]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/kexec_file.c
userns: prevent speculative execution
[mirror_ubuntu-artful-kernel.git] / kernel / kexec_file.c
1 /*
2 * kexec: kexec_file_load system call
3 *
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
28
29 static int kexec_calculate_store_digests(struct kimage *image);
30
31 /* Architectures can provide this probe function */
32 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
33 unsigned long buf_len)
34 {
35 return -ENOEXEC;
36 }
37
38 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
39 {
40 return ERR_PTR(-ENOEXEC);
41 }
42
43 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
44 {
45 return -EINVAL;
46 }
47
48 #ifdef CONFIG_KEXEC_VERIFY_SIG
49 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
50 unsigned long buf_len)
51 {
52 return -EKEYREJECTED;
53 }
54 #endif
55
56 /* Apply relocations of type RELA */
57 int __weak
58 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
59 unsigned int relsec)
60 {
61 pr_err("RELA relocation unsupported.\n");
62 return -ENOEXEC;
63 }
64
65 /* Apply relocations of type REL */
66 int __weak
67 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
68 unsigned int relsec)
69 {
70 pr_err("REL relocation unsupported.\n");
71 return -ENOEXEC;
72 }
73
74 /*
75 * Free up memory used by kernel, initrd, and command line. This is temporary
76 * memory allocation which is not needed any more after these buffers have
77 * been loaded into separate segments and have been copied elsewhere.
78 */
79 void kimage_file_post_load_cleanup(struct kimage *image)
80 {
81 struct purgatory_info *pi = &image->purgatory_info;
82
83 vfree(image->kernel_buf);
84 image->kernel_buf = NULL;
85
86 vfree(image->initrd_buf);
87 image->initrd_buf = NULL;
88
89 kfree(image->cmdline_buf);
90 image->cmdline_buf = NULL;
91
92 vfree(pi->purgatory_buf);
93 pi->purgatory_buf = NULL;
94
95 vfree(pi->sechdrs);
96 pi->sechdrs = NULL;
97
98 /* See if architecture has anything to cleanup post load */
99 arch_kimage_file_post_load_cleanup(image);
100
101 /*
102 * Above call should have called into bootloader to free up
103 * any data stored in kimage->image_loader_data. It should
104 * be ok now to free it up.
105 */
106 kfree(image->image_loader_data);
107 image->image_loader_data = NULL;
108 }
109
110 /*
111 * In file mode list of segments is prepared by kernel. Copy relevant
112 * data from user space, do error checking, prepare segment list
113 */
114 static int
115 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
116 const char __user *cmdline_ptr,
117 unsigned long cmdline_len, unsigned flags)
118 {
119 int ret = 0;
120 void *ldata;
121 loff_t size;
122
123 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
124 &size, INT_MAX, READING_KEXEC_IMAGE);
125 if (ret)
126 return ret;
127 image->kernel_buf_len = size;
128
129 /* IMA needs to pass the measurement list to the next kernel. */
130 ima_add_kexec_buffer(image);
131
132 /* Call arch image probe handlers */
133 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
134 image->kernel_buf_len);
135 if (ret)
136 goto out;
137
138 #ifdef CONFIG_KEXEC_VERIFY_SIG
139 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
140 image->kernel_buf_len);
141 if (ret) {
142 pr_debug("kernel signature verification failed.\n");
143 goto out;
144 }
145 pr_debug("kernel signature verification successful.\n");
146 #endif
147 /* It is possible that there no initramfs is being loaded */
148 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
149 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
150 &size, INT_MAX,
151 READING_KEXEC_INITRAMFS);
152 if (ret)
153 goto out;
154 image->initrd_buf_len = size;
155 }
156
157 if (cmdline_len) {
158 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
159 if (IS_ERR(image->cmdline_buf)) {
160 ret = PTR_ERR(image->cmdline_buf);
161 image->cmdline_buf = NULL;
162 goto out;
163 }
164
165 image->cmdline_buf_len = cmdline_len;
166
167 /* command line should be a string with last byte null */
168 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
169 ret = -EINVAL;
170 goto out;
171 }
172 }
173
174 /* Call arch image load handlers */
175 ldata = arch_kexec_kernel_image_load(image);
176
177 if (IS_ERR(ldata)) {
178 ret = PTR_ERR(ldata);
179 goto out;
180 }
181
182 image->image_loader_data = ldata;
183 out:
184 /* In case of error, free up all allocated memory in this function */
185 if (ret)
186 kimage_file_post_load_cleanup(image);
187 return ret;
188 }
189
190 static int
191 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
192 int initrd_fd, const char __user *cmdline_ptr,
193 unsigned long cmdline_len, unsigned long flags)
194 {
195 int ret;
196 struct kimage *image;
197 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
198
199 image = do_kimage_alloc_init();
200 if (!image)
201 return -ENOMEM;
202
203 image->file_mode = 1;
204
205 if (kexec_on_panic) {
206 /* Enable special crash kernel control page alloc policy. */
207 image->control_page = crashk_res.start;
208 image->type = KEXEC_TYPE_CRASH;
209 }
210
211 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
212 cmdline_ptr, cmdline_len, flags);
213 if (ret)
214 goto out_free_image;
215
216 ret = sanity_check_segment_list(image);
217 if (ret)
218 goto out_free_post_load_bufs;
219
220 ret = -ENOMEM;
221 image->control_code_page = kimage_alloc_control_pages(image,
222 get_order(KEXEC_CONTROL_PAGE_SIZE));
223 if (!image->control_code_page) {
224 pr_err("Could not allocate control_code_buffer\n");
225 goto out_free_post_load_bufs;
226 }
227
228 if (!kexec_on_panic) {
229 image->swap_page = kimage_alloc_control_pages(image, 0);
230 if (!image->swap_page) {
231 pr_err("Could not allocate swap buffer\n");
232 goto out_free_control_pages;
233 }
234 }
235
236 *rimage = image;
237 return 0;
238 out_free_control_pages:
239 kimage_free_page_list(&image->control_pages);
240 out_free_post_load_bufs:
241 kimage_file_post_load_cleanup(image);
242 out_free_image:
243 kfree(image);
244 return ret;
245 }
246
247 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
248 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
249 unsigned long, flags)
250 {
251 int ret = 0, i;
252 struct kimage **dest_image, *image;
253
254 /* We only trust the superuser with rebooting the system. */
255 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
256 return -EPERM;
257
258 /* Don't permit images to be loaded into trusted kernels if we're not
259 * going to verify the signature on them
260 */
261 if (!IS_ENABLED(CONFIG_KEXEC_VERIFY_SIG) && kernel_is_locked_down())
262 return -EPERM;
263
264 /* Make sure we have a legal set of flags */
265 if (flags != (flags & KEXEC_FILE_FLAGS))
266 return -EINVAL;
267
268 image = NULL;
269
270 if (!mutex_trylock(&kexec_mutex))
271 return -EBUSY;
272
273 dest_image = &kexec_image;
274 if (flags & KEXEC_FILE_ON_CRASH) {
275 dest_image = &kexec_crash_image;
276 if (kexec_crash_image)
277 arch_kexec_unprotect_crashkres();
278 }
279
280 if (flags & KEXEC_FILE_UNLOAD)
281 goto exchange;
282
283 /*
284 * In case of crash, new kernel gets loaded in reserved region. It is
285 * same memory where old crash kernel might be loaded. Free any
286 * current crash dump kernel before we corrupt it.
287 */
288 if (flags & KEXEC_FILE_ON_CRASH)
289 kimage_free(xchg(&kexec_crash_image, NULL));
290
291 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
292 cmdline_len, flags);
293 if (ret)
294 goto out;
295
296 ret = machine_kexec_prepare(image);
297 if (ret)
298 goto out;
299
300 /*
301 * Some architecture(like S390) may touch the crash memory before
302 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
303 */
304 ret = kimage_crash_copy_vmcoreinfo(image);
305 if (ret)
306 goto out;
307
308 ret = kexec_calculate_store_digests(image);
309 if (ret)
310 goto out;
311
312 for (i = 0; i < image->nr_segments; i++) {
313 struct kexec_segment *ksegment;
314
315 ksegment = &image->segment[i];
316 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
317 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
318 ksegment->memsz);
319
320 ret = kimage_load_segment(image, &image->segment[i]);
321 if (ret)
322 goto out;
323 }
324
325 kimage_terminate(image);
326
327 /*
328 * Free up any temporary buffers allocated which are not needed
329 * after image has been loaded
330 */
331 kimage_file_post_load_cleanup(image);
332 exchange:
333 image = xchg(dest_image, image);
334 out:
335 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
336 arch_kexec_protect_crashkres();
337
338 mutex_unlock(&kexec_mutex);
339 kimage_free(image);
340 return ret;
341 }
342
343 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
344 struct kexec_buf *kbuf)
345 {
346 struct kimage *image = kbuf->image;
347 unsigned long temp_start, temp_end;
348
349 temp_end = min(end, kbuf->buf_max);
350 temp_start = temp_end - kbuf->memsz;
351
352 do {
353 /* align down start */
354 temp_start = temp_start & (~(kbuf->buf_align - 1));
355
356 if (temp_start < start || temp_start < kbuf->buf_min)
357 return 0;
358
359 temp_end = temp_start + kbuf->memsz - 1;
360
361 /*
362 * Make sure this does not conflict with any of existing
363 * segments
364 */
365 if (kimage_is_destination_range(image, temp_start, temp_end)) {
366 temp_start = temp_start - PAGE_SIZE;
367 continue;
368 }
369
370 /* We found a suitable memory range */
371 break;
372 } while (1);
373
374 /* If we are here, we found a suitable memory range */
375 kbuf->mem = temp_start;
376
377 /* Success, stop navigating through remaining System RAM ranges */
378 return 1;
379 }
380
381 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
382 struct kexec_buf *kbuf)
383 {
384 struct kimage *image = kbuf->image;
385 unsigned long temp_start, temp_end;
386
387 temp_start = max(start, kbuf->buf_min);
388
389 do {
390 temp_start = ALIGN(temp_start, kbuf->buf_align);
391 temp_end = temp_start + kbuf->memsz - 1;
392
393 if (temp_end > end || temp_end > kbuf->buf_max)
394 return 0;
395 /*
396 * Make sure this does not conflict with any of existing
397 * segments
398 */
399 if (kimage_is_destination_range(image, temp_start, temp_end)) {
400 temp_start = temp_start + PAGE_SIZE;
401 continue;
402 }
403
404 /* We found a suitable memory range */
405 break;
406 } while (1);
407
408 /* If we are here, we found a suitable memory range */
409 kbuf->mem = temp_start;
410
411 /* Success, stop navigating through remaining System RAM ranges */
412 return 1;
413 }
414
415 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
416 {
417 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
418 unsigned long sz = end - start + 1;
419
420 /* Returning 0 will take to next memory range */
421 if (sz < kbuf->memsz)
422 return 0;
423
424 if (end < kbuf->buf_min || start > kbuf->buf_max)
425 return 0;
426
427 /*
428 * Allocate memory top down with-in ram range. Otherwise bottom up
429 * allocation.
430 */
431 if (kbuf->top_down)
432 return locate_mem_hole_top_down(start, end, kbuf);
433 return locate_mem_hole_bottom_up(start, end, kbuf);
434 }
435
436 /**
437 * arch_kexec_walk_mem - call func(data) on free memory regions
438 * @kbuf: Context info for the search. Also passed to @func.
439 * @func: Function to call for each memory region.
440 *
441 * Return: The memory walk will stop when func returns a non-zero value
442 * and that value will be returned. If all free regions are visited without
443 * func returning non-zero, then zero will be returned.
444 */
445 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
446 int (*func)(u64, u64, void *))
447 {
448 if (kbuf->image->type == KEXEC_TYPE_CRASH)
449 return walk_iomem_res_desc(crashk_res.desc,
450 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
451 crashk_res.start, crashk_res.end,
452 kbuf, func);
453 else
454 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
455 }
456
457 /**
458 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
459 * @kbuf: Parameters for the memory search.
460 *
461 * On success, kbuf->mem will have the start address of the memory region found.
462 *
463 * Return: 0 on success, negative errno on error.
464 */
465 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
466 {
467 int ret;
468
469 ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
470
471 return ret == 1 ? 0 : -EADDRNOTAVAIL;
472 }
473
474 /**
475 * kexec_add_buffer - place a buffer in a kexec segment
476 * @kbuf: Buffer contents and memory parameters.
477 *
478 * This function assumes that kexec_mutex is held.
479 * On successful return, @kbuf->mem will have the physical address of
480 * the buffer in memory.
481 *
482 * Return: 0 on success, negative errno on error.
483 */
484 int kexec_add_buffer(struct kexec_buf *kbuf)
485 {
486
487 struct kexec_segment *ksegment;
488 int ret;
489
490 /* Currently adding segment this way is allowed only in file mode */
491 if (!kbuf->image->file_mode)
492 return -EINVAL;
493
494 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
495 return -EINVAL;
496
497 /*
498 * Make sure we are not trying to add buffer after allocating
499 * control pages. All segments need to be placed first before
500 * any control pages are allocated. As control page allocation
501 * logic goes through list of segments to make sure there are
502 * no destination overlaps.
503 */
504 if (!list_empty(&kbuf->image->control_pages)) {
505 WARN_ON(1);
506 return -EINVAL;
507 }
508
509 /* Ensure minimum alignment needed for segments. */
510 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
511 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
512
513 /* Walk the RAM ranges and allocate a suitable range for the buffer */
514 ret = kexec_locate_mem_hole(kbuf);
515 if (ret)
516 return ret;
517
518 /* Found a suitable memory range */
519 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
520 ksegment->kbuf = kbuf->buffer;
521 ksegment->bufsz = kbuf->bufsz;
522 ksegment->mem = kbuf->mem;
523 ksegment->memsz = kbuf->memsz;
524 kbuf->image->nr_segments++;
525 return 0;
526 }
527
528 /* Calculate and store the digest of segments */
529 static int kexec_calculate_store_digests(struct kimage *image)
530 {
531 struct crypto_shash *tfm;
532 struct shash_desc *desc;
533 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
534 size_t desc_size, nullsz;
535 char *digest;
536 void *zero_buf;
537 struct kexec_sha_region *sha_regions;
538 struct purgatory_info *pi = &image->purgatory_info;
539
540 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
541 zero_buf_sz = PAGE_SIZE;
542
543 tfm = crypto_alloc_shash("sha256", 0, 0);
544 if (IS_ERR(tfm)) {
545 ret = PTR_ERR(tfm);
546 goto out;
547 }
548
549 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
550 desc = kzalloc(desc_size, GFP_KERNEL);
551 if (!desc) {
552 ret = -ENOMEM;
553 goto out_free_tfm;
554 }
555
556 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
557 sha_regions = vzalloc(sha_region_sz);
558 if (!sha_regions)
559 goto out_free_desc;
560
561 desc->tfm = tfm;
562 desc->flags = 0;
563
564 ret = crypto_shash_init(desc);
565 if (ret < 0)
566 goto out_free_sha_regions;
567
568 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
569 if (!digest) {
570 ret = -ENOMEM;
571 goto out_free_sha_regions;
572 }
573
574 for (j = i = 0; i < image->nr_segments; i++) {
575 struct kexec_segment *ksegment;
576
577 ksegment = &image->segment[i];
578 /*
579 * Skip purgatory as it will be modified once we put digest
580 * info in purgatory.
581 */
582 if (ksegment->kbuf == pi->purgatory_buf)
583 continue;
584
585 ret = crypto_shash_update(desc, ksegment->kbuf,
586 ksegment->bufsz);
587 if (ret)
588 break;
589
590 /*
591 * Assume rest of the buffer is filled with zero and
592 * update digest accordingly.
593 */
594 nullsz = ksegment->memsz - ksegment->bufsz;
595 while (nullsz) {
596 unsigned long bytes = nullsz;
597
598 if (bytes > zero_buf_sz)
599 bytes = zero_buf_sz;
600 ret = crypto_shash_update(desc, zero_buf, bytes);
601 if (ret)
602 break;
603 nullsz -= bytes;
604 }
605
606 if (ret)
607 break;
608
609 sha_regions[j].start = ksegment->mem;
610 sha_regions[j].len = ksegment->memsz;
611 j++;
612 }
613
614 if (!ret) {
615 ret = crypto_shash_final(desc, digest);
616 if (ret)
617 goto out_free_digest;
618 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
619 sha_regions, sha_region_sz, 0);
620 if (ret)
621 goto out_free_digest;
622
623 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
624 digest, SHA256_DIGEST_SIZE, 0);
625 if (ret)
626 goto out_free_digest;
627 }
628
629 out_free_digest:
630 kfree(digest);
631 out_free_sha_regions:
632 vfree(sha_regions);
633 out_free_desc:
634 kfree(desc);
635 out_free_tfm:
636 kfree(tfm);
637 out:
638 return ret;
639 }
640
641 /* Actually load purgatory. Lot of code taken from kexec-tools */
642 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
643 unsigned long max, int top_down)
644 {
645 struct purgatory_info *pi = &image->purgatory_info;
646 unsigned long align, bss_align, bss_sz, bss_pad;
647 unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
648 unsigned char *buf_addr, *src;
649 int i, ret = 0, entry_sidx = -1;
650 const Elf_Shdr *sechdrs_c;
651 Elf_Shdr *sechdrs = NULL;
652 struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
653 .buf_min = min, .buf_max = max,
654 .top_down = top_down };
655
656 /*
657 * sechdrs_c points to section headers in purgatory and are read
658 * only. No modifications allowed.
659 */
660 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
661
662 /*
663 * We can not modify sechdrs_c[] and its fields. It is read only.
664 * Copy it over to a local copy where one can store some temporary
665 * data and free it at the end. We need to modify ->sh_addr and
666 * ->sh_offset fields to keep track of permanent and temporary
667 * locations of sections.
668 */
669 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
670 if (!sechdrs)
671 return -ENOMEM;
672
673 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
674
675 /*
676 * We seem to have multiple copies of sections. First copy is which
677 * is embedded in kernel in read only section. Some of these sections
678 * will be copied to a temporary buffer and relocated. And these
679 * sections will finally be copied to their final destination at
680 * segment load time.
681 *
682 * Use ->sh_offset to reflect section address in memory. It will
683 * point to original read only copy if section is not allocatable.
684 * Otherwise it will point to temporary copy which will be relocated.
685 *
686 * Use ->sh_addr to contain final address of the section where it
687 * will go during execution time.
688 */
689 for (i = 0; i < pi->ehdr->e_shnum; i++) {
690 if (sechdrs[i].sh_type == SHT_NOBITS)
691 continue;
692
693 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
694 sechdrs[i].sh_offset;
695 }
696
697 /*
698 * Identify entry point section and make entry relative to section
699 * start.
700 */
701 entry = pi->ehdr->e_entry;
702 for (i = 0; i < pi->ehdr->e_shnum; i++) {
703 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
704 continue;
705
706 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
707 continue;
708
709 /* Make entry section relative */
710 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
711 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
712 pi->ehdr->e_entry)) {
713 entry_sidx = i;
714 entry -= sechdrs[i].sh_addr;
715 break;
716 }
717 }
718
719 /* Determine how much memory is needed to load relocatable object. */
720 bss_align = 1;
721 bss_sz = 0;
722
723 for (i = 0; i < pi->ehdr->e_shnum; i++) {
724 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
725 continue;
726
727 align = sechdrs[i].sh_addralign;
728 if (sechdrs[i].sh_type != SHT_NOBITS) {
729 if (kbuf.buf_align < align)
730 kbuf.buf_align = align;
731 kbuf.bufsz = ALIGN(kbuf.bufsz, align);
732 kbuf.bufsz += sechdrs[i].sh_size;
733 } else {
734 /* bss section */
735 if (bss_align < align)
736 bss_align = align;
737 bss_sz = ALIGN(bss_sz, align);
738 bss_sz += sechdrs[i].sh_size;
739 }
740 }
741
742 /* Determine the bss padding required to align bss properly */
743 bss_pad = 0;
744 if (kbuf.bufsz & (bss_align - 1))
745 bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
746
747 kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
748
749 /* Allocate buffer for purgatory */
750 kbuf.buffer = vzalloc(kbuf.bufsz);
751 if (!kbuf.buffer) {
752 ret = -ENOMEM;
753 goto out;
754 }
755
756 if (kbuf.buf_align < bss_align)
757 kbuf.buf_align = bss_align;
758
759 /* Add buffer to segment list */
760 ret = kexec_add_buffer(&kbuf);
761 if (ret)
762 goto out;
763 pi->purgatory_load_addr = kbuf.mem;
764
765 /* Load SHF_ALLOC sections */
766 buf_addr = kbuf.buffer;
767 load_addr = curr_load_addr = pi->purgatory_load_addr;
768 bss_addr = load_addr + kbuf.bufsz + bss_pad;
769
770 for (i = 0; i < pi->ehdr->e_shnum; i++) {
771 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
772 continue;
773
774 align = sechdrs[i].sh_addralign;
775 if (sechdrs[i].sh_type != SHT_NOBITS) {
776 curr_load_addr = ALIGN(curr_load_addr, align);
777 offset = curr_load_addr - load_addr;
778 /* We already modifed ->sh_offset to keep src addr */
779 src = (char *) sechdrs[i].sh_offset;
780 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
781
782 /* Store load address and source address of section */
783 sechdrs[i].sh_addr = curr_load_addr;
784
785 /*
786 * This section got copied to temporary buffer. Update
787 * ->sh_offset accordingly.
788 */
789 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
790
791 /* Advance to the next address */
792 curr_load_addr += sechdrs[i].sh_size;
793 } else {
794 bss_addr = ALIGN(bss_addr, align);
795 sechdrs[i].sh_addr = bss_addr;
796 bss_addr += sechdrs[i].sh_size;
797 }
798 }
799
800 /* Update entry point based on load address of text section */
801 if (entry_sidx >= 0)
802 entry += sechdrs[entry_sidx].sh_addr;
803
804 /* Make kernel jump to purgatory after shutdown */
805 image->start = entry;
806
807 /* Used later to get/set symbol values */
808 pi->sechdrs = sechdrs;
809
810 /*
811 * Used later to identify which section is purgatory and skip it
812 * from checksumming.
813 */
814 pi->purgatory_buf = kbuf.buffer;
815 return ret;
816 out:
817 vfree(sechdrs);
818 vfree(kbuf.buffer);
819 return ret;
820 }
821
822 static int kexec_apply_relocations(struct kimage *image)
823 {
824 int i, ret;
825 struct purgatory_info *pi = &image->purgatory_info;
826 Elf_Shdr *sechdrs = pi->sechdrs;
827
828 /* Apply relocations */
829 for (i = 0; i < pi->ehdr->e_shnum; i++) {
830 Elf_Shdr *section, *symtab;
831
832 if (sechdrs[i].sh_type != SHT_RELA &&
833 sechdrs[i].sh_type != SHT_REL)
834 continue;
835
836 /*
837 * For section of type SHT_RELA/SHT_REL,
838 * ->sh_link contains section header index of associated
839 * symbol table. And ->sh_info contains section header
840 * index of section to which relocations apply.
841 */
842 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
843 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
844 return -ENOEXEC;
845
846 section = &sechdrs[sechdrs[i].sh_info];
847 symtab = &sechdrs[sechdrs[i].sh_link];
848
849 if (!(section->sh_flags & SHF_ALLOC))
850 continue;
851
852 /*
853 * symtab->sh_link contain section header index of associated
854 * string table.
855 */
856 if (symtab->sh_link >= pi->ehdr->e_shnum)
857 /* Invalid section number? */
858 continue;
859
860 /*
861 * Respective architecture needs to provide support for applying
862 * relocations of type SHT_RELA/SHT_REL.
863 */
864 if (sechdrs[i].sh_type == SHT_RELA)
865 ret = arch_kexec_apply_relocations_add(pi->ehdr,
866 sechdrs, i);
867 else if (sechdrs[i].sh_type == SHT_REL)
868 ret = arch_kexec_apply_relocations(pi->ehdr,
869 sechdrs, i);
870 if (ret)
871 return ret;
872 }
873
874 return 0;
875 }
876
877 /* Load relocatable purgatory object and relocate it appropriately */
878 int kexec_load_purgatory(struct kimage *image, unsigned long min,
879 unsigned long max, int top_down,
880 unsigned long *load_addr)
881 {
882 struct purgatory_info *pi = &image->purgatory_info;
883 int ret;
884
885 if (kexec_purgatory_size <= 0)
886 return -EINVAL;
887
888 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
889 return -ENOEXEC;
890
891 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
892
893 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
894 || pi->ehdr->e_type != ET_REL
895 || !elf_check_arch(pi->ehdr)
896 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
897 return -ENOEXEC;
898
899 if (pi->ehdr->e_shoff >= kexec_purgatory_size
900 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
901 kexec_purgatory_size - pi->ehdr->e_shoff))
902 return -ENOEXEC;
903
904 ret = __kexec_load_purgatory(image, min, max, top_down);
905 if (ret)
906 return ret;
907
908 ret = kexec_apply_relocations(image);
909 if (ret)
910 goto out;
911
912 *load_addr = pi->purgatory_load_addr;
913 return 0;
914 out:
915 vfree(pi->sechdrs);
916 pi->sechdrs = NULL;
917
918 vfree(pi->purgatory_buf);
919 pi->purgatory_buf = NULL;
920 return ret;
921 }
922
923 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
924 const char *name)
925 {
926 Elf_Sym *syms;
927 Elf_Shdr *sechdrs;
928 Elf_Ehdr *ehdr;
929 int i, k;
930 const char *strtab;
931
932 if (!pi->sechdrs || !pi->ehdr)
933 return NULL;
934
935 sechdrs = pi->sechdrs;
936 ehdr = pi->ehdr;
937
938 for (i = 0; i < ehdr->e_shnum; i++) {
939 if (sechdrs[i].sh_type != SHT_SYMTAB)
940 continue;
941
942 if (sechdrs[i].sh_link >= ehdr->e_shnum)
943 /* Invalid strtab section number */
944 continue;
945 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
946 syms = (Elf_Sym *)sechdrs[i].sh_offset;
947
948 /* Go through symbols for a match */
949 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
950 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
951 continue;
952
953 if (strcmp(strtab + syms[k].st_name, name) != 0)
954 continue;
955
956 if (syms[k].st_shndx == SHN_UNDEF ||
957 syms[k].st_shndx >= ehdr->e_shnum) {
958 pr_debug("Symbol: %s has bad section index %d.\n",
959 name, syms[k].st_shndx);
960 return NULL;
961 }
962
963 /* Found the symbol we are looking for */
964 return &syms[k];
965 }
966 }
967
968 return NULL;
969 }
970
971 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
972 {
973 struct purgatory_info *pi = &image->purgatory_info;
974 Elf_Sym *sym;
975 Elf_Shdr *sechdr;
976
977 sym = kexec_purgatory_find_symbol(pi, name);
978 if (!sym)
979 return ERR_PTR(-EINVAL);
980
981 sechdr = &pi->sechdrs[sym->st_shndx];
982
983 /*
984 * Returns the address where symbol will finally be loaded after
985 * kexec_load_segment()
986 */
987 return (void *)(sechdr->sh_addr + sym->st_value);
988 }
989
990 /*
991 * Get or set value of a symbol. If "get_value" is true, symbol value is
992 * returned in buf otherwise symbol value is set based on value in buf.
993 */
994 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
995 void *buf, unsigned int size, bool get_value)
996 {
997 Elf_Sym *sym;
998 Elf_Shdr *sechdrs;
999 struct purgatory_info *pi = &image->purgatory_info;
1000 char *sym_buf;
1001
1002 sym = kexec_purgatory_find_symbol(pi, name);
1003 if (!sym)
1004 return -EINVAL;
1005
1006 if (sym->st_size != size) {
1007 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1008 name, (unsigned long)sym->st_size, size);
1009 return -EINVAL;
1010 }
1011
1012 sechdrs = pi->sechdrs;
1013
1014 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1015 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1016 get_value ? "get" : "set");
1017 return -EINVAL;
1018 }
1019
1020 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1021 sym->st_value;
1022
1023 if (get_value)
1024 memcpy((void *)buf, sym_buf, size);
1025 else
1026 memcpy((void *)sym_buf, buf, size);
1027
1028 return 0;
1029 }