * Put into separate cache line so it does not
407 * collide with read-mostly values above.
408 */
409 struct sched_avg avg ____cacheline_aligned_in_smp;
410 #endif
411 };
412
413 struct sched_rt_entity {
414 struct list_head run_list;
415 unsigned long timeout;
416 unsigned long watchdog_stamp;
417 unsigned int time_slice;
418 unsigned short on_rq;
419 unsigned short on_list;
420
421 struct sched_rt_entity *back;
422 #ifdef CONFIG_RT_GROUP_SCHED
423 struct sched_rt_entity *parent;
424 /* rq on which this entity is (to be) queued: */
425 struct rt_rq *rt_rq;
426 /* rq "owned" by this entity/group: */
427 struct rt_rq *my_q;
428 #endif
429 } __randomize_layout;
430
431 struct sched_dl_entity {
432 struct rb_node rb_node;
433
434 /*
435 * Original scheduling parameters. Copied here from sched_attr
436 * during sched_setattr(), they will remain the same until
437 * the next sched_setattr().
438 */
439 u64 dl_runtime; /* Maximum runtime for each instance */
440 u64 dl_deadline; /* Relative deadline of each instance */
441 u64 dl_period; /* Separation of two instances (period) */
442 u64 dl_bw; /* dl_runtime / dl_period */
443 u64 dl_density; /* dl_runtime / dl_deadline */
444
445 /*
446 * Actual scheduling parameters. Initialized with the values above,
447 * they are continously updated during task execution. Note that
448 * the remaining runtime could be < 0 in case we are in overrun.
449 */
450 s64 runtime; /* Remaining runtime for this instance */
451 u64 deadline; /* Absolute deadline for this instance */
452 unsigned int flags; /* Specifying the scheduler behaviour */
453
454 /*
455 * Some bool flags:
456 *
457 * @dl_throttled tells if we exhausted the runtime. If so, the
458 * task has to wait for a replenishment to be performed at the
459 * next firing of dl_timer.
460 *
461 * @dl_boosted tells if we are boosted due to DI. If so we are
462 * outside bandwidth enforcement mechanism (but only until we
463 * exit the critical section);
464 *
465 * @dl_yielded tells if task gave up the CPU before consuming
466 * all its available runtime during the last job.
467 *
468 * @dl_non_contending tells if the task is inactive while still
469 * contributing to the active utilization. In other words, it
470 * indicates if the inactive timer has been armed and its handler
471 * has not been executed yet. This flag is useful to avoid race
472 * conditions between the inactive timer handler and the wakeup
473 * code.
474 */
475 int dl_throttled;
476 int dl_boosted;
477 int dl_yielded;
478 int dl_non_contending;
479
480 /*
481 * Bandwidth enforcement timer. Each -deadline task has its
482 * own bandwidth to be enforced, thus we need one timer per task.
483 */
484 struct hrtimer dl_timer;
485
486 /*
487 * Inactive timer, responsible for decreasing the active utilization
488 * at the "0-lag time". When a -deadline task blocks, it contributes
489 * to GRUB's active utilization until the "0-lag time", hence a
490 * timer is needed to decrease the active utilization at the correct
491 * time.
492 */
493 struct hrtimer inactive_timer;
494 };
495
496 union rcu_special {
497 struct {
498 u8 blocked;
499 u8 need_qs;
500 u8 exp_need_qs;
501
502 /* Otherwise the compiler can store garbage here: */
503 u8 pad;
504 } b; /* Bits. */
505 u32 s; /* Set of bits. */
506 };
507
508 enum perf_event_task_context {
509 perf_invalid_context = -1,
510 perf_hw_context = 0,
511 perf_sw_context,
512 perf_nr_task_contexts,
513 };
514
515 struct wake_q_node {
516 struct wake_q_node *next;
517 };
518
519 struct task_struct {
520 #ifdef CONFIG_THREAD_INFO_IN_TASK
521 /*
522 * For reasons of header soup (see current_thread_info()), this
523 * must be the first element of task_struct.
524 */
525 struct thread_info thread_info;
526 #endif
527 /* -1 unrunnable, 0 runnable, >0 stopped: */
528 volatile long state;
529
530 /*
531 * This begins the randomizable portion of task_struct. Only
532 * scheduling-critical items should be added above here.
533 */
534 randomized_struct_fields_start
535
536 void *stack;
537 atomic_t usage;
538 /* Per task flags (PF_*), defined further below: */
539 unsigned int flags;
540 unsigned int ptrace;
541
542 #ifdef CONFIG_SMP
543 struct llist_node wake_entry;
544 int on_cpu;
545 #ifdef CONFIG_THREAD_INFO_IN_TASK
546 /* Current CPU: */
547 unsigned int cpu;
548 #endif
549 unsigned int wakee_flips;
550 unsigned long wakee_flip_decay_ts;
551 struct task_struct *last_wakee;
552
553 int wake_cpu;
554 #endif
555 int on_rq;
556
557 int prio;
558 int static_prio;
559 int normal_prio;
560 unsigned int rt_priority;
561
562 const struct sched_class *sched_class;
563 struct sched_entity se;
564 struct sched_rt_entity rt;
565 #ifdef CONFIG_CGROUP_SCHED
566 struct task_group *sched_task_group;
567 #endif
568 struct sched_dl_entity dl;
569
570 #ifdef CONFIG_PREEMPT_NOTIFIERS
571 /* List of struct preempt_notifier: */
572 struct hlist_head preempt_notifiers;
573 #endif
574
575 #ifdef CONFIG_BLK_DEV_IO_TRACE
576 unsigned int btrace_seq;
577 #endif
578
579 unsigned int policy;
580 int nr_cpus_allowed;
581 cpumask_t cpus_allowed;
582
583 #ifdef CONFIG_PREEMPT_RCU
584 int rcu_read_lock_nesting;
585 union rcu_special rcu_read_unlock_special;
586 struct list_head rcu_node_entry;
587 struct rcu_node *rcu_blocked_node;
588 #endif /* #ifdef CONFIG_PREEMPT_RCU */
589
590 #ifdef CONFIG_TASKS_RCU
591 unsigned long rcu_tasks_nvcsw;
592 bool rcu_tasks_holdout;
593 struct list_head rcu_tasks_holdout_list;
594 int rcu_tasks_idle_cpu;
595 #endif /* #ifdef CONFIG_TASKS_RCU */
596
597 struct sched_info sched_info;
598
599 struct list_head tasks;
600 #ifdef CONFIG_SMP
601 struct plist_node pushable_tasks;
602 struct rb_node pushable_dl_tasks;
603 #endif
604
605 struct mm_struct *mm;
606 struct mm_struct *active_mm;
607
608 /* Per-thread vma caching: */
609 struct vmacache vmacache;
610
611 #ifdef SPLIT_RSS_COUNTING
612 struct task_rss_stat rss_stat;
613 #endif
614 int exit_state;
615 int exit_code;
616 int exit_signal;
617 /* The signal sent when the parent dies: */
618 int pdeath_signal;
619 /* JOBCTL_*, siglock protected: */
620 unsigned long jobctl;
621
622 /* Used for emulating ABI behavior of previous Linux versions: */
623 unsigned int personality;
624
625 /* Scheduler bits, serialized by scheduler locks: */
626 unsigned sched_reset_on_fork:1;
627 unsigned sched_contributes_to_load:1;
628 unsigned sched_migrated:1;
629 unsigned sched_remote_wakeup:1;
630 /* Force alignment to the next boundary: */
631 unsigned :0;
632
633 /* Unserialized, strictly 'current' */
634
635 /* Bit to tell LSMs we're in execve(): */
636 unsigned in_execve:1;
637 unsigned in_iowait:1;
638 #ifndef TIF_RESTORE_SIGMASK
639 unsigned restore_sigmask:1;
640 #endif
641 #ifdef CONFIG_MEMCG
642 unsigned memcg_may_oom:1;
643 #ifndef CONFIG_SLOB
644 unsigned memcg_kmem_skip_account:1;
645 #endif
646 #endif
647 #ifdef CONFIG_COMPAT_BRK
648 unsigned brk_randomized:1;
649 #endif
650 #ifdef CONFIG_CGROUPS
651 /* disallow userland-initiated cgroup migration */
652 unsigned no_cgroup_migration:1;
653 #endif
654
655 unsigned long atomic_flags; /* Flags requiring atomic access. */
656
657 struct restart_block restart_block;
658
659 pid_t pid;
660 pid_t tgid;
661
662 #ifdef CONFIG_CC_STACKPROTECTOR
663 /* Canary value for the -fstack-protector GCC feature: */
664 unsigned long stack_canary;
665 #endif
666 /*
667 * Pointers to the (original) parent process, youngest child, younger sibling,
668 * older sibling, respectively. (p->father can be replaced with
669 * p->real_parent->pid)
670 */
671
672 /* Real parent process: */
673 struct task_struct __rcu *real_parent;
674
675 /* Recipient of SIGCHLD, wait4() reports: */
676 struct task_struct __rcu *parent;
677
678 /*
679 * Children/sibling form the list of natural children:
680 */
681 struct list_head children;
682 struct list_head sibling;
683 struct task_struct *group_leader;
684
685 /*
686 * 'ptraced' is the list of tasks this task is using ptrace() on.
687 *
688 * This includes both natural children and PTRACE_ATTACH targets.
689 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
690 */
691 struct list_head ptraced;
692 struct list_head ptrace_entry;
693
694 /* PID/PID hash table linkage. */
695 struct pid_link pids[PIDTYPE_MAX];
696 struct list_head thread_group;
697 struct list_head thread_node;
698
699 struct completion *vfork_done;
700
701 /* CLONE_CHILD_SETTID: */
702 int __user *set_child_tid;
703
704 /* CLONE_CHILD_CLEARTID: */
705 int __user *clear_child_tid;
706
707 u64 utime;
708 u64 stime;
709 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
710 u64 utimescaled;
711 u64 stimescaled;
712 #endif
713 u64 gtime;
714 struct prev_cputime prev_cputime;
715 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
716 struct vtime vtime;
717 #endif
718
719 #ifdef CONFIG_NO_HZ_FULL
720 atomic_t tick_dep_mask;
721 #endif
722 /* Context switch counts: */
723 unsigned long nvcsw;
724 unsigned long nivcsw;
725
726 /* Monotonic time in nsecs: */
727 u64 start_time;
728
729 /* Boot based time in nsecs: */
730 u64 real_start_time;
731
732 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
733 unsigned long min_flt;
734 unsigned long maj_flt;
735
736 #ifdef CONFIG_POSIX_TIMERS
737 struct task_cputime cputime_expires;
738 struct list_head cpu_timers[3];
739 #endif
740
741 /* Process credentials: */
742
743 /* Tracer's credentials at attach: */
744 const struct cred __rcu *ptracer_cred;
745
746 /* Objective and real subjective task credentials (COW): */
747 const struct cred __rcu *real_cred;
748
749 /* Effective (overridable) subjective task credentials (COW): */
750 const struct cred __rcu *cred;
751
752 /*
753 * executable name, excluding path.
754 *
755 * - normally initialized setup_new_exec()
756 * - access it with [gs]et_task_comm()
757 * - lock it with task_lock()
758 */
759 char comm[TASK_COMM_LEN];
760
761 struct nameidata *nameidata;
762
763 #ifdef CONFIG_SYSVIPC
764 struct sysv_sem sysvsem;
765 struct sysv_shm sysvshm;
766 #endif
767 #ifdef CONFIG_DETECT_HUNG_TASK
768 unsigned long last_switch_count;
769 #endif
770 /* Filesystem information: */
771 struct fs_struct *fs;
772
773 /* Open file information: */
774 struct files_struct *files;
775
776 /* Namespaces: */
777 struct nsproxy *nsproxy;
778
779 /* Signal handlers: */
780 struct signal_struct *signal;
781 struct sighand_struct *sighand;
782 sigset_t blocked;
783 sigset_t real_blocked;
784 /* Restored if set_restore_sigmask() was used: */
785 sigset_t saved_sigmask;
786 struct sigpending pending;
787 unsigned long sas_ss_sp;
788 size_t sas_ss_size;
789 unsigned int sas_ss_flags;
790
791 struct callback_head *task_works;
792
793 struct audit_context *audit_context;
794 #ifdef CONFIG_AUDITSYSCALL
795 kuid_t loginuid;
796 unsigned int sessionid;
797 #endif
798 struct seccomp seccomp;
799
800 /* Thread group tracking: */
801 u32 parent_exec_id;
802 u32 self_exec_id;
803
804 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
805 spinlock_t alloc_lock;
806
807 /* Protection of the PI data structures: */
808 raw_spinlock_t pi_lock;
809
810 struct wake_q_node wake_q;
811
812 #ifdef CONFIG_RT_MUTEXES
813 /* PI waiters blocked on a rt_mutex held by this task: */
814 struct rb_root pi_waiters;
815 struct rb_node *pi_waiters_leftmost;
816 /* Updated under owner's pi_lock and rq lock */
817 struct task_struct *pi_top_task;
818 /* Deadlock detection and priority inheritance handling: */
819 struct rt_mutex_waiter *pi_blocked_on;
820 #endif
821
822 #ifdef CONFIG_DEBUG_MUTEXES
823 /* Mutex deadlock detection: */
824 struct mutex_waiter *blocked_on;
825 #endif
826
827 #ifdef CONFIG_TRACE_IRQFLAGS
828 unsigned int irq_events;
829 unsigned long hardirq_enable_ip;
830 unsigned long hardirq_disable_ip;
831 unsigned int hardirq_enable_event;
832 unsigned int hardirq_disable_event;
833 int hardirqs_enabled;
834 int hardirq_context;
835 unsigned long softirq_disable_ip;
836 unsigned long softirq_enable_ip;
837 unsigned int softirq_disable_event;
838 unsigned int softirq_enable_event;
839 int softirqs_enabled;
840 int softirq_context;
841 #endif
842
843 #ifdef CONFIG_LOCKDEP
844 # define MAX_LOCK_DEPTH 48UL
845 u64 curr_chain_key;
846 int lockdep_depth;
847 unsigned int lockdep_recursion;
848 struct held_lock held_locks[MAX_LOCK_DEPTH];
849 gfp_t lockdep_reclaim_gfp;
850 #endif
851
852 #ifdef CONFIG_UBSAN
853 unsigned int in_ubsan;
854 #endif
855
856 /* Journalling filesystem info: */
857 void *journal_info;
858
859 /* Stacked block device info: */
860 struct bio_list *bio_list;
861
862 #ifdef CONFIG_BLOCK
863 /* Stack plugging: */
864 struct blk_plug *plug;
865 #endif
866
867 /* VM state: */
868 struct reclaim_state *reclaim_state;
869
870 struct backing_dev_info *backing_dev_info;
871
872 struct io_context *io_context;
873
874 /* Ptrace state: */
875 unsigned long ptrace_message;
876 siginfo_t *last_siginfo;
877
878 struct task_io_accounting ioac;
879 #ifdef CONFIG_TASK_XACCT
880 /* Accumulated RSS usage: */
881 u64 acct_rss_mem1;
882 /* Accumulated virtual memory usage: */
883 u64 acct_vm_mem1;
884 /* stime + utime since last update: */
885 u64 acct_timexpd;
886 #endif
887 #ifdef CONFIG_CPUSETS
888 /* Protected by ->alloc_lock: */
889 nodemask_t mems_allowed;
890 /* Seqence number to catch updates: */
891 seqcount_t mems_allowed_seq;
892 int cpuset_mem_spread_rotor;
893 int cpuset_slab_spread_rotor;
894 #endif
895 #ifdef CONFIG_CGROUPS
896 /* Control Group info protected by css_set_lock: */
897 struct css_set __rcu *cgroups;
898 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
899 struct list_head cg_list;
900 #endif
901 #ifdef CONFIG_INTEL_RDT
902 u32 closid;
903 u32 rmid;
904 #endif
905 #ifdef CONFIG_FUTEX
906 struct robust_list_head __user *robust_list;
907 #ifdef CONFIG_COMPAT
908 struct compat_robust_list_head __user *compat_robust_list;
909 #endif
910 struct list_head pi_state_list;
911 struct futex_pi_state *pi_state_cache;
912 #endif
913 #ifdef CONFIG_PERF_EVENTS
914 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
915 struct mutex perf_event_mutex;
916 struct list_head perf_event_list;
917 #endif
918 #ifdef CONFIG_DEBUG_PREEMPT
919 unsigned long preempt_disable_ip;
920 #endif
921 #ifdef CONFIG_NUMA
922 /* Protected by alloc_lock: */
923 struct mempolicy *mempolicy;
924 short il_prev;
925 short pref_node_fork;
926 #endif
927 #ifdef CONFIG_NUMA_BALANCING
928 int numa_scan_seq;
929 unsigned int numa_scan_period;
930 unsigned int numa_scan_period_max;
931 int numa_preferred_nid;
932 unsigned long numa_migrate_retry;
933 /* Migration stamp: */
934 u64 node_stamp;
935 u64 last_task_numa_placement;
936 u64 last_sum_exec_runtime;
937 struct callback_head numa_work;
938
939 struct list_head numa_entry;
940 struct numa_group *numa_group;
941
942 /*
943 * numa_faults is an array split into four regions:
944 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
945 * in this precise order.
946 *
947 * faults_memory: Exponential decaying average of faults on a per-node
948 * basis. Scheduling placement decisions are made based on these
949 * counts. The values remain static for the duration of a PTE scan.
950 * faults_cpu: Track the nodes the process was running on when a NUMA
951 * hinting fault was incurred.
952 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
953 * during the current scan window. When the scan completes, the counts
954 * in faults_memory and faults_cpu decay and these values are copied.
955 */
956 unsigned long *numa_faults;
957 unsigned long total_numa_faults;
958
959 /*
960 * numa_faults_locality tracks if faults recorded during the last
961 * scan window were remote/local or failed to migrate. The task scan
962 * period is adapted based on the locality of the faults with different
963 * weights depending on whether they were shared or private faults
964 */
965 unsigned long numa_faults_locality[3];
966
967 unsigned long numa_pages_migrated;
968 #endif /* CONFIG_NUMA_BALANCING */
969
970 struct tlbflush_unmap_batch tlb_ubc;
971
972 struct rcu_head rcu;
973
974 /* Cache last used pipe for splice(): */
975 struct pipe_inode_info *splice_pipe;
976
977 struct page_frag task_frag;
978
979 #ifdef CONFIG_TASK_DELAY_ACCT
980 struct task_delay_info *delays;
981 #endif
982
983 #ifdef CONFIG_FAULT_INJECTION
984 int make_it_fail;
985 unsigned int fail_nth;
986 #endif
987 /*
988 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
989 * balance_dirty_pages() for a dirty throttling pause:
990 */
991 int nr_dirtied;
992 int nr_dirtied_pause;
993 /* Start of a write-and-pause period: */
994 unsigned long dirty_paused_when;
995
996 #ifdef CONFIG_LATENCYTOP
997 int latency_record_count;
998 struct latency_record latency_record[LT_SAVECOUNT];
999 #endif
1000 /*
1001 * Time slack values; these are used to round up poll() and
1002 * select() etc timeout values. These are in nanoseconds.
1003 */
1004 u64 timer_slack_ns;
1005 u64 default_timer_slack_ns;
1006
1007 #ifdef CONFIG_KASAN
1008 unsigned int kasan_depth;
1009 #endif
1010
1011 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1012 /* Index of current stored address in ret_stack: */
1013 int curr_ret_stack;
1014
1015 /* Stack of return addresses for return function tracing: */
1016 struct ftrace_ret_stack *ret_stack;
1017
1018 /* Timestamp for last schedule: */
1019 unsigned long long ftrace_timestamp;
1020
1021 /*
1022 * Number of functions that haven't been traced
1023 * because of depth overrun:
1024 */
1025 atomic_t trace_overrun;
1026
1027 /* Pause tracing: */
1028 atomic_t tracing_graph_pause;
1029 #endif
1030
1031 #ifdef CONFIG_TRACING
1032 /* State flags for use by tracers: */
1033 unsigned long trace;
1034
1035 /* Bitmask and counter of trace recursion: */
1036 unsigned long trace_recursion;
1037 #endif /* CONFIG_TRACING */
1038
1039 #ifdef CONFIG_KCOV
1040 /* Coverage collection mode enabled for this task (0 if disabled): */
1041 enum kcov_mode kcov_mode;
1042
1043 /* Size of the kcov_area: */
1044 unsigned int kcov_size;
1045
1046 /* Buffer for coverage collection: */
1047 void *kcov_area;
1048
1049 /* KCOV descriptor wired with this task or NULL: */
1050 struct kcov *kcov;
1051 #endif
1052
1053 #ifdef CONFIG_MEMCG
1054 struct mem_cgroup *memcg_in_oom;
1055 gfp_t memcg_oom_gfp_mask;
1056 int memcg_oom_order;
1057
1058 /* Number of pages to reclaim on returning to userland: */
1059 unsigned int memcg_nr_pages_over_high;
1060 #endif
1061
1062 #ifdef CONFIG_UPROBES
1063 struct uprobe_task *utask;
1064 #endif
1065 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1066 unsigned int sequential_io;
1067 unsigned int sequential_io_avg;
1068 #endif
1069 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1070 unsigned long task_state_change;
1071 #endif
1072 int pagefault_disabled;
1073 #ifdef CONFIG_MMU
1074 struct task_struct *oom_reaper_list;
1075 #endif
1076 #ifdef CONFIG_VMAP_STACK
1077 struct vm_struct *stack_vm_area;
1078 #endif
1079 #ifdef CONFIG_THREAD_INFO_IN_TASK
1080 /* A live task holds one reference: */
1081 atomic_t stack_refcount;
1082 #endif
1083 #ifdef CONFIG_LIVEPATCH
1084 int patch_state;
1085 #endif
1086 #ifdef CONFIG_SECURITY
1087 /* Used by LSM modules for access restriction: */
1088 void *security;
1089 #endif
1090
1091 /*
1092 * New fields for task_struct should be added above here, so that
1093 * they are included in the randomized portion of task_struct.
1094 */
1095 randomized_struct_fields_end
1096
1097 /* CPU-specific state of this task: */
1098 struct thread_struct thread;
1099
1100 /*
1101 * WARNING: on x86, 'thread_struct' contains a variable-sized
1102 * structure. It *MUST* be at the end of 'task_struct'.
1103 *
1104 * Do not put anything below here!
1105 */
1106 };
1107
1108 static inline struct pid *task_pid(struct task_struct *task)
1109 {
1110 return task->pids[PIDTYPE_PID].pid;
1111 }
1112
1113 static inline struct pid *task_tgid(struct task_struct *task)
1114 {
1115 return task->group_leader->pids[PIDTYPE_PID].pid;
1116 }
1117
1118 /*
1119 * Without tasklist or RCU lock it is not safe to dereference
1120 * the result of task_pgrp/task_session even if task == current,
1121 * we can race with another thread doing sys_setsid/sys_setpgid.
1122 */
1123 static inline struct pid *task_pgrp(struct task_struct *task)
1124 {
1125 return task->group_leader->pids[PIDTYPE_PGID].pid;
1126 }
1127
1128 static inline struct pid *task_session(struct task_struct *task)
1129 {
1130 return task->group_leader->pids[PIDTYPE_SID].pid;
1131 }
1132
1133 /*
1134 * the helpers to get the task's different pids as they are seen
1135 * from various namespaces
1136 *
1137 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1138 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1139 * current.
1140 * task_xid_nr_ns() : id seen from the ns specified;
1141 *
1142 * see also pid_nr() etc in include/linux/pid.h
1143 */
1144 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1145
1146 static inline pid_t task_pid_nr(struct task_struct *tsk)
1147 {
1148 return tsk->pid;
1149 }
1150
1151 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1152 {
1153 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1154 }
1155
1156 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1157 {
1158 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1159 }
1160
1161
1162 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1163 {
1164 return tsk->tgid;
1165 }
1166
1167 /**
1168 * pid_alive - check that a task structure is not stale
1169 * @p: Task structure to be checked.
1170 *
1171 * Test if a process is not yet dead (at most zombie state)
1172 * If pid_alive fails, then pointers within the task structure
1173 * can be stale and must not be dereferenced.
1174 *
1175 * Return: 1 if the process is alive. 0 otherwise.
1176 */
1177 static inline int pid_alive(const struct task_struct *p)
1178 {
1179 return p->pids[PIDTYPE_PID].pid != NULL;
1180 }
1181
1182 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1183 {
1184 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1185 }
1186
1187 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1188 {
1189 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1190 }
1191
1192
1193 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1194 {
1195 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1196 }
1197
1198 static inline pid_t task_session_vnr(struct task_struct *tsk)
1199 {
1200 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1201 }
1202
1203 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1204 {
1205 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1206 }
1207
1208 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1209 {
1210 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1211 }
1212
1213 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1214 {
1215 pid_t pid = 0;
1216
1217 rcu_read_lock();
1218 if (pid_alive(tsk))
1219 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1220 rcu_read_unlock();
1221
1222 return pid;
1223 }
1224
1225 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1226 {
1227 return task_ppid_nr_ns(tsk, &init_pid_ns);
1228 }
1229
1230 /* Obsolete, do not use: */
1231 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1232 {
1233 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1234 }
1235
1236 /**
1237 * is_global_init - check if a task structure is init. Since init
1238 * is free to have sub-threads we need to check tgid.
1239 * @tsk: Task structure to be checked.
1240 *
1241 * Check if a task structure is the first user space task the kernel created.
1242 *
1243 * Return: 1 if the task structure is init. 0 otherwise.
1244 */
1245 static inline int is_global_init(struct task_struct *tsk)
1246 {
1247 return task_tgid_nr(tsk) == 1;
1248 }
1249
1250 extern struct pid *cad_pid;
1251
1252 /*
1253 * Per process flags
1254 */
1255 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1256 #define PF_EXITING 0x00000004 /* Getting shut down */
1257 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1258 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1259 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1260 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1261 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1262 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1263 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1264 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1265 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1266 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1267 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1268 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1269 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1270 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1271 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1272 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1273 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1274 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1275 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1276 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1277 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1278 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1279 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1280 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1281 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1282 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1283
1284 /*
1285 * Only the _current_ task can read/write to tsk->flags, but other
1286 * tasks can access tsk->flags in readonly mode for example
1287 * with tsk_used_math (like during threaded core dumping).
1288 * There is however an exception to this rule during ptrace
1289 * or during fork: the ptracer task is allowed to write to the
1290 * child->flags of its traced child (same goes for fork, the parent
1291 * can write to the child->flags), because we're guaranteed the
1292 * child is not running and in turn not changing child->flags
1293 * at the same time the parent does it.
1294 */
1295 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1296 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1297 #define clear_used_math() clear_stopped_child_used_math(current)
1298 #define set_used_math() set_stopped_child_used_math(current)
1299
1300 #define conditional_stopped_child_used_math(condition, child) \
1301 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1302
1303 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1304
1305 #define copy_to_stopped_child_used_math(child) \
1306 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1307
1308 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1309 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1310 #define used_math() tsk_used_math(current)
1311
1312 static inline bool is_percpu_thread(void)
1313 {
1314 #ifdef CONFIG_SMP
1315 return (current->flags & PF_NO_SETAFFINITY) &&
1316 (current->nr_cpus_allowed == 1);
1317 #else
1318 return true;
1319 #endif
1320 }
1321
1322 /* Per-process atomic flags. */
1323 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1324 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1325 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1326 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1327 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1328
1329 #define TASK_PFA_TEST(name, func) \
1330 static inline bool task_##func(struct task_struct *p) \
1331 { return test_bit(PFA_##name, &p->atomic_flags); }
1332
1333 #define TASK_PFA_SET(name, func) \
1334 static inline void task_set_##func(struct task_struct *p) \
1335 { set_bit(PFA_##name, &p->atomic_flags); }
1336
1337 #define TASK_PFA_CLEAR(name, func) \
1338 static inline void task_clear_##func(struct task_struct *p) \
1339 { clear_bit(PFA_##name, &p->atomic_flags); }
1340
1341 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1342 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1343
1344 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1345 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1346 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1347
1348 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1349 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1350 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1351
1352 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1353 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1354 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1355
1356 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1357 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1358
1359 static inline void
1360 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1361 {
1362 current->flags &= ~flags;
1363 current->flags |= orig_flags & flags;
1364 }
1365
1366 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1367 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1368 #ifdef CONFIG_SMP
1369 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1370 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1371 #else
1372 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1373 {
1374 }
1375 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1376 {
1377 if (!cpumask_test_cpu(0, new_mask))
1378 return -EINVAL;
1379 return 0;
1380 }
1381 #endif
1382
1383 #ifndef cpu_relax_yield
1384 #define cpu_relax_yield() cpu_relax()
1385 #endif
1386
1387 extern int yield_to(struct task_struct *p, bool preempt);
1388 extern void set_user_nice(struct task_struct *p, long nice);
1389 extern int task_prio(const struct task_struct *p);
1390
1391 /**
1392 * task_nice - return the nice value of a given task.
1393 * @p: the task in question.
1394 *
1395 * Return: The nice value [ -20 ... 0 ... 19 ].
1396 */
1397 static inline int task_nice(const struct task_struct *p)
1398 {
1399 return PRIO_TO_NICE((p)->static_prio);
1400 }
1401
1402 extern int can_nice(const struct task_struct *p, const int nice);
1403 extern int task_curr(const struct task_struct *p);
1404 extern int idle_cpu(int cpu);
1405 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1406 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1407 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1408 extern struct task_struct *idle_task(int cpu);
1409
1410 /**
1411 * is_idle_task - is the specified task an idle task?
1412 * @p: the task in question.
1413 *
1414 * Return: 1 if @p is an idle task. 0 otherwise.
1415 */
1416 static inline bool is_idle_task(const struct task_struct *p)
1417 {
1418 return !!(p->flags & PF_IDLE);
1419 }
1420
1421 extern struct task_struct *curr_task(int cpu);
1422 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1423
1424 void yield(void);
1425
1426 union thread_union {
1427 #ifndef CONFIG_THREAD_INFO_IN_TASK
1428 struct thread_info thread_info;
1429 #endif
1430 unsigned long stack[THREAD_SIZE/sizeof(long)];
1431 };
1432
1433 #ifdef CONFIG_THREAD_INFO_IN_TASK
1434 static inline struct thread_info *task_thread_info(struct task_struct *task)
1435 {
1436 return &task->thread_info;
1437 }
1438 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1439 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1440 #endif
1441
1442 /*
1443 * find a task by one of its numerical ids
1444 *
1445 * find_task_by_pid_ns():
1446 * finds a task by its pid in the specified namespace
1447 * find_task_by_vpid():
1448 * finds a task by its virtual pid
1449 *
1450 * see also find_vpid() etc in include/linux/pid.h
1451 */
1452
1453 extern struct task_struct *find_task_by_vpid(pid_t nr);
1454 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1455
1456 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1457 extern int wake_up_process(struct task_struct *tsk);
1458 extern void wake_up_new_task(struct task_struct *tsk);
1459
1460 #ifdef CONFIG_SMP
1461 extern void kick_process(struct task_struct *tsk);
1462 #else
1463 static inline void kick_process(struct task_struct *tsk) { }
1464 #endif
1465
1466 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1467
1468 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1469 {
1470 __set_task_comm(tsk, from, false);
1471 }
1472
1473 extern char *get_task_comm(char *to, struct task_struct *tsk);
1474
1475 #ifdef CONFIG_SMP
1476 void scheduler_ipi(void);
1477 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1478 #else
1479 static inline void scheduler_ipi(void) { }
1480 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1481 {
1482 return 1;
1483 }
1484 #endif
1485
1486 /*
1487 * Set thread flags in other task's structures.
1488 * See asm/thread_info.h for TIF_xxxx flags available:
1489 */
1490 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1491 {
1492 set_ti_thread_flag(task_thread_info(tsk), flag);
1493 }
1494
1495 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1496 {
1497 clear_ti_thread_flag(task_thread_info(tsk), flag);
1498 }
1499
1500 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1501 {
1502 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1503 }
1504
1505 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1506 {
1507 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1508 }
1509
1510 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1511 {
1512 return test_ti_thread_flag(task_thread_info(tsk), flag);
1513 }
1514
1515 static inline void set_tsk_need_resched(struct task_struct *tsk)
1516 {
1517 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1518 }
1519
1520 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1521 {
1522 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1523 }
1524
1525 static inline int test_tsk_need_resched(struct task_struct *tsk)
1526 {
1527 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1528 }
1529
1530 /*
1531 * cond_resched() and cond_resched_lock(): latency reduction via
1532 * explicit rescheduling in places that are safe. The return
1533 * value indicates whether a reschedule was done in fact.
1534 * cond_resched_lock() will drop the spinlock before scheduling,
1535 * cond_resched_softirq() will enable bhs before scheduling.
1536 */
1537 #ifndef CONFIG_PREEMPT
1538 extern int _cond_resched(void);
1539 #else
1540 static inline int _cond_resched(void) { return 0; }
1541 #endif
1542
1543 #define cond_resched() ({ \
1544 ___might_sleep(__FILE__, __LINE__, 0); \
1545 _cond_resched(); \
1546 })
1547
1548 extern int __cond_resched_lock(spinlock_t *lock);
1549
1550 #define cond_resched_lock(lock) ({ \
1551 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1552 __cond_resched_lock(lock); \
1553 })
1554
1555 extern int __cond_resched_softirq(void);
1556
1557 #define cond_resched_softirq() ({ \
1558 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1559 __cond_resched_softirq(); \
1560 })
1561
1562 static inline void cond_resched_rcu(void)
1563 {
1564 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1565 rcu_read_unlock();
1566 cond_resched();
1567 rcu_read_lock();
1568 #endif
1569 }
1570
1571 /*
1572 * Does a critical section need to be broken due to another
1573 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1574 * but a general need for low latency)
1575 */
1576 static inline int spin_needbreak(spinlock_t *lock)
1577 {
1578 #ifdef CONFIG_PREEMPT
1579 return spin_is_contended(lock);
1580 #else
1581 return 0;
1582 #endif
1583 }
1584
1585 static __always_inline bool need_resched(void)
1586 {
1587 return unlikely(tif_need_resched());
1588 }
1589
1590 /*
1591 * Wrappers for p->thread_info->cpu access. No-op on UP.
1592 */
1593 #ifdef CONFIG_SMP
1594
1595 static inline unsigned int task_cpu(const struct task_struct *p)
1596 {
1597 #ifdef CONFIG_THREAD_INFO_IN_TASK
1598 return p->cpu;
1599 #else
1600 return task_thread_info(p)->cpu;
1601 #endif
1602 }
1603
1604 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1605
1606 #else
1607
1608 static inline unsigned int task_cpu(const struct task_struct *p)
1609 {
1610 return 0;
1611 }
1612
1613 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1614 {
1615 }
1616
1617 #endif /* CONFIG_SMP */
1618
1619 /*
1620 * In order to reduce various lock holder preemption latencies provide an
1621 * interface to see if a vCPU is currently running or not.
1622 *
1623 * This allows us to terminate optimistic spin loops and block, analogous to
1624 * the native optimistic spin heuristic of testing if the lock owner task is
1625 * running or not.
1626 */
1627 #ifndef vcpu_is_preempted
1628 # define vcpu_is_preempted(cpu) false
1629 #endif
1630
1631 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1632 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1633
1634 #ifndef TASK_SIZE_OF
1635 #define TASK_SIZE_OF(tsk) TASK_SIZE
1636 #endif
1637
1638 #endif