]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
ioprio: move io priority from task_struct to io_context
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53 #include <linux/proc_fs.h>
54 #include <linux/blkdev.h>
55
56 #include <asm/pgtable.h>
57 #include <asm/pgalloc.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/cacheflush.h>
61 #include <asm/tlbflush.h>
62
63 /*
64 * Protected counters by write_lock_irq(&tasklist_lock)
65 */
66 unsigned long total_forks; /* Handle normal Linux uptimes. */
67 int nr_threads; /* The idle threads do not count.. */
68
69 int max_threads; /* tunable limit on nr_threads */
70
71 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
72
73 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
74
75 int nr_processes(void)
76 {
77 int cpu;
78 int total = 0;
79
80 for_each_online_cpu(cpu)
81 total += per_cpu(process_counts, cpu);
82
83 return total;
84 }
85
86 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
87 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
88 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
89 static struct kmem_cache *task_struct_cachep;
90 #endif
91
92 /* SLAB cache for signal_struct structures (tsk->signal) */
93 static struct kmem_cache *signal_cachep;
94
95 /* SLAB cache for sighand_struct structures (tsk->sighand) */
96 struct kmem_cache *sighand_cachep;
97
98 /* SLAB cache for files_struct structures (tsk->files) */
99 struct kmem_cache *files_cachep;
100
101 /* SLAB cache for fs_struct structures (tsk->fs) */
102 struct kmem_cache *fs_cachep;
103
104 /* SLAB cache for vm_area_struct structures */
105 struct kmem_cache *vm_area_cachep;
106
107 /* SLAB cache for mm_struct structures (tsk->mm) */
108 static struct kmem_cache *mm_cachep;
109
110 void free_task(struct task_struct *tsk)
111 {
112 prop_local_destroy_single(&tsk->dirties);
113 free_thread_info(tsk->stack);
114 rt_mutex_debug_task_free(tsk);
115 free_task_struct(tsk);
116 }
117 EXPORT_SYMBOL(free_task);
118
119 void __put_task_struct(struct task_struct *tsk)
120 {
121 WARN_ON(!tsk->exit_state);
122 WARN_ON(atomic_read(&tsk->usage));
123 WARN_ON(tsk == current);
124
125 security_task_free(tsk);
126 free_uid(tsk->user);
127 put_group_info(tsk->group_info);
128 delayacct_tsk_free(tsk);
129
130 if (!profile_handoff_task(tsk))
131 free_task(tsk);
132 }
133
134 void __init fork_init(unsigned long mempages)
135 {
136 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
137 #ifndef ARCH_MIN_TASKALIGN
138 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
139 #endif
140 /* create a slab on which task_structs can be allocated */
141 task_struct_cachep =
142 kmem_cache_create("task_struct", sizeof(struct task_struct),
143 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
144 #endif
145
146 /*
147 * The default maximum number of threads is set to a safe
148 * value: the thread structures can take up at most half
149 * of memory.
150 */
151 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
152
153 /*
154 * we need to allow at least 20 threads to boot a system
155 */
156 if(max_threads < 20)
157 max_threads = 20;
158
159 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
160 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
161 init_task.signal->rlim[RLIMIT_SIGPENDING] =
162 init_task.signal->rlim[RLIMIT_NPROC];
163 }
164
165 static struct task_struct *dup_task_struct(struct task_struct *orig)
166 {
167 struct task_struct *tsk;
168 struct thread_info *ti;
169 int err;
170
171 prepare_to_copy(orig);
172
173 tsk = alloc_task_struct();
174 if (!tsk)
175 return NULL;
176
177 ti = alloc_thread_info(tsk);
178 if (!ti) {
179 free_task_struct(tsk);
180 return NULL;
181 }
182
183 *tsk = *orig;
184 tsk->stack = ti;
185
186 err = prop_local_init_single(&tsk->dirties);
187 if (err) {
188 free_thread_info(ti);
189 free_task_struct(tsk);
190 return NULL;
191 }
192
193 setup_thread_stack(tsk, orig);
194
195 #ifdef CONFIG_CC_STACKPROTECTOR
196 tsk->stack_canary = get_random_int();
197 #endif
198
199 /* One for us, one for whoever does the "release_task()" (usually parent) */
200 atomic_set(&tsk->usage,2);
201 atomic_set(&tsk->fs_excl, 0);
202 #ifdef CONFIG_BLK_DEV_IO_TRACE
203 tsk->btrace_seq = 0;
204 #endif
205 tsk->splice_pipe = NULL;
206 return tsk;
207 }
208
209 #ifdef CONFIG_MMU
210 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
211 {
212 struct vm_area_struct *mpnt, *tmp, **pprev;
213 struct rb_node **rb_link, *rb_parent;
214 int retval;
215 unsigned long charge;
216 struct mempolicy *pol;
217
218 down_write(&oldmm->mmap_sem);
219 flush_cache_dup_mm(oldmm);
220 /*
221 * Not linked in yet - no deadlock potential:
222 */
223 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
224
225 mm->locked_vm = 0;
226 mm->mmap = NULL;
227 mm->mmap_cache = NULL;
228 mm->free_area_cache = oldmm->mmap_base;
229 mm->cached_hole_size = ~0UL;
230 mm->map_count = 0;
231 cpus_clear(mm->cpu_vm_mask);
232 mm->mm_rb = RB_ROOT;
233 rb_link = &mm->mm_rb.rb_node;
234 rb_parent = NULL;
235 pprev = &mm->mmap;
236
237 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
238 struct file *file;
239
240 if (mpnt->vm_flags & VM_DONTCOPY) {
241 long pages = vma_pages(mpnt);
242 mm->total_vm -= pages;
243 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
244 -pages);
245 continue;
246 }
247 charge = 0;
248 if (mpnt->vm_flags & VM_ACCOUNT) {
249 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
250 if (security_vm_enough_memory(len))
251 goto fail_nomem;
252 charge = len;
253 }
254 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
255 if (!tmp)
256 goto fail_nomem;
257 *tmp = *mpnt;
258 pol = mpol_copy(vma_policy(mpnt));
259 retval = PTR_ERR(pol);
260 if (IS_ERR(pol))
261 goto fail_nomem_policy;
262 vma_set_policy(tmp, pol);
263 tmp->vm_flags &= ~VM_LOCKED;
264 tmp->vm_mm = mm;
265 tmp->vm_next = NULL;
266 anon_vma_link(tmp);
267 file = tmp->vm_file;
268 if (file) {
269 struct inode *inode = file->f_path.dentry->d_inode;
270 get_file(file);
271 if (tmp->vm_flags & VM_DENYWRITE)
272 atomic_dec(&inode->i_writecount);
273
274 /* insert tmp into the share list, just after mpnt */
275 spin_lock(&file->f_mapping->i_mmap_lock);
276 tmp->vm_truncate_count = mpnt->vm_truncate_count;
277 flush_dcache_mmap_lock(file->f_mapping);
278 vma_prio_tree_add(tmp, mpnt);
279 flush_dcache_mmap_unlock(file->f_mapping);
280 spin_unlock(&file->f_mapping->i_mmap_lock);
281 }
282
283 /*
284 * Link in the new vma and copy the page table entries.
285 */
286 *pprev = tmp;
287 pprev = &tmp->vm_next;
288
289 __vma_link_rb(mm, tmp, rb_link, rb_parent);
290 rb_link = &tmp->vm_rb.rb_right;
291 rb_parent = &tmp->vm_rb;
292
293 mm->map_count++;
294 retval = copy_page_range(mm, oldmm, mpnt);
295
296 if (tmp->vm_ops && tmp->vm_ops->open)
297 tmp->vm_ops->open(tmp);
298
299 if (retval)
300 goto out;
301 }
302 /* a new mm has just been created */
303 arch_dup_mmap(oldmm, mm);
304 retval = 0;
305 out:
306 up_write(&mm->mmap_sem);
307 flush_tlb_mm(oldmm);
308 up_write(&oldmm->mmap_sem);
309 return retval;
310 fail_nomem_policy:
311 kmem_cache_free(vm_area_cachep, tmp);
312 fail_nomem:
313 retval = -ENOMEM;
314 vm_unacct_memory(charge);
315 goto out;
316 }
317
318 static inline int mm_alloc_pgd(struct mm_struct * mm)
319 {
320 mm->pgd = pgd_alloc(mm);
321 if (unlikely(!mm->pgd))
322 return -ENOMEM;
323 return 0;
324 }
325
326 static inline void mm_free_pgd(struct mm_struct * mm)
327 {
328 pgd_free(mm->pgd);
329 }
330 #else
331 #define dup_mmap(mm, oldmm) (0)
332 #define mm_alloc_pgd(mm) (0)
333 #define mm_free_pgd(mm)
334 #endif /* CONFIG_MMU */
335
336 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
337
338 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
339 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
340
341 #include <linux/init_task.h>
342
343 static struct mm_struct * mm_init(struct mm_struct * mm)
344 {
345 atomic_set(&mm->mm_users, 1);
346 atomic_set(&mm->mm_count, 1);
347 init_rwsem(&mm->mmap_sem);
348 INIT_LIST_HEAD(&mm->mmlist);
349 mm->flags = (current->mm) ? current->mm->flags
350 : MMF_DUMP_FILTER_DEFAULT;
351 mm->core_waiters = 0;
352 mm->nr_ptes = 0;
353 set_mm_counter(mm, file_rss, 0);
354 set_mm_counter(mm, anon_rss, 0);
355 spin_lock_init(&mm->page_table_lock);
356 rwlock_init(&mm->ioctx_list_lock);
357 mm->ioctx_list = NULL;
358 mm->free_area_cache = TASK_UNMAPPED_BASE;
359 mm->cached_hole_size = ~0UL;
360
361 if (likely(!mm_alloc_pgd(mm))) {
362 mm->def_flags = 0;
363 return mm;
364 }
365 free_mm(mm);
366 return NULL;
367 }
368
369 /*
370 * Allocate and initialize an mm_struct.
371 */
372 struct mm_struct * mm_alloc(void)
373 {
374 struct mm_struct * mm;
375
376 mm = allocate_mm();
377 if (mm) {
378 memset(mm, 0, sizeof(*mm));
379 mm = mm_init(mm);
380 }
381 return mm;
382 }
383
384 /*
385 * Called when the last reference to the mm
386 * is dropped: either by a lazy thread or by
387 * mmput. Free the page directory and the mm.
388 */
389 void fastcall __mmdrop(struct mm_struct *mm)
390 {
391 BUG_ON(mm == &init_mm);
392 mm_free_pgd(mm);
393 destroy_context(mm);
394 free_mm(mm);
395 }
396
397 /*
398 * Decrement the use count and release all resources for an mm.
399 */
400 void mmput(struct mm_struct *mm)
401 {
402 might_sleep();
403
404 if (atomic_dec_and_test(&mm->mm_users)) {
405 exit_aio(mm);
406 exit_mmap(mm);
407 if (!list_empty(&mm->mmlist)) {
408 spin_lock(&mmlist_lock);
409 list_del(&mm->mmlist);
410 spin_unlock(&mmlist_lock);
411 }
412 put_swap_token(mm);
413 mmdrop(mm);
414 }
415 }
416 EXPORT_SYMBOL_GPL(mmput);
417
418 /**
419 * get_task_mm - acquire a reference to the task's mm
420 *
421 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
422 * this kernel workthread has transiently adopted a user mm with use_mm,
423 * to do its AIO) is not set and if so returns a reference to it, after
424 * bumping up the use count. User must release the mm via mmput()
425 * after use. Typically used by /proc and ptrace.
426 */
427 struct mm_struct *get_task_mm(struct task_struct *task)
428 {
429 struct mm_struct *mm;
430
431 task_lock(task);
432 mm = task->mm;
433 if (mm) {
434 if (task->flags & PF_BORROWED_MM)
435 mm = NULL;
436 else
437 atomic_inc(&mm->mm_users);
438 }
439 task_unlock(task);
440 return mm;
441 }
442 EXPORT_SYMBOL_GPL(get_task_mm);
443
444 /* Please note the differences between mmput and mm_release.
445 * mmput is called whenever we stop holding onto a mm_struct,
446 * error success whatever.
447 *
448 * mm_release is called after a mm_struct has been removed
449 * from the current process.
450 *
451 * This difference is important for error handling, when we
452 * only half set up a mm_struct for a new process and need to restore
453 * the old one. Because we mmput the new mm_struct before
454 * restoring the old one. . .
455 * Eric Biederman 10 January 1998
456 */
457 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
458 {
459 struct completion *vfork_done = tsk->vfork_done;
460
461 /* Get rid of any cached register state */
462 deactivate_mm(tsk, mm);
463
464 /* notify parent sleeping on vfork() */
465 if (vfork_done) {
466 tsk->vfork_done = NULL;
467 complete(vfork_done);
468 }
469
470 /*
471 * If we're exiting normally, clear a user-space tid field if
472 * requested. We leave this alone when dying by signal, to leave
473 * the value intact in a core dump, and to save the unnecessary
474 * trouble otherwise. Userland only wants this done for a sys_exit.
475 */
476 if (tsk->clear_child_tid
477 && !(tsk->flags & PF_SIGNALED)
478 && atomic_read(&mm->mm_users) > 1) {
479 u32 __user * tidptr = tsk->clear_child_tid;
480 tsk->clear_child_tid = NULL;
481
482 /*
483 * We don't check the error code - if userspace has
484 * not set up a proper pointer then tough luck.
485 */
486 put_user(0, tidptr);
487 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
488 }
489 }
490
491 /*
492 * Allocate a new mm structure and copy contents from the
493 * mm structure of the passed in task structure.
494 */
495 static struct mm_struct *dup_mm(struct task_struct *tsk)
496 {
497 struct mm_struct *mm, *oldmm = current->mm;
498 int err;
499
500 if (!oldmm)
501 return NULL;
502
503 mm = allocate_mm();
504 if (!mm)
505 goto fail_nomem;
506
507 memcpy(mm, oldmm, sizeof(*mm));
508
509 /* Initializing for Swap token stuff */
510 mm->token_priority = 0;
511 mm->last_interval = 0;
512
513 if (!mm_init(mm))
514 goto fail_nomem;
515
516 if (init_new_context(tsk, mm))
517 goto fail_nocontext;
518
519 err = dup_mmap(mm, oldmm);
520 if (err)
521 goto free_pt;
522
523 mm->hiwater_rss = get_mm_rss(mm);
524 mm->hiwater_vm = mm->total_vm;
525
526 return mm;
527
528 free_pt:
529 mmput(mm);
530
531 fail_nomem:
532 return NULL;
533
534 fail_nocontext:
535 /*
536 * If init_new_context() failed, we cannot use mmput() to free the mm
537 * because it calls destroy_context()
538 */
539 mm_free_pgd(mm);
540 free_mm(mm);
541 return NULL;
542 }
543
544 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
545 {
546 struct mm_struct * mm, *oldmm;
547 int retval;
548
549 tsk->min_flt = tsk->maj_flt = 0;
550 tsk->nvcsw = tsk->nivcsw = 0;
551
552 tsk->mm = NULL;
553 tsk->active_mm = NULL;
554
555 /*
556 * Are we cloning a kernel thread?
557 *
558 * We need to steal a active VM for that..
559 */
560 oldmm = current->mm;
561 if (!oldmm)
562 return 0;
563
564 if (clone_flags & CLONE_VM) {
565 atomic_inc(&oldmm->mm_users);
566 mm = oldmm;
567 goto good_mm;
568 }
569
570 retval = -ENOMEM;
571 mm = dup_mm(tsk);
572 if (!mm)
573 goto fail_nomem;
574
575 good_mm:
576 /* Initializing for Swap token stuff */
577 mm->token_priority = 0;
578 mm->last_interval = 0;
579
580 tsk->mm = mm;
581 tsk->active_mm = mm;
582 return 0;
583
584 fail_nomem:
585 return retval;
586 }
587
588 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
589 {
590 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
591 /* We don't need to lock fs - think why ;-) */
592 if (fs) {
593 atomic_set(&fs->count, 1);
594 rwlock_init(&fs->lock);
595 fs->umask = old->umask;
596 read_lock(&old->lock);
597 fs->rootmnt = mntget(old->rootmnt);
598 fs->root = dget(old->root);
599 fs->pwdmnt = mntget(old->pwdmnt);
600 fs->pwd = dget(old->pwd);
601 if (old->altroot) {
602 fs->altrootmnt = mntget(old->altrootmnt);
603 fs->altroot = dget(old->altroot);
604 } else {
605 fs->altrootmnt = NULL;
606 fs->altroot = NULL;
607 }
608 read_unlock(&old->lock);
609 }
610 return fs;
611 }
612
613 struct fs_struct *copy_fs_struct(struct fs_struct *old)
614 {
615 return __copy_fs_struct(old);
616 }
617
618 EXPORT_SYMBOL_GPL(copy_fs_struct);
619
620 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
621 {
622 if (clone_flags & CLONE_FS) {
623 atomic_inc(&current->fs->count);
624 return 0;
625 }
626 tsk->fs = __copy_fs_struct(current->fs);
627 if (!tsk->fs)
628 return -ENOMEM;
629 return 0;
630 }
631
632 static int count_open_files(struct fdtable *fdt)
633 {
634 int size = fdt->max_fds;
635 int i;
636
637 /* Find the last open fd */
638 for (i = size/(8*sizeof(long)); i > 0; ) {
639 if (fdt->open_fds->fds_bits[--i])
640 break;
641 }
642 i = (i+1) * 8 * sizeof(long);
643 return i;
644 }
645
646 static struct files_struct *alloc_files(void)
647 {
648 struct files_struct *newf;
649 struct fdtable *fdt;
650
651 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
652 if (!newf)
653 goto out;
654
655 atomic_set(&newf->count, 1);
656
657 spin_lock_init(&newf->file_lock);
658 newf->next_fd = 0;
659 fdt = &newf->fdtab;
660 fdt->max_fds = NR_OPEN_DEFAULT;
661 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
662 fdt->open_fds = (fd_set *)&newf->open_fds_init;
663 fdt->fd = &newf->fd_array[0];
664 INIT_RCU_HEAD(&fdt->rcu);
665 fdt->next = NULL;
666 rcu_assign_pointer(newf->fdt, fdt);
667 out:
668 return newf;
669 }
670
671 /*
672 * Allocate a new files structure and copy contents from the
673 * passed in files structure.
674 * errorp will be valid only when the returned files_struct is NULL.
675 */
676 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
677 {
678 struct files_struct *newf;
679 struct file **old_fds, **new_fds;
680 int open_files, size, i;
681 struct fdtable *old_fdt, *new_fdt;
682
683 *errorp = -ENOMEM;
684 newf = alloc_files();
685 if (!newf)
686 goto out;
687
688 spin_lock(&oldf->file_lock);
689 old_fdt = files_fdtable(oldf);
690 new_fdt = files_fdtable(newf);
691 open_files = count_open_files(old_fdt);
692
693 /*
694 * Check whether we need to allocate a larger fd array and fd set.
695 * Note: we're not a clone task, so the open count won't change.
696 */
697 if (open_files > new_fdt->max_fds) {
698 new_fdt->max_fds = 0;
699 spin_unlock(&oldf->file_lock);
700 spin_lock(&newf->file_lock);
701 *errorp = expand_files(newf, open_files-1);
702 spin_unlock(&newf->file_lock);
703 if (*errorp < 0)
704 goto out_release;
705 new_fdt = files_fdtable(newf);
706 /*
707 * Reacquire the oldf lock and a pointer to its fd table
708 * who knows it may have a new bigger fd table. We need
709 * the latest pointer.
710 */
711 spin_lock(&oldf->file_lock);
712 old_fdt = files_fdtable(oldf);
713 }
714
715 old_fds = old_fdt->fd;
716 new_fds = new_fdt->fd;
717
718 memcpy(new_fdt->open_fds->fds_bits,
719 old_fdt->open_fds->fds_bits, open_files/8);
720 memcpy(new_fdt->close_on_exec->fds_bits,
721 old_fdt->close_on_exec->fds_bits, open_files/8);
722
723 for (i = open_files; i != 0; i--) {
724 struct file *f = *old_fds++;
725 if (f) {
726 get_file(f);
727 } else {
728 /*
729 * The fd may be claimed in the fd bitmap but not yet
730 * instantiated in the files array if a sibling thread
731 * is partway through open(). So make sure that this
732 * fd is available to the new process.
733 */
734 FD_CLR(open_files - i, new_fdt->open_fds);
735 }
736 rcu_assign_pointer(*new_fds++, f);
737 }
738 spin_unlock(&oldf->file_lock);
739
740 /* compute the remainder to be cleared */
741 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
742
743 /* This is long word aligned thus could use a optimized version */
744 memset(new_fds, 0, size);
745
746 if (new_fdt->max_fds > open_files) {
747 int left = (new_fdt->max_fds-open_files)/8;
748 int start = open_files / (8 * sizeof(unsigned long));
749
750 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
751 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
752 }
753
754 return newf;
755
756 out_release:
757 kmem_cache_free(files_cachep, newf);
758 out:
759 return NULL;
760 }
761
762 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
763 {
764 struct files_struct *oldf, *newf;
765 int error = 0;
766
767 /*
768 * A background process may not have any files ...
769 */
770 oldf = current->files;
771 if (!oldf)
772 goto out;
773
774 if (clone_flags & CLONE_FILES) {
775 atomic_inc(&oldf->count);
776 goto out;
777 }
778
779 /*
780 * Note: we may be using current for both targets (See exec.c)
781 * This works because we cache current->files (old) as oldf. Don't
782 * break this.
783 */
784 tsk->files = NULL;
785 newf = dup_fd(oldf, &error);
786 if (!newf)
787 goto out;
788
789 tsk->files = newf;
790 error = 0;
791 out:
792 return error;
793 }
794
795 static int copy_io(struct task_struct *tsk)
796 {
797 #ifdef CONFIG_BLOCK
798 struct io_context *ioc = current->io_context;
799
800 if (!ioc)
801 return 0;
802
803 if (ioprio_valid(ioc->ioprio)) {
804 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
805 if (unlikely(!tsk->io_context))
806 return -ENOMEM;
807
808 tsk->io_context->task = tsk;
809 tsk->io_context->ioprio = ioc->ioprio;
810 }
811 #endif
812 return 0;
813 }
814
815 /*
816 * Helper to unshare the files of the current task.
817 * We don't want to expose copy_files internals to
818 * the exec layer of the kernel.
819 */
820
821 int unshare_files(void)
822 {
823 struct files_struct *files = current->files;
824 int rc;
825
826 BUG_ON(!files);
827
828 /* This can race but the race causes us to copy when we don't
829 need to and drop the copy */
830 if(atomic_read(&files->count) == 1)
831 {
832 atomic_inc(&files->count);
833 return 0;
834 }
835 rc = copy_files(0, current);
836 if(rc)
837 current->files = files;
838 return rc;
839 }
840
841 EXPORT_SYMBOL(unshare_files);
842
843 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
844 {
845 struct sighand_struct *sig;
846
847 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
848 atomic_inc(&current->sighand->count);
849 return 0;
850 }
851 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
852 rcu_assign_pointer(tsk->sighand, sig);
853 if (!sig)
854 return -ENOMEM;
855 atomic_set(&sig->count, 1);
856 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
857 return 0;
858 }
859
860 void __cleanup_sighand(struct sighand_struct *sighand)
861 {
862 if (atomic_dec_and_test(&sighand->count))
863 kmem_cache_free(sighand_cachep, sighand);
864 }
865
866 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
867 {
868 struct signal_struct *sig;
869 int ret;
870
871 if (clone_flags & CLONE_THREAD) {
872 atomic_inc(&current->signal->count);
873 atomic_inc(&current->signal->live);
874 return 0;
875 }
876 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
877 tsk->signal = sig;
878 if (!sig)
879 return -ENOMEM;
880
881 ret = copy_thread_group_keys(tsk);
882 if (ret < 0) {
883 kmem_cache_free(signal_cachep, sig);
884 return ret;
885 }
886
887 atomic_set(&sig->count, 1);
888 atomic_set(&sig->live, 1);
889 init_waitqueue_head(&sig->wait_chldexit);
890 sig->flags = 0;
891 sig->group_exit_code = 0;
892 sig->group_exit_task = NULL;
893 sig->group_stop_count = 0;
894 sig->curr_target = NULL;
895 init_sigpending(&sig->shared_pending);
896 INIT_LIST_HEAD(&sig->posix_timers);
897
898 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
899 sig->it_real_incr.tv64 = 0;
900 sig->real_timer.function = it_real_fn;
901 sig->tsk = tsk;
902
903 sig->it_virt_expires = cputime_zero;
904 sig->it_virt_incr = cputime_zero;
905 sig->it_prof_expires = cputime_zero;
906 sig->it_prof_incr = cputime_zero;
907
908 sig->leader = 0; /* session leadership doesn't inherit */
909 sig->tty_old_pgrp = NULL;
910
911 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
912 sig->gtime = cputime_zero;
913 sig->cgtime = cputime_zero;
914 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
915 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
916 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
917 sig->sum_sched_runtime = 0;
918 INIT_LIST_HEAD(&sig->cpu_timers[0]);
919 INIT_LIST_HEAD(&sig->cpu_timers[1]);
920 INIT_LIST_HEAD(&sig->cpu_timers[2]);
921 taskstats_tgid_init(sig);
922
923 task_lock(current->group_leader);
924 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
925 task_unlock(current->group_leader);
926
927 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
928 /*
929 * New sole thread in the process gets an expiry time
930 * of the whole CPU time limit.
931 */
932 tsk->it_prof_expires =
933 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
934 }
935 acct_init_pacct(&sig->pacct);
936
937 tty_audit_fork(sig);
938
939 return 0;
940 }
941
942 void __cleanup_signal(struct signal_struct *sig)
943 {
944 exit_thread_group_keys(sig);
945 kmem_cache_free(signal_cachep, sig);
946 }
947
948 static void cleanup_signal(struct task_struct *tsk)
949 {
950 struct signal_struct *sig = tsk->signal;
951
952 atomic_dec(&sig->live);
953
954 if (atomic_dec_and_test(&sig->count))
955 __cleanup_signal(sig);
956 }
957
958 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
959 {
960 unsigned long new_flags = p->flags;
961
962 new_flags &= ~PF_SUPERPRIV;
963 new_flags |= PF_FORKNOEXEC;
964 if (!(clone_flags & CLONE_PTRACE))
965 p->ptrace = 0;
966 p->flags = new_flags;
967 clear_freeze_flag(p);
968 }
969
970 asmlinkage long sys_set_tid_address(int __user *tidptr)
971 {
972 current->clear_child_tid = tidptr;
973
974 return task_pid_vnr(current);
975 }
976
977 static void rt_mutex_init_task(struct task_struct *p)
978 {
979 spin_lock_init(&p->pi_lock);
980 #ifdef CONFIG_RT_MUTEXES
981 plist_head_init(&p->pi_waiters, &p->pi_lock);
982 p->pi_blocked_on = NULL;
983 #endif
984 }
985
986 /*
987 * This creates a new process as a copy of the old one,
988 * but does not actually start it yet.
989 *
990 * It copies the registers, and all the appropriate
991 * parts of the process environment (as per the clone
992 * flags). The actual kick-off is left to the caller.
993 */
994 static struct task_struct *copy_process(unsigned long clone_flags,
995 unsigned long stack_start,
996 struct pt_regs *regs,
997 unsigned long stack_size,
998 int __user *child_tidptr,
999 struct pid *pid)
1000 {
1001 int retval;
1002 struct task_struct *p;
1003 int cgroup_callbacks_done = 0;
1004
1005 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1006 return ERR_PTR(-EINVAL);
1007
1008 /*
1009 * Thread groups must share signals as well, and detached threads
1010 * can only be started up within the thread group.
1011 */
1012 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1013 return ERR_PTR(-EINVAL);
1014
1015 /*
1016 * Shared signal handlers imply shared VM. By way of the above,
1017 * thread groups also imply shared VM. Blocking this case allows
1018 * for various simplifications in other code.
1019 */
1020 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1021 return ERR_PTR(-EINVAL);
1022
1023 retval = security_task_create(clone_flags);
1024 if (retval)
1025 goto fork_out;
1026
1027 retval = -ENOMEM;
1028 p = dup_task_struct(current);
1029 if (!p)
1030 goto fork_out;
1031
1032 rt_mutex_init_task(p);
1033
1034 #ifdef CONFIG_TRACE_IRQFLAGS
1035 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1036 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1037 #endif
1038 retval = -EAGAIN;
1039 if (atomic_read(&p->user->processes) >=
1040 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1041 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1042 p->user != current->nsproxy->user_ns->root_user)
1043 goto bad_fork_free;
1044 }
1045
1046 atomic_inc(&p->user->__count);
1047 atomic_inc(&p->user->processes);
1048 get_group_info(p->group_info);
1049
1050 /*
1051 * If multiple threads are within copy_process(), then this check
1052 * triggers too late. This doesn't hurt, the check is only there
1053 * to stop root fork bombs.
1054 */
1055 if (nr_threads >= max_threads)
1056 goto bad_fork_cleanup_count;
1057
1058 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1059 goto bad_fork_cleanup_count;
1060
1061 if (p->binfmt && !try_module_get(p->binfmt->module))
1062 goto bad_fork_cleanup_put_domain;
1063
1064 p->did_exec = 0;
1065 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1066 copy_flags(clone_flags, p);
1067 INIT_LIST_HEAD(&p->children);
1068 INIT_LIST_HEAD(&p->sibling);
1069 #ifdef CONFIG_PREEMPT_RCU
1070 p->rcu_read_lock_nesting = 0;
1071 p->rcu_flipctr_idx = 0;
1072 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1073 p->vfork_done = NULL;
1074 spin_lock_init(&p->alloc_lock);
1075
1076 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1077 init_sigpending(&p->pending);
1078
1079 p->utime = cputime_zero;
1080 p->stime = cputime_zero;
1081 p->gtime = cputime_zero;
1082 p->utimescaled = cputime_zero;
1083 p->stimescaled = cputime_zero;
1084 p->prev_utime = cputime_zero;
1085 p->prev_stime = cputime_zero;
1086
1087 #ifdef CONFIG_DETECT_SOFTLOCKUP
1088 p->last_switch_count = 0;
1089 p->last_switch_timestamp = 0;
1090 #endif
1091
1092 #ifdef CONFIG_TASK_XACCT
1093 p->rchar = 0; /* I/O counter: bytes read */
1094 p->wchar = 0; /* I/O counter: bytes written */
1095 p->syscr = 0; /* I/O counter: read syscalls */
1096 p->syscw = 0; /* I/O counter: write syscalls */
1097 #endif
1098 task_io_accounting_init(p);
1099 acct_clear_integrals(p);
1100
1101 p->it_virt_expires = cputime_zero;
1102 p->it_prof_expires = cputime_zero;
1103 p->it_sched_expires = 0;
1104 INIT_LIST_HEAD(&p->cpu_timers[0]);
1105 INIT_LIST_HEAD(&p->cpu_timers[1]);
1106 INIT_LIST_HEAD(&p->cpu_timers[2]);
1107
1108 p->lock_depth = -1; /* -1 = no lock */
1109 do_posix_clock_monotonic_gettime(&p->start_time);
1110 p->real_start_time = p->start_time;
1111 monotonic_to_bootbased(&p->real_start_time);
1112 #ifdef CONFIG_SECURITY
1113 p->security = NULL;
1114 #endif
1115 p->io_context = NULL;
1116 p->audit_context = NULL;
1117 cgroup_fork(p);
1118 #ifdef CONFIG_NUMA
1119 p->mempolicy = mpol_copy(p->mempolicy);
1120 if (IS_ERR(p->mempolicy)) {
1121 retval = PTR_ERR(p->mempolicy);
1122 p->mempolicy = NULL;
1123 goto bad_fork_cleanup_cgroup;
1124 }
1125 mpol_fix_fork_child_flag(p);
1126 #endif
1127 #ifdef CONFIG_TRACE_IRQFLAGS
1128 p->irq_events = 0;
1129 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1130 p->hardirqs_enabled = 1;
1131 #else
1132 p->hardirqs_enabled = 0;
1133 #endif
1134 p->hardirq_enable_ip = 0;
1135 p->hardirq_enable_event = 0;
1136 p->hardirq_disable_ip = _THIS_IP_;
1137 p->hardirq_disable_event = 0;
1138 p->softirqs_enabled = 1;
1139 p->softirq_enable_ip = _THIS_IP_;
1140 p->softirq_enable_event = 0;
1141 p->softirq_disable_ip = 0;
1142 p->softirq_disable_event = 0;
1143 p->hardirq_context = 0;
1144 p->softirq_context = 0;
1145 #endif
1146 #ifdef CONFIG_LOCKDEP
1147 p->lockdep_depth = 0; /* no locks held yet */
1148 p->curr_chain_key = 0;
1149 p->lockdep_recursion = 0;
1150 #endif
1151
1152 #ifdef CONFIG_DEBUG_MUTEXES
1153 p->blocked_on = NULL; /* not blocked yet */
1154 #endif
1155
1156 /* Perform scheduler related setup. Assign this task to a CPU. */
1157 sched_fork(p, clone_flags);
1158
1159 if ((retval = security_task_alloc(p)))
1160 goto bad_fork_cleanup_policy;
1161 if ((retval = audit_alloc(p)))
1162 goto bad_fork_cleanup_security;
1163 /* copy all the process information */
1164 if ((retval = copy_semundo(clone_flags, p)))
1165 goto bad_fork_cleanup_audit;
1166 if ((retval = copy_files(clone_flags, p)))
1167 goto bad_fork_cleanup_semundo;
1168 if ((retval = copy_fs(clone_flags, p)))
1169 goto bad_fork_cleanup_files;
1170 if ((retval = copy_sighand(clone_flags, p)))
1171 goto bad_fork_cleanup_fs;
1172 if ((retval = copy_signal(clone_flags, p)))
1173 goto bad_fork_cleanup_sighand;
1174 if ((retval = copy_mm(clone_flags, p)))
1175 goto bad_fork_cleanup_signal;
1176 if ((retval = copy_keys(clone_flags, p)))
1177 goto bad_fork_cleanup_mm;
1178 if ((retval = copy_namespaces(clone_flags, p)))
1179 goto bad_fork_cleanup_keys;
1180 if ((retval = copy_io(p)))
1181 goto bad_fork_cleanup_namespaces;
1182 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1183 if (retval)
1184 goto bad_fork_cleanup_io;
1185
1186 if (pid != &init_struct_pid) {
1187 retval = -ENOMEM;
1188 pid = alloc_pid(task_active_pid_ns(p));
1189 if (!pid)
1190 goto bad_fork_cleanup_io;
1191
1192 if (clone_flags & CLONE_NEWPID) {
1193 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1194 if (retval < 0)
1195 goto bad_fork_free_pid;
1196 }
1197 }
1198
1199 p->pid = pid_nr(pid);
1200 p->tgid = p->pid;
1201 if (clone_flags & CLONE_THREAD)
1202 p->tgid = current->tgid;
1203
1204 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1205 /*
1206 * Clear TID on mm_release()?
1207 */
1208 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1209 #ifdef CONFIG_FUTEX
1210 p->robust_list = NULL;
1211 #ifdef CONFIG_COMPAT
1212 p->compat_robust_list = NULL;
1213 #endif
1214 INIT_LIST_HEAD(&p->pi_state_list);
1215 p->pi_state_cache = NULL;
1216 #endif
1217 /*
1218 * sigaltstack should be cleared when sharing the same VM
1219 */
1220 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1221 p->sas_ss_sp = p->sas_ss_size = 0;
1222
1223 /*
1224 * Syscall tracing should be turned off in the child regardless
1225 * of CLONE_PTRACE.
1226 */
1227 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1228 #ifdef TIF_SYSCALL_EMU
1229 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1230 #endif
1231 clear_all_latency_tracing(p);
1232
1233 /* Our parent execution domain becomes current domain
1234 These must match for thread signalling to apply */
1235 p->parent_exec_id = p->self_exec_id;
1236
1237 /* ok, now we should be set up.. */
1238 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1239 p->pdeath_signal = 0;
1240 p->exit_state = 0;
1241
1242 /*
1243 * Ok, make it visible to the rest of the system.
1244 * We dont wake it up yet.
1245 */
1246 p->group_leader = p;
1247 INIT_LIST_HEAD(&p->thread_group);
1248 INIT_LIST_HEAD(&p->ptrace_children);
1249 INIT_LIST_HEAD(&p->ptrace_list);
1250
1251 /* Now that the task is set up, run cgroup callbacks if
1252 * necessary. We need to run them before the task is visible
1253 * on the tasklist. */
1254 cgroup_fork_callbacks(p);
1255 cgroup_callbacks_done = 1;
1256
1257 /* Need tasklist lock for parent etc handling! */
1258 write_lock_irq(&tasklist_lock);
1259
1260 /*
1261 * The task hasn't been attached yet, so its cpus_allowed mask will
1262 * not be changed, nor will its assigned CPU.
1263 *
1264 * The cpus_allowed mask of the parent may have changed after it was
1265 * copied first time - so re-copy it here, then check the child's CPU
1266 * to ensure it is on a valid CPU (and if not, just force it back to
1267 * parent's CPU). This avoids alot of nasty races.
1268 */
1269 p->cpus_allowed = current->cpus_allowed;
1270 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1271 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1272 !cpu_online(task_cpu(p))))
1273 set_task_cpu(p, smp_processor_id());
1274
1275 /* CLONE_PARENT re-uses the old parent */
1276 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1277 p->real_parent = current->real_parent;
1278 else
1279 p->real_parent = current;
1280 p->parent = p->real_parent;
1281
1282 spin_lock(&current->sighand->siglock);
1283
1284 /*
1285 * Process group and session signals need to be delivered to just the
1286 * parent before the fork or both the parent and the child after the
1287 * fork. Restart if a signal comes in before we add the new process to
1288 * it's process group.
1289 * A fatal signal pending means that current will exit, so the new
1290 * thread can't slip out of an OOM kill (or normal SIGKILL).
1291 */
1292 recalc_sigpending();
1293 if (signal_pending(current)) {
1294 spin_unlock(&current->sighand->siglock);
1295 write_unlock_irq(&tasklist_lock);
1296 retval = -ERESTARTNOINTR;
1297 goto bad_fork_free_pid;
1298 }
1299
1300 if (clone_flags & CLONE_THREAD) {
1301 p->group_leader = current->group_leader;
1302 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1303
1304 if (!cputime_eq(current->signal->it_virt_expires,
1305 cputime_zero) ||
1306 !cputime_eq(current->signal->it_prof_expires,
1307 cputime_zero) ||
1308 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1309 !list_empty(&current->signal->cpu_timers[0]) ||
1310 !list_empty(&current->signal->cpu_timers[1]) ||
1311 !list_empty(&current->signal->cpu_timers[2])) {
1312 /*
1313 * Have child wake up on its first tick to check
1314 * for process CPU timers.
1315 */
1316 p->it_prof_expires = jiffies_to_cputime(1);
1317 }
1318 }
1319
1320 if (likely(p->pid)) {
1321 add_parent(p);
1322 if (unlikely(p->ptrace & PT_PTRACED))
1323 __ptrace_link(p, current->parent);
1324
1325 if (thread_group_leader(p)) {
1326 if (clone_flags & CLONE_NEWPID)
1327 p->nsproxy->pid_ns->child_reaper = p;
1328
1329 p->signal->tty = current->signal->tty;
1330 set_task_pgrp(p, task_pgrp_nr(current));
1331 set_task_session(p, task_session_nr(current));
1332 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1333 attach_pid(p, PIDTYPE_SID, task_session(current));
1334 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1335 __get_cpu_var(process_counts)++;
1336 }
1337 attach_pid(p, PIDTYPE_PID, pid);
1338 nr_threads++;
1339 }
1340
1341 total_forks++;
1342 spin_unlock(&current->sighand->siglock);
1343 write_unlock_irq(&tasklist_lock);
1344 proc_fork_connector(p);
1345 cgroup_post_fork(p);
1346 return p;
1347
1348 bad_fork_free_pid:
1349 if (pid != &init_struct_pid)
1350 free_pid(pid);
1351 bad_fork_cleanup_io:
1352 put_io_context(p->io_context);
1353 bad_fork_cleanup_namespaces:
1354 exit_task_namespaces(p);
1355 bad_fork_cleanup_keys:
1356 exit_keys(p);
1357 bad_fork_cleanup_mm:
1358 if (p->mm)
1359 mmput(p->mm);
1360 bad_fork_cleanup_signal:
1361 cleanup_signal(p);
1362 bad_fork_cleanup_sighand:
1363 __cleanup_sighand(p->sighand);
1364 bad_fork_cleanup_fs:
1365 exit_fs(p); /* blocking */
1366 bad_fork_cleanup_files:
1367 exit_files(p); /* blocking */
1368 bad_fork_cleanup_semundo:
1369 exit_sem(p);
1370 bad_fork_cleanup_audit:
1371 audit_free(p);
1372 bad_fork_cleanup_security:
1373 security_task_free(p);
1374 bad_fork_cleanup_policy:
1375 #ifdef CONFIG_NUMA
1376 mpol_free(p->mempolicy);
1377 bad_fork_cleanup_cgroup:
1378 #endif
1379 cgroup_exit(p, cgroup_callbacks_done);
1380 delayacct_tsk_free(p);
1381 if (p->binfmt)
1382 module_put(p->binfmt->module);
1383 bad_fork_cleanup_put_domain:
1384 module_put(task_thread_info(p)->exec_domain->module);
1385 bad_fork_cleanup_count:
1386 put_group_info(p->group_info);
1387 atomic_dec(&p->user->processes);
1388 free_uid(p->user);
1389 bad_fork_free:
1390 free_task(p);
1391 fork_out:
1392 return ERR_PTR(retval);
1393 }
1394
1395 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1396 {
1397 memset(regs, 0, sizeof(struct pt_regs));
1398 return regs;
1399 }
1400
1401 struct task_struct * __cpuinit fork_idle(int cpu)
1402 {
1403 struct task_struct *task;
1404 struct pt_regs regs;
1405
1406 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1407 &init_struct_pid);
1408 if (!IS_ERR(task))
1409 init_idle(task, cpu);
1410
1411 return task;
1412 }
1413
1414 static int fork_traceflag(unsigned clone_flags)
1415 {
1416 if (clone_flags & CLONE_UNTRACED)
1417 return 0;
1418 else if (clone_flags & CLONE_VFORK) {
1419 if (current->ptrace & PT_TRACE_VFORK)
1420 return PTRACE_EVENT_VFORK;
1421 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1422 if (current->ptrace & PT_TRACE_CLONE)
1423 return PTRACE_EVENT_CLONE;
1424 } else if (current->ptrace & PT_TRACE_FORK)
1425 return PTRACE_EVENT_FORK;
1426
1427 return 0;
1428 }
1429
1430 /*
1431 * Ok, this is the main fork-routine.
1432 *
1433 * It copies the process, and if successful kick-starts
1434 * it and waits for it to finish using the VM if required.
1435 */
1436 long do_fork(unsigned long clone_flags,
1437 unsigned long stack_start,
1438 struct pt_regs *regs,
1439 unsigned long stack_size,
1440 int __user *parent_tidptr,
1441 int __user *child_tidptr)
1442 {
1443 struct task_struct *p;
1444 int trace = 0;
1445 long nr;
1446
1447 if (unlikely(current->ptrace)) {
1448 trace = fork_traceflag (clone_flags);
1449 if (trace)
1450 clone_flags |= CLONE_PTRACE;
1451 }
1452
1453 p = copy_process(clone_flags, stack_start, regs, stack_size,
1454 child_tidptr, NULL);
1455 /*
1456 * Do this prior waking up the new thread - the thread pointer
1457 * might get invalid after that point, if the thread exits quickly.
1458 */
1459 if (!IS_ERR(p)) {
1460 struct completion vfork;
1461
1462 /*
1463 * this is enough to call pid_nr_ns here, but this if
1464 * improves optimisation of regular fork()
1465 */
1466 nr = (clone_flags & CLONE_NEWPID) ?
1467 task_pid_nr_ns(p, current->nsproxy->pid_ns) :
1468 task_pid_vnr(p);
1469
1470 if (clone_flags & CLONE_PARENT_SETTID)
1471 put_user(nr, parent_tidptr);
1472
1473 if (clone_flags & CLONE_VFORK) {
1474 p->vfork_done = &vfork;
1475 init_completion(&vfork);
1476 }
1477
1478 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1479 /*
1480 * We'll start up with an immediate SIGSTOP.
1481 */
1482 sigaddset(&p->pending.signal, SIGSTOP);
1483 set_tsk_thread_flag(p, TIF_SIGPENDING);
1484 }
1485
1486 if (!(clone_flags & CLONE_STOPPED))
1487 wake_up_new_task(p, clone_flags);
1488 else
1489 p->state = TASK_STOPPED;
1490
1491 if (unlikely (trace)) {
1492 current->ptrace_message = nr;
1493 ptrace_notify ((trace << 8) | SIGTRAP);
1494 }
1495
1496 if (clone_flags & CLONE_VFORK) {
1497 freezer_do_not_count();
1498 wait_for_completion(&vfork);
1499 freezer_count();
1500 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1501 current->ptrace_message = nr;
1502 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1503 }
1504 }
1505 } else {
1506 nr = PTR_ERR(p);
1507 }
1508 return nr;
1509 }
1510
1511 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1512 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1513 #endif
1514
1515 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1516 {
1517 struct sighand_struct *sighand = data;
1518
1519 spin_lock_init(&sighand->siglock);
1520 init_waitqueue_head(&sighand->signalfd_wqh);
1521 }
1522
1523 void __init proc_caches_init(void)
1524 {
1525 sighand_cachep = kmem_cache_create("sighand_cache",
1526 sizeof(struct sighand_struct), 0,
1527 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1528 sighand_ctor);
1529 signal_cachep = kmem_cache_create("signal_cache",
1530 sizeof(struct signal_struct), 0,
1531 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1532 files_cachep = kmem_cache_create("files_cache",
1533 sizeof(struct files_struct), 0,
1534 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1535 fs_cachep = kmem_cache_create("fs_cache",
1536 sizeof(struct fs_struct), 0,
1537 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1538 vm_area_cachep = kmem_cache_create("vm_area_struct",
1539 sizeof(struct vm_area_struct), 0,
1540 SLAB_PANIC, NULL);
1541 mm_cachep = kmem_cache_create("mm_struct",
1542 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1543 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1544 }
1545
1546 /*
1547 * Check constraints on flags passed to the unshare system call and
1548 * force unsharing of additional process context as appropriate.
1549 */
1550 static void check_unshare_flags(unsigned long *flags_ptr)
1551 {
1552 /*
1553 * If unsharing a thread from a thread group, must also
1554 * unshare vm.
1555 */
1556 if (*flags_ptr & CLONE_THREAD)
1557 *flags_ptr |= CLONE_VM;
1558
1559 /*
1560 * If unsharing vm, must also unshare signal handlers.
1561 */
1562 if (*flags_ptr & CLONE_VM)
1563 *flags_ptr |= CLONE_SIGHAND;
1564
1565 /*
1566 * If unsharing signal handlers and the task was created
1567 * using CLONE_THREAD, then must unshare the thread
1568 */
1569 if ((*flags_ptr & CLONE_SIGHAND) &&
1570 (atomic_read(&current->signal->count) > 1))
1571 *flags_ptr |= CLONE_THREAD;
1572
1573 /*
1574 * If unsharing namespace, must also unshare filesystem information.
1575 */
1576 if (*flags_ptr & CLONE_NEWNS)
1577 *flags_ptr |= CLONE_FS;
1578 }
1579
1580 /*
1581 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1582 */
1583 static int unshare_thread(unsigned long unshare_flags)
1584 {
1585 if (unshare_flags & CLONE_THREAD)
1586 return -EINVAL;
1587
1588 return 0;
1589 }
1590
1591 /*
1592 * Unshare the filesystem structure if it is being shared
1593 */
1594 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1595 {
1596 struct fs_struct *fs = current->fs;
1597
1598 if ((unshare_flags & CLONE_FS) &&
1599 (fs && atomic_read(&fs->count) > 1)) {
1600 *new_fsp = __copy_fs_struct(current->fs);
1601 if (!*new_fsp)
1602 return -ENOMEM;
1603 }
1604
1605 return 0;
1606 }
1607
1608 /*
1609 * Unsharing of sighand is not supported yet
1610 */
1611 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1612 {
1613 struct sighand_struct *sigh = current->sighand;
1614
1615 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1616 return -EINVAL;
1617 else
1618 return 0;
1619 }
1620
1621 /*
1622 * Unshare vm if it is being shared
1623 */
1624 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1625 {
1626 struct mm_struct *mm = current->mm;
1627
1628 if ((unshare_flags & CLONE_VM) &&
1629 (mm && atomic_read(&mm->mm_users) > 1)) {
1630 return -EINVAL;
1631 }
1632
1633 return 0;
1634 }
1635
1636 /*
1637 * Unshare file descriptor table if it is being shared
1638 */
1639 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1640 {
1641 struct files_struct *fd = current->files;
1642 int error = 0;
1643
1644 if ((unshare_flags & CLONE_FILES) &&
1645 (fd && atomic_read(&fd->count) > 1)) {
1646 *new_fdp = dup_fd(fd, &error);
1647 if (!*new_fdp)
1648 return error;
1649 }
1650
1651 return 0;
1652 }
1653
1654 /*
1655 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1656 * supported yet
1657 */
1658 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1659 {
1660 if (unshare_flags & CLONE_SYSVSEM)
1661 return -EINVAL;
1662
1663 return 0;
1664 }
1665
1666 /*
1667 * unshare allows a process to 'unshare' part of the process
1668 * context which was originally shared using clone. copy_*
1669 * functions used by do_fork() cannot be used here directly
1670 * because they modify an inactive task_struct that is being
1671 * constructed. Here we are modifying the current, active,
1672 * task_struct.
1673 */
1674 asmlinkage long sys_unshare(unsigned long unshare_flags)
1675 {
1676 int err = 0;
1677 struct fs_struct *fs, *new_fs = NULL;
1678 struct sighand_struct *new_sigh = NULL;
1679 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1680 struct files_struct *fd, *new_fd = NULL;
1681 struct sem_undo_list *new_ulist = NULL;
1682 struct nsproxy *new_nsproxy = NULL;
1683
1684 check_unshare_flags(&unshare_flags);
1685
1686 /* Return -EINVAL for all unsupported flags */
1687 err = -EINVAL;
1688 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1689 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1690 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1691 CLONE_NEWNET))
1692 goto bad_unshare_out;
1693
1694 if ((err = unshare_thread(unshare_flags)))
1695 goto bad_unshare_out;
1696 if ((err = unshare_fs(unshare_flags, &new_fs)))
1697 goto bad_unshare_cleanup_thread;
1698 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1699 goto bad_unshare_cleanup_fs;
1700 if ((err = unshare_vm(unshare_flags, &new_mm)))
1701 goto bad_unshare_cleanup_sigh;
1702 if ((err = unshare_fd(unshare_flags, &new_fd)))
1703 goto bad_unshare_cleanup_vm;
1704 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1705 goto bad_unshare_cleanup_fd;
1706 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1707 new_fs)))
1708 goto bad_unshare_cleanup_semundo;
1709
1710 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1711
1712 if (new_nsproxy) {
1713 switch_task_namespaces(current, new_nsproxy);
1714 new_nsproxy = NULL;
1715 }
1716
1717 task_lock(current);
1718
1719 if (new_fs) {
1720 fs = current->fs;
1721 current->fs = new_fs;
1722 new_fs = fs;
1723 }
1724
1725 if (new_mm) {
1726 mm = current->mm;
1727 active_mm = current->active_mm;
1728 current->mm = new_mm;
1729 current->active_mm = new_mm;
1730 activate_mm(active_mm, new_mm);
1731 new_mm = mm;
1732 }
1733
1734 if (new_fd) {
1735 fd = current->files;
1736 current->files = new_fd;
1737 new_fd = fd;
1738 }
1739
1740 task_unlock(current);
1741 }
1742
1743 if (new_nsproxy)
1744 put_nsproxy(new_nsproxy);
1745
1746 bad_unshare_cleanup_semundo:
1747 bad_unshare_cleanup_fd:
1748 if (new_fd)
1749 put_files_struct(new_fd);
1750
1751 bad_unshare_cleanup_vm:
1752 if (new_mm)
1753 mmput(new_mm);
1754
1755 bad_unshare_cleanup_sigh:
1756 if (new_sigh)
1757 if (atomic_dec_and_test(&new_sigh->count))
1758 kmem_cache_free(sighand_cachep, new_sigh);
1759
1760 bad_unshare_cleanup_fs:
1761 if (new_fs)
1762 put_fs_struct(new_fs);
1763
1764 bad_unshare_cleanup_thread:
1765 bad_unshare_out:
1766 return err;
1767 }