]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/audit_tree.c
userns: prevent speculative execution
[mirror_ubuntu-artful-kernel.git] / kernel / audit_tree.c
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/refcount.h>
7 #include <linux/slab.h>
8
9 struct audit_tree;
10 struct audit_chunk;
11
12 struct audit_tree {
13 refcount_t count;
14 int goner;
15 struct audit_chunk *root;
16 struct list_head chunks;
17 struct list_head rules;
18 struct list_head list;
19 struct list_head same_root;
20 struct rcu_head head;
21 char pathname[];
22 };
23
24 struct audit_chunk {
25 struct list_head hash;
26 struct fsnotify_mark mark;
27 struct list_head trees; /* with root here */
28 int dead;
29 int count;
30 atomic_long_t refs;
31 struct rcu_head head;
32 struct node {
33 struct list_head list;
34 struct audit_tree *owner;
35 unsigned index; /* index; upper bit indicates 'will prune' */
36 } owners[];
37 };
38
39 static LIST_HEAD(tree_list);
40 static LIST_HEAD(prune_list);
41 static struct task_struct *prune_thread;
42
43 /*
44 * One struct chunk is attached to each inode of interest.
45 * We replace struct chunk on tagging/untagging.
46 * Rules have pointer to struct audit_tree.
47 * Rules have struct list_head rlist forming a list of rules over
48 * the same tree.
49 * References to struct chunk are collected at audit_inode{,_child}()
50 * time and used in AUDIT_TREE rule matching.
51 * These references are dropped at the same time we are calling
52 * audit_free_names(), etc.
53 *
54 * Cyclic lists galore:
55 * tree.chunks anchors chunk.owners[].list hash_lock
56 * tree.rules anchors rule.rlist audit_filter_mutex
57 * chunk.trees anchors tree.same_root hash_lock
58 * chunk.hash is a hash with middle bits of watch.inode as
59 * a hash function. RCU, hash_lock
60 *
61 * tree is refcounted; one reference for "some rules on rules_list refer to
62 * it", one for each chunk with pointer to it.
63 *
64 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
65 * of watch contributes 1 to .refs).
66 *
67 * node.index allows to get from node.list to containing chunk.
68 * MSB of that sucker is stolen to mark taggings that we might have to
69 * revert - several operations have very unpleasant cleanup logics and
70 * that makes a difference. Some.
71 */
72
73 static struct fsnotify_group *audit_tree_group;
74
75 static struct audit_tree *alloc_tree(const char *s)
76 {
77 struct audit_tree *tree;
78
79 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
80 if (tree) {
81 refcount_set(&tree->count, 1);
82 tree->goner = 0;
83 INIT_LIST_HEAD(&tree->chunks);
84 INIT_LIST_HEAD(&tree->rules);
85 INIT_LIST_HEAD(&tree->list);
86 INIT_LIST_HEAD(&tree->same_root);
87 tree->root = NULL;
88 strcpy(tree->pathname, s);
89 }
90 return tree;
91 }
92
93 static inline void get_tree(struct audit_tree *tree)
94 {
95 refcount_inc(&tree->count);
96 }
97
98 static inline void put_tree(struct audit_tree *tree)
99 {
100 if (refcount_dec_and_test(&tree->count))
101 kfree_rcu(tree, head);
102 }
103
104 /* to avoid bringing the entire thing in audit.h */
105 const char *audit_tree_path(struct audit_tree *tree)
106 {
107 return tree->pathname;
108 }
109
110 static void free_chunk(struct audit_chunk *chunk)
111 {
112 int i;
113
114 for (i = 0; i < chunk->count; i++) {
115 if (chunk->owners[i].owner)
116 put_tree(chunk->owners[i].owner);
117 }
118 kfree(chunk);
119 }
120
121 void audit_put_chunk(struct audit_chunk *chunk)
122 {
123 if (atomic_long_dec_and_test(&chunk->refs))
124 free_chunk(chunk);
125 }
126
127 static void __put_chunk(struct rcu_head *rcu)
128 {
129 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
130 audit_put_chunk(chunk);
131 }
132
133 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
134 {
135 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
136 call_rcu(&chunk->head, __put_chunk);
137 }
138
139 static struct audit_chunk *alloc_chunk(int count)
140 {
141 struct audit_chunk *chunk;
142 size_t size;
143 int i;
144
145 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
146 chunk = kzalloc(size, GFP_KERNEL);
147 if (!chunk)
148 return NULL;
149
150 INIT_LIST_HEAD(&chunk->hash);
151 INIT_LIST_HEAD(&chunk->trees);
152 chunk->count = count;
153 atomic_long_set(&chunk->refs, 1);
154 for (i = 0; i < count; i++) {
155 INIT_LIST_HEAD(&chunk->owners[i].list);
156 chunk->owners[i].index = i;
157 }
158 fsnotify_init_mark(&chunk->mark, audit_tree_group);
159 chunk->mark.mask = FS_IN_IGNORED;
160 return chunk;
161 }
162
163 enum {HASH_SIZE = 128};
164 static struct list_head chunk_hash_heads[HASH_SIZE];
165 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
166
167 /* Function to return search key in our hash from inode. */
168 static unsigned long inode_to_key(const struct inode *inode)
169 {
170 return (unsigned long)inode;
171 }
172
173 /*
174 * Function to return search key in our hash from chunk. Key 0 is special and
175 * should never be present in the hash.
176 */
177 static unsigned long chunk_to_key(struct audit_chunk *chunk)
178 {
179 /*
180 * We have a reference to the mark so it should be attached to a
181 * connector.
182 */
183 if (WARN_ON_ONCE(!chunk->mark.connector))
184 return 0;
185 return (unsigned long)chunk->mark.connector->inode;
186 }
187
188 static inline struct list_head *chunk_hash(unsigned long key)
189 {
190 unsigned long n = key / L1_CACHE_BYTES;
191 return chunk_hash_heads + n % HASH_SIZE;
192 }
193
194 /* hash_lock & entry->lock is held by caller */
195 static void insert_hash(struct audit_chunk *chunk)
196 {
197 unsigned long key = chunk_to_key(chunk);
198 struct list_head *list;
199
200 if (!(chunk->mark.flags & FSNOTIFY_MARK_FLAG_ATTACHED))
201 return;
202 list = chunk_hash(key);
203 list_add_rcu(&chunk->hash, list);
204 }
205
206 /* called under rcu_read_lock */
207 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
208 {
209 unsigned long key = inode_to_key(inode);
210 struct list_head *list = chunk_hash(key);
211 struct audit_chunk *p;
212
213 list_for_each_entry_rcu(p, list, hash) {
214 if (chunk_to_key(p) == key) {
215 atomic_long_inc(&p->refs);
216 return p;
217 }
218 }
219 return NULL;
220 }
221
222 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
223 {
224 int n;
225 for (n = 0; n < chunk->count; n++)
226 if (chunk->owners[n].owner == tree)
227 return true;
228 return false;
229 }
230
231 /* tagging and untagging inodes with trees */
232
233 static struct audit_chunk *find_chunk(struct node *p)
234 {
235 int index = p->index & ~(1U<<31);
236 p -= index;
237 return container_of(p, struct audit_chunk, owners[0]);
238 }
239
240 static void untag_chunk(struct node *p)
241 {
242 struct audit_chunk *chunk = find_chunk(p);
243 struct fsnotify_mark *entry = &chunk->mark;
244 struct audit_chunk *new = NULL;
245 struct audit_tree *owner;
246 int size = chunk->count - 1;
247 int i, j;
248
249 fsnotify_get_mark(entry);
250
251 spin_unlock(&hash_lock);
252
253 if (size)
254 new = alloc_chunk(size);
255
256 mutex_lock(&entry->group->mark_mutex);
257 spin_lock(&entry->lock);
258 /*
259 * mark_mutex protects mark from getting detached and thus also from
260 * mark->connector->inode getting NULL.
261 */
262 if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
263 spin_unlock(&entry->lock);
264 mutex_unlock(&entry->group->mark_mutex);
265 if (new)
266 fsnotify_put_mark(&new->mark);
267 goto out;
268 }
269
270 owner = p->owner;
271
272 if (!size) {
273 chunk->dead = 1;
274 spin_lock(&hash_lock);
275 list_del_init(&chunk->trees);
276 if (owner->root == chunk)
277 owner->root = NULL;
278 list_del_init(&p->list);
279 list_del_rcu(&chunk->hash);
280 spin_unlock(&hash_lock);
281 spin_unlock(&entry->lock);
282 mutex_unlock(&entry->group->mark_mutex);
283 fsnotify_destroy_mark(entry, audit_tree_group);
284 goto out;
285 }
286
287 if (!new)
288 goto Fallback;
289
290 if (fsnotify_add_mark_locked(&new->mark, entry->connector->inode,
291 NULL, 1)) {
292 fsnotify_put_mark(&new->mark);
293 goto Fallback;
294 }
295
296 chunk->dead = 1;
297 spin_lock(&hash_lock);
298 list_replace_init(&chunk->trees, &new->trees);
299 if (owner->root == chunk) {
300 list_del_init(&owner->same_root);
301 owner->root = NULL;
302 }
303
304 for (i = j = 0; j <= size; i++, j++) {
305 struct audit_tree *s;
306 if (&chunk->owners[j] == p) {
307 list_del_init(&p->list);
308 i--;
309 continue;
310 }
311 s = chunk->owners[j].owner;
312 new->owners[i].owner = s;
313 new->owners[i].index = chunk->owners[j].index - j + i;
314 if (!s) /* result of earlier fallback */
315 continue;
316 get_tree(s);
317 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
318 }
319
320 list_replace_rcu(&chunk->hash, &new->hash);
321 list_for_each_entry(owner, &new->trees, same_root)
322 owner->root = new;
323 spin_unlock(&hash_lock);
324 spin_unlock(&entry->lock);
325 mutex_unlock(&entry->group->mark_mutex);
326 fsnotify_destroy_mark(entry, audit_tree_group);
327 fsnotify_put_mark(&new->mark); /* drop initial reference */
328 goto out;
329
330 Fallback:
331 // do the best we can
332 spin_lock(&hash_lock);
333 if (owner->root == chunk) {
334 list_del_init(&owner->same_root);
335 owner->root = NULL;
336 }
337 list_del_init(&p->list);
338 p->owner = NULL;
339 put_tree(owner);
340 spin_unlock(&hash_lock);
341 spin_unlock(&entry->lock);
342 mutex_unlock(&entry->group->mark_mutex);
343 out:
344 fsnotify_put_mark(entry);
345 spin_lock(&hash_lock);
346 }
347
348 static int create_chunk(struct inode *inode, struct audit_tree *tree)
349 {
350 struct fsnotify_mark *entry;
351 struct audit_chunk *chunk = alloc_chunk(1);
352 if (!chunk)
353 return -ENOMEM;
354
355 entry = &chunk->mark;
356 if (fsnotify_add_mark(entry, inode, NULL, 0)) {
357 fsnotify_put_mark(entry);
358 return -ENOSPC;
359 }
360
361 spin_lock(&entry->lock);
362 spin_lock(&hash_lock);
363 if (tree->goner) {
364 spin_unlock(&hash_lock);
365 chunk->dead = 1;
366 spin_unlock(&entry->lock);
367 fsnotify_destroy_mark(entry, audit_tree_group);
368 fsnotify_put_mark(entry);
369 return 0;
370 }
371 chunk->owners[0].index = (1U << 31);
372 chunk->owners[0].owner = tree;
373 get_tree(tree);
374 list_add(&chunk->owners[0].list, &tree->chunks);
375 if (!tree->root) {
376 tree->root = chunk;
377 list_add(&tree->same_root, &chunk->trees);
378 }
379 insert_hash(chunk);
380 spin_unlock(&hash_lock);
381 spin_unlock(&entry->lock);
382 fsnotify_put_mark(entry); /* drop initial reference */
383 return 0;
384 }
385
386 /* the first tagged inode becomes root of tree */
387 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
388 {
389 struct fsnotify_mark *old_entry, *chunk_entry;
390 struct audit_tree *owner;
391 struct audit_chunk *chunk, *old;
392 struct node *p;
393 int n;
394
395 old_entry = fsnotify_find_mark(&inode->i_fsnotify_marks,
396 audit_tree_group);
397 if (!old_entry)
398 return create_chunk(inode, tree);
399
400 old = container_of(old_entry, struct audit_chunk, mark);
401
402 /* are we already there? */
403 spin_lock(&hash_lock);
404 for (n = 0; n < old->count; n++) {
405 if (old->owners[n].owner == tree) {
406 spin_unlock(&hash_lock);
407 fsnotify_put_mark(old_entry);
408 return 0;
409 }
410 }
411 spin_unlock(&hash_lock);
412
413 chunk = alloc_chunk(old->count + 1);
414 if (!chunk) {
415 fsnotify_put_mark(old_entry);
416 return -ENOMEM;
417 }
418
419 chunk_entry = &chunk->mark;
420
421 mutex_lock(&old_entry->group->mark_mutex);
422 spin_lock(&old_entry->lock);
423 /*
424 * mark_mutex protects mark from getting detached and thus also from
425 * mark->connector->inode getting NULL.
426 */
427 if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
428 /* old_entry is being shot, lets just lie */
429 spin_unlock(&old_entry->lock);
430 mutex_unlock(&old_entry->group->mark_mutex);
431 fsnotify_put_mark(old_entry);
432 fsnotify_put_mark(&chunk->mark);
433 return -ENOENT;
434 }
435
436 if (fsnotify_add_mark_locked(chunk_entry,
437 old_entry->connector->inode, NULL, 1)) {
438 spin_unlock(&old_entry->lock);
439 mutex_unlock(&old_entry->group->mark_mutex);
440 fsnotify_put_mark(chunk_entry);
441 fsnotify_put_mark(old_entry);
442 return -ENOSPC;
443 }
444
445 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
446 spin_lock(&chunk_entry->lock);
447 spin_lock(&hash_lock);
448
449 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
450 if (tree->goner) {
451 spin_unlock(&hash_lock);
452 chunk->dead = 1;
453 spin_unlock(&chunk_entry->lock);
454 spin_unlock(&old_entry->lock);
455 mutex_unlock(&old_entry->group->mark_mutex);
456
457 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
458
459 fsnotify_put_mark(chunk_entry);
460 fsnotify_put_mark(old_entry);
461 return 0;
462 }
463 list_replace_init(&old->trees, &chunk->trees);
464 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
465 struct audit_tree *s = old->owners[n].owner;
466 p->owner = s;
467 p->index = old->owners[n].index;
468 if (!s) /* result of fallback in untag */
469 continue;
470 get_tree(s);
471 list_replace_init(&old->owners[n].list, &p->list);
472 }
473 p->index = (chunk->count - 1) | (1U<<31);
474 p->owner = tree;
475 get_tree(tree);
476 list_add(&p->list, &tree->chunks);
477 list_replace_rcu(&old->hash, &chunk->hash);
478 list_for_each_entry(owner, &chunk->trees, same_root)
479 owner->root = chunk;
480 old->dead = 1;
481 if (!tree->root) {
482 tree->root = chunk;
483 list_add(&tree->same_root, &chunk->trees);
484 }
485 spin_unlock(&hash_lock);
486 spin_unlock(&chunk_entry->lock);
487 spin_unlock(&old_entry->lock);
488 mutex_unlock(&old_entry->group->mark_mutex);
489 fsnotify_destroy_mark(old_entry, audit_tree_group);
490 fsnotify_put_mark(chunk_entry); /* drop initial reference */
491 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
492 return 0;
493 }
494
495 static void audit_tree_log_remove_rule(struct audit_krule *rule)
496 {
497 struct audit_buffer *ab;
498
499 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
500 if (unlikely(!ab))
501 return;
502 audit_log_format(ab, "op=remove_rule");
503 audit_log_format(ab, " dir=");
504 audit_log_untrustedstring(ab, rule->tree->pathname);
505 audit_log_key(ab, rule->filterkey);
506 audit_log_format(ab, " list=%d res=1", rule->listnr);
507 audit_log_end(ab);
508 }
509
510 static void kill_rules(struct audit_tree *tree)
511 {
512 struct audit_krule *rule, *next;
513 struct audit_entry *entry;
514
515 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
516 entry = container_of(rule, struct audit_entry, rule);
517
518 list_del_init(&rule->rlist);
519 if (rule->tree) {
520 /* not a half-baked one */
521 audit_tree_log_remove_rule(rule);
522 if (entry->rule.exe)
523 audit_remove_mark(entry->rule.exe);
524 rule->tree = NULL;
525 list_del_rcu(&entry->list);
526 list_del(&entry->rule.list);
527 call_rcu(&entry->rcu, audit_free_rule_rcu);
528 }
529 }
530 }
531
532 /*
533 * finish killing struct audit_tree
534 */
535 static void prune_one(struct audit_tree *victim)
536 {
537 spin_lock(&hash_lock);
538 while (!list_empty(&victim->chunks)) {
539 struct node *p;
540
541 p = list_entry(victim->chunks.next, struct node, list);
542
543 untag_chunk(p);
544 }
545 spin_unlock(&hash_lock);
546 put_tree(victim);
547 }
548
549 /* trim the uncommitted chunks from tree */
550
551 static void trim_marked(struct audit_tree *tree)
552 {
553 struct list_head *p, *q;
554 spin_lock(&hash_lock);
555 if (tree->goner) {
556 spin_unlock(&hash_lock);
557 return;
558 }
559 /* reorder */
560 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
561 struct node *node = list_entry(p, struct node, list);
562 q = p->next;
563 if (node->index & (1U<<31)) {
564 list_del_init(p);
565 list_add(p, &tree->chunks);
566 }
567 }
568
569 while (!list_empty(&tree->chunks)) {
570 struct node *node;
571
572 node = list_entry(tree->chunks.next, struct node, list);
573
574 /* have we run out of marked? */
575 if (!(node->index & (1U<<31)))
576 break;
577
578 untag_chunk(node);
579 }
580 if (!tree->root && !tree->goner) {
581 tree->goner = 1;
582 spin_unlock(&hash_lock);
583 mutex_lock(&audit_filter_mutex);
584 kill_rules(tree);
585 list_del_init(&tree->list);
586 mutex_unlock(&audit_filter_mutex);
587 prune_one(tree);
588 } else {
589 spin_unlock(&hash_lock);
590 }
591 }
592
593 static void audit_schedule_prune(void);
594
595 /* called with audit_filter_mutex */
596 int audit_remove_tree_rule(struct audit_krule *rule)
597 {
598 struct audit_tree *tree;
599 tree = rule->tree;
600 if (tree) {
601 spin_lock(&hash_lock);
602 list_del_init(&rule->rlist);
603 if (list_empty(&tree->rules) && !tree->goner) {
604 tree->root = NULL;
605 list_del_init(&tree->same_root);
606 tree->goner = 1;
607 list_move(&tree->list, &prune_list);
608 rule->tree = NULL;
609 spin_unlock(&hash_lock);
610 audit_schedule_prune();
611 return 1;
612 }
613 rule->tree = NULL;
614 spin_unlock(&hash_lock);
615 return 1;
616 }
617 return 0;
618 }
619
620 static int compare_root(struct vfsmount *mnt, void *arg)
621 {
622 return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
623 (unsigned long)arg;
624 }
625
626 void audit_trim_trees(void)
627 {
628 struct list_head cursor;
629
630 mutex_lock(&audit_filter_mutex);
631 list_add(&cursor, &tree_list);
632 while (cursor.next != &tree_list) {
633 struct audit_tree *tree;
634 struct path path;
635 struct vfsmount *root_mnt;
636 struct node *node;
637 int err;
638
639 tree = container_of(cursor.next, struct audit_tree, list);
640 get_tree(tree);
641 list_del(&cursor);
642 list_add(&cursor, &tree->list);
643 mutex_unlock(&audit_filter_mutex);
644
645 err = kern_path(tree->pathname, 0, &path);
646 if (err)
647 goto skip_it;
648
649 root_mnt = collect_mounts(&path);
650 path_put(&path);
651 if (IS_ERR(root_mnt))
652 goto skip_it;
653
654 spin_lock(&hash_lock);
655 list_for_each_entry(node, &tree->chunks, list) {
656 struct audit_chunk *chunk = find_chunk(node);
657 /* this could be NULL if the watch is dying else where... */
658 node->index |= 1U<<31;
659 if (iterate_mounts(compare_root,
660 (void *)chunk_to_key(chunk),
661 root_mnt))
662 node->index &= ~(1U<<31);
663 }
664 spin_unlock(&hash_lock);
665 trim_marked(tree);
666 drop_collected_mounts(root_mnt);
667 skip_it:
668 put_tree(tree);
669 mutex_lock(&audit_filter_mutex);
670 }
671 list_del(&cursor);
672 mutex_unlock(&audit_filter_mutex);
673 }
674
675 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
676 {
677
678 if (pathname[0] != '/' ||
679 rule->listnr != AUDIT_FILTER_EXIT ||
680 op != Audit_equal ||
681 rule->inode_f || rule->watch || rule->tree)
682 return -EINVAL;
683 rule->tree = alloc_tree(pathname);
684 if (!rule->tree)
685 return -ENOMEM;
686 return 0;
687 }
688
689 void audit_put_tree(struct audit_tree *tree)
690 {
691 put_tree(tree);
692 }
693
694 static int tag_mount(struct vfsmount *mnt, void *arg)
695 {
696 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
697 }
698
699 /*
700 * That gets run when evict_chunk() ends up needing to kill audit_tree.
701 * Runs from a separate thread.
702 */
703 static int prune_tree_thread(void *unused)
704 {
705 for (;;) {
706 if (list_empty(&prune_list)) {
707 set_current_state(TASK_INTERRUPTIBLE);
708 schedule();
709 }
710
711 mutex_lock(&audit_cmd_mutex);
712 mutex_lock(&audit_filter_mutex);
713
714 while (!list_empty(&prune_list)) {
715 struct audit_tree *victim;
716
717 victim = list_entry(prune_list.next,
718 struct audit_tree, list);
719 list_del_init(&victim->list);
720
721 mutex_unlock(&audit_filter_mutex);
722
723 prune_one(victim);
724
725 mutex_lock(&audit_filter_mutex);
726 }
727
728 mutex_unlock(&audit_filter_mutex);
729 mutex_unlock(&audit_cmd_mutex);
730 }
731 return 0;
732 }
733
734 static int audit_launch_prune(void)
735 {
736 if (prune_thread)
737 return 0;
738 prune_thread = kthread_run(prune_tree_thread, NULL,
739 "audit_prune_tree");
740 if (IS_ERR(prune_thread)) {
741 pr_err("cannot start thread audit_prune_tree");
742 prune_thread = NULL;
743 return -ENOMEM;
744 }
745 return 0;
746 }
747
748 /* called with audit_filter_mutex */
749 int audit_add_tree_rule(struct audit_krule *rule)
750 {
751 struct audit_tree *seed = rule->tree, *tree;
752 struct path path;
753 struct vfsmount *mnt;
754 int err;
755
756 rule->tree = NULL;
757 list_for_each_entry(tree, &tree_list, list) {
758 if (!strcmp(seed->pathname, tree->pathname)) {
759 put_tree(seed);
760 rule->tree = tree;
761 list_add(&rule->rlist, &tree->rules);
762 return 0;
763 }
764 }
765 tree = seed;
766 list_add(&tree->list, &tree_list);
767 list_add(&rule->rlist, &tree->rules);
768 /* do not set rule->tree yet */
769 mutex_unlock(&audit_filter_mutex);
770
771 if (unlikely(!prune_thread)) {
772 err = audit_launch_prune();
773 if (err)
774 goto Err;
775 }
776
777 err = kern_path(tree->pathname, 0, &path);
778 if (err)
779 goto Err;
780 mnt = collect_mounts(&path);
781 path_put(&path);
782 if (IS_ERR(mnt)) {
783 err = PTR_ERR(mnt);
784 goto Err;
785 }
786
787 get_tree(tree);
788 err = iterate_mounts(tag_mount, tree, mnt);
789 drop_collected_mounts(mnt);
790
791 if (!err) {
792 struct node *node;
793 spin_lock(&hash_lock);
794 list_for_each_entry(node, &tree->chunks, list)
795 node->index &= ~(1U<<31);
796 spin_unlock(&hash_lock);
797 } else {
798 trim_marked(tree);
799 goto Err;
800 }
801
802 mutex_lock(&audit_filter_mutex);
803 if (list_empty(&rule->rlist)) {
804 put_tree(tree);
805 return -ENOENT;
806 }
807 rule->tree = tree;
808 put_tree(tree);
809
810 return 0;
811 Err:
812 mutex_lock(&audit_filter_mutex);
813 list_del_init(&tree->list);
814 list_del_init(&tree->rules);
815 put_tree(tree);
816 return err;
817 }
818
819 int audit_tag_tree(char *old, char *new)
820 {
821 struct list_head cursor, barrier;
822 int failed = 0;
823 struct path path1, path2;
824 struct vfsmount *tagged;
825 int err;
826
827 err = kern_path(new, 0, &path2);
828 if (err)
829 return err;
830 tagged = collect_mounts(&path2);
831 path_put(&path2);
832 if (IS_ERR(tagged))
833 return PTR_ERR(tagged);
834
835 err = kern_path(old, 0, &path1);
836 if (err) {
837 drop_collected_mounts(tagged);
838 return err;
839 }
840
841 mutex_lock(&audit_filter_mutex);
842 list_add(&barrier, &tree_list);
843 list_add(&cursor, &barrier);
844
845 while (cursor.next != &tree_list) {
846 struct audit_tree *tree;
847 int good_one = 0;
848
849 tree = container_of(cursor.next, struct audit_tree, list);
850 get_tree(tree);
851 list_del(&cursor);
852 list_add(&cursor, &tree->list);
853 mutex_unlock(&audit_filter_mutex);
854
855 err = kern_path(tree->pathname, 0, &path2);
856 if (!err) {
857 good_one = path_is_under(&path1, &path2);
858 path_put(&path2);
859 }
860
861 if (!good_one) {
862 put_tree(tree);
863 mutex_lock(&audit_filter_mutex);
864 continue;
865 }
866
867 failed = iterate_mounts(tag_mount, tree, tagged);
868 if (failed) {
869 put_tree(tree);
870 mutex_lock(&audit_filter_mutex);
871 break;
872 }
873
874 mutex_lock(&audit_filter_mutex);
875 spin_lock(&hash_lock);
876 if (!tree->goner) {
877 list_del(&tree->list);
878 list_add(&tree->list, &tree_list);
879 }
880 spin_unlock(&hash_lock);
881 put_tree(tree);
882 }
883
884 while (barrier.prev != &tree_list) {
885 struct audit_tree *tree;
886
887 tree = container_of(barrier.prev, struct audit_tree, list);
888 get_tree(tree);
889 list_del(&tree->list);
890 list_add(&tree->list, &barrier);
891 mutex_unlock(&audit_filter_mutex);
892
893 if (!failed) {
894 struct node *node;
895 spin_lock(&hash_lock);
896 list_for_each_entry(node, &tree->chunks, list)
897 node->index &= ~(1U<<31);
898 spin_unlock(&hash_lock);
899 } else {
900 trim_marked(tree);
901 }
902
903 put_tree(tree);
904 mutex_lock(&audit_filter_mutex);
905 }
906 list_del(&barrier);
907 list_del(&cursor);
908 mutex_unlock(&audit_filter_mutex);
909 path_put(&path1);
910 drop_collected_mounts(tagged);
911 return failed;
912 }
913
914
915 static void audit_schedule_prune(void)
916 {
917 wake_up_process(prune_thread);
918 }
919
920 /*
921 * ... and that one is done if evict_chunk() decides to delay until the end
922 * of syscall. Runs synchronously.
923 */
924 void audit_kill_trees(struct list_head *list)
925 {
926 mutex_lock(&audit_cmd_mutex);
927 mutex_lock(&audit_filter_mutex);
928
929 while (!list_empty(list)) {
930 struct audit_tree *victim;
931
932 victim = list_entry(list->next, struct audit_tree, list);
933 kill_rules(victim);
934 list_del_init(&victim->list);
935
936 mutex_unlock(&audit_filter_mutex);
937
938 prune_one(victim);
939
940 mutex_lock(&audit_filter_mutex);
941 }
942
943 mutex_unlock(&audit_filter_mutex);
944 mutex_unlock(&audit_cmd_mutex);
945 }
946
947 /*
948 * Here comes the stuff asynchronous to auditctl operations
949 */
950
951 static void evict_chunk(struct audit_chunk *chunk)
952 {
953 struct audit_tree *owner;
954 struct list_head *postponed = audit_killed_trees();
955 int need_prune = 0;
956 int n;
957
958 if (chunk->dead)
959 return;
960
961 chunk->dead = 1;
962 mutex_lock(&audit_filter_mutex);
963 spin_lock(&hash_lock);
964 while (!list_empty(&chunk->trees)) {
965 owner = list_entry(chunk->trees.next,
966 struct audit_tree, same_root);
967 owner->goner = 1;
968 owner->root = NULL;
969 list_del_init(&owner->same_root);
970 spin_unlock(&hash_lock);
971 if (!postponed) {
972 kill_rules(owner);
973 list_move(&owner->list, &prune_list);
974 need_prune = 1;
975 } else {
976 list_move(&owner->list, postponed);
977 }
978 spin_lock(&hash_lock);
979 }
980 list_del_rcu(&chunk->hash);
981 for (n = 0; n < chunk->count; n++)
982 list_del_init(&chunk->owners[n].list);
983 spin_unlock(&hash_lock);
984 mutex_unlock(&audit_filter_mutex);
985 if (need_prune)
986 audit_schedule_prune();
987 }
988
989 static int audit_tree_handle_event(struct fsnotify_group *group,
990 struct inode *to_tell,
991 struct fsnotify_mark *inode_mark,
992 struct fsnotify_mark *vfsmount_mark,
993 u32 mask, const void *data, int data_type,
994 const unsigned char *file_name, u32 cookie,
995 struct fsnotify_iter_info *iter_info)
996 {
997 return 0;
998 }
999
1000 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
1001 {
1002 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
1003
1004 evict_chunk(chunk);
1005
1006 /*
1007 * We are guaranteed to have at least one reference to the mark from
1008 * either the inode or the caller of fsnotify_destroy_mark().
1009 */
1010 BUG_ON(atomic_read(&entry->refcnt) < 1);
1011 }
1012
1013 static const struct fsnotify_ops audit_tree_ops = {
1014 .handle_event = audit_tree_handle_event,
1015 .freeing_mark = audit_tree_freeing_mark,
1016 .free_mark = audit_tree_destroy_watch,
1017 };
1018
1019 static int __init audit_tree_init(void)
1020 {
1021 int i;
1022
1023 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1024 if (IS_ERR(audit_tree_group))
1025 audit_panic("cannot initialize fsnotify group for rectree watches");
1026
1027 for (i = 0; i < HASH_SIZE; i++)
1028 INIT_LIST_HEAD(&chunk_hash_heads[i]);
1029
1030 return 0;
1031 }
1032 __initcall(audit_tree_init);