]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
90 #include <linux/livepatch.h>
91 #include <linux/thread_info.h>
92
93 #include <asm/pgtable.h>
94 #include <asm/pgalloc.h>
95 #include <linux/uaccess.h>
96 #include <asm/mmu_context.h>
97 #include <asm/cacheflush.h>
98 #include <asm/tlbflush.h>
99
100 #include <trace/events/sched.h>
101
102 #define CREATE_TRACE_POINTS
103 #include <trace/events/task.h>
104 #ifdef CONFIG_USER_NS
105 extern int unprivileged_userns_clone;
106 #else
107 #define unprivileged_userns_clone 0
108 #endif
109
110 /*
111 * Minimum number of threads to boot the kernel
112 */
113 #define MIN_THREADS 20
114
115 /*
116 * Maximum number of threads
117 */
118 #define MAX_THREADS FUTEX_TID_MASK
119
120 /*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123 unsigned long total_forks; /* Handle normal Linux uptimes. */
124 int nr_threads; /* The idle threads do not count.. */
125
126 int max_threads; /* tunable limit on nr_threads */
127
128 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129
130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
131
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
134 {
135 return lockdep_is_held(&tasklist_lock);
136 }
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
139
140 int nr_processes(void)
141 {
142 int cpu;
143 int total = 0;
144
145 for_each_possible_cpu(cpu)
146 total += per_cpu(process_counts, cpu);
147
148 return total;
149 }
150
151 void __weak arch_release_task_struct(struct task_struct *tsk)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache *task_struct_cachep;
157
158 static inline struct task_struct *alloc_task_struct_node(int node)
159 {
160 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 }
162
163 static inline void free_task_struct(struct task_struct *tsk)
164 {
165 kmem_cache_free(task_struct_cachep, tsk);
166 }
167 #endif
168
169 void __weak arch_release_thread_stack(unsigned long *stack)
170 {
171 }
172
173 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
174
175 /*
176 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
177 * kmemcache based allocator.
178 */
179 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
180
181 #ifdef CONFIG_VMAP_STACK
182 /*
183 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
184 * flush. Try to minimize the number of calls by caching stacks.
185 */
186 #define NR_CACHED_STACKS 2
187 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
188
189 static int free_vm_stack_cache(unsigned int cpu)
190 {
191 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
192 int i;
193
194 for (i = 0; i < NR_CACHED_STACKS; i++) {
195 struct vm_struct *vm_stack = cached_vm_stacks[i];
196
197 if (!vm_stack)
198 continue;
199
200 vfree(vm_stack->addr);
201 cached_vm_stacks[i] = NULL;
202 }
203
204 return 0;
205 }
206 #endif
207
208 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
209 {
210 #ifdef CONFIG_VMAP_STACK
211 void *stack;
212 int i;
213
214 for (i = 0; i < NR_CACHED_STACKS; i++) {
215 struct vm_struct *s;
216
217 s = this_cpu_xchg(cached_stacks[i], NULL);
218
219 if (!s)
220 continue;
221
222 tsk->stack_vm_area = s;
223 return s->addr;
224 }
225
226 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 VMALLOC_START, VMALLOC_END,
228 THREADINFO_GFP,
229 PAGE_KERNEL,
230 0, node, __builtin_return_address(0));
231
232 /*
233 * We can't call find_vm_area() in interrupt context, and
234 * free_thread_stack() can be called in interrupt context,
235 * so cache the vm_struct.
236 */
237 if (stack)
238 tsk->stack_vm_area = find_vm_area(stack);
239 return stack;
240 #else
241 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 THREAD_SIZE_ORDER);
243
244 return page ? page_address(page) : NULL;
245 #endif
246 }
247
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 if (task_stack_vm_area(tsk)) {
252 int i;
253
254 for (i = 0; i < NR_CACHED_STACKS; i++) {
255 if (this_cpu_cmpxchg(cached_stacks[i],
256 NULL, tsk->stack_vm_area) != NULL)
257 continue;
258
259 return;
260 }
261
262 vfree_atomic(tsk->stack);
263 return;
264 }
265 #endif
266
267 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 int node)
274 {
275 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282
283 void thread_stack_cache_init(void)
284 {
285 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
286 THREAD_SIZE, 0, NULL);
287 BUG_ON(thread_stack_cache == NULL);
288 }
289 # endif
290 #endif
291
292 /* SLAB cache for signal_struct structures (tsk->signal) */
293 static struct kmem_cache *signal_cachep;
294
295 /* SLAB cache for sighand_struct structures (tsk->sighand) */
296 struct kmem_cache *sighand_cachep;
297
298 /* SLAB cache for files_struct structures (tsk->files) */
299 struct kmem_cache *files_cachep;
300
301 /* SLAB cache for fs_struct structures (tsk->fs) */
302 struct kmem_cache *fs_cachep;
303
304 /* SLAB cache for vm_area_struct structures */
305 struct kmem_cache *vm_area_cachep;
306
307 /* SLAB cache for mm_struct structures (tsk->mm) */
308 static struct kmem_cache *mm_cachep;
309
310 static void account_kernel_stack(struct task_struct *tsk, int account)
311 {
312 void *stack = task_stack_page(tsk);
313 struct vm_struct *vm = task_stack_vm_area(tsk);
314
315 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
316
317 if (vm) {
318 int i;
319
320 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
321
322 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
323 mod_zone_page_state(page_zone(vm->pages[i]),
324 NR_KERNEL_STACK_KB,
325 PAGE_SIZE / 1024 * account);
326 }
327
328 /* All stack pages belong to the same memcg. */
329 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
330 account * (THREAD_SIZE / 1024));
331 } else {
332 /*
333 * All stack pages are in the same zone and belong to the
334 * same memcg.
335 */
336 struct page *first_page = virt_to_page(stack);
337
338 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
339 THREAD_SIZE / 1024 * account);
340
341 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
342 account * (THREAD_SIZE / 1024));
343 }
344 }
345
346 static void release_task_stack(struct task_struct *tsk)
347 {
348 if (WARN_ON(tsk->state != TASK_DEAD))
349 return; /* Better to leak the stack than to free prematurely */
350
351 account_kernel_stack(tsk, -1);
352 arch_release_thread_stack(tsk->stack);
353 free_thread_stack(tsk);
354 tsk->stack = NULL;
355 #ifdef CONFIG_VMAP_STACK
356 tsk->stack_vm_area = NULL;
357 #endif
358 }
359
360 #ifdef CONFIG_THREAD_INFO_IN_TASK
361 void put_task_stack(struct task_struct *tsk)
362 {
363 if (atomic_dec_and_test(&tsk->stack_refcount))
364 release_task_stack(tsk);
365 }
366 #endif
367
368 void free_task(struct task_struct *tsk)
369 {
370 #ifndef CONFIG_THREAD_INFO_IN_TASK
371 /*
372 * The task is finally done with both the stack and thread_info,
373 * so free both.
374 */
375 release_task_stack(tsk);
376 #else
377 /*
378 * If the task had a separate stack allocation, it should be gone
379 * by now.
380 */
381 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
382 #endif
383 rt_mutex_debug_task_free(tsk);
384 ftrace_graph_exit_task(tsk);
385 put_seccomp_filter(tsk);
386 arch_release_task_struct(tsk);
387 if (tsk->flags & PF_KTHREAD)
388 free_kthread_struct(tsk);
389 free_task_struct(tsk);
390 }
391 EXPORT_SYMBOL(free_task);
392
393 static inline void free_signal_struct(struct signal_struct *sig)
394 {
395 taskstats_tgid_free(sig);
396 sched_autogroup_exit(sig);
397 /*
398 * __mmdrop is not safe to call from softirq context on x86 due to
399 * pgd_dtor so postpone it to the async context
400 */
401 if (sig->oom_mm)
402 mmdrop_async(sig->oom_mm);
403 kmem_cache_free(signal_cachep, sig);
404 }
405
406 static inline void put_signal_struct(struct signal_struct *sig)
407 {
408 if (atomic_dec_and_test(&sig->sigcnt))
409 free_signal_struct(sig);
410 }
411
412 void __put_task_struct(struct task_struct *tsk)
413 {
414 WARN_ON(!tsk->exit_state);
415 WARN_ON(atomic_read(&tsk->usage));
416 WARN_ON(tsk == current);
417
418 cgroup_free(tsk);
419 task_numa_free(tsk);
420 security_task_free(tsk);
421 exit_creds(tsk);
422 delayacct_tsk_free(tsk);
423 put_signal_struct(tsk->signal);
424
425 if (!profile_handoff_task(tsk))
426 free_task(tsk);
427 }
428 EXPORT_SYMBOL_GPL(__put_task_struct);
429
430 void __init __weak arch_task_cache_init(void) { }
431
432 /*
433 * set_max_threads
434 */
435 static void set_max_threads(unsigned int max_threads_suggested)
436 {
437 u64 threads;
438
439 /*
440 * The number of threads shall be limited such that the thread
441 * structures may only consume a small part of the available memory.
442 */
443 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
444 threads = MAX_THREADS;
445 else
446 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
447 (u64) THREAD_SIZE * 8UL);
448
449 if (threads > max_threads_suggested)
450 threads = max_threads_suggested;
451
452 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
453 }
454
455 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
456 /* Initialized by the architecture: */
457 int arch_task_struct_size __read_mostly;
458 #endif
459
460 void __init fork_init(void)
461 {
462 int i;
463 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
464 #ifndef ARCH_MIN_TASKALIGN
465 #define ARCH_MIN_TASKALIGN 0
466 #endif
467 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
468
469 /* create a slab on which task_structs can be allocated */
470 task_struct_cachep = kmem_cache_create("task_struct",
471 arch_task_struct_size, align,
472 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
473 #endif
474
475 /* do the arch specific task caches init */
476 arch_task_cache_init();
477
478 set_max_threads(MAX_THREADS);
479
480 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
481 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
482 init_task.signal->rlim[RLIMIT_SIGPENDING] =
483 init_task.signal->rlim[RLIMIT_NPROC];
484
485 for (i = 0; i < UCOUNT_COUNTS; i++) {
486 init_user_ns.ucount_max[i] = max_threads/2;
487 }
488
489 #ifdef CONFIG_VMAP_STACK
490 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
491 NULL, free_vm_stack_cache);
492 #endif
493 }
494
495 int __weak arch_dup_task_struct(struct task_struct *dst,
496 struct task_struct *src)
497 {
498 *dst = *src;
499 return 0;
500 }
501
502 void set_task_stack_end_magic(struct task_struct *tsk)
503 {
504 unsigned long *stackend;
505
506 stackend = end_of_stack(tsk);
507 *stackend = STACK_END_MAGIC; /* for overflow detection */
508 }
509
510 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
511 {
512 struct task_struct *tsk;
513 unsigned long *stack;
514 struct vm_struct *stack_vm_area;
515 int err;
516
517 if (node == NUMA_NO_NODE)
518 node = tsk_fork_get_node(orig);
519 tsk = alloc_task_struct_node(node);
520 if (!tsk)
521 return NULL;
522
523 stack = alloc_thread_stack_node(tsk, node);
524 if (!stack)
525 goto free_tsk;
526
527 stack_vm_area = task_stack_vm_area(tsk);
528
529 err = arch_dup_task_struct(tsk, orig);
530
531 /*
532 * arch_dup_task_struct() clobbers the stack-related fields. Make
533 * sure they're properly initialized before using any stack-related
534 * functions again.
535 */
536 tsk->stack = stack;
537 #ifdef CONFIG_VMAP_STACK
538 tsk->stack_vm_area = stack_vm_area;
539 #endif
540 #ifdef CONFIG_THREAD_INFO_IN_TASK
541 atomic_set(&tsk->stack_refcount, 1);
542 #endif
543
544 if (err)
545 goto free_stack;
546
547 #ifdef CONFIG_SECCOMP
548 /*
549 * We must handle setting up seccomp filters once we're under
550 * the sighand lock in case orig has changed between now and
551 * then. Until then, filter must be NULL to avoid messing up
552 * the usage counts on the error path calling free_task.
553 */
554 tsk->seccomp.filter = NULL;
555 #endif
556
557 setup_thread_stack(tsk, orig);
558 clear_user_return_notifier(tsk);
559 clear_tsk_need_resched(tsk);
560 set_task_stack_end_magic(tsk);
561
562 #ifdef CONFIG_CC_STACKPROTECTOR
563 tsk->stack_canary = get_random_canary();
564 #endif
565
566 /*
567 * One for us, one for whoever does the "release_task()" (usually
568 * parent)
569 */
570 atomic_set(&tsk->usage, 2);
571 #ifdef CONFIG_BLK_DEV_IO_TRACE
572 tsk->btrace_seq = 0;
573 #endif
574 tsk->splice_pipe = NULL;
575 tsk->task_frag.page = NULL;
576 tsk->wake_q.next = NULL;
577
578 account_kernel_stack(tsk, 1);
579
580 kcov_task_init(tsk);
581
582 #ifdef CONFIG_FAULT_INJECTION
583 tsk->fail_nth = 0;
584 #endif
585
586 return tsk;
587
588 free_stack:
589 free_thread_stack(tsk);
590 free_tsk:
591 free_task_struct(tsk);
592 return NULL;
593 }
594
595 #ifdef CONFIG_MMU
596 static __latent_entropy int dup_mmap(struct mm_struct *mm,
597 struct mm_struct *oldmm)
598 {
599 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
600 struct rb_node **rb_link, *rb_parent;
601 int retval;
602 unsigned long charge;
603 LIST_HEAD(uf);
604
605 uprobe_start_dup_mmap();
606 if (down_write_killable(&oldmm->mmap_sem)) {
607 retval = -EINTR;
608 goto fail_uprobe_end;
609 }
610 flush_cache_dup_mm(oldmm);
611 uprobe_dup_mmap(oldmm, mm);
612 /*
613 * Not linked in yet - no deadlock potential:
614 */
615 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
616
617 /* No ordering required: file already has been exposed. */
618 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
619
620 mm->total_vm = oldmm->total_vm;
621 mm->data_vm = oldmm->data_vm;
622 mm->exec_vm = oldmm->exec_vm;
623 mm->stack_vm = oldmm->stack_vm;
624
625 rb_link = &mm->mm_rb.rb_node;
626 rb_parent = NULL;
627 pprev = &mm->mmap;
628 retval = ksm_fork(mm, oldmm);
629 if (retval)
630 goto out;
631 retval = khugepaged_fork(mm, oldmm);
632 if (retval)
633 goto out;
634
635 prev = NULL;
636 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
637 struct file *file;
638
639 if (mpnt->vm_flags & VM_DONTCOPY) {
640 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
641 continue;
642 }
643 charge = 0;
644 if (mpnt->vm_flags & VM_ACCOUNT) {
645 unsigned long len = vma_pages(mpnt);
646
647 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
648 goto fail_nomem;
649 charge = len;
650 }
651 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
652 if (!tmp)
653 goto fail_nomem;
654 *tmp = *mpnt;
655 INIT_LIST_HEAD(&tmp->anon_vma_chain);
656 retval = vma_dup_policy(mpnt, tmp);
657 if (retval)
658 goto fail_nomem_policy;
659 tmp->vm_mm = mm;
660 retval = dup_userfaultfd(tmp, &uf);
661 if (retval)
662 goto fail_nomem_anon_vma_fork;
663 if (anon_vma_fork(tmp, mpnt))
664 goto fail_nomem_anon_vma_fork;
665 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
666 tmp->vm_next = tmp->vm_prev = NULL;
667 file = tmp->vm_file;
668 if (file) {
669 struct inode *inode = file_inode(file);
670 struct address_space *mapping = file->f_mapping;
671
672 vma_get_file(tmp);
673 if (tmp->vm_flags & VM_DENYWRITE)
674 atomic_dec(&inode->i_writecount);
675 i_mmap_lock_write(mapping);
676 if (tmp->vm_flags & VM_SHARED)
677 atomic_inc(&mapping->i_mmap_writable);
678 flush_dcache_mmap_lock(mapping);
679 /* insert tmp into the share list, just after mpnt */
680 vma_interval_tree_insert_after(tmp, mpnt,
681 &mapping->i_mmap);
682 flush_dcache_mmap_unlock(mapping);
683 i_mmap_unlock_write(mapping);
684 }
685
686 /*
687 * Clear hugetlb-related page reserves for children. This only
688 * affects MAP_PRIVATE mappings. Faults generated by the child
689 * are not guaranteed to succeed, even if read-only
690 */
691 if (is_vm_hugetlb_page(tmp))
692 reset_vma_resv_huge_pages(tmp);
693
694 /*
695 * Link in the new vma and copy the page table entries.
696 */
697 *pprev = tmp;
698 pprev = &tmp->vm_next;
699 tmp->vm_prev = prev;
700 prev = tmp;
701
702 __vma_link_rb(mm, tmp, rb_link, rb_parent);
703 rb_link = &tmp->vm_rb.rb_right;
704 rb_parent = &tmp->vm_rb;
705
706 mm->map_count++;
707 retval = copy_page_range(mm, oldmm, mpnt);
708
709 if (tmp->vm_ops && tmp->vm_ops->open)
710 tmp->vm_ops->open(tmp);
711
712 if (retval)
713 goto out;
714 }
715 /* a new mm has just been created */
716 retval = arch_dup_mmap(oldmm, mm);
717 out:
718 up_write(&mm->mmap_sem);
719 flush_tlb_mm(oldmm);
720 up_write(&oldmm->mmap_sem);
721 dup_userfaultfd_complete(&uf);
722 fail_uprobe_end:
723 uprobe_end_dup_mmap();
724 return retval;
725 fail_nomem_anon_vma_fork:
726 mpol_put(vma_policy(tmp));
727 fail_nomem_policy:
728 kmem_cache_free(vm_area_cachep, tmp);
729 fail_nomem:
730 retval = -ENOMEM;
731 vm_unacct_memory(charge);
732 goto out;
733 }
734
735 static inline int mm_alloc_pgd(struct mm_struct *mm)
736 {
737 mm->pgd = pgd_alloc(mm);
738 if (unlikely(!mm->pgd))
739 return -ENOMEM;
740 return 0;
741 }
742
743 static inline void mm_free_pgd(struct mm_struct *mm)
744 {
745 pgd_free(mm, mm->pgd);
746 }
747 #else
748 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
749 {
750 down_write(&oldmm->mmap_sem);
751 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
752 up_write(&oldmm->mmap_sem);
753 return 0;
754 }
755 #define mm_alloc_pgd(mm) (0)
756 #define mm_free_pgd(mm)
757 #endif /* CONFIG_MMU */
758
759 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
760
761 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
762 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
763
764 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
765
766 static int __init coredump_filter_setup(char *s)
767 {
768 default_dump_filter =
769 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
770 MMF_DUMP_FILTER_MASK;
771 return 1;
772 }
773
774 __setup("coredump_filter=", coredump_filter_setup);
775
776 #include <linux/init_task.h>
777
778 static void mm_init_aio(struct mm_struct *mm)
779 {
780 #ifdef CONFIG_AIO
781 spin_lock_init(&mm->ioctx_lock);
782 mm->ioctx_table = NULL;
783 #endif
784 }
785
786 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
787 {
788 #ifdef CONFIG_MEMCG
789 mm->owner = p;
790 #endif
791 }
792
793 static void mm_init_uprobes_state(struct mm_struct *mm)
794 {
795 #ifdef CONFIG_UPROBES
796 mm->uprobes_state.xol_area = NULL;
797 #endif
798 }
799
800 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
801 struct user_namespace *user_ns)
802 {
803 mm->mmap = NULL;
804 mm->mm_rb = RB_ROOT;
805 mm->vmacache_seqnum = 0;
806 atomic_set(&mm->mm_users, 1);
807 atomic_set(&mm->mm_count, 1);
808 init_rwsem(&mm->mmap_sem);
809 INIT_LIST_HEAD(&mm->mmlist);
810 mm->core_state = NULL;
811 atomic_long_set(&mm->nr_ptes, 0);
812 mm_nr_pmds_init(mm);
813 mm->map_count = 0;
814 mm->locked_vm = 0;
815 mm->pinned_vm = 0;
816 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
817 spin_lock_init(&mm->page_table_lock);
818 mm_init_cpumask(mm);
819 mm_init_aio(mm);
820 mm_init_owner(mm, p);
821 RCU_INIT_POINTER(mm->exe_file, NULL);
822 mmu_notifier_mm_init(mm);
823 init_tlb_flush_pending(mm);
824 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
825 mm->pmd_huge_pte = NULL;
826 #endif
827 mm_init_uprobes_state(mm);
828
829 if (current->mm) {
830 mm->flags = current->mm->flags & MMF_INIT_MASK;
831 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
832 } else {
833 mm->flags = default_dump_filter;
834 mm->def_flags = 0;
835 }
836
837 if (mm_alloc_pgd(mm))
838 goto fail_nopgd;
839
840 if (init_new_context(p, mm))
841 goto fail_nocontext;
842
843 mm->user_ns = get_user_ns(user_ns);
844 return mm;
845
846 fail_nocontext:
847 mm_free_pgd(mm);
848 fail_nopgd:
849 free_mm(mm);
850 return NULL;
851 }
852
853 static void check_mm(struct mm_struct *mm)
854 {
855 int i;
856
857 for (i = 0; i < NR_MM_COUNTERS; i++) {
858 long x = atomic_long_read(&mm->rss_stat.count[i]);
859
860 if (unlikely(x))
861 printk(KERN_ALERT "BUG: Bad rss-counter state "
862 "mm:%p idx:%d val:%ld\n", mm, i, x);
863 }
864
865 if (atomic_long_read(&mm->nr_ptes))
866 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
867 atomic_long_read(&mm->nr_ptes));
868 if (mm_nr_pmds(mm))
869 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
870 mm_nr_pmds(mm));
871
872 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
873 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
874 #endif
875 }
876
877 /*
878 * Allocate and initialize an mm_struct.
879 */
880 struct mm_struct *mm_alloc(void)
881 {
882 struct mm_struct *mm;
883
884 mm = allocate_mm();
885 if (!mm)
886 return NULL;
887
888 memset(mm, 0, sizeof(*mm));
889 return mm_init(mm, current, current_user_ns());
890 }
891
892 /*
893 * Called when the last reference to the mm
894 * is dropped: either by a lazy thread or by
895 * mmput. Free the page directory and the mm.
896 */
897 void __mmdrop(struct mm_struct *mm)
898 {
899 BUG_ON(mm == &init_mm);
900 mm_free_pgd(mm);
901 destroy_context(mm);
902 mmu_notifier_mm_destroy(mm);
903 check_mm(mm);
904 put_user_ns(mm->user_ns);
905 free_mm(mm);
906 }
907 EXPORT_SYMBOL_GPL(__mmdrop);
908
909 static inline void __mmput(struct mm_struct *mm)
910 {
911 VM_BUG_ON(atomic_read(&mm->mm_users));
912
913 uprobe_clear_state(mm);
914 exit_aio(mm);
915 ksm_exit(mm);
916 khugepaged_exit(mm); /* must run before exit_mmap */
917 exit_mmap(mm);
918 mm_put_huge_zero_page(mm);
919 set_mm_exe_file(mm, NULL);
920 if (!list_empty(&mm->mmlist)) {
921 spin_lock(&mmlist_lock);
922 list_del(&mm->mmlist);
923 spin_unlock(&mmlist_lock);
924 }
925 if (mm->binfmt)
926 module_put(mm->binfmt->module);
927 set_bit(MMF_OOM_SKIP, &mm->flags);
928 mmdrop(mm);
929 }
930
931 /*
932 * Decrement the use count and release all resources for an mm.
933 */
934 void mmput(struct mm_struct *mm)
935 {
936 might_sleep();
937
938 if (atomic_dec_and_test(&mm->mm_users))
939 __mmput(mm);
940 }
941 EXPORT_SYMBOL_GPL(mmput);
942
943 #ifdef CONFIG_MMU
944 static void mmput_async_fn(struct work_struct *work)
945 {
946 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
947 __mmput(mm);
948 }
949
950 void mmput_async(struct mm_struct *mm)
951 {
952 if (atomic_dec_and_test(&mm->mm_users)) {
953 INIT_WORK(&mm->async_put_work, mmput_async_fn);
954 schedule_work(&mm->async_put_work);
955 }
956 }
957 #endif
958
959 /**
960 * set_mm_exe_file - change a reference to the mm's executable file
961 *
962 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
963 *
964 * Main users are mmput() and sys_execve(). Callers prevent concurrent
965 * invocations: in mmput() nobody alive left, in execve task is single
966 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
967 * mm->exe_file, but does so without using set_mm_exe_file() in order
968 * to do avoid the need for any locks.
969 */
970 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
971 {
972 struct file *old_exe_file;
973
974 /*
975 * It is safe to dereference the exe_file without RCU as
976 * this function is only called if nobody else can access
977 * this mm -- see comment above for justification.
978 */
979 old_exe_file = rcu_dereference_raw(mm->exe_file);
980
981 if (new_exe_file)
982 get_file(new_exe_file);
983 rcu_assign_pointer(mm->exe_file, new_exe_file);
984 if (old_exe_file)
985 fput(old_exe_file);
986 }
987
988 /**
989 * get_mm_exe_file - acquire a reference to the mm's executable file
990 *
991 * Returns %NULL if mm has no associated executable file.
992 * User must release file via fput().
993 */
994 struct file *get_mm_exe_file(struct mm_struct *mm)
995 {
996 struct file *exe_file;
997
998 rcu_read_lock();
999 exe_file = rcu_dereference(mm->exe_file);
1000 if (exe_file && !get_file_rcu(exe_file))
1001 exe_file = NULL;
1002 rcu_read_unlock();
1003 return exe_file;
1004 }
1005 EXPORT_SYMBOL(get_mm_exe_file);
1006
1007 /**
1008 * get_task_exe_file - acquire a reference to the task's executable file
1009 *
1010 * Returns %NULL if task's mm (if any) has no associated executable file or
1011 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1012 * User must release file via fput().
1013 */
1014 struct file *get_task_exe_file(struct task_struct *task)
1015 {
1016 struct file *exe_file = NULL;
1017 struct mm_struct *mm;
1018
1019 task_lock(task);
1020 mm = task->mm;
1021 if (mm) {
1022 if (!(task->flags & PF_KTHREAD))
1023 exe_file = get_mm_exe_file(mm);
1024 }
1025 task_unlock(task);
1026 return exe_file;
1027 }
1028 EXPORT_SYMBOL(get_task_exe_file);
1029
1030 /**
1031 * get_task_mm - acquire a reference to the task's mm
1032 *
1033 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1034 * this kernel workthread has transiently adopted a user mm with use_mm,
1035 * to do its AIO) is not set and if so returns a reference to it, after
1036 * bumping up the use count. User must release the mm via mmput()
1037 * after use. Typically used by /proc and ptrace.
1038 */
1039 struct mm_struct *get_task_mm(struct task_struct *task)
1040 {
1041 struct mm_struct *mm;
1042
1043 task_lock(task);
1044 mm = task->mm;
1045 if (mm) {
1046 if (task->flags & PF_KTHREAD)
1047 mm = NULL;
1048 else
1049 mmget(mm);
1050 }
1051 task_unlock(task);
1052 return mm;
1053 }
1054 EXPORT_SYMBOL_GPL(get_task_mm);
1055
1056 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1057 {
1058 struct mm_struct *mm;
1059 int err;
1060
1061 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1062 if (err)
1063 return ERR_PTR(err);
1064
1065 mm = get_task_mm(task);
1066 if (mm && mm != current->mm &&
1067 !ptrace_may_access(task, mode)) {
1068 mmput(mm);
1069 mm = ERR_PTR(-EACCES);
1070 }
1071 mutex_unlock(&task->signal->cred_guard_mutex);
1072
1073 return mm;
1074 }
1075
1076 static void complete_vfork_done(struct task_struct *tsk)
1077 {
1078 struct completion *vfork;
1079
1080 task_lock(tsk);
1081 vfork = tsk->vfork_done;
1082 if (likely(vfork)) {
1083 tsk->vfork_done = NULL;
1084 complete(vfork);
1085 }
1086 task_unlock(tsk);
1087 }
1088
1089 static int wait_for_vfork_done(struct task_struct *child,
1090 struct completion *vfork)
1091 {
1092 int killed;
1093
1094 freezer_do_not_count();
1095 killed = wait_for_completion_killable(vfork);
1096 freezer_count();
1097
1098 if (killed) {
1099 task_lock(child);
1100 child->vfork_done = NULL;
1101 task_unlock(child);
1102 }
1103
1104 put_task_struct(child);
1105 return killed;
1106 }
1107
1108 /* Please note the differences between mmput and mm_release.
1109 * mmput is called whenever we stop holding onto a mm_struct,
1110 * error success whatever.
1111 *
1112 * mm_release is called after a mm_struct has been removed
1113 * from the current process.
1114 *
1115 * This difference is important for error handling, when we
1116 * only half set up a mm_struct for a new process and need to restore
1117 * the old one. Because we mmput the new mm_struct before
1118 * restoring the old one. . .
1119 * Eric Biederman 10 January 1998
1120 */
1121 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1122 {
1123 /* Get rid of any futexes when releasing the mm */
1124 #ifdef CONFIG_FUTEX
1125 if (unlikely(tsk->robust_list)) {
1126 exit_robust_list(tsk);
1127 tsk->robust_list = NULL;
1128 }
1129 #ifdef CONFIG_COMPAT
1130 if (unlikely(tsk->compat_robust_list)) {
1131 compat_exit_robust_list(tsk);
1132 tsk->compat_robust_list = NULL;
1133 }
1134 #endif
1135 if (unlikely(!list_empty(&tsk->pi_state_list)))
1136 exit_pi_state_list(tsk);
1137 #endif
1138
1139 uprobe_free_utask(tsk);
1140
1141 /* Get rid of any cached register state */
1142 deactivate_mm(tsk, mm);
1143
1144 /*
1145 * Signal userspace if we're not exiting with a core dump
1146 * because we want to leave the value intact for debugging
1147 * purposes.
1148 */
1149 if (tsk->clear_child_tid) {
1150 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1151 atomic_read(&mm->mm_users) > 1) {
1152 /*
1153 * We don't check the error code - if userspace has
1154 * not set up a proper pointer then tough luck.
1155 */
1156 put_user(0, tsk->clear_child_tid);
1157 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1158 1, NULL, NULL, 0);
1159 }
1160 tsk->clear_child_tid = NULL;
1161 }
1162
1163 /*
1164 * All done, finally we can wake up parent and return this mm to him.
1165 * Also kthread_stop() uses this completion for synchronization.
1166 */
1167 if (tsk->vfork_done)
1168 complete_vfork_done(tsk);
1169 }
1170
1171 /*
1172 * Allocate a new mm structure and copy contents from the
1173 * mm structure of the passed in task structure.
1174 */
1175 static struct mm_struct *dup_mm(struct task_struct *tsk)
1176 {
1177 struct mm_struct *mm, *oldmm = current->mm;
1178 int err;
1179
1180 mm = allocate_mm();
1181 if (!mm)
1182 goto fail_nomem;
1183
1184 memcpy(mm, oldmm, sizeof(*mm));
1185
1186 if (!mm_init(mm, tsk, mm->user_ns))
1187 goto fail_nomem;
1188
1189 err = dup_mmap(mm, oldmm);
1190 if (err)
1191 goto free_pt;
1192
1193 mm->hiwater_rss = get_mm_rss(mm);
1194 mm->hiwater_vm = mm->total_vm;
1195
1196 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1197 goto free_pt;
1198
1199 return mm;
1200
1201 free_pt:
1202 /* don't put binfmt in mmput, we haven't got module yet */
1203 mm->binfmt = NULL;
1204 mmput(mm);
1205
1206 fail_nomem:
1207 return NULL;
1208 }
1209
1210 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1211 {
1212 struct mm_struct *mm, *oldmm;
1213 int retval;
1214
1215 tsk->min_flt = tsk->maj_flt = 0;
1216 tsk->nvcsw = tsk->nivcsw = 0;
1217 #ifdef CONFIG_DETECT_HUNG_TASK
1218 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1219 #endif
1220
1221 tsk->mm = NULL;
1222 tsk->active_mm = NULL;
1223
1224 /*
1225 * Are we cloning a kernel thread?
1226 *
1227 * We need to steal a active VM for that..
1228 */
1229 oldmm = current->mm;
1230 if (!oldmm)
1231 return 0;
1232
1233 /* initialize the new vmacache entries */
1234 vmacache_flush(tsk);
1235
1236 if (clone_flags & CLONE_VM) {
1237 mmget(oldmm);
1238 mm = oldmm;
1239 goto good_mm;
1240 }
1241
1242 retval = -ENOMEM;
1243 mm = dup_mm(tsk);
1244 if (!mm)
1245 goto fail_nomem;
1246
1247 good_mm:
1248 tsk->mm = mm;
1249 tsk->active_mm = mm;
1250 return 0;
1251
1252 fail_nomem:
1253 return retval;
1254 }
1255
1256 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1257 {
1258 struct fs_struct *fs = current->fs;
1259 if (clone_flags & CLONE_FS) {
1260 /* tsk->fs is already what we want */
1261 spin_lock(&fs->lock);
1262 if (fs->in_exec) {
1263 spin_unlock(&fs->lock);
1264 return -EAGAIN;
1265 }
1266 fs->users++;
1267 spin_unlock(&fs->lock);
1268 return 0;
1269 }
1270 tsk->fs = copy_fs_struct(fs);
1271 if (!tsk->fs)
1272 return -ENOMEM;
1273 return 0;
1274 }
1275
1276 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1277 {
1278 struct files_struct *oldf, *newf;
1279 int error = 0;
1280
1281 /*
1282 * A background process may not have any files ...
1283 */
1284 oldf = current->files;
1285 if (!oldf)
1286 goto out;
1287
1288 if (clone_flags & CLONE_FILES) {
1289 atomic_inc(&oldf->count);
1290 goto out;
1291 }
1292
1293 newf = dup_fd(oldf, &error);
1294 if (!newf)
1295 goto out;
1296
1297 tsk->files = newf;
1298 error = 0;
1299 out:
1300 return error;
1301 }
1302
1303 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1304 {
1305 #ifdef CONFIG_BLOCK
1306 struct io_context *ioc = current->io_context;
1307 struct io_context *new_ioc;
1308
1309 if (!ioc)
1310 return 0;
1311 /*
1312 * Share io context with parent, if CLONE_IO is set
1313 */
1314 if (clone_flags & CLONE_IO) {
1315 ioc_task_link(ioc);
1316 tsk->io_context = ioc;
1317 } else if (ioprio_valid(ioc->ioprio)) {
1318 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1319 if (unlikely(!new_ioc))
1320 return -ENOMEM;
1321
1322 new_ioc->ioprio = ioc->ioprio;
1323 put_io_context(new_ioc);
1324 }
1325 #endif
1326 return 0;
1327 }
1328
1329 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1330 {
1331 struct sighand_struct *sig;
1332
1333 if (clone_flags & CLONE_SIGHAND) {
1334 atomic_inc(&current->sighand->count);
1335 return 0;
1336 }
1337 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1338 rcu_assign_pointer(tsk->sighand, sig);
1339 if (!sig)
1340 return -ENOMEM;
1341
1342 atomic_set(&sig->count, 1);
1343 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1344 return 0;
1345 }
1346
1347 void __cleanup_sighand(struct sighand_struct *sighand)
1348 {
1349 if (atomic_dec_and_test(&sighand->count)) {
1350 signalfd_cleanup(sighand);
1351 /*
1352 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1353 * without an RCU grace period, see __lock_task_sighand().
1354 */
1355 kmem_cache_free(sighand_cachep, sighand);
1356 }
1357 }
1358
1359 #ifdef CONFIG_POSIX_TIMERS
1360 /*
1361 * Initialize POSIX timer handling for a thread group.
1362 */
1363 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1364 {
1365 unsigned long cpu_limit;
1366
1367 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1368 if (cpu_limit != RLIM_INFINITY) {
1369 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1370 sig->cputimer.running = true;
1371 }
1372
1373 /* The timer lists. */
1374 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1375 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1376 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1377 }
1378 #else
1379 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1380 #endif
1381
1382 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1383 {
1384 struct signal_struct *sig;
1385
1386 if (clone_flags & CLONE_THREAD)
1387 return 0;
1388
1389 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1390 tsk->signal = sig;
1391 if (!sig)
1392 return -ENOMEM;
1393
1394 sig->nr_threads = 1;
1395 atomic_set(&sig->live, 1);
1396 atomic_set(&sig->sigcnt, 1);
1397
1398 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1399 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1400 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1401
1402 init_waitqueue_head(&sig->wait_chldexit);
1403 sig->curr_target = tsk;
1404 init_sigpending(&sig->shared_pending);
1405 seqlock_init(&sig->stats_lock);
1406 prev_cputime_init(&sig->prev_cputime);
1407
1408 #ifdef CONFIG_POSIX_TIMERS
1409 INIT_LIST_HEAD(&sig->posix_timers);
1410 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1411 sig->real_timer.function = it_real_fn;
1412 #endif
1413
1414 task_lock(current->group_leader);
1415 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1416 task_unlock(current->group_leader);
1417
1418 posix_cpu_timers_init_group(sig);
1419
1420 tty_audit_fork(sig);
1421 sched_autogroup_fork(sig);
1422
1423 sig->oom_score_adj = current->signal->oom_score_adj;
1424 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1425
1426 mutex_init(&sig->cred_guard_mutex);
1427
1428 return 0;
1429 }
1430
1431 static void copy_seccomp(struct task_struct *p)
1432 {
1433 #ifdef CONFIG_SECCOMP
1434 /*
1435 * Must be called with sighand->lock held, which is common to
1436 * all threads in the group. Holding cred_guard_mutex is not
1437 * needed because this new task is not yet running and cannot
1438 * be racing exec.
1439 */
1440 assert_spin_locked(&current->sighand->siglock);
1441
1442 /* Ref-count the new filter user, and assign it. */
1443 get_seccomp_filter(current);
1444 p->seccomp = current->seccomp;
1445
1446 /*
1447 * Explicitly enable no_new_privs here in case it got set
1448 * between the task_struct being duplicated and holding the
1449 * sighand lock. The seccomp state and nnp must be in sync.
1450 */
1451 if (task_no_new_privs(current))
1452 task_set_no_new_privs(p);
1453
1454 /*
1455 * If the parent gained a seccomp mode after copying thread
1456 * flags and between before we held the sighand lock, we have
1457 * to manually enable the seccomp thread flag here.
1458 */
1459 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1460 set_tsk_thread_flag(p, TIF_SECCOMP);
1461 #endif
1462 }
1463
1464 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1465 {
1466 current->clear_child_tid = tidptr;
1467
1468 return task_pid_vnr(current);
1469 }
1470
1471 static void rt_mutex_init_task(struct task_struct *p)
1472 {
1473 raw_spin_lock_init(&p->pi_lock);
1474 #ifdef CONFIG_RT_MUTEXES
1475 p->pi_waiters = RB_ROOT;
1476 p->pi_waiters_leftmost = NULL;
1477 p->pi_top_task = NULL;
1478 p->pi_blocked_on = NULL;
1479 #endif
1480 }
1481
1482 #ifdef CONFIG_POSIX_TIMERS
1483 /*
1484 * Initialize POSIX timer handling for a single task.
1485 */
1486 static void posix_cpu_timers_init(struct task_struct *tsk)
1487 {
1488 tsk->cputime_expires.prof_exp = 0;
1489 tsk->cputime_expires.virt_exp = 0;
1490 tsk->cputime_expires.sched_exp = 0;
1491 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1492 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1493 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1494 }
1495 #else
1496 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1497 #endif
1498
1499 static inline void
1500 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1501 {
1502 task->pids[type].pid = pid;
1503 }
1504
1505 static inline void rcu_copy_process(struct task_struct *p)
1506 {
1507 #ifdef CONFIG_PREEMPT_RCU
1508 p->rcu_read_lock_nesting = 0;
1509 p->rcu_read_unlock_special.s = 0;
1510 p->rcu_blocked_node = NULL;
1511 INIT_LIST_HEAD(&p->rcu_node_entry);
1512 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1513 #ifdef CONFIG_TASKS_RCU
1514 p->rcu_tasks_holdout = false;
1515 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1516 p->rcu_tasks_idle_cpu = -1;
1517 #endif /* #ifdef CONFIG_TASKS_RCU */
1518 }
1519
1520 /*
1521 * This creates a new process as a copy of the old one,
1522 * but does not actually start it yet.
1523 *
1524 * It copies the registers, and all the appropriate
1525 * parts of the process environment (as per the clone
1526 * flags). The actual kick-off is left to the caller.
1527 */
1528 static __latent_entropy struct task_struct *copy_process(
1529 unsigned long clone_flags,
1530 unsigned long stack_start,
1531 unsigned long stack_size,
1532 int __user *child_tidptr,
1533 struct pid *pid,
1534 int trace,
1535 unsigned long tls,
1536 int node)
1537 {
1538 int retval;
1539 struct task_struct *p;
1540
1541 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1542 return ERR_PTR(-EINVAL);
1543
1544 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1545 return ERR_PTR(-EINVAL);
1546
1547 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1548 if (!capable(CAP_SYS_ADMIN))
1549 return ERR_PTR(-EPERM);
1550
1551 /*
1552 * Thread groups must share signals as well, and detached threads
1553 * can only be started up within the thread group.
1554 */
1555 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1556 return ERR_PTR(-EINVAL);
1557
1558 /*
1559 * Shared signal handlers imply shared VM. By way of the above,
1560 * thread groups also imply shared VM. Blocking this case allows
1561 * for various simplifications in other code.
1562 */
1563 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1564 return ERR_PTR(-EINVAL);
1565
1566 /*
1567 * Siblings of global init remain as zombies on exit since they are
1568 * not reaped by their parent (swapper). To solve this and to avoid
1569 * multi-rooted process trees, prevent global and container-inits
1570 * from creating siblings.
1571 */
1572 if ((clone_flags & CLONE_PARENT) &&
1573 current->signal->flags & SIGNAL_UNKILLABLE)
1574 return ERR_PTR(-EINVAL);
1575
1576 /*
1577 * If the new process will be in a different pid or user namespace
1578 * do not allow it to share a thread group with the forking task.
1579 */
1580 if (clone_flags & CLONE_THREAD) {
1581 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1582 (task_active_pid_ns(current) !=
1583 current->nsproxy->pid_ns_for_children))
1584 return ERR_PTR(-EINVAL);
1585 }
1586
1587 retval = security_task_create(clone_flags);
1588 if (retval)
1589 goto fork_out;
1590
1591 retval = -ENOMEM;
1592 p = dup_task_struct(current, node);
1593 if (!p)
1594 goto fork_out;
1595
1596 /*
1597 * This _must_ happen before we call free_task(), i.e. before we jump
1598 * to any of the bad_fork_* labels. This is to avoid freeing
1599 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1600 * kernel threads (PF_KTHREAD).
1601 */
1602 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1603 /*
1604 * Clear TID on mm_release()?
1605 */
1606 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1607
1608 ftrace_graph_init_task(p);
1609
1610 rt_mutex_init_task(p);
1611
1612 #ifdef CONFIG_PROVE_LOCKING
1613 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1614 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1615 #endif
1616 retval = -EAGAIN;
1617 if (atomic_read(&p->real_cred->user->processes) >=
1618 task_rlimit(p, RLIMIT_NPROC)) {
1619 if (p->real_cred->user != INIT_USER &&
1620 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1621 goto bad_fork_free;
1622 }
1623 current->flags &= ~PF_NPROC_EXCEEDED;
1624
1625 retval = copy_creds(p, clone_flags);
1626 if (retval < 0)
1627 goto bad_fork_free;
1628
1629 /*
1630 * If multiple threads are within copy_process(), then this check
1631 * triggers too late. This doesn't hurt, the check is only there
1632 * to stop root fork bombs.
1633 */
1634 retval = -EAGAIN;
1635 if (nr_threads >= max_threads)
1636 goto bad_fork_cleanup_count;
1637
1638 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1639 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1640 p->flags |= PF_FORKNOEXEC;
1641 INIT_LIST_HEAD(&p->children);
1642 INIT_LIST_HEAD(&p->sibling);
1643 rcu_copy_process(p);
1644 p->vfork_done = NULL;
1645 spin_lock_init(&p->alloc_lock);
1646
1647 init_sigpending(&p->pending);
1648
1649 p->utime = p->stime = p->gtime = 0;
1650 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1651 p->utimescaled = p->stimescaled = 0;
1652 #endif
1653 prev_cputime_init(&p->prev_cputime);
1654
1655 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1656 seqcount_init(&p->vtime.seqcount);
1657 p->vtime.starttime = 0;
1658 p->vtime.state = VTIME_INACTIVE;
1659 #endif
1660
1661 #if defined(SPLIT_RSS_COUNTING)
1662 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1663 #endif
1664
1665 p->default_timer_slack_ns = current->timer_slack_ns;
1666
1667 task_io_accounting_init(&p->ioac);
1668 acct_clear_integrals(p);
1669
1670 posix_cpu_timers_init(p);
1671
1672 p->start_time = ktime_get_ns();
1673 p->real_start_time = ktime_get_boot_ns();
1674 p->io_context = NULL;
1675 p->audit_context = NULL;
1676 cgroup_fork(p);
1677 #ifdef CONFIG_NUMA
1678 p->mempolicy = mpol_dup(p->mempolicy);
1679 if (IS_ERR(p->mempolicy)) {
1680 retval = PTR_ERR(p->mempolicy);
1681 p->mempolicy = NULL;
1682 goto bad_fork_cleanup_threadgroup_lock;
1683 }
1684 #endif
1685 #ifdef CONFIG_CPUSETS
1686 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1687 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1688 seqcount_init(&p->mems_allowed_seq);
1689 #endif
1690 #ifdef CONFIG_TRACE_IRQFLAGS
1691 p->irq_events = 0;
1692 p->hardirqs_enabled = 0;
1693 p->hardirq_enable_ip = 0;
1694 p->hardirq_enable_event = 0;
1695 p->hardirq_disable_ip = _THIS_IP_;
1696 p->hardirq_disable_event = 0;
1697 p->softirqs_enabled = 1;
1698 p->softirq_enable_ip = _THIS_IP_;
1699 p->softirq_enable_event = 0;
1700 p->softirq_disable_ip = 0;
1701 p->softirq_disable_event = 0;
1702 p->hardirq_context = 0;
1703 p->softirq_context = 0;
1704 #endif
1705
1706 p->pagefault_disabled = 0;
1707
1708 #ifdef CONFIG_LOCKDEP
1709 p->lockdep_depth = 0; /* no locks held yet */
1710 p->curr_chain_key = 0;
1711 p->lockdep_recursion = 0;
1712 #endif
1713
1714 #ifdef CONFIG_DEBUG_MUTEXES
1715 p->blocked_on = NULL; /* not blocked yet */
1716 #endif
1717 #ifdef CONFIG_BCACHE
1718 p->sequential_io = 0;
1719 p->sequential_io_avg = 0;
1720 #endif
1721 #ifdef CONFIG_SECURITY
1722 p->security = NULL;
1723 #endif
1724
1725 /* Perform scheduler related setup. Assign this task to a CPU. */
1726 retval = sched_fork(clone_flags, p);
1727 if (retval)
1728 goto bad_fork_cleanup_policy;
1729
1730 retval = perf_event_init_task(p);
1731 if (retval)
1732 goto bad_fork_cleanup_policy;
1733 retval = audit_alloc(p);
1734 if (retval)
1735 goto bad_fork_cleanup_perf;
1736 /* copy all the process information */
1737 shm_init_task(p);
1738 retval = security_task_alloc(p, clone_flags);
1739 if (retval)
1740 goto bad_fork_cleanup_audit;
1741 retval = copy_semundo(clone_flags, p);
1742 if (retval)
1743 goto bad_fork_cleanup_security;
1744 retval = copy_files(clone_flags, p);
1745 if (retval)
1746 goto bad_fork_cleanup_semundo;
1747 retval = copy_fs(clone_flags, p);
1748 if (retval)
1749 goto bad_fork_cleanup_files;
1750 retval = copy_sighand(clone_flags, p);
1751 if (retval)
1752 goto bad_fork_cleanup_fs;
1753 retval = copy_signal(clone_flags, p);
1754 if (retval)
1755 goto bad_fork_cleanup_sighand;
1756 retval = copy_mm(clone_flags, p);
1757 if (retval)
1758 goto bad_fork_cleanup_signal;
1759 retval = copy_namespaces(clone_flags, p);
1760 if (retval)
1761 goto bad_fork_cleanup_mm;
1762 retval = copy_io(clone_flags, p);
1763 if (retval)
1764 goto bad_fork_cleanup_namespaces;
1765 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1766 if (retval)
1767 goto bad_fork_cleanup_io;
1768
1769 if (pid != &init_struct_pid) {
1770 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1771 if (IS_ERR(pid)) {
1772 retval = PTR_ERR(pid);
1773 goto bad_fork_cleanup_thread;
1774 }
1775 }
1776
1777 #ifdef CONFIG_BLOCK
1778 p->plug = NULL;
1779 #endif
1780 #ifdef CONFIG_FUTEX
1781 p->robust_list = NULL;
1782 #ifdef CONFIG_COMPAT
1783 p->compat_robust_list = NULL;
1784 #endif
1785 INIT_LIST_HEAD(&p->pi_state_list);
1786 p->pi_state_cache = NULL;
1787 #endif
1788 /*
1789 * sigaltstack should be cleared when sharing the same VM
1790 */
1791 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1792 sas_ss_reset(p);
1793
1794 /*
1795 * Syscall tracing and stepping should be turned off in the
1796 * child regardless of CLONE_PTRACE.
1797 */
1798 user_disable_single_step(p);
1799 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1800 #ifdef TIF_SYSCALL_EMU
1801 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1802 #endif
1803 clear_all_latency_tracing(p);
1804
1805 /* ok, now we should be set up.. */
1806 p->pid = pid_nr(pid);
1807 if (clone_flags & CLONE_THREAD) {
1808 p->exit_signal = -1;
1809 p->group_leader = current->group_leader;
1810 p->tgid = current->tgid;
1811 } else {
1812 if (clone_flags & CLONE_PARENT)
1813 p->exit_signal = current->group_leader->exit_signal;
1814 else
1815 p->exit_signal = (clone_flags & CSIGNAL);
1816 p->group_leader = p;
1817 p->tgid = p->pid;
1818 }
1819
1820 p->nr_dirtied = 0;
1821 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1822 p->dirty_paused_when = 0;
1823
1824 p->pdeath_signal = 0;
1825 INIT_LIST_HEAD(&p->thread_group);
1826 p->task_works = NULL;
1827
1828 cgroup_threadgroup_change_begin(current);
1829 /*
1830 * Ensure that the cgroup subsystem policies allow the new process to be
1831 * forked. It should be noted the the new process's css_set can be changed
1832 * between here and cgroup_post_fork() if an organisation operation is in
1833 * progress.
1834 */
1835 retval = cgroup_can_fork(p);
1836 if (retval)
1837 goto bad_fork_free_pid;
1838
1839 /*
1840 * Make it visible to the rest of the system, but dont wake it up yet.
1841 * Need tasklist lock for parent etc handling!
1842 */
1843 write_lock_irq(&tasklist_lock);
1844
1845 /* CLONE_PARENT re-uses the old parent */
1846 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1847 p->real_parent = current->real_parent;
1848 p->parent_exec_id = current->parent_exec_id;
1849 } else {
1850 p->real_parent = current;
1851 p->parent_exec_id = current->self_exec_id;
1852 }
1853
1854 klp_copy_process(p);
1855
1856 spin_lock(&current->sighand->siglock);
1857
1858 /*
1859 * Copy seccomp details explicitly here, in case they were changed
1860 * before holding sighand lock.
1861 */
1862 copy_seccomp(p);
1863
1864 /*
1865 * Process group and session signals need to be delivered to just the
1866 * parent before the fork or both the parent and the child after the
1867 * fork. Restart if a signal comes in before we add the new process to
1868 * it's process group.
1869 * A fatal signal pending means that current will exit, so the new
1870 * thread can't slip out of an OOM kill (or normal SIGKILL).
1871 */
1872 recalc_sigpending();
1873 if (signal_pending(current)) {
1874 retval = -ERESTARTNOINTR;
1875 goto bad_fork_cancel_cgroup;
1876 }
1877 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1878 retval = -ENOMEM;
1879 goto bad_fork_cancel_cgroup;
1880 }
1881
1882 if (likely(p->pid)) {
1883 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1884
1885 init_task_pid(p, PIDTYPE_PID, pid);
1886 if (thread_group_leader(p)) {
1887 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1888 init_task_pid(p, PIDTYPE_SID, task_session(current));
1889
1890 if (is_child_reaper(pid)) {
1891 ns_of_pid(pid)->child_reaper = p;
1892 p->signal->flags |= SIGNAL_UNKILLABLE;
1893 }
1894
1895 p->signal->leader_pid = pid;
1896 p->signal->tty = tty_kref_get(current->signal->tty);
1897 /*
1898 * Inherit has_child_subreaper flag under the same
1899 * tasklist_lock with adding child to the process tree
1900 * for propagate_has_child_subreaper optimization.
1901 */
1902 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1903 p->real_parent->signal->is_child_subreaper;
1904 list_add_tail(&p->sibling, &p->real_parent->children);
1905 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1906 attach_pid(p, PIDTYPE_PGID);
1907 attach_pid(p, PIDTYPE_SID);
1908 __this_cpu_inc(process_counts);
1909 } else {
1910 current->signal->nr_threads++;
1911 atomic_inc(&current->signal->live);
1912 atomic_inc(&current->signal->sigcnt);
1913 list_add_tail_rcu(&p->thread_group,
1914 &p->group_leader->thread_group);
1915 list_add_tail_rcu(&p->thread_node,
1916 &p->signal->thread_head);
1917 }
1918 attach_pid(p, PIDTYPE_PID);
1919 nr_threads++;
1920 }
1921
1922 total_forks++;
1923 spin_unlock(&current->sighand->siglock);
1924 syscall_tracepoint_update(p);
1925 write_unlock_irq(&tasklist_lock);
1926
1927 proc_fork_connector(p);
1928 cgroup_post_fork(p);
1929 cgroup_threadgroup_change_end(current);
1930 perf_event_fork(p);
1931
1932 trace_task_newtask(p, clone_flags);
1933 uprobe_copy_process(p, clone_flags);
1934
1935 return p;
1936
1937 bad_fork_cancel_cgroup:
1938 spin_unlock(&current->sighand->siglock);
1939 write_unlock_irq(&tasklist_lock);
1940 cgroup_cancel_fork(p);
1941 bad_fork_free_pid:
1942 cgroup_threadgroup_change_end(current);
1943 if (pid != &init_struct_pid)
1944 free_pid(pid);
1945 bad_fork_cleanup_thread:
1946 exit_thread(p);
1947 bad_fork_cleanup_io:
1948 if (p->io_context)
1949 exit_io_context(p);
1950 bad_fork_cleanup_namespaces:
1951 exit_task_namespaces(p);
1952 bad_fork_cleanup_mm:
1953 if (p->mm)
1954 mmput(p->mm);
1955 bad_fork_cleanup_signal:
1956 if (!(clone_flags & CLONE_THREAD))
1957 free_signal_struct(p->signal);
1958 bad_fork_cleanup_sighand:
1959 __cleanup_sighand(p->sighand);
1960 bad_fork_cleanup_fs:
1961 exit_fs(p); /* blocking */
1962 bad_fork_cleanup_files:
1963 exit_files(p); /* blocking */
1964 bad_fork_cleanup_semundo:
1965 exit_sem(p);
1966 bad_fork_cleanup_security:
1967 security_task_free(p);
1968 bad_fork_cleanup_audit:
1969 audit_free(p);
1970 bad_fork_cleanup_perf:
1971 perf_event_free_task(p);
1972 bad_fork_cleanup_policy:
1973 #ifdef CONFIG_NUMA
1974 mpol_put(p->mempolicy);
1975 bad_fork_cleanup_threadgroup_lock:
1976 #endif
1977 delayacct_tsk_free(p);
1978 bad_fork_cleanup_count:
1979 atomic_dec(&p->cred->user->processes);
1980 exit_creds(p);
1981 bad_fork_free:
1982 p->state = TASK_DEAD;
1983 put_task_stack(p);
1984 free_task(p);
1985 fork_out:
1986 return ERR_PTR(retval);
1987 }
1988
1989 static inline void init_idle_pids(struct pid_link *links)
1990 {
1991 enum pid_type type;
1992
1993 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1994 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1995 links[type].pid = &init_struct_pid;
1996 }
1997 }
1998
1999 struct task_struct *fork_idle(int cpu)
2000 {
2001 struct task_struct *task;
2002 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2003 cpu_to_node(cpu));
2004 if (!IS_ERR(task)) {
2005 init_idle_pids(task->pids);
2006 init_idle(task, cpu);
2007 }
2008
2009 return task;
2010 }
2011
2012 /*
2013 * Ok, this is the main fork-routine.
2014 *
2015 * It copies the process, and if successful kick-starts
2016 * it and waits for it to finish using the VM if required.
2017 */
2018 long _do_fork(unsigned long clone_flags,
2019 unsigned long stack_start,
2020 unsigned long stack_size,
2021 int __user *parent_tidptr,
2022 int __user *child_tidptr,
2023 unsigned long tls)
2024 {
2025 struct task_struct *p;
2026 int trace = 0;
2027 long nr;
2028
2029 /*
2030 * Determine whether and which event to report to ptracer. When
2031 * called from kernel_thread or CLONE_UNTRACED is explicitly
2032 * requested, no event is reported; otherwise, report if the event
2033 * for the type of forking is enabled.
2034 */
2035 if (!(clone_flags & CLONE_UNTRACED)) {
2036 if (clone_flags & CLONE_VFORK)
2037 trace = PTRACE_EVENT_VFORK;
2038 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2039 trace = PTRACE_EVENT_CLONE;
2040 else
2041 trace = PTRACE_EVENT_FORK;
2042
2043 if (likely(!ptrace_event_enabled(current, trace)))
2044 trace = 0;
2045 }
2046
2047 p = copy_process(clone_flags, stack_start, stack_size,
2048 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2049 add_latent_entropy();
2050 /*
2051 * Do this prior waking up the new thread - the thread pointer
2052 * might get invalid after that point, if the thread exits quickly.
2053 */
2054 if (!IS_ERR(p)) {
2055 struct completion vfork;
2056 struct pid *pid;
2057
2058 trace_sched_process_fork(current, p);
2059
2060 pid = get_task_pid(p, PIDTYPE_PID);
2061 nr = pid_vnr(pid);
2062
2063 if (clone_flags & CLONE_PARENT_SETTID)
2064 put_user(nr, parent_tidptr);
2065
2066 if (clone_flags & CLONE_VFORK) {
2067 p->vfork_done = &vfork;
2068 init_completion(&vfork);
2069 get_task_struct(p);
2070 }
2071
2072 wake_up_new_task(p);
2073
2074 /* forking complete and child started to run, tell ptracer */
2075 if (unlikely(trace))
2076 ptrace_event_pid(trace, pid);
2077
2078 if (clone_flags & CLONE_VFORK) {
2079 if (!wait_for_vfork_done(p, &vfork))
2080 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2081 }
2082
2083 put_pid(pid);
2084 } else {
2085 nr = PTR_ERR(p);
2086 }
2087 return nr;
2088 }
2089
2090 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2091 /* For compatibility with architectures that call do_fork directly rather than
2092 * using the syscall entry points below. */
2093 long do_fork(unsigned long clone_flags,
2094 unsigned long stack_start,
2095 unsigned long stack_size,
2096 int __user *parent_tidptr,
2097 int __user *child_tidptr)
2098 {
2099 return _do_fork(clone_flags, stack_start, stack_size,
2100 parent_tidptr, child_tidptr, 0);
2101 }
2102 #endif
2103
2104 /*
2105 * Create a kernel thread.
2106 */
2107 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2108 {
2109 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2110 (unsigned long)arg, NULL, NULL, 0);
2111 }
2112
2113 #ifdef __ARCH_WANT_SYS_FORK
2114 SYSCALL_DEFINE0(fork)
2115 {
2116 #ifdef CONFIG_MMU
2117 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2118 #else
2119 /* can not support in nommu mode */
2120 return -EINVAL;
2121 #endif
2122 }
2123 #endif
2124
2125 #ifdef __ARCH_WANT_SYS_VFORK
2126 SYSCALL_DEFINE0(vfork)
2127 {
2128 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2129 0, NULL, NULL, 0);
2130 }
2131 #endif
2132
2133 #ifdef __ARCH_WANT_SYS_CLONE
2134 #ifdef CONFIG_CLONE_BACKWARDS
2135 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2136 int __user *, parent_tidptr,
2137 unsigned long, tls,
2138 int __user *, child_tidptr)
2139 #elif defined(CONFIG_CLONE_BACKWARDS2)
2140 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2141 int __user *, parent_tidptr,
2142 int __user *, child_tidptr,
2143 unsigned long, tls)
2144 #elif defined(CONFIG_CLONE_BACKWARDS3)
2145 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2146 int, stack_size,
2147 int __user *, parent_tidptr,
2148 int __user *, child_tidptr,
2149 unsigned long, tls)
2150 #else
2151 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2152 int __user *, parent_tidptr,
2153 int __user *, child_tidptr,
2154 unsigned long, tls)
2155 #endif
2156 {
2157 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2158 }
2159 #endif
2160
2161 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2162 {
2163 struct task_struct *leader, *parent, *child;
2164 int res;
2165
2166 read_lock(&tasklist_lock);
2167 leader = top = top->group_leader;
2168 down:
2169 for_each_thread(leader, parent) {
2170 list_for_each_entry(child, &parent->children, sibling) {
2171 res = visitor(child, data);
2172 if (res) {
2173 if (res < 0)
2174 goto out;
2175 leader = child;
2176 goto down;
2177 }
2178 up:
2179 ;
2180 }
2181 }
2182
2183 if (leader != top) {
2184 child = leader;
2185 parent = child->real_parent;
2186 leader = parent->group_leader;
2187 goto up;
2188 }
2189 out:
2190 read_unlock(&tasklist_lock);
2191 }
2192
2193 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2194 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2195 #endif
2196
2197 static void sighand_ctor(void *data)
2198 {
2199 struct sighand_struct *sighand = data;
2200
2201 spin_lock_init(&sighand->siglock);
2202 init_waitqueue_head(&sighand->signalfd_wqh);
2203 }
2204
2205 void __init proc_caches_init(void)
2206 {
2207 sighand_cachep = kmem_cache_create("sighand_cache",
2208 sizeof(struct sighand_struct), 0,
2209 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2210 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2211 signal_cachep = kmem_cache_create("signal_cache",
2212 sizeof(struct signal_struct), 0,
2213 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2214 NULL);
2215 files_cachep = kmem_cache_create("files_cache",
2216 sizeof(struct files_struct), 0,
2217 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2218 NULL);
2219 fs_cachep = kmem_cache_create("fs_cache",
2220 sizeof(struct fs_struct), 0,
2221 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2222 NULL);
2223 /*
2224 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2225 * whole struct cpumask for the OFFSTACK case. We could change
2226 * this to *only* allocate as much of it as required by the
2227 * maximum number of CPU's we can ever have. The cpumask_allocation
2228 * is at the end of the structure, exactly for that reason.
2229 */
2230 mm_cachep = kmem_cache_create("mm_struct",
2231 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2232 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2233 NULL);
2234 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2235 mmap_init();
2236 nsproxy_cache_init();
2237 }
2238
2239 /*
2240 * Check constraints on flags passed to the unshare system call.
2241 */
2242 static int check_unshare_flags(unsigned long unshare_flags)
2243 {
2244 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2245 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2246 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2247 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2248 return -EINVAL;
2249 /*
2250 * Not implemented, but pretend it works if there is nothing
2251 * to unshare. Note that unsharing the address space or the
2252 * signal handlers also need to unshare the signal queues (aka
2253 * CLONE_THREAD).
2254 */
2255 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2256 if (!thread_group_empty(current))
2257 return -EINVAL;
2258 }
2259 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2260 if (atomic_read(&current->sighand->count) > 1)
2261 return -EINVAL;
2262 }
2263 if (unshare_flags & CLONE_VM) {
2264 if (!current_is_single_threaded())
2265 return -EINVAL;
2266 }
2267
2268 return 0;
2269 }
2270
2271 /*
2272 * Unshare the filesystem structure if it is being shared
2273 */
2274 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2275 {
2276 struct fs_struct *fs = current->fs;
2277
2278 if (!(unshare_flags & CLONE_FS) || !fs)
2279 return 0;
2280
2281 /* don't need lock here; in the worst case we'll do useless copy */
2282 if (fs->users == 1)
2283 return 0;
2284
2285 *new_fsp = copy_fs_struct(fs);
2286 if (!*new_fsp)
2287 return -ENOMEM;
2288
2289 return 0;
2290 }
2291
2292 /*
2293 * Unshare file descriptor table if it is being shared
2294 */
2295 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2296 {
2297 struct files_struct *fd = current->files;
2298 int error = 0;
2299
2300 if ((unshare_flags & CLONE_FILES) &&
2301 (fd && atomic_read(&fd->count) > 1)) {
2302 *new_fdp = dup_fd(fd, &error);
2303 if (!*new_fdp)
2304 return error;
2305 }
2306
2307 return 0;
2308 }
2309
2310 /*
2311 * unshare allows a process to 'unshare' part of the process
2312 * context which was originally shared using clone. copy_*
2313 * functions used by do_fork() cannot be used here directly
2314 * because they modify an inactive task_struct that is being
2315 * constructed. Here we are modifying the current, active,
2316 * task_struct.
2317 */
2318 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2319 {
2320 struct fs_struct *fs, *new_fs = NULL;
2321 struct files_struct *fd, *new_fd = NULL;
2322 struct cred *new_cred = NULL;
2323 struct nsproxy *new_nsproxy = NULL;
2324 int do_sysvsem = 0;
2325 int err;
2326
2327 /*
2328 * If unsharing a user namespace must also unshare the thread group
2329 * and unshare the filesystem root and working directories.
2330 */
2331 if (unshare_flags & CLONE_NEWUSER)
2332 unshare_flags |= CLONE_THREAD | CLONE_FS;
2333 /*
2334 * If unsharing vm, must also unshare signal handlers.
2335 */
2336 if (unshare_flags & CLONE_VM)
2337 unshare_flags |= CLONE_SIGHAND;
2338 /*
2339 * If unsharing a signal handlers, must also unshare the signal queues.
2340 */
2341 if (unshare_flags & CLONE_SIGHAND)
2342 unshare_flags |= CLONE_THREAD;
2343 /*
2344 * If unsharing namespace, must also unshare filesystem information.
2345 */
2346 if (unshare_flags & CLONE_NEWNS)
2347 unshare_flags |= CLONE_FS;
2348
2349 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2350 err = -EPERM;
2351 if (!capable(CAP_SYS_ADMIN))
2352 goto bad_unshare_out;
2353 }
2354
2355 err = check_unshare_flags(unshare_flags);
2356 if (err)
2357 goto bad_unshare_out;
2358 /*
2359 * CLONE_NEWIPC must also detach from the undolist: after switching
2360 * to a new ipc namespace, the semaphore arrays from the old
2361 * namespace are unreachable.
2362 */
2363 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2364 do_sysvsem = 1;
2365 err = unshare_fs(unshare_flags, &new_fs);
2366 if (err)
2367 goto bad_unshare_out;
2368 err = unshare_fd(unshare_flags, &new_fd);
2369 if (err)
2370 goto bad_unshare_cleanup_fs;
2371 err = unshare_userns(unshare_flags, &new_cred);
2372 if (err)
2373 goto bad_unshare_cleanup_fd;
2374 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2375 new_cred, new_fs);
2376 if (err)
2377 goto bad_unshare_cleanup_cred;
2378
2379 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2380 if (do_sysvsem) {
2381 /*
2382 * CLONE_SYSVSEM is equivalent to sys_exit().
2383 */
2384 exit_sem(current);
2385 }
2386 if (unshare_flags & CLONE_NEWIPC) {
2387 /* Orphan segments in old ns (see sem above). */
2388 exit_shm(current);
2389 shm_init_task(current);
2390 }
2391
2392 if (new_nsproxy)
2393 switch_task_namespaces(current, new_nsproxy);
2394
2395 task_lock(current);
2396
2397 if (new_fs) {
2398 fs = current->fs;
2399 spin_lock(&fs->lock);
2400 current->fs = new_fs;
2401 if (--fs->users)
2402 new_fs = NULL;
2403 else
2404 new_fs = fs;
2405 spin_unlock(&fs->lock);
2406 }
2407
2408 if (new_fd) {
2409 fd = current->files;
2410 current->files = new_fd;
2411 new_fd = fd;
2412 }
2413
2414 task_unlock(current);
2415
2416 if (new_cred) {
2417 /* Install the new user namespace */
2418 commit_creds(new_cred);
2419 new_cred = NULL;
2420 }
2421 }
2422
2423 perf_event_namespaces(current);
2424
2425 bad_unshare_cleanup_cred:
2426 if (new_cred)
2427 put_cred(new_cred);
2428 bad_unshare_cleanup_fd:
2429 if (new_fd)
2430 put_files_struct(new_fd);
2431
2432 bad_unshare_cleanup_fs:
2433 if (new_fs)
2434 free_fs_struct(new_fs);
2435
2436 bad_unshare_out:
2437 return err;
2438 }
2439
2440 /*
2441 * Helper to unshare the files of the current task.
2442 * We don't want to expose copy_files internals to
2443 * the exec layer of the kernel.
2444 */
2445
2446 int unshare_files(struct files_struct **displaced)
2447 {
2448 struct task_struct *task = current;
2449 struct files_struct *copy = NULL;
2450 int error;
2451
2452 error = unshare_fd(CLONE_FILES, &copy);
2453 if (error || !copy) {
2454 *displaced = NULL;
2455 return error;
2456 }
2457 *displaced = task->files;
2458 task_lock(task);
2459 task->files = copy;
2460 task_unlock(task);
2461 return 0;
2462 }
2463
2464 int sysctl_max_threads(struct ctl_table *table, int write,
2465 void __user *buffer, size_t *lenp, loff_t *ppos)
2466 {
2467 struct ctl_table t;
2468 int ret;
2469 int threads = max_threads;
2470 int min = MIN_THREADS;
2471 int max = MAX_THREADS;
2472
2473 t = *table;
2474 t.data = &threads;
2475 t.extra1 = &min;
2476 t.extra2 = &max;
2477
2478 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2479 if (ret || !write)
2480 return ret;
2481
2482 set_max_threads(threads);
2483
2484 return 0;
2485 }