]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/audit.c
userns: prevent speculative execution
[mirror_ubuntu-artful-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 #include <linux/spinlock.h>
58 #include <linux/rcupdate.h>
59 #include <linux/mutex.h>
60 #include <linux/gfp.h>
61 #include <linux/pid.h>
62 #include <linux/slab.h>
63
64 #include <linux/audit.h>
65
66 #include <net/sock.h>
67 #include <net/netlink.h>
68 #include <linux/skbuff.h>
69 #ifdef CONFIG_SECURITY
70 #include <linux/security.h>
71 #endif
72 #include <linux/freezer.h>
73 #include <linux/pid_namespace.h>
74 #include <net/netns/generic.h>
75
76 #include "audit.h"
77
78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
79 * (Initialization happens after skb_init is called.) */
80 #define AUDIT_DISABLED -1
81 #define AUDIT_UNINITIALIZED 0
82 #define AUDIT_INITIALIZED 1
83 static int audit_initialized;
84
85 #define AUDIT_OFF 0
86 #define AUDIT_ON 1
87 #define AUDIT_LOCKED 2
88 u32 audit_enabled;
89 u32 audit_ever_enabled;
90
91 EXPORT_SYMBOL_GPL(audit_enabled);
92
93 /* Default state when kernel boots without any parameters. */
94 static u32 audit_default;
95
96 /* If auditing cannot proceed, audit_failure selects what happens. */
97 static u32 audit_failure = AUDIT_FAIL_PRINTK;
98
99 /* private audit network namespace index */
100 static unsigned int audit_net_id;
101
102 /**
103 * struct audit_net - audit private network namespace data
104 * @sk: communication socket
105 */
106 struct audit_net {
107 struct sock *sk;
108 };
109
110 /**
111 * struct auditd_connection - kernel/auditd connection state
112 * @pid: auditd PID
113 * @portid: netlink portid
114 * @net: the associated network namespace
115 * @rcu: RCU head
116 *
117 * Description:
118 * This struct is RCU protected; you must either hold the RCU lock for reading
119 * or the associated spinlock for writing.
120 */
121 static struct auditd_connection {
122 struct pid *pid;
123 u32 portid;
124 struct net *net;
125 struct rcu_head rcu;
126 } *auditd_conn = NULL;
127 static DEFINE_SPINLOCK(auditd_conn_lock);
128
129 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
130 * to that number per second. This prevents DoS attacks, but results in
131 * audit records being dropped. */
132 static u32 audit_rate_limit;
133
134 /* Number of outstanding audit_buffers allowed.
135 * When set to zero, this means unlimited. */
136 static u32 audit_backlog_limit = 64;
137 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
138 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
139
140 /* The identity of the user shutting down the audit system. */
141 kuid_t audit_sig_uid = INVALID_UID;
142 pid_t audit_sig_pid = -1;
143 u32 audit_sig_sid = 0;
144
145 /* Records can be lost in several ways:
146 0) [suppressed in audit_alloc]
147 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
148 2) out of memory in audit_log_move [alloc_skb]
149 3) suppressed due to audit_rate_limit
150 4) suppressed due to audit_backlog_limit
151 */
152 static atomic_t audit_lost = ATOMIC_INIT(0);
153
154 /* Hash for inode-based rules */
155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
156
157 static struct kmem_cache *audit_buffer_cache;
158
159 /* queue msgs to send via kauditd_task */
160 static struct sk_buff_head audit_queue;
161 /* queue msgs due to temporary unicast send problems */
162 static struct sk_buff_head audit_retry_queue;
163 /* queue msgs waiting for new auditd connection */
164 static struct sk_buff_head audit_hold_queue;
165
166 /* queue servicing thread */
167 static struct task_struct *kauditd_task;
168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
169
170 /* waitqueue for callers who are blocked on the audit backlog */
171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
172
173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
174 .mask = -1,
175 .features = 0,
176 .lock = 0,};
177
178 static char *audit_feature_names[2] = {
179 "only_unset_loginuid",
180 "loginuid_immutable",
181 };
182
183
184 /* Serialize requests from userspace. */
185 DEFINE_MUTEX(audit_cmd_mutex);
186
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188 * audit records. Since printk uses a 1024 byte buffer, this buffer
189 * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191
192 /* The audit_buffer is used when formatting an audit record. The caller
193 * locks briefly to get the record off the freelist or to allocate the
194 * buffer, and locks briefly to send the buffer to the netlink layer or
195 * to place it on a transmit queue. Multiple audit_buffers can be in
196 * use simultaneously. */
197 struct audit_buffer {
198 struct sk_buff *skb; /* formatted skb ready to send */
199 struct audit_context *ctx; /* NULL or associated context */
200 gfp_t gfp_mask;
201 };
202
203 struct audit_reply {
204 __u32 portid;
205 struct net *net;
206 struct sk_buff *skb;
207 };
208
209 /**
210 * auditd_test_task - Check to see if a given task is an audit daemon
211 * @task: the task to check
212 *
213 * Description:
214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
215 */
216 int auditd_test_task(struct task_struct *task)
217 {
218 int rc;
219 struct auditd_connection *ac;
220
221 rcu_read_lock();
222 ac = rcu_dereference(auditd_conn);
223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 rcu_read_unlock();
225
226 return rc;
227 }
228
229 /**
230 * auditd_pid_vnr - Return the auditd PID relative to the namespace
231 *
232 * Description:
233 * Returns the PID in relation to the namespace, 0 on failure.
234 */
235 static pid_t auditd_pid_vnr(void)
236 {
237 pid_t pid;
238 const struct auditd_connection *ac;
239
240 rcu_read_lock();
241 ac = rcu_dereference(auditd_conn);
242 if (!ac || !ac->pid)
243 pid = 0;
244 else
245 pid = pid_vnr(ac->pid);
246 rcu_read_unlock();
247
248 return pid;
249 }
250
251 /**
252 * audit_get_sk - Return the audit socket for the given network namespace
253 * @net: the destination network namespace
254 *
255 * Description:
256 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
257 * that a reference is held for the network namespace while the sock is in use.
258 */
259 static struct sock *audit_get_sk(const struct net *net)
260 {
261 struct audit_net *aunet;
262
263 if (!net)
264 return NULL;
265
266 aunet = net_generic(net, audit_net_id);
267 return aunet->sk;
268 }
269
270 void audit_panic(const char *message)
271 {
272 switch (audit_failure) {
273 case AUDIT_FAIL_SILENT:
274 break;
275 case AUDIT_FAIL_PRINTK:
276 if (printk_ratelimit())
277 pr_err("%s\n", message);
278 break;
279 case AUDIT_FAIL_PANIC:
280 panic("audit: %s\n", message);
281 break;
282 }
283 }
284
285 static inline int audit_rate_check(void)
286 {
287 static unsigned long last_check = 0;
288 static int messages = 0;
289 static DEFINE_SPINLOCK(lock);
290 unsigned long flags;
291 unsigned long now;
292 unsigned long elapsed;
293 int retval = 0;
294
295 if (!audit_rate_limit) return 1;
296
297 spin_lock_irqsave(&lock, flags);
298 if (++messages < audit_rate_limit) {
299 retval = 1;
300 } else {
301 now = jiffies;
302 elapsed = now - last_check;
303 if (elapsed > HZ) {
304 last_check = now;
305 messages = 0;
306 retval = 1;
307 }
308 }
309 spin_unlock_irqrestore(&lock, flags);
310
311 return retval;
312 }
313
314 /**
315 * audit_log_lost - conditionally log lost audit message event
316 * @message: the message stating reason for lost audit message
317 *
318 * Emit at least 1 message per second, even if audit_rate_check is
319 * throttling.
320 * Always increment the lost messages counter.
321 */
322 void audit_log_lost(const char *message)
323 {
324 static unsigned long last_msg = 0;
325 static DEFINE_SPINLOCK(lock);
326 unsigned long flags;
327 unsigned long now;
328 int print;
329
330 atomic_inc(&audit_lost);
331
332 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
333
334 if (!print) {
335 spin_lock_irqsave(&lock, flags);
336 now = jiffies;
337 if (now - last_msg > HZ) {
338 print = 1;
339 last_msg = now;
340 }
341 spin_unlock_irqrestore(&lock, flags);
342 }
343
344 if (print) {
345 if (printk_ratelimit())
346 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
347 atomic_read(&audit_lost),
348 audit_rate_limit,
349 audit_backlog_limit);
350 audit_panic(message);
351 }
352 }
353
354 static int audit_log_config_change(char *function_name, u32 new, u32 old,
355 int allow_changes)
356 {
357 struct audit_buffer *ab;
358 int rc = 0;
359
360 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
361 if (unlikely(!ab))
362 return rc;
363 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
364 audit_log_session_info(ab);
365 rc = audit_log_task_context(ab);
366 if (rc)
367 allow_changes = 0; /* Something weird, deny request */
368 audit_log_format(ab, " res=%d", allow_changes);
369 audit_log_end(ab);
370 return rc;
371 }
372
373 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
374 {
375 int allow_changes, rc = 0;
376 u32 old = *to_change;
377
378 /* check if we are locked */
379 if (audit_enabled == AUDIT_LOCKED)
380 allow_changes = 0;
381 else
382 allow_changes = 1;
383
384 if (audit_enabled != AUDIT_OFF) {
385 rc = audit_log_config_change(function_name, new, old, allow_changes);
386 if (rc)
387 allow_changes = 0;
388 }
389
390 /* If we are allowed, make the change */
391 if (allow_changes == 1)
392 *to_change = new;
393 /* Not allowed, update reason */
394 else if (rc == 0)
395 rc = -EPERM;
396 return rc;
397 }
398
399 static int audit_set_rate_limit(u32 limit)
400 {
401 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
402 }
403
404 static int audit_set_backlog_limit(u32 limit)
405 {
406 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
407 }
408
409 static int audit_set_backlog_wait_time(u32 timeout)
410 {
411 return audit_do_config_change("audit_backlog_wait_time",
412 &audit_backlog_wait_time, timeout);
413 }
414
415 static int audit_set_enabled(u32 state)
416 {
417 int rc;
418 if (state > AUDIT_LOCKED)
419 return -EINVAL;
420
421 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
422 if (!rc)
423 audit_ever_enabled |= !!state;
424
425 return rc;
426 }
427
428 static int audit_set_failure(u32 state)
429 {
430 if (state != AUDIT_FAIL_SILENT
431 && state != AUDIT_FAIL_PRINTK
432 && state != AUDIT_FAIL_PANIC)
433 return -EINVAL;
434
435 return audit_do_config_change("audit_failure", &audit_failure, state);
436 }
437
438 /**
439 * auditd_conn_free - RCU helper to release an auditd connection struct
440 * @rcu: RCU head
441 *
442 * Description:
443 * Drop any references inside the auditd connection tracking struct and free
444 * the memory.
445 */
446 static void auditd_conn_free(struct rcu_head *rcu)
447 {
448 struct auditd_connection *ac;
449
450 ac = container_of(rcu, struct auditd_connection, rcu);
451 put_pid(ac->pid);
452 put_net(ac->net);
453 kfree(ac);
454 }
455
456 /**
457 * auditd_set - Set/Reset the auditd connection state
458 * @pid: auditd PID
459 * @portid: auditd netlink portid
460 * @net: auditd network namespace pointer
461 *
462 * Description:
463 * This function will obtain and drop network namespace references as
464 * necessary. Returns zero on success, negative values on failure.
465 */
466 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
467 {
468 unsigned long flags;
469 struct auditd_connection *ac_old, *ac_new;
470
471 if (!pid || !net)
472 return -EINVAL;
473
474 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
475 if (!ac_new)
476 return -ENOMEM;
477 ac_new->pid = get_pid(pid);
478 ac_new->portid = portid;
479 ac_new->net = get_net(net);
480
481 spin_lock_irqsave(&auditd_conn_lock, flags);
482 ac_old = rcu_dereference_protected(auditd_conn,
483 lockdep_is_held(&auditd_conn_lock));
484 rcu_assign_pointer(auditd_conn, ac_new);
485 spin_unlock_irqrestore(&auditd_conn_lock, flags);
486
487 if (ac_old)
488 call_rcu(&ac_old->rcu, auditd_conn_free);
489
490 return 0;
491 }
492
493 /**
494 * kauditd_print_skb - Print the audit record to the ring buffer
495 * @skb: audit record
496 *
497 * Whatever the reason, this packet may not make it to the auditd connection
498 * so write it via printk so the information isn't completely lost.
499 */
500 static void kauditd_printk_skb(struct sk_buff *skb)
501 {
502 struct nlmsghdr *nlh = nlmsg_hdr(skb);
503 char *data = nlmsg_data(nlh);
504
505 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
506 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
507 }
508
509 /**
510 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
511 * @skb: audit record
512 *
513 * Description:
514 * This should only be used by the kauditd_thread when it fails to flush the
515 * hold queue.
516 */
517 static void kauditd_rehold_skb(struct sk_buff *skb)
518 {
519 /* put the record back in the queue at the same place */
520 skb_queue_head(&audit_hold_queue, skb);
521 }
522
523 /**
524 * kauditd_hold_skb - Queue an audit record, waiting for auditd
525 * @skb: audit record
526 *
527 * Description:
528 * Queue the audit record, waiting for an instance of auditd. When this
529 * function is called we haven't given up yet on sending the record, but things
530 * are not looking good. The first thing we want to do is try to write the
531 * record via printk and then see if we want to try and hold on to the record
532 * and queue it, if we have room. If we want to hold on to the record, but we
533 * don't have room, record a record lost message.
534 */
535 static void kauditd_hold_skb(struct sk_buff *skb)
536 {
537 /* at this point it is uncertain if we will ever send this to auditd so
538 * try to send the message via printk before we go any further */
539 kauditd_printk_skb(skb);
540
541 /* can we just silently drop the message? */
542 if (!audit_default) {
543 kfree_skb(skb);
544 return;
545 }
546
547 /* if we have room, queue the message */
548 if (!audit_backlog_limit ||
549 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
550 skb_queue_tail(&audit_hold_queue, skb);
551 return;
552 }
553
554 /* we have no other options - drop the message */
555 audit_log_lost("kauditd hold queue overflow");
556 kfree_skb(skb);
557 }
558
559 /**
560 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
561 * @skb: audit record
562 *
563 * Description:
564 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
565 * but for some reason we are having problems sending it audit records so
566 * queue the given record and attempt to resend.
567 */
568 static void kauditd_retry_skb(struct sk_buff *skb)
569 {
570 /* NOTE: because records should only live in the retry queue for a
571 * short period of time, before either being sent or moved to the hold
572 * queue, we don't currently enforce a limit on this queue */
573 skb_queue_tail(&audit_retry_queue, skb);
574 }
575
576 /**
577 * auditd_reset - Disconnect the auditd connection
578 * @ac: auditd connection state
579 *
580 * Description:
581 * Break the auditd/kauditd connection and move all the queued records into the
582 * hold queue in case auditd reconnects. It is important to note that the @ac
583 * pointer should never be dereferenced inside this function as it may be NULL
584 * or invalid, you can only compare the memory address! If @ac is NULL then
585 * the connection will always be reset.
586 */
587 static void auditd_reset(const struct auditd_connection *ac)
588 {
589 unsigned long flags;
590 struct sk_buff *skb;
591 struct auditd_connection *ac_old;
592
593 /* if it isn't already broken, break the connection */
594 spin_lock_irqsave(&auditd_conn_lock, flags);
595 ac_old = rcu_dereference_protected(auditd_conn,
596 lockdep_is_held(&auditd_conn_lock));
597 if (ac && ac != ac_old) {
598 /* someone already registered a new auditd connection */
599 spin_unlock_irqrestore(&auditd_conn_lock, flags);
600 return;
601 }
602 rcu_assign_pointer(auditd_conn, NULL);
603 spin_unlock_irqrestore(&auditd_conn_lock, flags);
604
605 if (ac_old)
606 call_rcu(&ac_old->rcu, auditd_conn_free);
607
608 /* flush the retry queue to the hold queue, but don't touch the main
609 * queue since we need to process that normally for multicast */
610 while ((skb = skb_dequeue(&audit_retry_queue)))
611 kauditd_hold_skb(skb);
612 }
613
614 /**
615 * auditd_send_unicast_skb - Send a record via unicast to auditd
616 * @skb: audit record
617 *
618 * Description:
619 * Send a skb to the audit daemon, returns positive/zero values on success and
620 * negative values on failure; in all cases the skb will be consumed by this
621 * function. If the send results in -ECONNREFUSED the connection with auditd
622 * will be reset. This function may sleep so callers should not hold any locks
623 * where this would cause a problem.
624 */
625 static int auditd_send_unicast_skb(struct sk_buff *skb)
626 {
627 int rc;
628 u32 portid;
629 struct net *net;
630 struct sock *sk;
631 struct auditd_connection *ac;
632
633 /* NOTE: we can't call netlink_unicast while in the RCU section so
634 * take a reference to the network namespace and grab local
635 * copies of the namespace, the sock, and the portid; the
636 * namespace and sock aren't going to go away while we hold a
637 * reference and if the portid does become invalid after the RCU
638 * section netlink_unicast() should safely return an error */
639
640 rcu_read_lock();
641 ac = rcu_dereference(auditd_conn);
642 if (!ac) {
643 rcu_read_unlock();
644 kfree_skb(skb);
645 rc = -ECONNREFUSED;
646 goto err;
647 }
648 net = get_net(ac->net);
649 sk = audit_get_sk(net);
650 portid = ac->portid;
651 rcu_read_unlock();
652
653 rc = netlink_unicast(sk, skb, portid, 0);
654 put_net(net);
655 if (rc < 0)
656 goto err;
657
658 return rc;
659
660 err:
661 if (ac && rc == -ECONNREFUSED)
662 auditd_reset(ac);
663 return rc;
664 }
665
666 /**
667 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
668 * @sk: the sending sock
669 * @portid: the netlink destination
670 * @queue: the skb queue to process
671 * @retry_limit: limit on number of netlink unicast failures
672 * @skb_hook: per-skb hook for additional processing
673 * @err_hook: hook called if the skb fails the netlink unicast send
674 *
675 * Description:
676 * Run through the given queue and attempt to send the audit records to auditd,
677 * returns zero on success, negative values on failure. It is up to the caller
678 * to ensure that the @sk is valid for the duration of this function.
679 *
680 */
681 static int kauditd_send_queue(struct sock *sk, u32 portid,
682 struct sk_buff_head *queue,
683 unsigned int retry_limit,
684 void (*skb_hook)(struct sk_buff *skb),
685 void (*err_hook)(struct sk_buff *skb))
686 {
687 int rc = 0;
688 struct sk_buff *skb;
689 static unsigned int failed = 0;
690
691 /* NOTE: kauditd_thread takes care of all our locking, we just use
692 * the netlink info passed to us (e.g. sk and portid) */
693
694 while ((skb = skb_dequeue(queue))) {
695 /* call the skb_hook for each skb we touch */
696 if (skb_hook)
697 (*skb_hook)(skb);
698
699 /* can we send to anyone via unicast? */
700 if (!sk) {
701 if (err_hook)
702 (*err_hook)(skb);
703 continue;
704 }
705
706 /* grab an extra skb reference in case of error */
707 skb_get(skb);
708 rc = netlink_unicast(sk, skb, portid, 0);
709 if (rc < 0) {
710 /* fatal failure for our queue flush attempt? */
711 if (++failed >= retry_limit ||
712 rc == -ECONNREFUSED || rc == -EPERM) {
713 /* yes - error processing for the queue */
714 sk = NULL;
715 if (err_hook)
716 (*err_hook)(skb);
717 if (!skb_hook)
718 goto out;
719 /* keep processing with the skb_hook */
720 continue;
721 } else
722 /* no - requeue to preserve ordering */
723 skb_queue_head(queue, skb);
724 } else {
725 /* it worked - drop the extra reference and continue */
726 consume_skb(skb);
727 failed = 0;
728 }
729 }
730
731 out:
732 return (rc >= 0 ? 0 : rc);
733 }
734
735 /*
736 * kauditd_send_multicast_skb - Send a record to any multicast listeners
737 * @skb: audit record
738 *
739 * Description:
740 * Write a multicast message to anyone listening in the initial network
741 * namespace. This function doesn't consume an skb as might be expected since
742 * it has to copy it anyways.
743 */
744 static void kauditd_send_multicast_skb(struct sk_buff *skb)
745 {
746 struct sk_buff *copy;
747 struct sock *sock = audit_get_sk(&init_net);
748 struct nlmsghdr *nlh;
749
750 /* NOTE: we are not taking an additional reference for init_net since
751 * we don't have to worry about it going away */
752
753 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
754 return;
755
756 /*
757 * The seemingly wasteful skb_copy() rather than bumping the refcount
758 * using skb_get() is necessary because non-standard mods are made to
759 * the skb by the original kaudit unicast socket send routine. The
760 * existing auditd daemon assumes this breakage. Fixing this would
761 * require co-ordinating a change in the established protocol between
762 * the kaudit kernel subsystem and the auditd userspace code. There is
763 * no reason for new multicast clients to continue with this
764 * non-compliance.
765 */
766 copy = skb_copy(skb, GFP_KERNEL);
767 if (!copy)
768 return;
769 nlh = nlmsg_hdr(copy);
770 nlh->nlmsg_len = skb->len;
771
772 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
773 }
774
775 /**
776 * kauditd_thread - Worker thread to send audit records to userspace
777 * @dummy: unused
778 */
779 static int kauditd_thread(void *dummy)
780 {
781 int rc;
782 u32 portid = 0;
783 struct net *net = NULL;
784 struct sock *sk = NULL;
785 struct auditd_connection *ac;
786
787 #define UNICAST_RETRIES 5
788
789 set_freezable();
790 while (!kthread_should_stop()) {
791 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
792 rcu_read_lock();
793 ac = rcu_dereference(auditd_conn);
794 if (!ac) {
795 rcu_read_unlock();
796 goto main_queue;
797 }
798 net = get_net(ac->net);
799 sk = audit_get_sk(net);
800 portid = ac->portid;
801 rcu_read_unlock();
802
803 /* attempt to flush the hold queue */
804 rc = kauditd_send_queue(sk, portid,
805 &audit_hold_queue, UNICAST_RETRIES,
806 NULL, kauditd_rehold_skb);
807 if (ac && rc < 0) {
808 sk = NULL;
809 auditd_reset(ac);
810 goto main_queue;
811 }
812
813 /* attempt to flush the retry queue */
814 rc = kauditd_send_queue(sk, portid,
815 &audit_retry_queue, UNICAST_RETRIES,
816 NULL, kauditd_hold_skb);
817 if (ac && rc < 0) {
818 sk = NULL;
819 auditd_reset(ac);
820 goto main_queue;
821 }
822
823 main_queue:
824 /* process the main queue - do the multicast send and attempt
825 * unicast, dump failed record sends to the retry queue; if
826 * sk == NULL due to previous failures we will just do the
827 * multicast send and move the record to the hold queue */
828 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
829 kauditd_send_multicast_skb,
830 (sk ?
831 kauditd_retry_skb : kauditd_hold_skb));
832 if (ac && rc < 0)
833 auditd_reset(ac);
834 sk = NULL;
835
836 /* drop our netns reference, no auditd sends past this line */
837 if (net) {
838 put_net(net);
839 net = NULL;
840 }
841
842 /* we have processed all the queues so wake everyone */
843 wake_up(&audit_backlog_wait);
844
845 /* NOTE: we want to wake up if there is anything on the queue,
846 * regardless of if an auditd is connected, as we need to
847 * do the multicast send and rotate records from the
848 * main queue to the retry/hold queues */
849 wait_event_freezable(kauditd_wait,
850 (skb_queue_len(&audit_queue) ? 1 : 0));
851 }
852
853 return 0;
854 }
855
856 int audit_send_list(void *_dest)
857 {
858 struct audit_netlink_list *dest = _dest;
859 struct sk_buff *skb;
860 struct sock *sk = audit_get_sk(dest->net);
861
862 /* wait for parent to finish and send an ACK */
863 mutex_lock(&audit_cmd_mutex);
864 mutex_unlock(&audit_cmd_mutex);
865
866 while ((skb = __skb_dequeue(&dest->q)) != NULL)
867 netlink_unicast(sk, skb, dest->portid, 0);
868
869 put_net(dest->net);
870 kfree(dest);
871
872 return 0;
873 }
874
875 struct sk_buff *audit_make_reply(int seq, int type, int done,
876 int multi, const void *payload, int size)
877 {
878 struct sk_buff *skb;
879 struct nlmsghdr *nlh;
880 void *data;
881 int flags = multi ? NLM_F_MULTI : 0;
882 int t = done ? NLMSG_DONE : type;
883
884 skb = nlmsg_new(size, GFP_KERNEL);
885 if (!skb)
886 return NULL;
887
888 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
889 if (!nlh)
890 goto out_kfree_skb;
891 data = nlmsg_data(nlh);
892 memcpy(data, payload, size);
893 return skb;
894
895 out_kfree_skb:
896 kfree_skb(skb);
897 return NULL;
898 }
899
900 static int audit_send_reply_thread(void *arg)
901 {
902 struct audit_reply *reply = (struct audit_reply *)arg;
903 struct sock *sk = audit_get_sk(reply->net);
904
905 mutex_lock(&audit_cmd_mutex);
906 mutex_unlock(&audit_cmd_mutex);
907
908 /* Ignore failure. It'll only happen if the sender goes away,
909 because our timeout is set to infinite. */
910 netlink_unicast(sk, reply->skb, reply->portid, 0);
911 put_net(reply->net);
912 kfree(reply);
913 return 0;
914 }
915
916 /**
917 * audit_send_reply - send an audit reply message via netlink
918 * @request_skb: skb of request we are replying to (used to target the reply)
919 * @seq: sequence number
920 * @type: audit message type
921 * @done: done (last) flag
922 * @multi: multi-part message flag
923 * @payload: payload data
924 * @size: payload size
925 *
926 * Allocates an skb, builds the netlink message, and sends it to the port id.
927 * No failure notifications.
928 */
929 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
930 int multi, const void *payload, int size)
931 {
932 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
933 struct sk_buff *skb;
934 struct task_struct *tsk;
935 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
936 GFP_KERNEL);
937
938 if (!reply)
939 return;
940
941 skb = audit_make_reply(seq, type, done, multi, payload, size);
942 if (!skb)
943 goto out;
944
945 reply->net = get_net(net);
946 reply->portid = NETLINK_CB(request_skb).portid;
947 reply->skb = skb;
948
949 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
950 if (!IS_ERR(tsk))
951 return;
952 kfree_skb(skb);
953 out:
954 kfree(reply);
955 }
956
957 /*
958 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
959 * control messages.
960 */
961 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
962 {
963 int err = 0;
964
965 /* Only support initial user namespace for now. */
966 /*
967 * We return ECONNREFUSED because it tricks userspace into thinking
968 * that audit was not configured into the kernel. Lots of users
969 * configure their PAM stack (because that's what the distro does)
970 * to reject login if unable to send messages to audit. If we return
971 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
972 * configured in and will let login proceed. If we return EPERM
973 * userspace will reject all logins. This should be removed when we
974 * support non init namespaces!!
975 */
976 if (current_user_ns() != &init_user_ns)
977 return -ECONNREFUSED;
978
979 switch (msg_type) {
980 case AUDIT_LIST:
981 case AUDIT_ADD:
982 case AUDIT_DEL:
983 return -EOPNOTSUPP;
984 case AUDIT_GET:
985 case AUDIT_SET:
986 case AUDIT_GET_FEATURE:
987 case AUDIT_SET_FEATURE:
988 case AUDIT_LIST_RULES:
989 case AUDIT_ADD_RULE:
990 case AUDIT_DEL_RULE:
991 case AUDIT_SIGNAL_INFO:
992 case AUDIT_TTY_GET:
993 case AUDIT_TTY_SET:
994 case AUDIT_TRIM:
995 case AUDIT_MAKE_EQUIV:
996 /* Only support auditd and auditctl in initial pid namespace
997 * for now. */
998 if (task_active_pid_ns(current) != &init_pid_ns)
999 return -EPERM;
1000
1001 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1002 err = -EPERM;
1003 break;
1004 case AUDIT_USER:
1005 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1006 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1007 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1008 err = -EPERM;
1009 break;
1010 default: /* bad msg */
1011 err = -EINVAL;
1012 }
1013
1014 return err;
1015 }
1016
1017 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1018 {
1019 uid_t uid = from_kuid(&init_user_ns, current_uid());
1020 pid_t pid = task_tgid_nr(current);
1021
1022 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1023 *ab = NULL;
1024 return;
1025 }
1026
1027 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1028 if (unlikely(!*ab))
1029 return;
1030 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1031 audit_log_session_info(*ab);
1032 audit_log_task_context(*ab);
1033 }
1034
1035 int is_audit_feature_set(int i)
1036 {
1037 return af.features & AUDIT_FEATURE_TO_MASK(i);
1038 }
1039
1040
1041 static int audit_get_feature(struct sk_buff *skb)
1042 {
1043 u32 seq;
1044
1045 seq = nlmsg_hdr(skb)->nlmsg_seq;
1046
1047 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1048
1049 return 0;
1050 }
1051
1052 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1053 u32 old_lock, u32 new_lock, int res)
1054 {
1055 struct audit_buffer *ab;
1056
1057 if (audit_enabled == AUDIT_OFF)
1058 return;
1059
1060 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1061 audit_log_task_info(ab, current);
1062 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1063 audit_feature_names[which], !!old_feature, !!new_feature,
1064 !!old_lock, !!new_lock, res);
1065 audit_log_end(ab);
1066 }
1067
1068 static int audit_set_feature(struct sk_buff *skb)
1069 {
1070 struct audit_features *uaf;
1071 int i;
1072
1073 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1074 uaf = nlmsg_data(nlmsg_hdr(skb));
1075
1076 /* if there is ever a version 2 we should handle that here */
1077
1078 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1079 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1080 u32 old_feature, new_feature, old_lock, new_lock;
1081
1082 /* if we are not changing this feature, move along */
1083 if (!(feature & uaf->mask))
1084 continue;
1085
1086 old_feature = af.features & feature;
1087 new_feature = uaf->features & feature;
1088 new_lock = (uaf->lock | af.lock) & feature;
1089 old_lock = af.lock & feature;
1090
1091 /* are we changing a locked feature? */
1092 if (old_lock && (new_feature != old_feature)) {
1093 audit_log_feature_change(i, old_feature, new_feature,
1094 old_lock, new_lock, 0);
1095 return -EPERM;
1096 }
1097 }
1098 /* nothing invalid, do the changes */
1099 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1100 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1101 u32 old_feature, new_feature, old_lock, new_lock;
1102
1103 /* if we are not changing this feature, move along */
1104 if (!(feature & uaf->mask))
1105 continue;
1106
1107 old_feature = af.features & feature;
1108 new_feature = uaf->features & feature;
1109 old_lock = af.lock & feature;
1110 new_lock = (uaf->lock | af.lock) & feature;
1111
1112 if (new_feature != old_feature)
1113 audit_log_feature_change(i, old_feature, new_feature,
1114 old_lock, new_lock, 1);
1115
1116 if (new_feature)
1117 af.features |= feature;
1118 else
1119 af.features &= ~feature;
1120 af.lock |= new_lock;
1121 }
1122
1123 return 0;
1124 }
1125
1126 static int audit_replace(struct pid *pid)
1127 {
1128 pid_t pvnr;
1129 struct sk_buff *skb;
1130
1131 pvnr = pid_vnr(pid);
1132 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1133 if (!skb)
1134 return -ENOMEM;
1135 return auditd_send_unicast_skb(skb);
1136 }
1137
1138 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1139 {
1140 u32 seq;
1141 void *data;
1142 int err;
1143 struct audit_buffer *ab;
1144 u16 msg_type = nlh->nlmsg_type;
1145 struct audit_sig_info *sig_data;
1146 char *ctx = NULL;
1147 u32 len;
1148
1149 err = audit_netlink_ok(skb, msg_type);
1150 if (err)
1151 return err;
1152
1153 seq = nlh->nlmsg_seq;
1154 data = nlmsg_data(nlh);
1155
1156 switch (msg_type) {
1157 case AUDIT_GET: {
1158 struct audit_status s;
1159 memset(&s, 0, sizeof(s));
1160 s.enabled = audit_enabled;
1161 s.failure = audit_failure;
1162 /* NOTE: use pid_vnr() so the PID is relative to the current
1163 * namespace */
1164 s.pid = auditd_pid_vnr();
1165 s.rate_limit = audit_rate_limit;
1166 s.backlog_limit = audit_backlog_limit;
1167 s.lost = atomic_read(&audit_lost);
1168 s.backlog = skb_queue_len(&audit_queue);
1169 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1170 s.backlog_wait_time = audit_backlog_wait_time;
1171 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1172 break;
1173 }
1174 case AUDIT_SET: {
1175 struct audit_status s;
1176 memset(&s, 0, sizeof(s));
1177 /* guard against past and future API changes */
1178 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1179 if (s.mask & AUDIT_STATUS_ENABLED) {
1180 err = audit_set_enabled(s.enabled);
1181 if (err < 0)
1182 return err;
1183 }
1184 if (s.mask & AUDIT_STATUS_FAILURE) {
1185 err = audit_set_failure(s.failure);
1186 if (err < 0)
1187 return err;
1188 }
1189 if (s.mask & AUDIT_STATUS_PID) {
1190 /* NOTE: we are using the vnr PID functions below
1191 * because the s.pid value is relative to the
1192 * namespace of the caller; at present this
1193 * doesn't matter much since you can really only
1194 * run auditd from the initial pid namespace, but
1195 * something to keep in mind if this changes */
1196 pid_t new_pid = s.pid;
1197 pid_t auditd_pid;
1198 struct pid *req_pid = task_tgid(current);
1199
1200 /* sanity check - PID values must match */
1201 if (new_pid != pid_vnr(req_pid))
1202 return -EINVAL;
1203
1204 /* test the auditd connection */
1205 audit_replace(req_pid);
1206
1207 auditd_pid = auditd_pid_vnr();
1208 /* only the current auditd can unregister itself */
1209 if ((!new_pid) && (new_pid != auditd_pid)) {
1210 audit_log_config_change("audit_pid", new_pid,
1211 auditd_pid, 0);
1212 return -EACCES;
1213 }
1214 /* replacing a healthy auditd is not allowed */
1215 if (auditd_pid && new_pid) {
1216 audit_log_config_change("audit_pid", new_pid,
1217 auditd_pid, 0);
1218 return -EEXIST;
1219 }
1220
1221 if (new_pid) {
1222 /* register a new auditd connection */
1223 err = auditd_set(req_pid,
1224 NETLINK_CB(skb).portid,
1225 sock_net(NETLINK_CB(skb).sk));
1226 if (audit_enabled != AUDIT_OFF)
1227 audit_log_config_change("audit_pid",
1228 new_pid,
1229 auditd_pid,
1230 err ? 0 : 1);
1231 if (err)
1232 return err;
1233
1234 /* try to process any backlog */
1235 wake_up_interruptible(&kauditd_wait);
1236 } else {
1237 if (audit_enabled != AUDIT_OFF)
1238 audit_log_config_change("audit_pid",
1239 new_pid,
1240 auditd_pid, 1);
1241
1242 /* unregister the auditd connection */
1243 auditd_reset(NULL);
1244 }
1245 }
1246 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1247 err = audit_set_rate_limit(s.rate_limit);
1248 if (err < 0)
1249 return err;
1250 }
1251 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1252 err = audit_set_backlog_limit(s.backlog_limit);
1253 if (err < 0)
1254 return err;
1255 }
1256 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1257 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1258 return -EINVAL;
1259 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1260 return -EINVAL;
1261 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1262 if (err < 0)
1263 return err;
1264 }
1265 if (s.mask == AUDIT_STATUS_LOST) {
1266 u32 lost = atomic_xchg(&audit_lost, 0);
1267
1268 audit_log_config_change("lost", 0, lost, 1);
1269 return lost;
1270 }
1271 break;
1272 }
1273 case AUDIT_GET_FEATURE:
1274 err = audit_get_feature(skb);
1275 if (err)
1276 return err;
1277 break;
1278 case AUDIT_SET_FEATURE:
1279 err = audit_set_feature(skb);
1280 if (err)
1281 return err;
1282 break;
1283 case AUDIT_USER:
1284 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1285 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1286 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1287 return 0;
1288
1289 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1290 if (err == 1) { /* match or error */
1291 err = 0;
1292 if (msg_type == AUDIT_USER_TTY) {
1293 err = tty_audit_push();
1294 if (err)
1295 break;
1296 }
1297 audit_log_common_recv_msg(&ab, msg_type);
1298 if (msg_type != AUDIT_USER_TTY)
1299 audit_log_format(ab, " msg='%.*s'",
1300 AUDIT_MESSAGE_TEXT_MAX,
1301 (char *)data);
1302 else {
1303 int size;
1304
1305 audit_log_format(ab, " data=");
1306 size = nlmsg_len(nlh);
1307 if (size > 0 &&
1308 ((unsigned char *)data)[size - 1] == '\0')
1309 size--;
1310 audit_log_n_untrustedstring(ab, data, size);
1311 }
1312 audit_log_end(ab);
1313 }
1314 break;
1315 case AUDIT_ADD_RULE:
1316 case AUDIT_DEL_RULE:
1317 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1318 return -EINVAL;
1319 if (audit_enabled == AUDIT_LOCKED) {
1320 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1321 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1322 audit_log_end(ab);
1323 return -EPERM;
1324 }
1325 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1326 break;
1327 case AUDIT_LIST_RULES:
1328 err = audit_list_rules_send(skb, seq);
1329 break;
1330 case AUDIT_TRIM:
1331 audit_trim_trees();
1332 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1333 audit_log_format(ab, " op=trim res=1");
1334 audit_log_end(ab);
1335 break;
1336 case AUDIT_MAKE_EQUIV: {
1337 void *bufp = data;
1338 u32 sizes[2];
1339 size_t msglen = nlmsg_len(nlh);
1340 char *old, *new;
1341
1342 err = -EINVAL;
1343 if (msglen < 2 * sizeof(u32))
1344 break;
1345 memcpy(sizes, bufp, 2 * sizeof(u32));
1346 bufp += 2 * sizeof(u32);
1347 msglen -= 2 * sizeof(u32);
1348 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1349 if (IS_ERR(old)) {
1350 err = PTR_ERR(old);
1351 break;
1352 }
1353 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1354 if (IS_ERR(new)) {
1355 err = PTR_ERR(new);
1356 kfree(old);
1357 break;
1358 }
1359 /* OK, here comes... */
1360 err = audit_tag_tree(old, new);
1361
1362 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1363
1364 audit_log_format(ab, " op=make_equiv old=");
1365 audit_log_untrustedstring(ab, old);
1366 audit_log_format(ab, " new=");
1367 audit_log_untrustedstring(ab, new);
1368 audit_log_format(ab, " res=%d", !err);
1369 audit_log_end(ab);
1370 kfree(old);
1371 kfree(new);
1372 break;
1373 }
1374 case AUDIT_SIGNAL_INFO:
1375 len = 0;
1376 if (audit_sig_sid) {
1377 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1378 if (err)
1379 return err;
1380 }
1381 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1382 if (!sig_data) {
1383 if (audit_sig_sid)
1384 security_release_secctx(ctx, len);
1385 return -ENOMEM;
1386 }
1387 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1388 sig_data->pid = audit_sig_pid;
1389 if (audit_sig_sid) {
1390 memcpy(sig_data->ctx, ctx, len);
1391 security_release_secctx(ctx, len);
1392 }
1393 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1394 sig_data, sizeof(*sig_data) + len);
1395 kfree(sig_data);
1396 break;
1397 case AUDIT_TTY_GET: {
1398 struct audit_tty_status s;
1399 unsigned int t;
1400
1401 t = READ_ONCE(current->signal->audit_tty);
1402 s.enabled = t & AUDIT_TTY_ENABLE;
1403 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1404
1405 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1406 break;
1407 }
1408 case AUDIT_TTY_SET: {
1409 struct audit_tty_status s, old;
1410 struct audit_buffer *ab;
1411 unsigned int t;
1412
1413 memset(&s, 0, sizeof(s));
1414 /* guard against past and future API changes */
1415 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1416 /* check if new data is valid */
1417 if ((s.enabled != 0 && s.enabled != 1) ||
1418 (s.log_passwd != 0 && s.log_passwd != 1))
1419 err = -EINVAL;
1420
1421 if (err)
1422 t = READ_ONCE(current->signal->audit_tty);
1423 else {
1424 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1425 t = xchg(&current->signal->audit_tty, t);
1426 }
1427 old.enabled = t & AUDIT_TTY_ENABLE;
1428 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1429
1430 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1431 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1432 " old-log_passwd=%d new-log_passwd=%d res=%d",
1433 old.enabled, s.enabled, old.log_passwd,
1434 s.log_passwd, !err);
1435 audit_log_end(ab);
1436 break;
1437 }
1438 default:
1439 err = -EINVAL;
1440 break;
1441 }
1442
1443 return err < 0 ? err : 0;
1444 }
1445
1446 /**
1447 * audit_receive - receive messages from a netlink control socket
1448 * @skb: the message buffer
1449 *
1450 * Parse the provided skb and deal with any messages that may be present,
1451 * malformed skbs are discarded.
1452 */
1453 static void audit_receive(struct sk_buff *skb)
1454 {
1455 struct nlmsghdr *nlh;
1456 /*
1457 * len MUST be signed for nlmsg_next to be able to dec it below 0
1458 * if the nlmsg_len was not aligned
1459 */
1460 int len;
1461 int err;
1462
1463 nlh = nlmsg_hdr(skb);
1464 len = skb->len;
1465
1466 mutex_lock(&audit_cmd_mutex);
1467 while (nlmsg_ok(nlh, len)) {
1468 err = audit_receive_msg(skb, nlh);
1469 /* if err or if this message says it wants a response */
1470 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1471 netlink_ack(skb, nlh, err, NULL);
1472
1473 nlh = nlmsg_next(nlh, &len);
1474 }
1475 mutex_unlock(&audit_cmd_mutex);
1476 }
1477
1478 /* Run custom bind function on netlink socket group connect or bind requests. */
1479 static int audit_bind(struct net *net, int group)
1480 {
1481 if (!capable(CAP_AUDIT_READ))
1482 return -EPERM;
1483
1484 return 0;
1485 }
1486
1487 static int __net_init audit_net_init(struct net *net)
1488 {
1489 struct netlink_kernel_cfg cfg = {
1490 .input = audit_receive,
1491 .bind = audit_bind,
1492 .flags = NL_CFG_F_NONROOT_RECV,
1493 .groups = AUDIT_NLGRP_MAX,
1494 };
1495
1496 struct audit_net *aunet = net_generic(net, audit_net_id);
1497
1498 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1499 if (aunet->sk == NULL) {
1500 audit_panic("cannot initialize netlink socket in namespace");
1501 return -ENOMEM;
1502 }
1503 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1504
1505 return 0;
1506 }
1507
1508 static void __net_exit audit_net_exit(struct net *net)
1509 {
1510 struct audit_net *aunet = net_generic(net, audit_net_id);
1511
1512 /* NOTE: you would think that we would want to check the auditd
1513 * connection and potentially reset it here if it lives in this
1514 * namespace, but since the auditd connection tracking struct holds a
1515 * reference to this namespace (see auditd_set()) we are only ever
1516 * going to get here after that connection has been released */
1517
1518 netlink_kernel_release(aunet->sk);
1519 }
1520
1521 static struct pernet_operations audit_net_ops __net_initdata = {
1522 .init = audit_net_init,
1523 .exit = audit_net_exit,
1524 .id = &audit_net_id,
1525 .size = sizeof(struct audit_net),
1526 };
1527
1528 /* Initialize audit support at boot time. */
1529 static int __init audit_init(void)
1530 {
1531 int i;
1532
1533 if (audit_initialized == AUDIT_DISABLED)
1534 return 0;
1535
1536 audit_buffer_cache = kmem_cache_create("audit_buffer",
1537 sizeof(struct audit_buffer),
1538 0, SLAB_PANIC, NULL);
1539
1540 skb_queue_head_init(&audit_queue);
1541 skb_queue_head_init(&audit_retry_queue);
1542 skb_queue_head_init(&audit_hold_queue);
1543
1544 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1545 INIT_LIST_HEAD(&audit_inode_hash[i]);
1546
1547 pr_info("initializing netlink subsys (%s)\n",
1548 audit_default ? "enabled" : "disabled");
1549 register_pernet_subsys(&audit_net_ops);
1550
1551 audit_initialized = AUDIT_INITIALIZED;
1552 audit_enabled = audit_default;
1553 audit_ever_enabled |= !!audit_default;
1554
1555 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1556 if (IS_ERR(kauditd_task)) {
1557 int err = PTR_ERR(kauditd_task);
1558 panic("audit: failed to start the kauditd thread (%d)\n", err);
1559 }
1560
1561 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1562 "state=initialized audit_enabled=%u res=1",
1563 audit_enabled);
1564
1565 return 0;
1566 }
1567 __initcall(audit_init);
1568
1569 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1570 static int __init audit_enable(char *str)
1571 {
1572 audit_default = !!simple_strtol(str, NULL, 0);
1573 if (!audit_default)
1574 audit_initialized = AUDIT_DISABLED;
1575
1576 pr_info("%s\n", audit_default ?
1577 "enabled (after initialization)" : "disabled (until reboot)");
1578
1579 return 1;
1580 }
1581 __setup("audit=", audit_enable);
1582
1583 /* Process kernel command-line parameter at boot time.
1584 * audit_backlog_limit=<n> */
1585 static int __init audit_backlog_limit_set(char *str)
1586 {
1587 u32 audit_backlog_limit_arg;
1588
1589 pr_info("audit_backlog_limit: ");
1590 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1591 pr_cont("using default of %u, unable to parse %s\n",
1592 audit_backlog_limit, str);
1593 return 1;
1594 }
1595
1596 audit_backlog_limit = audit_backlog_limit_arg;
1597 pr_cont("%d\n", audit_backlog_limit);
1598
1599 return 1;
1600 }
1601 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1602
1603 static void audit_buffer_free(struct audit_buffer *ab)
1604 {
1605 if (!ab)
1606 return;
1607
1608 kfree_skb(ab->skb);
1609 kmem_cache_free(audit_buffer_cache, ab);
1610 }
1611
1612 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1613 gfp_t gfp_mask, int type)
1614 {
1615 struct audit_buffer *ab;
1616
1617 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1618 if (!ab)
1619 return NULL;
1620
1621 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1622 if (!ab->skb)
1623 goto err;
1624 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1625 goto err;
1626
1627 ab->ctx = ctx;
1628 ab->gfp_mask = gfp_mask;
1629
1630 return ab;
1631
1632 err:
1633 audit_buffer_free(ab);
1634 return NULL;
1635 }
1636
1637 /**
1638 * audit_serial - compute a serial number for the audit record
1639 *
1640 * Compute a serial number for the audit record. Audit records are
1641 * written to user-space as soon as they are generated, so a complete
1642 * audit record may be written in several pieces. The timestamp of the
1643 * record and this serial number are used by the user-space tools to
1644 * determine which pieces belong to the same audit record. The
1645 * (timestamp,serial) tuple is unique for each syscall and is live from
1646 * syscall entry to syscall exit.
1647 *
1648 * NOTE: Another possibility is to store the formatted records off the
1649 * audit context (for those records that have a context), and emit them
1650 * all at syscall exit. However, this could delay the reporting of
1651 * significant errors until syscall exit (or never, if the system
1652 * halts).
1653 */
1654 unsigned int audit_serial(void)
1655 {
1656 static atomic_t serial = ATOMIC_INIT(0);
1657
1658 return atomic_add_return(1, &serial);
1659 }
1660
1661 static inline void audit_get_stamp(struct audit_context *ctx,
1662 struct timespec64 *t, unsigned int *serial)
1663 {
1664 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1665 ktime_get_real_ts64(t);
1666 *serial = audit_serial();
1667 }
1668 }
1669
1670 /**
1671 * audit_log_start - obtain an audit buffer
1672 * @ctx: audit_context (may be NULL)
1673 * @gfp_mask: type of allocation
1674 * @type: audit message type
1675 *
1676 * Returns audit_buffer pointer on success or NULL on error.
1677 *
1678 * Obtain an audit buffer. This routine does locking to obtain the
1679 * audit buffer, but then no locking is required for calls to
1680 * audit_log_*format. If the task (ctx) is a task that is currently in a
1681 * syscall, then the syscall is marked as auditable and an audit record
1682 * will be written at syscall exit. If there is no associated task, then
1683 * task context (ctx) should be NULL.
1684 */
1685 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1686 int type)
1687 {
1688 struct audit_buffer *ab;
1689 struct timespec64 t;
1690 unsigned int uninitialized_var(serial);
1691
1692 if (audit_initialized != AUDIT_INITIALIZED)
1693 return NULL;
1694
1695 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1696 return NULL;
1697
1698 /* NOTE: don't ever fail/sleep on these two conditions:
1699 * 1. auditd generated record - since we need auditd to drain the
1700 * queue; also, when we are checking for auditd, compare PIDs using
1701 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1702 * using a PID anchored in the caller's namespace
1703 * 2. generator holding the audit_cmd_mutex - we don't want to block
1704 * while holding the mutex */
1705 if (!(auditd_test_task(current) ||
1706 (current == __mutex_owner(&audit_cmd_mutex)))) {
1707 long stime = audit_backlog_wait_time;
1708
1709 while (audit_backlog_limit &&
1710 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1711 /* wake kauditd to try and flush the queue */
1712 wake_up_interruptible(&kauditd_wait);
1713
1714 /* sleep if we are allowed and we haven't exhausted our
1715 * backlog wait limit */
1716 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1717 DECLARE_WAITQUEUE(wait, current);
1718
1719 add_wait_queue_exclusive(&audit_backlog_wait,
1720 &wait);
1721 set_current_state(TASK_UNINTERRUPTIBLE);
1722 stime = schedule_timeout(stime);
1723 remove_wait_queue(&audit_backlog_wait, &wait);
1724 } else {
1725 if (audit_rate_check() && printk_ratelimit())
1726 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1727 skb_queue_len(&audit_queue),
1728 audit_backlog_limit);
1729 audit_log_lost("backlog limit exceeded");
1730 return NULL;
1731 }
1732 }
1733 }
1734
1735 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1736 if (!ab) {
1737 audit_log_lost("out of memory in audit_log_start");
1738 return NULL;
1739 }
1740
1741 audit_get_stamp(ab->ctx, &t, &serial);
1742 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1743 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1744
1745 return ab;
1746 }
1747
1748 /**
1749 * audit_expand - expand skb in the audit buffer
1750 * @ab: audit_buffer
1751 * @extra: space to add at tail of the skb
1752 *
1753 * Returns 0 (no space) on failed expansion, or available space if
1754 * successful.
1755 */
1756 static inline int audit_expand(struct audit_buffer *ab, int extra)
1757 {
1758 struct sk_buff *skb = ab->skb;
1759 int oldtail = skb_tailroom(skb);
1760 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1761 int newtail = skb_tailroom(skb);
1762
1763 if (ret < 0) {
1764 audit_log_lost("out of memory in audit_expand");
1765 return 0;
1766 }
1767
1768 skb->truesize += newtail - oldtail;
1769 return newtail;
1770 }
1771
1772 /*
1773 * Format an audit message into the audit buffer. If there isn't enough
1774 * room in the audit buffer, more room will be allocated and vsnprint
1775 * will be called a second time. Currently, we assume that a printk
1776 * can't format message larger than 1024 bytes, so we don't either.
1777 */
1778 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1779 va_list args)
1780 {
1781 int len, avail;
1782 struct sk_buff *skb;
1783 va_list args2;
1784
1785 if (!ab)
1786 return;
1787
1788 BUG_ON(!ab->skb);
1789 skb = ab->skb;
1790 avail = skb_tailroom(skb);
1791 if (avail == 0) {
1792 avail = audit_expand(ab, AUDIT_BUFSIZ);
1793 if (!avail)
1794 goto out;
1795 }
1796 va_copy(args2, args);
1797 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1798 if (len >= avail) {
1799 /* The printk buffer is 1024 bytes long, so if we get
1800 * here and AUDIT_BUFSIZ is at least 1024, then we can
1801 * log everything that printk could have logged. */
1802 avail = audit_expand(ab,
1803 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1804 if (!avail)
1805 goto out_va_end;
1806 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1807 }
1808 if (len > 0)
1809 skb_put(skb, len);
1810 out_va_end:
1811 va_end(args2);
1812 out:
1813 return;
1814 }
1815
1816 /**
1817 * audit_log_format - format a message into the audit buffer.
1818 * @ab: audit_buffer
1819 * @fmt: format string
1820 * @...: optional parameters matching @fmt string
1821 *
1822 * All the work is done in audit_log_vformat.
1823 */
1824 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1825 {
1826 va_list args;
1827
1828 if (!ab)
1829 return;
1830 va_start(args, fmt);
1831 audit_log_vformat(ab, fmt, args);
1832 va_end(args);
1833 }
1834
1835 /**
1836 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1837 * @ab: the audit_buffer
1838 * @buf: buffer to convert to hex
1839 * @len: length of @buf to be converted
1840 *
1841 * No return value; failure to expand is silently ignored.
1842 *
1843 * This function will take the passed buf and convert it into a string of
1844 * ascii hex digits. The new string is placed onto the skb.
1845 */
1846 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1847 size_t len)
1848 {
1849 int i, avail, new_len;
1850 unsigned char *ptr;
1851 struct sk_buff *skb;
1852
1853 if (!ab)
1854 return;
1855
1856 BUG_ON(!ab->skb);
1857 skb = ab->skb;
1858 avail = skb_tailroom(skb);
1859 new_len = len<<1;
1860 if (new_len >= avail) {
1861 /* Round the buffer request up to the next multiple */
1862 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1863 avail = audit_expand(ab, new_len);
1864 if (!avail)
1865 return;
1866 }
1867
1868 ptr = skb_tail_pointer(skb);
1869 for (i = 0; i < len; i++)
1870 ptr = hex_byte_pack_upper(ptr, buf[i]);
1871 *ptr = 0;
1872 skb_put(skb, len << 1); /* new string is twice the old string */
1873 }
1874
1875 /*
1876 * Format a string of no more than slen characters into the audit buffer,
1877 * enclosed in quote marks.
1878 */
1879 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1880 size_t slen)
1881 {
1882 int avail, new_len;
1883 unsigned char *ptr;
1884 struct sk_buff *skb;
1885
1886 if (!ab)
1887 return;
1888
1889 BUG_ON(!ab->skb);
1890 skb = ab->skb;
1891 avail = skb_tailroom(skb);
1892 new_len = slen + 3; /* enclosing quotes + null terminator */
1893 if (new_len > avail) {
1894 avail = audit_expand(ab, new_len);
1895 if (!avail)
1896 return;
1897 }
1898 ptr = skb_tail_pointer(skb);
1899 *ptr++ = '"';
1900 memcpy(ptr, string, slen);
1901 ptr += slen;
1902 *ptr++ = '"';
1903 *ptr = 0;
1904 skb_put(skb, slen + 2); /* don't include null terminator */
1905 }
1906
1907 /**
1908 * audit_string_contains_control - does a string need to be logged in hex
1909 * @string: string to be checked
1910 * @len: max length of the string to check
1911 */
1912 bool audit_string_contains_control(const char *string, size_t len)
1913 {
1914 const unsigned char *p;
1915 for (p = string; p < (const unsigned char *)string + len; p++) {
1916 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1917 return true;
1918 }
1919 return false;
1920 }
1921
1922 /**
1923 * audit_log_n_untrustedstring - log a string that may contain random characters
1924 * @ab: audit_buffer
1925 * @len: length of string (not including trailing null)
1926 * @string: string to be logged
1927 *
1928 * This code will escape a string that is passed to it if the string
1929 * contains a control character, unprintable character, double quote mark,
1930 * or a space. Unescaped strings will start and end with a double quote mark.
1931 * Strings that are escaped are printed in hex (2 digits per char).
1932 *
1933 * The caller specifies the number of characters in the string to log, which may
1934 * or may not be the entire string.
1935 */
1936 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1937 size_t len)
1938 {
1939 if (audit_string_contains_control(string, len))
1940 audit_log_n_hex(ab, string, len);
1941 else
1942 audit_log_n_string(ab, string, len);
1943 }
1944
1945 /**
1946 * audit_log_untrustedstring - log a string that may contain random characters
1947 * @ab: audit_buffer
1948 * @string: string to be logged
1949 *
1950 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1951 * determine string length.
1952 */
1953 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1954 {
1955 audit_log_n_untrustedstring(ab, string, strlen(string));
1956 }
1957
1958 /* This is a helper-function to print the escaped d_path */
1959 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1960 const struct path *path)
1961 {
1962 char *p, *pathname;
1963
1964 if (prefix)
1965 audit_log_format(ab, "%s", prefix);
1966
1967 /* We will allow 11 spaces for ' (deleted)' to be appended */
1968 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1969 if (!pathname) {
1970 audit_log_string(ab, "<no_memory>");
1971 return;
1972 }
1973 p = d_path(path, pathname, PATH_MAX+11);
1974 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1975 /* FIXME: can we save some information here? */
1976 audit_log_string(ab, "<too_long>");
1977 } else
1978 audit_log_untrustedstring(ab, p);
1979 kfree(pathname);
1980 }
1981
1982 void audit_log_session_info(struct audit_buffer *ab)
1983 {
1984 unsigned int sessionid = audit_get_sessionid(current);
1985 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1986
1987 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1988 }
1989
1990 void audit_log_key(struct audit_buffer *ab, char *key)
1991 {
1992 audit_log_format(ab, " key=");
1993 if (key)
1994 audit_log_untrustedstring(ab, key);
1995 else
1996 audit_log_format(ab, "(null)");
1997 }
1998
1999 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2000 {
2001 int i;
2002
2003 audit_log_format(ab, " %s=", prefix);
2004 CAP_FOR_EACH_U32(i) {
2005 audit_log_format(ab, "%08x",
2006 cap->cap[CAP_LAST_U32 - i]);
2007 }
2008 }
2009
2010 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2011 {
2012 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2013 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2014 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2015 name->fcap.fE, name->fcap_ver);
2016 }
2017
2018 static inline int audit_copy_fcaps(struct audit_names *name,
2019 const struct dentry *dentry)
2020 {
2021 struct cpu_vfs_cap_data caps;
2022 int rc;
2023
2024 if (!dentry)
2025 return 0;
2026
2027 rc = get_vfs_caps_from_disk(dentry, &caps);
2028 if (rc)
2029 return rc;
2030
2031 name->fcap.permitted = caps.permitted;
2032 name->fcap.inheritable = caps.inheritable;
2033 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2034 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2035 VFS_CAP_REVISION_SHIFT;
2036
2037 return 0;
2038 }
2039
2040 /* Copy inode data into an audit_names. */
2041 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2042 struct inode *inode)
2043 {
2044 name->ino = inode->i_ino;
2045 name->dev = inode->i_sb->s_dev;
2046 name->mode = inode->i_mode;
2047 name->uid = inode->i_uid;
2048 name->gid = inode->i_gid;
2049 name->rdev = inode->i_rdev;
2050 security_inode_getsecid(inode, &name->osid);
2051 audit_copy_fcaps(name, dentry);
2052 }
2053
2054 /**
2055 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2056 * @context: audit_context for the task
2057 * @n: audit_names structure with reportable details
2058 * @path: optional path to report instead of audit_names->name
2059 * @record_num: record number to report when handling a list of names
2060 * @call_panic: optional pointer to int that will be updated if secid fails
2061 */
2062 void audit_log_name(struct audit_context *context, struct audit_names *n,
2063 const struct path *path, int record_num, int *call_panic)
2064 {
2065 struct audit_buffer *ab;
2066 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2067 if (!ab)
2068 return;
2069
2070 audit_log_format(ab, "item=%d", record_num);
2071
2072 if (path)
2073 audit_log_d_path(ab, " name=", path);
2074 else if (n->name) {
2075 switch (n->name_len) {
2076 case AUDIT_NAME_FULL:
2077 /* log the full path */
2078 audit_log_format(ab, " name=");
2079 audit_log_untrustedstring(ab, n->name->name);
2080 break;
2081 case 0:
2082 /* name was specified as a relative path and the
2083 * directory component is the cwd */
2084 audit_log_d_path(ab, " name=", &context->pwd);
2085 break;
2086 default:
2087 /* log the name's directory component */
2088 audit_log_format(ab, " name=");
2089 audit_log_n_untrustedstring(ab, n->name->name,
2090 n->name_len);
2091 }
2092 } else
2093 audit_log_format(ab, " name=(null)");
2094
2095 if (n->ino != AUDIT_INO_UNSET)
2096 audit_log_format(ab, " inode=%lu"
2097 " dev=%02x:%02x mode=%#ho"
2098 " ouid=%u ogid=%u rdev=%02x:%02x",
2099 n->ino,
2100 MAJOR(n->dev),
2101 MINOR(n->dev),
2102 n->mode,
2103 from_kuid(&init_user_ns, n->uid),
2104 from_kgid(&init_user_ns, n->gid),
2105 MAJOR(n->rdev),
2106 MINOR(n->rdev));
2107 if (n->osid != 0) {
2108 char *ctx = NULL;
2109 u32 len;
2110 if (security_secid_to_secctx(
2111 n->osid, &ctx, &len)) {
2112 audit_log_format(ab, " osid=%u", n->osid);
2113 if (call_panic)
2114 *call_panic = 2;
2115 } else {
2116 audit_log_format(ab, " obj=%s", ctx);
2117 security_release_secctx(ctx, len);
2118 }
2119 }
2120
2121 /* log the audit_names record type */
2122 audit_log_format(ab, " nametype=");
2123 switch(n->type) {
2124 case AUDIT_TYPE_NORMAL:
2125 audit_log_format(ab, "NORMAL");
2126 break;
2127 case AUDIT_TYPE_PARENT:
2128 audit_log_format(ab, "PARENT");
2129 break;
2130 case AUDIT_TYPE_CHILD_DELETE:
2131 audit_log_format(ab, "DELETE");
2132 break;
2133 case AUDIT_TYPE_CHILD_CREATE:
2134 audit_log_format(ab, "CREATE");
2135 break;
2136 default:
2137 audit_log_format(ab, "UNKNOWN");
2138 break;
2139 }
2140
2141 audit_log_fcaps(ab, n);
2142 audit_log_end(ab);
2143 }
2144
2145 int audit_log_task_context(struct audit_buffer *ab)
2146 {
2147 char *ctx = NULL;
2148 unsigned len;
2149 int error;
2150 u32 sid;
2151
2152 security_task_getsecid(current, &sid);
2153 if (!sid)
2154 return 0;
2155
2156 error = security_secid_to_secctx(sid, &ctx, &len);
2157 if (error) {
2158 if (error != -EINVAL)
2159 goto error_path;
2160 return 0;
2161 }
2162
2163 audit_log_format(ab, " subj=%s", ctx);
2164 security_release_secctx(ctx, len);
2165 return 0;
2166
2167 error_path:
2168 audit_panic("error in audit_log_task_context");
2169 return error;
2170 }
2171 EXPORT_SYMBOL(audit_log_task_context);
2172
2173 void audit_log_d_path_exe(struct audit_buffer *ab,
2174 struct mm_struct *mm)
2175 {
2176 struct file *exe_file;
2177
2178 if (!mm)
2179 goto out_null;
2180
2181 exe_file = get_mm_exe_file(mm);
2182 if (!exe_file)
2183 goto out_null;
2184
2185 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2186 fput(exe_file);
2187 return;
2188 out_null:
2189 audit_log_format(ab, " exe=(null)");
2190 }
2191
2192 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2193 {
2194 struct tty_struct *tty = NULL;
2195 unsigned long flags;
2196
2197 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2198 if (tsk->signal)
2199 tty = tty_kref_get(tsk->signal->tty);
2200 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2201 return tty;
2202 }
2203
2204 void audit_put_tty(struct tty_struct *tty)
2205 {
2206 tty_kref_put(tty);
2207 }
2208
2209 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2210 {
2211 const struct cred *cred;
2212 char comm[sizeof(tsk->comm)];
2213 struct tty_struct *tty;
2214
2215 if (!ab)
2216 return;
2217
2218 /* tsk == current */
2219 cred = current_cred();
2220 tty = audit_get_tty(tsk);
2221 audit_log_format(ab,
2222 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2223 " euid=%u suid=%u fsuid=%u"
2224 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2225 task_ppid_nr(tsk),
2226 task_tgid_nr(tsk),
2227 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2228 from_kuid(&init_user_ns, cred->uid),
2229 from_kgid(&init_user_ns, cred->gid),
2230 from_kuid(&init_user_ns, cred->euid),
2231 from_kuid(&init_user_ns, cred->suid),
2232 from_kuid(&init_user_ns, cred->fsuid),
2233 from_kgid(&init_user_ns, cred->egid),
2234 from_kgid(&init_user_ns, cred->sgid),
2235 from_kgid(&init_user_ns, cred->fsgid),
2236 tty ? tty_name(tty) : "(none)",
2237 audit_get_sessionid(tsk));
2238 audit_put_tty(tty);
2239 audit_log_format(ab, " comm=");
2240 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2241 audit_log_d_path_exe(ab, tsk->mm);
2242 audit_log_task_context(ab);
2243 }
2244 EXPORT_SYMBOL(audit_log_task_info);
2245
2246 /**
2247 * audit_log_link_denied - report a link restriction denial
2248 * @operation: specific link operation
2249 * @link: the path that triggered the restriction
2250 */
2251 void audit_log_link_denied(const char *operation, const struct path *link)
2252 {
2253 struct audit_buffer *ab;
2254 struct audit_names *name;
2255
2256 name = kzalloc(sizeof(*name), GFP_NOFS);
2257 if (!name)
2258 return;
2259
2260 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2261 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2262 AUDIT_ANOM_LINK);
2263 if (!ab)
2264 goto out;
2265 audit_log_format(ab, "op=%s", operation);
2266 audit_log_task_info(ab, current);
2267 audit_log_format(ab, " res=0");
2268 audit_log_end(ab);
2269
2270 /* Generate AUDIT_PATH record with object. */
2271 name->type = AUDIT_TYPE_NORMAL;
2272 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2273 audit_log_name(current->audit_context, name, link, 0, NULL);
2274 out:
2275 kfree(name);
2276 }
2277
2278 /**
2279 * audit_log_end - end one audit record
2280 * @ab: the audit_buffer
2281 *
2282 * We can not do a netlink send inside an irq context because it blocks (last
2283 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2284 * queue and a tasklet is scheduled to remove them from the queue outside the
2285 * irq context. May be called in any context.
2286 */
2287 void audit_log_end(struct audit_buffer *ab)
2288 {
2289 struct sk_buff *skb;
2290 struct nlmsghdr *nlh;
2291
2292 if (!ab)
2293 return;
2294
2295 if (audit_rate_check()) {
2296 skb = ab->skb;
2297 ab->skb = NULL;
2298
2299 /* setup the netlink header, see the comments in
2300 * kauditd_send_multicast_skb() for length quirks */
2301 nlh = nlmsg_hdr(skb);
2302 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2303
2304 /* queue the netlink packet and poke the kauditd thread */
2305 skb_queue_tail(&audit_queue, skb);
2306 wake_up_interruptible(&kauditd_wait);
2307 } else
2308 audit_log_lost("rate limit exceeded");
2309
2310 audit_buffer_free(ab);
2311 }
2312
2313 /**
2314 * audit_log - Log an audit record
2315 * @ctx: audit context
2316 * @gfp_mask: type of allocation
2317 * @type: audit message type
2318 * @fmt: format string to use
2319 * @...: variable parameters matching the format string
2320 *
2321 * This is a convenience function that calls audit_log_start,
2322 * audit_log_vformat, and audit_log_end. It may be called
2323 * in any context.
2324 */
2325 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2326 const char *fmt, ...)
2327 {
2328 struct audit_buffer *ab;
2329 va_list args;
2330
2331 ab = audit_log_start(ctx, gfp_mask, type);
2332 if (ab) {
2333 va_start(args, fmt);
2334 audit_log_vformat(ab, fmt, args);
2335 va_end(args);
2336 audit_log_end(ab);
2337 }
2338 }
2339
2340 #ifdef CONFIG_SECURITY
2341 /**
2342 * audit_log_secctx - Converts and logs SELinux context
2343 * @ab: audit_buffer
2344 * @secid: security number
2345 *
2346 * This is a helper function that calls security_secid_to_secctx to convert
2347 * secid to secctx and then adds the (converted) SELinux context to the audit
2348 * log by calling audit_log_format, thus also preventing leak of internal secid
2349 * to userspace. If secid cannot be converted audit_panic is called.
2350 */
2351 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2352 {
2353 u32 len;
2354 char *secctx;
2355
2356 if (security_secid_to_secctx(secid, &secctx, &len)) {
2357 audit_panic("Cannot convert secid to context");
2358 } else {
2359 audit_log_format(ab, " obj=%s", secctx);
2360 security_release_secctx(secctx, len);
2361 }
2362 }
2363 EXPORT_SYMBOL(audit_log_secctx);
2364 #endif
2365
2366 EXPORT_SYMBOL(audit_log_start);
2367 EXPORT_SYMBOL(audit_log_end);
2368 EXPORT_SYMBOL(audit_log_format);
2369 EXPORT_SYMBOL(audit_log);