]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/kexec.c
userns: prevent speculative execution
[mirror_ubuntu-artful-kernel.git] / kernel / kexec.c
1 /*
2 * kexec.c - kexec_load system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/syscalls.h>
18 #include <linux/vmalloc.h>
19 #include <linux/slab.h>
20
21 #include "kexec_internal.h"
22
23 static int copy_user_segment_list(struct kimage *image,
24 unsigned long nr_segments,
25 struct kexec_segment __user *segments)
26 {
27 int ret;
28 size_t segment_bytes;
29
30 /* Read in the segments */
31 image->nr_segments = nr_segments;
32 segment_bytes = nr_segments * sizeof(*segments);
33 ret = copy_from_user(image->segment, segments, segment_bytes);
34 if (ret)
35 ret = -EFAULT;
36
37 return ret;
38 }
39
40 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
41 unsigned long nr_segments,
42 struct kexec_segment __user *segments,
43 unsigned long flags)
44 {
45 int ret;
46 struct kimage *image;
47 bool kexec_on_panic = flags & KEXEC_ON_CRASH;
48
49 if (kexec_on_panic) {
50 /* Verify we have a valid entry point */
51 if ((entry < phys_to_boot_phys(crashk_res.start)) ||
52 (entry > phys_to_boot_phys(crashk_res.end)))
53 return -EADDRNOTAVAIL;
54 }
55
56 /* Allocate and initialize a controlling structure */
57 image = do_kimage_alloc_init();
58 if (!image)
59 return -ENOMEM;
60
61 image->start = entry;
62
63 ret = copy_user_segment_list(image, nr_segments, segments);
64 if (ret)
65 goto out_free_image;
66
67 if (kexec_on_panic) {
68 /* Enable special crash kernel control page alloc policy. */
69 image->control_page = crashk_res.start;
70 image->type = KEXEC_TYPE_CRASH;
71 }
72
73 ret = sanity_check_segment_list(image);
74 if (ret)
75 goto out_free_image;
76
77 /*
78 * Find a location for the control code buffer, and add it
79 * the vector of segments so that it's pages will also be
80 * counted as destination pages.
81 */
82 ret = -ENOMEM;
83 image->control_code_page = kimage_alloc_control_pages(image,
84 get_order(KEXEC_CONTROL_PAGE_SIZE));
85 if (!image->control_code_page) {
86 pr_err("Could not allocate control_code_buffer\n");
87 goto out_free_image;
88 }
89
90 if (!kexec_on_panic) {
91 image->swap_page = kimage_alloc_control_pages(image, 0);
92 if (!image->swap_page) {
93 pr_err("Could not allocate swap buffer\n");
94 goto out_free_control_pages;
95 }
96 }
97
98 *rimage = image;
99 return 0;
100 out_free_control_pages:
101 kimage_free_page_list(&image->control_pages);
102 out_free_image:
103 kfree(image);
104 return ret;
105 }
106
107 static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
108 struct kexec_segment __user *segments, unsigned long flags)
109 {
110 struct kimage **dest_image, *image;
111 unsigned long i;
112 int ret;
113
114 if (flags & KEXEC_ON_CRASH) {
115 dest_image = &kexec_crash_image;
116 if (kexec_crash_image)
117 arch_kexec_unprotect_crashkres();
118 } else {
119 dest_image = &kexec_image;
120 }
121
122 if (nr_segments == 0) {
123 /* Uninstall image */
124 kimage_free(xchg(dest_image, NULL));
125 return 0;
126 }
127 if (flags & KEXEC_ON_CRASH) {
128 /*
129 * Loading another kernel to switch to if this one
130 * crashes. Free any current crash dump kernel before
131 * we corrupt it.
132 */
133 kimage_free(xchg(&kexec_crash_image, NULL));
134 }
135
136 ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
137 if (ret)
138 return ret;
139
140 if (flags & KEXEC_PRESERVE_CONTEXT)
141 image->preserve_context = 1;
142
143 ret = machine_kexec_prepare(image);
144 if (ret)
145 goto out;
146
147 /*
148 * Some architecture(like S390) may touch the crash memory before
149 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
150 */
151 ret = kimage_crash_copy_vmcoreinfo(image);
152 if (ret)
153 goto out;
154
155 for (i = 0; i < nr_segments; i++) {
156 ret = kimage_load_segment(image, &image->segment[i]);
157 if (ret)
158 goto out;
159 }
160
161 kimage_terminate(image);
162
163 /* Install the new kernel and uninstall the old */
164 image = xchg(dest_image, image);
165
166 out:
167 if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
168 arch_kexec_protect_crashkres();
169
170 kimage_free(image);
171 return ret;
172 }
173
174 /*
175 * Exec Kernel system call: for obvious reasons only root may call it.
176 *
177 * This call breaks up into three pieces.
178 * - A generic part which loads the new kernel from the current
179 * address space, and very carefully places the data in the
180 * allocated pages.
181 *
182 * - A generic part that interacts with the kernel and tells all of
183 * the devices to shut down. Preventing on-going dmas, and placing
184 * the devices in a consistent state so a later kernel can
185 * reinitialize them.
186 *
187 * - A machine specific part that includes the syscall number
188 * and then copies the image to it's final destination. And
189 * jumps into the image at entry.
190 *
191 * kexec does not sync, or unmount filesystems so if you need
192 * that to happen you need to do that yourself.
193 */
194
195 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
196 struct kexec_segment __user *, segments, unsigned long, flags)
197 {
198 int result;
199
200 /* We only trust the superuser with rebooting the system. */
201 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
202 return -EPERM;
203
204 /*
205 * kexec can be used to circumvent module loading restrictions, so
206 * prevent loading in that case
207 */
208 if (kernel_is_locked_down())
209 return -EPERM;
210
211 /*
212 * Verify we have a legal set of flags
213 * This leaves us room for future extensions.
214 */
215 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
216 return -EINVAL;
217
218 /* Verify we are on the appropriate architecture */
219 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
220 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
221 return -EINVAL;
222
223 /* Put an artificial cap on the number
224 * of segments passed to kexec_load.
225 */
226 if (nr_segments > KEXEC_SEGMENT_MAX)
227 return -EINVAL;
228
229 /* Because we write directly to the reserved memory
230 * region when loading crash kernels we need a mutex here to
231 * prevent multiple crash kernels from attempting to load
232 * simultaneously, and to prevent a crash kernel from loading
233 * over the top of a in use crash kernel.
234 *
235 * KISS: always take the mutex.
236 */
237 if (!mutex_trylock(&kexec_mutex))
238 return -EBUSY;
239
240 result = do_kexec_load(entry, nr_segments, segments, flags);
241
242 mutex_unlock(&kexec_mutex);
243
244 return result;
245 }
246
247 #ifdef CONFIG_COMPAT
248 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
249 compat_ulong_t, nr_segments,
250 struct compat_kexec_segment __user *, segments,
251 compat_ulong_t, flags)
252 {
253 struct compat_kexec_segment in;
254 struct kexec_segment out, __user *ksegments;
255 unsigned long i, result;
256
257 /* Don't allow clients that don't understand the native
258 * architecture to do anything.
259 */
260 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
261 return -EINVAL;
262
263 if (nr_segments > KEXEC_SEGMENT_MAX)
264 return -EINVAL;
265
266 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
267 for (i = 0; i < nr_segments; i++) {
268 result = copy_from_user(&in, &segments[i], sizeof(in));
269 if (result)
270 return -EFAULT;
271
272 out.buf = compat_ptr(in.buf);
273 out.bufsz = in.bufsz;
274 out.mem = in.mem;
275 out.memsz = in.memsz;
276
277 result = copy_to_user(&ksegments[i], &out, sizeof(out));
278 if (result)
279 return -EFAULT;
280 }
281
282 return sys_kexec_load(entry, nr_segments, ksegments, flags);
283 }
284 #endif