]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/module.c
userns: prevent speculative execution
[mirror_ubuntu-artful-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76
77 /*
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
81 */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90
91 /*
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
102
103 /*
104 * Use a latched RB-tree for __module_address(); this allows us to use
105 * RCU-sched lookups of the address from any context.
106 *
107 * This is conditional on PERF_EVENTS || TRACING because those can really hit
108 * __module_address() hard by doing a lot of stack unwinding; potentially from
109 * NMI context.
110 */
111
112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
113 {
114 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115
116 return (unsigned long)layout->base;
117 }
118
119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
120 {
121 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
122
123 return (unsigned long)layout->size;
124 }
125
126 static __always_inline bool
127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
128 {
129 return __mod_tree_val(a) < __mod_tree_val(b);
130 }
131
132 static __always_inline int
133 mod_tree_comp(void *key, struct latch_tree_node *n)
134 {
135 unsigned long val = (unsigned long)key;
136 unsigned long start, end;
137
138 start = __mod_tree_val(n);
139 if (val < start)
140 return -1;
141
142 end = start + __mod_tree_size(n);
143 if (val >= end)
144 return 1;
145
146 return 0;
147 }
148
149 static const struct latch_tree_ops mod_tree_ops = {
150 .less = mod_tree_less,
151 .comp = mod_tree_comp,
152 };
153
154 static struct mod_tree_root {
155 struct latch_tree_root root;
156 unsigned long addr_min;
157 unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 .addr_min = -1UL,
160 };
161
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
164
165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
166 {
167 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169
170 static void __mod_tree_remove(struct mod_tree_node *node)
171 {
172 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
173 }
174
175 /*
176 * These modifications: insert, remove_init and remove; are serialized by the
177 * module_mutex.
178 */
179 static void mod_tree_insert(struct module *mod)
180 {
181 mod->core_layout.mtn.mod = mod;
182 mod->init_layout.mtn.mod = mod;
183
184 __mod_tree_insert(&mod->core_layout.mtn);
185 if (mod->init_layout.size)
186 __mod_tree_insert(&mod->init_layout.mtn);
187 }
188
189 static void mod_tree_remove_init(struct module *mod)
190 {
191 if (mod->init_layout.size)
192 __mod_tree_remove(&mod->init_layout.mtn);
193 }
194
195 static void mod_tree_remove(struct module *mod)
196 {
197 __mod_tree_remove(&mod->core_layout.mtn);
198 mod_tree_remove_init(mod);
199 }
200
201 static struct module *mod_find(unsigned long addr)
202 {
203 struct latch_tree_node *ltn;
204
205 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 if (!ltn)
207 return NULL;
208
209 return container_of(ltn, struct mod_tree_node, node)->mod;
210 }
211
212 #else /* MODULES_TREE_LOOKUP */
213
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
215
216 static void mod_tree_insert(struct module *mod) { }
217 static void mod_tree_remove_init(struct module *mod) { }
218 static void mod_tree_remove(struct module *mod) { }
219
220 static struct module *mod_find(unsigned long addr)
221 {
222 struct module *mod;
223
224 list_for_each_entry_rcu(mod, &modules, list) {
225 if (within_module(addr, mod))
226 return mod;
227 }
228
229 return NULL;
230 }
231
232 #endif /* MODULES_TREE_LOOKUP */
233
234 /*
235 * Bounds of module text, for speeding up __module_address.
236 * Protected by module_mutex.
237 */
238 static void __mod_update_bounds(void *base, unsigned int size)
239 {
240 unsigned long min = (unsigned long)base;
241 unsigned long max = min + size;
242
243 if (min < module_addr_min)
244 module_addr_min = min;
245 if (max > module_addr_max)
246 module_addr_max = max;
247 }
248
249 static void mod_update_bounds(struct module *mod)
250 {
251 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 if (mod->init_layout.size)
253 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
254 }
255
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
259
260 static void module_assert_mutex(void)
261 {
262 lockdep_assert_held(&module_mutex);
263 }
264
265 static void module_assert_mutex_or_preempt(void)
266 {
267 #ifdef CONFIG_LOCKDEP
268 if (unlikely(!debug_locks))
269 return;
270
271 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 !lockdep_is_held(&module_mutex));
273 #endif
274 }
275
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 #ifndef CONFIG_MODULE_SIG_FORCE
278 module_param(sig_enforce, bool_enable_only, 0644);
279 #endif /* !CONFIG_MODULE_SIG_FORCE */
280
281 /* Block module loading/unloading? */
282 int modules_disabled = 0;
283 core_param(nomodule, modules_disabled, bint, 0);
284
285 /* Waiting for a module to finish initializing? */
286 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
287
288 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
289
290 int register_module_notifier(struct notifier_block *nb)
291 {
292 return blocking_notifier_chain_register(&module_notify_list, nb);
293 }
294 EXPORT_SYMBOL(register_module_notifier);
295
296 int unregister_module_notifier(struct notifier_block *nb)
297 {
298 return blocking_notifier_chain_unregister(&module_notify_list, nb);
299 }
300 EXPORT_SYMBOL(unregister_module_notifier);
301
302 struct load_info {
303 const char *name;
304 Elf_Ehdr *hdr;
305 unsigned long len;
306 Elf_Shdr *sechdrs;
307 char *secstrings, *strtab;
308 unsigned long symoffs, stroffs;
309 struct _ddebug *debug;
310 unsigned int num_debug;
311 bool sig_ok;
312 #ifdef CONFIG_KALLSYMS
313 unsigned long mod_kallsyms_init_off;
314 #endif
315 struct {
316 unsigned int sym, str, mod, vers, info, pcpu;
317 } index;
318 };
319
320 /*
321 * We require a truly strong try_module_get(): 0 means success.
322 * Otherwise an error is returned due to ongoing or failed
323 * initialization etc.
324 */
325 static inline int strong_try_module_get(struct module *mod)
326 {
327 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
328 if (mod && mod->state == MODULE_STATE_COMING)
329 return -EBUSY;
330 if (try_module_get(mod))
331 return 0;
332 else
333 return -ENOENT;
334 }
335
336 static inline void add_taint_module(struct module *mod, unsigned flag,
337 enum lockdep_ok lockdep_ok)
338 {
339 add_taint(flag, lockdep_ok);
340 set_bit(flag, &mod->taints);
341 }
342
343 /*
344 * A thread that wants to hold a reference to a module only while it
345 * is running can call this to safely exit. nfsd and lockd use this.
346 */
347 void __noreturn __module_put_and_exit(struct module *mod, long code)
348 {
349 module_put(mod);
350 do_exit(code);
351 }
352 EXPORT_SYMBOL(__module_put_and_exit);
353
354 /* Find a module section: 0 means not found. */
355 static unsigned int find_sec(const struct load_info *info, const char *name)
356 {
357 unsigned int i;
358
359 for (i = 1; i < info->hdr->e_shnum; i++) {
360 Elf_Shdr *shdr = &info->sechdrs[i];
361 /* Alloc bit cleared means "ignore it." */
362 if ((shdr->sh_flags & SHF_ALLOC)
363 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
364 return i;
365 }
366 return 0;
367 }
368
369 /* Find a module section, or NULL. */
370 static void *section_addr(const struct load_info *info, const char *name)
371 {
372 /* Section 0 has sh_addr 0. */
373 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
374 }
375
376 /* Find a module section, or NULL. Fill in number of "objects" in section. */
377 static void *section_objs(const struct load_info *info,
378 const char *name,
379 size_t object_size,
380 unsigned int *num)
381 {
382 unsigned int sec = find_sec(info, name);
383
384 /* Section 0 has sh_addr 0 and sh_size 0. */
385 *num = info->sechdrs[sec].sh_size / object_size;
386 return (void *)info->sechdrs[sec].sh_addr;
387 }
388
389 /* Provided by the linker */
390 extern const struct kernel_symbol __start___ksymtab[];
391 extern const struct kernel_symbol __stop___ksymtab[];
392 extern const struct kernel_symbol __start___ksymtab_gpl[];
393 extern const struct kernel_symbol __stop___ksymtab_gpl[];
394 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
395 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
396 extern const s32 __start___kcrctab[];
397 extern const s32 __start___kcrctab_gpl[];
398 extern const s32 __start___kcrctab_gpl_future[];
399 #ifdef CONFIG_UNUSED_SYMBOLS
400 extern const struct kernel_symbol __start___ksymtab_unused[];
401 extern const struct kernel_symbol __stop___ksymtab_unused[];
402 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
403 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
404 extern const s32 __start___kcrctab_unused[];
405 extern const s32 __start___kcrctab_unused_gpl[];
406 #endif
407
408 #ifndef CONFIG_MODVERSIONS
409 #define symversion(base, idx) NULL
410 #else
411 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
412 #endif
413
414 static bool each_symbol_in_section(const struct symsearch *arr,
415 unsigned int arrsize,
416 struct module *owner,
417 bool (*fn)(const struct symsearch *syms,
418 struct module *owner,
419 void *data),
420 void *data)
421 {
422 unsigned int j;
423
424 for (j = 0; j < arrsize; j++) {
425 if (fn(&arr[j], owner, data))
426 return true;
427 }
428
429 return false;
430 }
431
432 /* Returns true as soon as fn returns true, otherwise false. */
433 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
434 struct module *owner,
435 void *data),
436 void *data)
437 {
438 struct module *mod;
439 static const struct symsearch arr[] = {
440 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
441 NOT_GPL_ONLY, false },
442 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
443 __start___kcrctab_gpl,
444 GPL_ONLY, false },
445 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
446 __start___kcrctab_gpl_future,
447 WILL_BE_GPL_ONLY, false },
448 #ifdef CONFIG_UNUSED_SYMBOLS
449 { __start___ksymtab_unused, __stop___ksymtab_unused,
450 __start___kcrctab_unused,
451 NOT_GPL_ONLY, true },
452 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
453 __start___kcrctab_unused_gpl,
454 GPL_ONLY, true },
455 #endif
456 };
457
458 module_assert_mutex_or_preempt();
459
460 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
461 return true;
462
463 list_for_each_entry_rcu(mod, &modules, list) {
464 struct symsearch arr[] = {
465 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
466 NOT_GPL_ONLY, false },
467 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
468 mod->gpl_crcs,
469 GPL_ONLY, false },
470 { mod->gpl_future_syms,
471 mod->gpl_future_syms + mod->num_gpl_future_syms,
472 mod->gpl_future_crcs,
473 WILL_BE_GPL_ONLY, false },
474 #ifdef CONFIG_UNUSED_SYMBOLS
475 { mod->unused_syms,
476 mod->unused_syms + mod->num_unused_syms,
477 mod->unused_crcs,
478 NOT_GPL_ONLY, true },
479 { mod->unused_gpl_syms,
480 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
481 mod->unused_gpl_crcs,
482 GPL_ONLY, true },
483 #endif
484 };
485
486 if (mod->state == MODULE_STATE_UNFORMED)
487 continue;
488
489 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
490 return true;
491 }
492 return false;
493 }
494 EXPORT_SYMBOL_GPL(each_symbol_section);
495
496 struct find_symbol_arg {
497 /* Input */
498 const char *name;
499 bool gplok;
500 bool warn;
501
502 /* Output */
503 struct module *owner;
504 const s32 *crc;
505 const struct kernel_symbol *sym;
506 };
507
508 static bool check_symbol(const struct symsearch *syms,
509 struct module *owner,
510 unsigned int symnum, void *data)
511 {
512 struct find_symbol_arg *fsa = data;
513
514 if (!fsa->gplok) {
515 if (syms->licence == GPL_ONLY)
516 return false;
517 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
518 pr_warn("Symbol %s is being used by a non-GPL module, "
519 "which will not be allowed in the future\n",
520 fsa->name);
521 }
522 }
523
524 #ifdef CONFIG_UNUSED_SYMBOLS
525 if (syms->unused && fsa->warn) {
526 pr_warn("Symbol %s is marked as UNUSED, however this module is "
527 "using it.\n", fsa->name);
528 pr_warn("This symbol will go away in the future.\n");
529 pr_warn("Please evaluate if this is the right api to use and "
530 "if it really is, submit a report to the linux kernel "
531 "mailing list together with submitting your code for "
532 "inclusion.\n");
533 }
534 #endif
535
536 fsa->owner = owner;
537 fsa->crc = symversion(syms->crcs, symnum);
538 fsa->sym = &syms->start[symnum];
539 return true;
540 }
541
542 static int cmp_name(const void *va, const void *vb)
543 {
544 const char *a;
545 const struct kernel_symbol *b;
546 a = va; b = vb;
547 return strcmp(a, b->name);
548 }
549
550 static bool find_symbol_in_section(const struct symsearch *syms,
551 struct module *owner,
552 void *data)
553 {
554 struct find_symbol_arg *fsa = data;
555 struct kernel_symbol *sym;
556
557 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
558 sizeof(struct kernel_symbol), cmp_name);
559
560 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
561 return true;
562
563 return false;
564 }
565
566 /* Find a symbol and return it, along with, (optional) crc and
567 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
568 const struct kernel_symbol *find_symbol(const char *name,
569 struct module **owner,
570 const s32 **crc,
571 bool gplok,
572 bool warn)
573 {
574 struct find_symbol_arg fsa;
575
576 fsa.name = name;
577 fsa.gplok = gplok;
578 fsa.warn = warn;
579
580 if (each_symbol_section(find_symbol_in_section, &fsa)) {
581 if (owner)
582 *owner = fsa.owner;
583 if (crc)
584 *crc = fsa.crc;
585 return fsa.sym;
586 }
587
588 pr_debug("Failed to find symbol %s\n", name);
589 return NULL;
590 }
591 EXPORT_SYMBOL_GPL(find_symbol);
592
593 /*
594 * Search for module by name: must hold module_mutex (or preempt disabled
595 * for read-only access).
596 */
597 static struct module *find_module_all(const char *name, size_t len,
598 bool even_unformed)
599 {
600 struct module *mod;
601
602 module_assert_mutex_or_preempt();
603
604 list_for_each_entry_rcu(mod, &modules, list) {
605 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
606 continue;
607 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
608 return mod;
609 }
610 return NULL;
611 }
612
613 struct module *find_module(const char *name)
614 {
615 module_assert_mutex();
616 return find_module_all(name, strlen(name), false);
617 }
618 EXPORT_SYMBOL_GPL(find_module);
619
620 #ifdef CONFIG_SMP
621
622 static inline void __percpu *mod_percpu(struct module *mod)
623 {
624 return mod->percpu;
625 }
626
627 static int percpu_modalloc(struct module *mod, struct load_info *info)
628 {
629 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
630 unsigned long align = pcpusec->sh_addralign;
631
632 if (!pcpusec->sh_size)
633 return 0;
634
635 if (align > PAGE_SIZE) {
636 pr_warn("%s: per-cpu alignment %li > %li\n",
637 mod->name, align, PAGE_SIZE);
638 align = PAGE_SIZE;
639 }
640
641 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
642 if (!mod->percpu) {
643 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
644 mod->name, (unsigned long)pcpusec->sh_size);
645 return -ENOMEM;
646 }
647 mod->percpu_size = pcpusec->sh_size;
648 return 0;
649 }
650
651 static void percpu_modfree(struct module *mod)
652 {
653 free_percpu(mod->percpu);
654 }
655
656 static unsigned int find_pcpusec(struct load_info *info)
657 {
658 return find_sec(info, ".data..percpu");
659 }
660
661 static void percpu_modcopy(struct module *mod,
662 const void *from, unsigned long size)
663 {
664 int cpu;
665
666 for_each_possible_cpu(cpu)
667 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
668 }
669
670 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
671 {
672 struct module *mod;
673 unsigned int cpu;
674
675 preempt_disable();
676
677 list_for_each_entry_rcu(mod, &modules, list) {
678 if (mod->state == MODULE_STATE_UNFORMED)
679 continue;
680 if (!mod->percpu_size)
681 continue;
682 for_each_possible_cpu(cpu) {
683 void *start = per_cpu_ptr(mod->percpu, cpu);
684 void *va = (void *)addr;
685
686 if (va >= start && va < start + mod->percpu_size) {
687 if (can_addr) {
688 *can_addr = (unsigned long) (va - start);
689 *can_addr += (unsigned long)
690 per_cpu_ptr(mod->percpu,
691 get_boot_cpu_id());
692 }
693 preempt_enable();
694 return true;
695 }
696 }
697 }
698
699 preempt_enable();
700 return false;
701 }
702
703 /**
704 * is_module_percpu_address - test whether address is from module static percpu
705 * @addr: address to test
706 *
707 * Test whether @addr belongs to module static percpu area.
708 *
709 * RETURNS:
710 * %true if @addr is from module static percpu area
711 */
712 bool is_module_percpu_address(unsigned long addr)
713 {
714 return __is_module_percpu_address(addr, NULL);
715 }
716
717 #else /* ... !CONFIG_SMP */
718
719 static inline void __percpu *mod_percpu(struct module *mod)
720 {
721 return NULL;
722 }
723 static int percpu_modalloc(struct module *mod, struct load_info *info)
724 {
725 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
726 if (info->sechdrs[info->index.pcpu].sh_size != 0)
727 return -ENOMEM;
728 return 0;
729 }
730 static inline void percpu_modfree(struct module *mod)
731 {
732 }
733 static unsigned int find_pcpusec(struct load_info *info)
734 {
735 return 0;
736 }
737 static inline void percpu_modcopy(struct module *mod,
738 const void *from, unsigned long size)
739 {
740 /* pcpusec should be 0, and size of that section should be 0. */
741 BUG_ON(size != 0);
742 }
743 bool is_module_percpu_address(unsigned long addr)
744 {
745 return false;
746 }
747
748 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
749 {
750 return false;
751 }
752
753 #endif /* CONFIG_SMP */
754
755 #define MODINFO_ATTR(field) \
756 static void setup_modinfo_##field(struct module *mod, const char *s) \
757 { \
758 mod->field = kstrdup(s, GFP_KERNEL); \
759 } \
760 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
761 struct module_kobject *mk, char *buffer) \
762 { \
763 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
764 } \
765 static int modinfo_##field##_exists(struct module *mod) \
766 { \
767 return mod->field != NULL; \
768 } \
769 static void free_modinfo_##field(struct module *mod) \
770 { \
771 kfree(mod->field); \
772 mod->field = NULL; \
773 } \
774 static struct module_attribute modinfo_##field = { \
775 .attr = { .name = __stringify(field), .mode = 0444 }, \
776 .show = show_modinfo_##field, \
777 .setup = setup_modinfo_##field, \
778 .test = modinfo_##field##_exists, \
779 .free = free_modinfo_##field, \
780 };
781
782 MODINFO_ATTR(version);
783 MODINFO_ATTR(srcversion);
784
785 static char last_unloaded_module[MODULE_NAME_LEN+1];
786
787 #ifdef CONFIG_MODULE_UNLOAD
788
789 EXPORT_TRACEPOINT_SYMBOL(module_get);
790
791 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
792 #define MODULE_REF_BASE 1
793
794 /* Init the unload section of the module. */
795 static int module_unload_init(struct module *mod)
796 {
797 /*
798 * Initialize reference counter to MODULE_REF_BASE.
799 * refcnt == 0 means module is going.
800 */
801 atomic_set(&mod->refcnt, MODULE_REF_BASE);
802
803 INIT_LIST_HEAD(&mod->source_list);
804 INIT_LIST_HEAD(&mod->target_list);
805
806 /* Hold reference count during initialization. */
807 atomic_inc(&mod->refcnt);
808
809 return 0;
810 }
811
812 /* Does a already use b? */
813 static int already_uses(struct module *a, struct module *b)
814 {
815 struct module_use *use;
816
817 list_for_each_entry(use, &b->source_list, source_list) {
818 if (use->source == a) {
819 pr_debug("%s uses %s!\n", a->name, b->name);
820 return 1;
821 }
822 }
823 pr_debug("%s does not use %s!\n", a->name, b->name);
824 return 0;
825 }
826
827 /*
828 * Module a uses b
829 * - we add 'a' as a "source", 'b' as a "target" of module use
830 * - the module_use is added to the list of 'b' sources (so
831 * 'b' can walk the list to see who sourced them), and of 'a'
832 * targets (so 'a' can see what modules it targets).
833 */
834 static int add_module_usage(struct module *a, struct module *b)
835 {
836 struct module_use *use;
837
838 pr_debug("Allocating new usage for %s.\n", a->name);
839 use = kmalloc(sizeof(*use), GFP_ATOMIC);
840 if (!use) {
841 pr_warn("%s: out of memory loading\n", a->name);
842 return -ENOMEM;
843 }
844
845 use->source = a;
846 use->target = b;
847 list_add(&use->source_list, &b->source_list);
848 list_add(&use->target_list, &a->target_list);
849 return 0;
850 }
851
852 /* Module a uses b: caller needs module_mutex() */
853 int ref_module(struct module *a, struct module *b)
854 {
855 int err;
856
857 if (b == NULL || already_uses(a, b))
858 return 0;
859
860 /* If module isn't available, we fail. */
861 err = strong_try_module_get(b);
862 if (err)
863 return err;
864
865 err = add_module_usage(a, b);
866 if (err) {
867 module_put(b);
868 return err;
869 }
870 return 0;
871 }
872 EXPORT_SYMBOL_GPL(ref_module);
873
874 /* Clear the unload stuff of the module. */
875 static void module_unload_free(struct module *mod)
876 {
877 struct module_use *use, *tmp;
878
879 mutex_lock(&module_mutex);
880 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
881 struct module *i = use->target;
882 pr_debug("%s unusing %s\n", mod->name, i->name);
883 module_put(i);
884 list_del(&use->source_list);
885 list_del(&use->target_list);
886 kfree(use);
887 }
888 mutex_unlock(&module_mutex);
889 }
890
891 #ifdef CONFIG_MODULE_FORCE_UNLOAD
892 static inline int try_force_unload(unsigned int flags)
893 {
894 int ret = (flags & O_TRUNC);
895 if (ret)
896 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
897 return ret;
898 }
899 #else
900 static inline int try_force_unload(unsigned int flags)
901 {
902 return 0;
903 }
904 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
905
906 /* Try to release refcount of module, 0 means success. */
907 static int try_release_module_ref(struct module *mod)
908 {
909 int ret;
910
911 /* Try to decrement refcnt which we set at loading */
912 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
913 BUG_ON(ret < 0);
914 if (ret)
915 /* Someone can put this right now, recover with checking */
916 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
917
918 return ret;
919 }
920
921 static int try_stop_module(struct module *mod, int flags, int *forced)
922 {
923 /* If it's not unused, quit unless we're forcing. */
924 if (try_release_module_ref(mod) != 0) {
925 *forced = try_force_unload(flags);
926 if (!(*forced))
927 return -EWOULDBLOCK;
928 }
929
930 /* Mark it as dying. */
931 mod->state = MODULE_STATE_GOING;
932
933 return 0;
934 }
935
936 /**
937 * module_refcount - return the refcount or -1 if unloading
938 *
939 * @mod: the module we're checking
940 *
941 * Returns:
942 * -1 if the module is in the process of unloading
943 * otherwise the number of references in the kernel to the module
944 */
945 int module_refcount(struct module *mod)
946 {
947 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
948 }
949 EXPORT_SYMBOL(module_refcount);
950
951 /* This exists whether we can unload or not */
952 static void free_module(struct module *mod);
953
954 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
955 unsigned int, flags)
956 {
957 struct module *mod;
958 char name[MODULE_NAME_LEN];
959 int ret, forced = 0;
960
961 if (!capable(CAP_SYS_MODULE) || modules_disabled)
962 return -EPERM;
963
964 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
965 return -EFAULT;
966 name[MODULE_NAME_LEN-1] = '\0';
967
968 audit_log_kern_module(name);
969
970 if (mutex_lock_interruptible(&module_mutex) != 0)
971 return -EINTR;
972
973 mod = find_module(name);
974 if (!mod) {
975 ret = -ENOENT;
976 goto out;
977 }
978
979 if (!list_empty(&mod->source_list)) {
980 /* Other modules depend on us: get rid of them first. */
981 ret = -EWOULDBLOCK;
982 goto out;
983 }
984
985 /* Doing init or already dying? */
986 if (mod->state != MODULE_STATE_LIVE) {
987 /* FIXME: if (force), slam module count damn the torpedoes */
988 pr_debug("%s already dying\n", mod->name);
989 ret = -EBUSY;
990 goto out;
991 }
992
993 /* If it has an init func, it must have an exit func to unload */
994 if (mod->init && !mod->exit) {
995 forced = try_force_unload(flags);
996 if (!forced) {
997 /* This module can't be removed */
998 ret = -EBUSY;
999 goto out;
1000 }
1001 }
1002
1003 /* Stop the machine so refcounts can't move and disable module. */
1004 ret = try_stop_module(mod, flags, &forced);
1005 if (ret != 0)
1006 goto out;
1007
1008 mutex_unlock(&module_mutex);
1009 /* Final destruction now no one is using it. */
1010 if (mod->exit != NULL)
1011 mod->exit();
1012 blocking_notifier_call_chain(&module_notify_list,
1013 MODULE_STATE_GOING, mod);
1014 klp_module_going(mod);
1015 ftrace_release_mod(mod);
1016
1017 async_synchronize_full();
1018
1019 /* Store the name of the last unloaded module for diagnostic purposes */
1020 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1021
1022 free_module(mod);
1023 return 0;
1024 out:
1025 mutex_unlock(&module_mutex);
1026 return ret;
1027 }
1028
1029 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1030 {
1031 struct module_use *use;
1032 int printed_something = 0;
1033
1034 seq_printf(m, " %i ", module_refcount(mod));
1035
1036 /*
1037 * Always include a trailing , so userspace can differentiate
1038 * between this and the old multi-field proc format.
1039 */
1040 list_for_each_entry(use, &mod->source_list, source_list) {
1041 printed_something = 1;
1042 seq_printf(m, "%s,", use->source->name);
1043 }
1044
1045 if (mod->init != NULL && mod->exit == NULL) {
1046 printed_something = 1;
1047 seq_puts(m, "[permanent],");
1048 }
1049
1050 if (!printed_something)
1051 seq_puts(m, "-");
1052 }
1053
1054 void __symbol_put(const char *symbol)
1055 {
1056 struct module *owner;
1057
1058 preempt_disable();
1059 if (!find_symbol(symbol, &owner, NULL, true, false))
1060 BUG();
1061 module_put(owner);
1062 preempt_enable();
1063 }
1064 EXPORT_SYMBOL(__symbol_put);
1065
1066 /* Note this assumes addr is a function, which it currently always is. */
1067 void symbol_put_addr(void *addr)
1068 {
1069 struct module *modaddr;
1070 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1071
1072 if (core_kernel_text(a))
1073 return;
1074
1075 /*
1076 * Even though we hold a reference on the module; we still need to
1077 * disable preemption in order to safely traverse the data structure.
1078 */
1079 preempt_disable();
1080 modaddr = __module_text_address(a);
1081 BUG_ON(!modaddr);
1082 module_put(modaddr);
1083 preempt_enable();
1084 }
1085 EXPORT_SYMBOL_GPL(symbol_put_addr);
1086
1087 static ssize_t show_refcnt(struct module_attribute *mattr,
1088 struct module_kobject *mk, char *buffer)
1089 {
1090 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1091 }
1092
1093 static struct module_attribute modinfo_refcnt =
1094 __ATTR(refcnt, 0444, show_refcnt, NULL);
1095
1096 void __module_get(struct module *module)
1097 {
1098 if (module) {
1099 preempt_disable();
1100 atomic_inc(&module->refcnt);
1101 trace_module_get(module, _RET_IP_);
1102 preempt_enable();
1103 }
1104 }
1105 EXPORT_SYMBOL(__module_get);
1106
1107 bool try_module_get(struct module *module)
1108 {
1109 bool ret = true;
1110
1111 if (module) {
1112 preempt_disable();
1113 /* Note: here, we can fail to get a reference */
1114 if (likely(module_is_live(module) &&
1115 atomic_inc_not_zero(&module->refcnt) != 0))
1116 trace_module_get(module, _RET_IP_);
1117 else
1118 ret = false;
1119
1120 preempt_enable();
1121 }
1122 return ret;
1123 }
1124 EXPORT_SYMBOL(try_module_get);
1125
1126 void module_put(struct module *module)
1127 {
1128 int ret;
1129
1130 if (module) {
1131 preempt_disable();
1132 ret = atomic_dec_if_positive(&module->refcnt);
1133 WARN_ON(ret < 0); /* Failed to put refcount */
1134 trace_module_put(module, _RET_IP_);
1135 preempt_enable();
1136 }
1137 }
1138 EXPORT_SYMBOL(module_put);
1139
1140 #else /* !CONFIG_MODULE_UNLOAD */
1141 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1142 {
1143 /* We don't know the usage count, or what modules are using. */
1144 seq_puts(m, " - -");
1145 }
1146
1147 static inline void module_unload_free(struct module *mod)
1148 {
1149 }
1150
1151 int ref_module(struct module *a, struct module *b)
1152 {
1153 return strong_try_module_get(b);
1154 }
1155 EXPORT_SYMBOL_GPL(ref_module);
1156
1157 static inline int module_unload_init(struct module *mod)
1158 {
1159 return 0;
1160 }
1161 #endif /* CONFIG_MODULE_UNLOAD */
1162
1163 static size_t module_flags_taint(struct module *mod, char *buf)
1164 {
1165 size_t l = 0;
1166 int i;
1167
1168 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1169 if (taint_flags[i].module && test_bit(i, &mod->taints))
1170 buf[l++] = taint_flags[i].c_true;
1171 }
1172
1173 return l;
1174 }
1175
1176 static ssize_t show_initstate(struct module_attribute *mattr,
1177 struct module_kobject *mk, char *buffer)
1178 {
1179 const char *state = "unknown";
1180
1181 switch (mk->mod->state) {
1182 case MODULE_STATE_LIVE:
1183 state = "live";
1184 break;
1185 case MODULE_STATE_COMING:
1186 state = "coming";
1187 break;
1188 case MODULE_STATE_GOING:
1189 state = "going";
1190 break;
1191 default:
1192 BUG();
1193 }
1194 return sprintf(buffer, "%s\n", state);
1195 }
1196
1197 static struct module_attribute modinfo_initstate =
1198 __ATTR(initstate, 0444, show_initstate, NULL);
1199
1200 static ssize_t store_uevent(struct module_attribute *mattr,
1201 struct module_kobject *mk,
1202 const char *buffer, size_t count)
1203 {
1204 kobject_synth_uevent(&mk->kobj, buffer, count);
1205 return count;
1206 }
1207
1208 struct module_attribute module_uevent =
1209 __ATTR(uevent, 0200, NULL, store_uevent);
1210
1211 static ssize_t show_coresize(struct module_attribute *mattr,
1212 struct module_kobject *mk, char *buffer)
1213 {
1214 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1215 }
1216
1217 static struct module_attribute modinfo_coresize =
1218 __ATTR(coresize, 0444, show_coresize, NULL);
1219
1220 static ssize_t show_initsize(struct module_attribute *mattr,
1221 struct module_kobject *mk, char *buffer)
1222 {
1223 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1224 }
1225
1226 static struct module_attribute modinfo_initsize =
1227 __ATTR(initsize, 0444, show_initsize, NULL);
1228
1229 static ssize_t show_taint(struct module_attribute *mattr,
1230 struct module_kobject *mk, char *buffer)
1231 {
1232 size_t l;
1233
1234 l = module_flags_taint(mk->mod, buffer);
1235 buffer[l++] = '\n';
1236 return l;
1237 }
1238
1239 static struct module_attribute modinfo_taint =
1240 __ATTR(taint, 0444, show_taint, NULL);
1241
1242 static struct module_attribute *modinfo_attrs[] = {
1243 &module_uevent,
1244 &modinfo_version,
1245 &modinfo_srcversion,
1246 &modinfo_initstate,
1247 &modinfo_coresize,
1248 &modinfo_initsize,
1249 &modinfo_taint,
1250 #ifdef CONFIG_MODULE_UNLOAD
1251 &modinfo_refcnt,
1252 #endif
1253 NULL,
1254 };
1255
1256 static const char vermagic[] = VERMAGIC_STRING;
1257
1258 static int try_to_force_load(struct module *mod, const char *reason)
1259 {
1260 #ifdef CONFIG_MODULE_FORCE_LOAD
1261 if (!test_taint(TAINT_FORCED_MODULE))
1262 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1263 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1264 return 0;
1265 #else
1266 return -ENOEXEC;
1267 #endif
1268 }
1269
1270 #ifdef CONFIG_MODVERSIONS
1271
1272 static u32 resolve_rel_crc(const s32 *crc)
1273 {
1274 return *(u32 *)((void *)crc + *crc);
1275 }
1276
1277 static int check_version(const struct load_info *info,
1278 const char *symname,
1279 struct module *mod,
1280 const s32 *crc)
1281 {
1282 Elf_Shdr *sechdrs = info->sechdrs;
1283 unsigned int versindex = info->index.vers;
1284 unsigned int i, num_versions;
1285 struct modversion_info *versions;
1286
1287 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1288 if (!crc)
1289 return 1;
1290
1291 /* No versions at all? modprobe --force does this. */
1292 if (versindex == 0)
1293 return try_to_force_load(mod, symname) == 0;
1294
1295 versions = (void *) sechdrs[versindex].sh_addr;
1296 num_versions = sechdrs[versindex].sh_size
1297 / sizeof(struct modversion_info);
1298
1299 for (i = 0; i < num_versions; i++) {
1300 u32 crcval;
1301
1302 if (strcmp(versions[i].name, symname) != 0)
1303 continue;
1304
1305 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1306 crcval = resolve_rel_crc(crc);
1307 else
1308 crcval = *crc;
1309 if (versions[i].crc == crcval)
1310 return 1;
1311 pr_debug("Found checksum %X vs module %lX\n",
1312 crcval, versions[i].crc);
1313 goto bad_version;
1314 }
1315
1316 /* Broken toolchain. Warn once, then let it go.. */
1317 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1318 return 1;
1319
1320 bad_version:
1321 pr_warn("%s: disagrees about version of symbol %s\n",
1322 info->name, symname);
1323 return 0;
1324 }
1325
1326 static inline int check_modstruct_version(const struct load_info *info,
1327 struct module *mod)
1328 {
1329 const s32 *crc;
1330
1331 /*
1332 * Since this should be found in kernel (which can't be removed), no
1333 * locking is necessary -- use preempt_disable() to placate lockdep.
1334 */
1335 preempt_disable();
1336 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1337 &crc, true, false)) {
1338 preempt_enable();
1339 BUG();
1340 }
1341 preempt_enable();
1342 return check_version(info, VMLINUX_SYMBOL_STR(module_layout),
1343 mod, crc);
1344 }
1345
1346 /* First part is kernel version, which we ignore if module has crcs. */
1347 static inline int same_magic(const char *amagic, const char *bmagic,
1348 bool has_crcs)
1349 {
1350 if (has_crcs) {
1351 amagic += strcspn(amagic, " ");
1352 bmagic += strcspn(bmagic, " ");
1353 }
1354 return strcmp(amagic, bmagic) == 0;
1355 }
1356 #else
1357 static inline int check_version(const struct load_info *info,
1358 const char *symname,
1359 struct module *mod,
1360 const s32 *crc)
1361 {
1362 return 1;
1363 }
1364
1365 static inline int check_modstruct_version(const struct load_info *info,
1366 struct module *mod)
1367 {
1368 return 1;
1369 }
1370
1371 static inline int same_magic(const char *amagic, const char *bmagic,
1372 bool has_crcs)
1373 {
1374 return strcmp(amagic, bmagic) == 0;
1375 }
1376 #endif /* CONFIG_MODVERSIONS */
1377
1378 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1379 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1380 const struct load_info *info,
1381 const char *name,
1382 char ownername[])
1383 {
1384 struct module *owner;
1385 const struct kernel_symbol *sym;
1386 const s32 *crc;
1387 int err;
1388
1389 /*
1390 * The module_mutex should not be a heavily contended lock;
1391 * if we get the occasional sleep here, we'll go an extra iteration
1392 * in the wait_event_interruptible(), which is harmless.
1393 */
1394 sched_annotate_sleep();
1395 mutex_lock(&module_mutex);
1396 sym = find_symbol(name, &owner, &crc,
1397 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1398 if (!sym)
1399 goto unlock;
1400
1401 if (!check_version(info, name, mod, crc)) {
1402 sym = ERR_PTR(-EINVAL);
1403 goto getname;
1404 }
1405
1406 err = ref_module(mod, owner);
1407 if (err) {
1408 sym = ERR_PTR(err);
1409 goto getname;
1410 }
1411
1412 getname:
1413 /* We must make copy under the lock if we failed to get ref. */
1414 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1415 unlock:
1416 mutex_unlock(&module_mutex);
1417 return sym;
1418 }
1419
1420 static const struct kernel_symbol *
1421 resolve_symbol_wait(struct module *mod,
1422 const struct load_info *info,
1423 const char *name)
1424 {
1425 const struct kernel_symbol *ksym;
1426 char owner[MODULE_NAME_LEN];
1427
1428 if (wait_event_interruptible_timeout(module_wq,
1429 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1430 || PTR_ERR(ksym) != -EBUSY,
1431 30 * HZ) <= 0) {
1432 pr_warn("%s: gave up waiting for init of module %s.\n",
1433 mod->name, owner);
1434 }
1435 return ksym;
1436 }
1437
1438 /*
1439 * /sys/module/foo/sections stuff
1440 * J. Corbet <corbet@lwn.net>
1441 */
1442 #ifdef CONFIG_SYSFS
1443
1444 #ifdef CONFIG_KALLSYMS
1445 static inline bool sect_empty(const Elf_Shdr *sect)
1446 {
1447 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1448 }
1449
1450 struct module_sect_attr {
1451 struct module_attribute mattr;
1452 char *name;
1453 unsigned long address;
1454 };
1455
1456 struct module_sect_attrs {
1457 struct attribute_group grp;
1458 unsigned int nsections;
1459 struct module_sect_attr attrs[0];
1460 };
1461
1462 static ssize_t module_sect_show(struct module_attribute *mattr,
1463 struct module_kobject *mk, char *buf)
1464 {
1465 struct module_sect_attr *sattr =
1466 container_of(mattr, struct module_sect_attr, mattr);
1467 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1468 }
1469
1470 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1471 {
1472 unsigned int section;
1473
1474 for (section = 0; section < sect_attrs->nsections; section++)
1475 kfree(sect_attrs->attrs[section].name);
1476 kfree(sect_attrs);
1477 }
1478
1479 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1480 {
1481 unsigned int nloaded = 0, i, size[2];
1482 struct module_sect_attrs *sect_attrs;
1483 struct module_sect_attr *sattr;
1484 struct attribute **gattr;
1485
1486 /* Count loaded sections and allocate structures */
1487 for (i = 0; i < info->hdr->e_shnum; i++)
1488 if (!sect_empty(&info->sechdrs[i]))
1489 nloaded++;
1490 size[0] = ALIGN(sizeof(*sect_attrs)
1491 + nloaded * sizeof(sect_attrs->attrs[0]),
1492 sizeof(sect_attrs->grp.attrs[0]));
1493 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1494 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1495 if (sect_attrs == NULL)
1496 return;
1497
1498 /* Setup section attributes. */
1499 sect_attrs->grp.name = "sections";
1500 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1501
1502 sect_attrs->nsections = 0;
1503 sattr = &sect_attrs->attrs[0];
1504 gattr = &sect_attrs->grp.attrs[0];
1505 for (i = 0; i < info->hdr->e_shnum; i++) {
1506 Elf_Shdr *sec = &info->sechdrs[i];
1507 if (sect_empty(sec))
1508 continue;
1509 sattr->address = sec->sh_addr;
1510 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1511 GFP_KERNEL);
1512 if (sattr->name == NULL)
1513 goto out;
1514 sect_attrs->nsections++;
1515 sysfs_attr_init(&sattr->mattr.attr);
1516 sattr->mattr.show = module_sect_show;
1517 sattr->mattr.store = NULL;
1518 sattr->mattr.attr.name = sattr->name;
1519 sattr->mattr.attr.mode = S_IRUGO;
1520 *(gattr++) = &(sattr++)->mattr.attr;
1521 }
1522 *gattr = NULL;
1523
1524 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1525 goto out;
1526
1527 mod->sect_attrs = sect_attrs;
1528 return;
1529 out:
1530 free_sect_attrs(sect_attrs);
1531 }
1532
1533 static void remove_sect_attrs(struct module *mod)
1534 {
1535 if (mod->sect_attrs) {
1536 sysfs_remove_group(&mod->mkobj.kobj,
1537 &mod->sect_attrs->grp);
1538 /* We are positive that no one is using any sect attrs
1539 * at this point. Deallocate immediately. */
1540 free_sect_attrs(mod->sect_attrs);
1541 mod->sect_attrs = NULL;
1542 }
1543 }
1544
1545 /*
1546 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1547 */
1548
1549 struct module_notes_attrs {
1550 struct kobject *dir;
1551 unsigned int notes;
1552 struct bin_attribute attrs[0];
1553 };
1554
1555 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1556 struct bin_attribute *bin_attr,
1557 char *buf, loff_t pos, size_t count)
1558 {
1559 /*
1560 * The caller checked the pos and count against our size.
1561 */
1562 memcpy(buf, bin_attr->private + pos, count);
1563 return count;
1564 }
1565
1566 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1567 unsigned int i)
1568 {
1569 if (notes_attrs->dir) {
1570 while (i-- > 0)
1571 sysfs_remove_bin_file(notes_attrs->dir,
1572 &notes_attrs->attrs[i]);
1573 kobject_put(notes_attrs->dir);
1574 }
1575 kfree(notes_attrs);
1576 }
1577
1578 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1579 {
1580 unsigned int notes, loaded, i;
1581 struct module_notes_attrs *notes_attrs;
1582 struct bin_attribute *nattr;
1583
1584 /* failed to create section attributes, so can't create notes */
1585 if (!mod->sect_attrs)
1586 return;
1587
1588 /* Count notes sections and allocate structures. */
1589 notes = 0;
1590 for (i = 0; i < info->hdr->e_shnum; i++)
1591 if (!sect_empty(&info->sechdrs[i]) &&
1592 (info->sechdrs[i].sh_type == SHT_NOTE))
1593 ++notes;
1594
1595 if (notes == 0)
1596 return;
1597
1598 notes_attrs = kzalloc(sizeof(*notes_attrs)
1599 + notes * sizeof(notes_attrs->attrs[0]),
1600 GFP_KERNEL);
1601 if (notes_attrs == NULL)
1602 return;
1603
1604 notes_attrs->notes = notes;
1605 nattr = &notes_attrs->attrs[0];
1606 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1607 if (sect_empty(&info->sechdrs[i]))
1608 continue;
1609 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1610 sysfs_bin_attr_init(nattr);
1611 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1612 nattr->attr.mode = S_IRUGO;
1613 nattr->size = info->sechdrs[i].sh_size;
1614 nattr->private = (void *) info->sechdrs[i].sh_addr;
1615 nattr->read = module_notes_read;
1616 ++nattr;
1617 }
1618 ++loaded;
1619 }
1620
1621 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1622 if (!notes_attrs->dir)
1623 goto out;
1624
1625 for (i = 0; i < notes; ++i)
1626 if (sysfs_create_bin_file(notes_attrs->dir,
1627 &notes_attrs->attrs[i]))
1628 goto out;
1629
1630 mod->notes_attrs = notes_attrs;
1631 return;
1632
1633 out:
1634 free_notes_attrs(notes_attrs, i);
1635 }
1636
1637 static void remove_notes_attrs(struct module *mod)
1638 {
1639 if (mod->notes_attrs)
1640 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1641 }
1642
1643 #else
1644
1645 static inline void add_sect_attrs(struct module *mod,
1646 const struct load_info *info)
1647 {
1648 }
1649
1650 static inline void remove_sect_attrs(struct module *mod)
1651 {
1652 }
1653
1654 static inline void add_notes_attrs(struct module *mod,
1655 const struct load_info *info)
1656 {
1657 }
1658
1659 static inline void remove_notes_attrs(struct module *mod)
1660 {
1661 }
1662 #endif /* CONFIG_KALLSYMS */
1663
1664 static void del_usage_links(struct module *mod)
1665 {
1666 #ifdef CONFIG_MODULE_UNLOAD
1667 struct module_use *use;
1668
1669 mutex_lock(&module_mutex);
1670 list_for_each_entry(use, &mod->target_list, target_list)
1671 sysfs_remove_link(use->target->holders_dir, mod->name);
1672 mutex_unlock(&module_mutex);
1673 #endif
1674 }
1675
1676 static int add_usage_links(struct module *mod)
1677 {
1678 int ret = 0;
1679 #ifdef CONFIG_MODULE_UNLOAD
1680 struct module_use *use;
1681
1682 mutex_lock(&module_mutex);
1683 list_for_each_entry(use, &mod->target_list, target_list) {
1684 ret = sysfs_create_link(use->target->holders_dir,
1685 &mod->mkobj.kobj, mod->name);
1686 if (ret)
1687 break;
1688 }
1689 mutex_unlock(&module_mutex);
1690 if (ret)
1691 del_usage_links(mod);
1692 #endif
1693 return ret;
1694 }
1695
1696 static int module_add_modinfo_attrs(struct module *mod)
1697 {
1698 struct module_attribute *attr;
1699 struct module_attribute *temp_attr;
1700 int error = 0;
1701 int i;
1702
1703 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1704 (ARRAY_SIZE(modinfo_attrs) + 1)),
1705 GFP_KERNEL);
1706 if (!mod->modinfo_attrs)
1707 return -ENOMEM;
1708
1709 temp_attr = mod->modinfo_attrs;
1710 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1711 if (!attr->test || attr->test(mod)) {
1712 memcpy(temp_attr, attr, sizeof(*temp_attr));
1713 sysfs_attr_init(&temp_attr->attr);
1714 error = sysfs_create_file(&mod->mkobj.kobj,
1715 &temp_attr->attr);
1716 ++temp_attr;
1717 }
1718 }
1719 return error;
1720 }
1721
1722 static void module_remove_modinfo_attrs(struct module *mod)
1723 {
1724 struct module_attribute *attr;
1725 int i;
1726
1727 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1728 /* pick a field to test for end of list */
1729 if (!attr->attr.name)
1730 break;
1731 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1732 if (attr->free)
1733 attr->free(mod);
1734 }
1735 kfree(mod->modinfo_attrs);
1736 }
1737
1738 static void mod_kobject_put(struct module *mod)
1739 {
1740 DECLARE_COMPLETION_ONSTACK(c);
1741 mod->mkobj.kobj_completion = &c;
1742 kobject_put(&mod->mkobj.kobj);
1743 wait_for_completion(&c);
1744 }
1745
1746 static int mod_sysfs_init(struct module *mod)
1747 {
1748 int err;
1749 struct kobject *kobj;
1750
1751 if (!module_sysfs_initialized) {
1752 pr_err("%s: module sysfs not initialized\n", mod->name);
1753 err = -EINVAL;
1754 goto out;
1755 }
1756
1757 kobj = kset_find_obj(module_kset, mod->name);
1758 if (kobj) {
1759 pr_err("%s: module is already loaded\n", mod->name);
1760 kobject_put(kobj);
1761 err = -EINVAL;
1762 goto out;
1763 }
1764
1765 mod->mkobj.mod = mod;
1766
1767 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1768 mod->mkobj.kobj.kset = module_kset;
1769 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1770 "%s", mod->name);
1771 if (err)
1772 mod_kobject_put(mod);
1773
1774 /* delay uevent until full sysfs population */
1775 out:
1776 return err;
1777 }
1778
1779 static int mod_sysfs_setup(struct module *mod,
1780 const struct load_info *info,
1781 struct kernel_param *kparam,
1782 unsigned int num_params)
1783 {
1784 int err;
1785
1786 err = mod_sysfs_init(mod);
1787 if (err)
1788 goto out;
1789
1790 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1791 if (!mod->holders_dir) {
1792 err = -ENOMEM;
1793 goto out_unreg;
1794 }
1795
1796 err = module_param_sysfs_setup(mod, kparam, num_params);
1797 if (err)
1798 goto out_unreg_holders;
1799
1800 err = module_add_modinfo_attrs(mod);
1801 if (err)
1802 goto out_unreg_param;
1803
1804 err = add_usage_links(mod);
1805 if (err)
1806 goto out_unreg_modinfo_attrs;
1807
1808 add_sect_attrs(mod, info);
1809 add_notes_attrs(mod, info);
1810
1811 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1812 return 0;
1813
1814 out_unreg_modinfo_attrs:
1815 module_remove_modinfo_attrs(mod);
1816 out_unreg_param:
1817 module_param_sysfs_remove(mod);
1818 out_unreg_holders:
1819 kobject_put(mod->holders_dir);
1820 out_unreg:
1821 mod_kobject_put(mod);
1822 out:
1823 return err;
1824 }
1825
1826 static void mod_sysfs_fini(struct module *mod)
1827 {
1828 remove_notes_attrs(mod);
1829 remove_sect_attrs(mod);
1830 mod_kobject_put(mod);
1831 }
1832
1833 static void init_param_lock(struct module *mod)
1834 {
1835 mutex_init(&mod->param_lock);
1836 }
1837 #else /* !CONFIG_SYSFS */
1838
1839 static int mod_sysfs_setup(struct module *mod,
1840 const struct load_info *info,
1841 struct kernel_param *kparam,
1842 unsigned int num_params)
1843 {
1844 return 0;
1845 }
1846
1847 static void mod_sysfs_fini(struct module *mod)
1848 {
1849 }
1850
1851 static void module_remove_modinfo_attrs(struct module *mod)
1852 {
1853 }
1854
1855 static void del_usage_links(struct module *mod)
1856 {
1857 }
1858
1859 static void init_param_lock(struct module *mod)
1860 {
1861 }
1862 #endif /* CONFIG_SYSFS */
1863
1864 static void mod_sysfs_teardown(struct module *mod)
1865 {
1866 del_usage_links(mod);
1867 module_remove_modinfo_attrs(mod);
1868 module_param_sysfs_remove(mod);
1869 kobject_put(mod->mkobj.drivers_dir);
1870 kobject_put(mod->holders_dir);
1871 mod_sysfs_fini(mod);
1872 }
1873
1874 #ifdef CONFIG_STRICT_MODULE_RWX
1875 /*
1876 * LKM RO/NX protection: protect module's text/ro-data
1877 * from modification and any data from execution.
1878 *
1879 * General layout of module is:
1880 * [text] [read-only-data] [ro-after-init] [writable data]
1881 * text_size -----^ ^ ^ ^
1882 * ro_size ------------------------| | |
1883 * ro_after_init_size -----------------------------| |
1884 * size -----------------------------------------------------------|
1885 *
1886 * These values are always page-aligned (as is base)
1887 */
1888 static void frob_text(const struct module_layout *layout,
1889 int (*set_memory)(unsigned long start, int num_pages))
1890 {
1891 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1892 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1893 set_memory((unsigned long)layout->base,
1894 layout->text_size >> PAGE_SHIFT);
1895 }
1896
1897 static void frob_rodata(const struct module_layout *layout,
1898 int (*set_memory)(unsigned long start, int num_pages))
1899 {
1900 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1901 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1902 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1903 set_memory((unsigned long)layout->base + layout->text_size,
1904 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1905 }
1906
1907 static void frob_ro_after_init(const struct module_layout *layout,
1908 int (*set_memory)(unsigned long start, int num_pages))
1909 {
1910 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1911 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1912 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1913 set_memory((unsigned long)layout->base + layout->ro_size,
1914 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1915 }
1916
1917 static void frob_writable_data(const struct module_layout *layout,
1918 int (*set_memory)(unsigned long start, int num_pages))
1919 {
1920 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1921 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1922 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1923 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1924 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1925 }
1926
1927 /* livepatching wants to disable read-only so it can frob module. */
1928 void module_disable_ro(const struct module *mod)
1929 {
1930 if (!rodata_enabled)
1931 return;
1932
1933 frob_text(&mod->core_layout, set_memory_rw);
1934 frob_rodata(&mod->core_layout, set_memory_rw);
1935 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1936 frob_text(&mod->init_layout, set_memory_rw);
1937 frob_rodata(&mod->init_layout, set_memory_rw);
1938 }
1939
1940 void module_enable_ro(const struct module *mod, bool after_init)
1941 {
1942 if (!rodata_enabled)
1943 return;
1944
1945 frob_text(&mod->core_layout, set_memory_ro);
1946 frob_rodata(&mod->core_layout, set_memory_ro);
1947 frob_text(&mod->init_layout, set_memory_ro);
1948 frob_rodata(&mod->init_layout, set_memory_ro);
1949
1950 if (after_init)
1951 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1952 }
1953
1954 static void module_enable_nx(const struct module *mod)
1955 {
1956 frob_rodata(&mod->core_layout, set_memory_nx);
1957 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1958 frob_writable_data(&mod->core_layout, set_memory_nx);
1959 frob_rodata(&mod->init_layout, set_memory_nx);
1960 frob_writable_data(&mod->init_layout, set_memory_nx);
1961 }
1962
1963 static void module_disable_nx(const struct module *mod)
1964 {
1965 frob_rodata(&mod->core_layout, set_memory_x);
1966 frob_ro_after_init(&mod->core_layout, set_memory_x);
1967 frob_writable_data(&mod->core_layout, set_memory_x);
1968 frob_rodata(&mod->init_layout, set_memory_x);
1969 frob_writable_data(&mod->init_layout, set_memory_x);
1970 }
1971
1972 /* Iterate through all modules and set each module's text as RW */
1973 void set_all_modules_text_rw(void)
1974 {
1975 struct module *mod;
1976
1977 if (!rodata_enabled)
1978 return;
1979
1980 mutex_lock(&module_mutex);
1981 list_for_each_entry_rcu(mod, &modules, list) {
1982 if (mod->state == MODULE_STATE_UNFORMED)
1983 continue;
1984
1985 frob_text(&mod->core_layout, set_memory_rw);
1986 frob_text(&mod->init_layout, set_memory_rw);
1987 }
1988 mutex_unlock(&module_mutex);
1989 }
1990
1991 /* Iterate through all modules and set each module's text as RO */
1992 void set_all_modules_text_ro(void)
1993 {
1994 struct module *mod;
1995
1996 if (!rodata_enabled)
1997 return;
1998
1999 mutex_lock(&module_mutex);
2000 list_for_each_entry_rcu(mod, &modules, list) {
2001 /*
2002 * Ignore going modules since it's possible that ro
2003 * protection has already been disabled, otherwise we'll
2004 * run into protection faults at module deallocation.
2005 */
2006 if (mod->state == MODULE_STATE_UNFORMED ||
2007 mod->state == MODULE_STATE_GOING)
2008 continue;
2009
2010 frob_text(&mod->core_layout, set_memory_ro);
2011 frob_text(&mod->init_layout, set_memory_ro);
2012 }
2013 mutex_unlock(&module_mutex);
2014 }
2015
2016 static void disable_ro_nx(const struct module_layout *layout)
2017 {
2018 if (rodata_enabled) {
2019 frob_text(layout, set_memory_rw);
2020 frob_rodata(layout, set_memory_rw);
2021 frob_ro_after_init(layout, set_memory_rw);
2022 }
2023 frob_rodata(layout, set_memory_x);
2024 frob_ro_after_init(layout, set_memory_x);
2025 frob_writable_data(layout, set_memory_x);
2026 }
2027
2028 #else
2029 static void disable_ro_nx(const struct module_layout *layout) { }
2030 static void module_enable_nx(const struct module *mod) { }
2031 static void module_disable_nx(const struct module *mod) { }
2032 #endif
2033
2034 #ifdef CONFIG_LIVEPATCH
2035 /*
2036 * Persist Elf information about a module. Copy the Elf header,
2037 * section header table, section string table, and symtab section
2038 * index from info to mod->klp_info.
2039 */
2040 static int copy_module_elf(struct module *mod, struct load_info *info)
2041 {
2042 unsigned int size, symndx;
2043 int ret;
2044
2045 size = sizeof(*mod->klp_info);
2046 mod->klp_info = kmalloc(size, GFP_KERNEL);
2047 if (mod->klp_info == NULL)
2048 return -ENOMEM;
2049
2050 /* Elf header */
2051 size = sizeof(mod->klp_info->hdr);
2052 memcpy(&mod->klp_info->hdr, info->hdr, size);
2053
2054 /* Elf section header table */
2055 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2056 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2057 if (mod->klp_info->sechdrs == NULL) {
2058 ret = -ENOMEM;
2059 goto free_info;
2060 }
2061 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2062
2063 /* Elf section name string table */
2064 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2065 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2066 if (mod->klp_info->secstrings == NULL) {
2067 ret = -ENOMEM;
2068 goto free_sechdrs;
2069 }
2070 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2071
2072 /* Elf symbol section index */
2073 symndx = info->index.sym;
2074 mod->klp_info->symndx = symndx;
2075
2076 /*
2077 * For livepatch modules, core_kallsyms.symtab is a complete
2078 * copy of the original symbol table. Adjust sh_addr to point
2079 * to core_kallsyms.symtab since the copy of the symtab in module
2080 * init memory is freed at the end of do_init_module().
2081 */
2082 mod->klp_info->sechdrs[symndx].sh_addr = \
2083 (unsigned long) mod->core_kallsyms.symtab;
2084
2085 return 0;
2086
2087 free_sechdrs:
2088 kfree(mod->klp_info->sechdrs);
2089 free_info:
2090 kfree(mod->klp_info);
2091 return ret;
2092 }
2093
2094 static void free_module_elf(struct module *mod)
2095 {
2096 kfree(mod->klp_info->sechdrs);
2097 kfree(mod->klp_info->secstrings);
2098 kfree(mod->klp_info);
2099 }
2100 #else /* !CONFIG_LIVEPATCH */
2101 static int copy_module_elf(struct module *mod, struct load_info *info)
2102 {
2103 return 0;
2104 }
2105
2106 static void free_module_elf(struct module *mod)
2107 {
2108 }
2109 #endif /* CONFIG_LIVEPATCH */
2110
2111 void __weak module_memfree(void *module_region)
2112 {
2113 vfree(module_region);
2114 }
2115
2116 void __weak module_arch_cleanup(struct module *mod)
2117 {
2118 }
2119
2120 void __weak module_arch_freeing_init(struct module *mod)
2121 {
2122 }
2123
2124 /* Free a module, remove from lists, etc. */
2125 static void free_module(struct module *mod)
2126 {
2127 trace_module_free(mod);
2128
2129 mod_sysfs_teardown(mod);
2130
2131 /* We leave it in list to prevent duplicate loads, but make sure
2132 * that noone uses it while it's being deconstructed. */
2133 mutex_lock(&module_mutex);
2134 mod->state = MODULE_STATE_UNFORMED;
2135 mutex_unlock(&module_mutex);
2136
2137 /* Remove dynamic debug info */
2138 ddebug_remove_module(mod->name);
2139
2140 /* Arch-specific cleanup. */
2141 module_arch_cleanup(mod);
2142
2143 /* Module unload stuff */
2144 module_unload_free(mod);
2145
2146 /* Free any allocated parameters. */
2147 destroy_params(mod->kp, mod->num_kp);
2148
2149 if (is_livepatch_module(mod))
2150 free_module_elf(mod);
2151
2152 /* Now we can delete it from the lists */
2153 mutex_lock(&module_mutex);
2154 /* Unlink carefully: kallsyms could be walking list. */
2155 list_del_rcu(&mod->list);
2156 mod_tree_remove(mod);
2157 /* Remove this module from bug list, this uses list_del_rcu */
2158 module_bug_cleanup(mod);
2159 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2160 synchronize_sched();
2161 mutex_unlock(&module_mutex);
2162
2163 /* This may be empty, but that's OK */
2164 disable_ro_nx(&mod->init_layout);
2165 module_arch_freeing_init(mod);
2166 module_memfree(mod->init_layout.base);
2167 kfree(mod->args);
2168 percpu_modfree(mod);
2169
2170 /* Free lock-classes; relies on the preceding sync_rcu(). */
2171 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2172
2173 /* Finally, free the core (containing the module structure) */
2174 disable_ro_nx(&mod->core_layout);
2175 module_memfree(mod->core_layout.base);
2176
2177 #ifdef CONFIG_MPU
2178 update_protections(current->mm);
2179 #endif
2180 }
2181
2182 void *__symbol_get(const char *symbol)
2183 {
2184 struct module *owner;
2185 const struct kernel_symbol *sym;
2186
2187 preempt_disable();
2188 sym = find_symbol(symbol, &owner, NULL, true, true);
2189 if (sym && strong_try_module_get(owner))
2190 sym = NULL;
2191 preempt_enable();
2192
2193 return sym ? (void *)sym->value : NULL;
2194 }
2195 EXPORT_SYMBOL_GPL(__symbol_get);
2196
2197 /*
2198 * Ensure that an exported symbol [global namespace] does not already exist
2199 * in the kernel or in some other module's exported symbol table.
2200 *
2201 * You must hold the module_mutex.
2202 */
2203 static int verify_export_symbols(struct module *mod)
2204 {
2205 unsigned int i;
2206 struct module *owner;
2207 const struct kernel_symbol *s;
2208 struct {
2209 const struct kernel_symbol *sym;
2210 unsigned int num;
2211 } arr[] = {
2212 { mod->syms, mod->num_syms },
2213 { mod->gpl_syms, mod->num_gpl_syms },
2214 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2215 #ifdef CONFIG_UNUSED_SYMBOLS
2216 { mod->unused_syms, mod->num_unused_syms },
2217 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2218 #endif
2219 };
2220
2221 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2222 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2223 if (find_symbol(s->name, &owner, NULL, true, false)) {
2224 pr_err("%s: exports duplicate symbol %s"
2225 " (owned by %s)\n",
2226 mod->name, s->name, module_name(owner));
2227 return -ENOEXEC;
2228 }
2229 }
2230 }
2231 return 0;
2232 }
2233
2234 /* Change all symbols so that st_value encodes the pointer directly. */
2235 static int simplify_symbols(struct module *mod, const struct load_info *info)
2236 {
2237 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2238 Elf_Sym *sym = (void *)symsec->sh_addr;
2239 unsigned long secbase;
2240 unsigned int i;
2241 int ret = 0;
2242 const struct kernel_symbol *ksym;
2243
2244 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2245 const char *name = info->strtab + sym[i].st_name;
2246
2247 switch (sym[i].st_shndx) {
2248 case SHN_COMMON:
2249 /* Ignore common symbols */
2250 if (!strncmp(name, "__gnu_lto", 9))
2251 break;
2252
2253 /* We compiled with -fno-common. These are not
2254 supposed to happen. */
2255 pr_debug("Common symbol: %s\n", name);
2256 pr_warn("%s: please compile with -fno-common\n",
2257 mod->name);
2258 ret = -ENOEXEC;
2259 break;
2260
2261 case SHN_ABS:
2262 /* Don't need to do anything */
2263 pr_debug("Absolute symbol: 0x%08lx\n",
2264 (long)sym[i].st_value);
2265 break;
2266
2267 case SHN_LIVEPATCH:
2268 /* Livepatch symbols are resolved by livepatch */
2269 break;
2270
2271 case SHN_UNDEF:
2272 ksym = resolve_symbol_wait(mod, info, name);
2273 /* Ok if resolved. */
2274 if (ksym && !IS_ERR(ksym)) {
2275 sym[i].st_value = ksym->value;
2276 break;
2277 }
2278
2279 /* Ok if weak. */
2280 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2281 break;
2282
2283 pr_warn("%s: Unknown symbol %s (err %li)\n",
2284 mod->name, name, PTR_ERR(ksym));
2285 ret = PTR_ERR(ksym) ?: -ENOENT;
2286 break;
2287
2288 default:
2289 /* Divert to percpu allocation if a percpu var. */
2290 if (sym[i].st_shndx == info->index.pcpu)
2291 secbase = (unsigned long)mod_percpu(mod);
2292 else
2293 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2294 sym[i].st_value += secbase;
2295 break;
2296 }
2297 }
2298
2299 return ret;
2300 }
2301
2302 static int apply_relocations(struct module *mod, const struct load_info *info)
2303 {
2304 unsigned int i;
2305 int err = 0;
2306
2307 /* Now do relocations. */
2308 for (i = 1; i < info->hdr->e_shnum; i++) {
2309 unsigned int infosec = info->sechdrs[i].sh_info;
2310
2311 /* Not a valid relocation section? */
2312 if (infosec >= info->hdr->e_shnum)
2313 continue;
2314
2315 /* Don't bother with non-allocated sections */
2316 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2317 continue;
2318
2319 /* Livepatch relocation sections are applied by livepatch */
2320 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2321 continue;
2322
2323 if (info->sechdrs[i].sh_type == SHT_REL)
2324 err = apply_relocate(info->sechdrs, info->strtab,
2325 info->index.sym, i, mod);
2326 else if (info->sechdrs[i].sh_type == SHT_RELA)
2327 err = apply_relocate_add(info->sechdrs, info->strtab,
2328 info->index.sym, i, mod);
2329 if (err < 0)
2330 break;
2331 }
2332 return err;
2333 }
2334
2335 /* Additional bytes needed by arch in front of individual sections */
2336 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2337 unsigned int section)
2338 {
2339 /* default implementation just returns zero */
2340 return 0;
2341 }
2342
2343 /* Update size with this section: return offset. */
2344 static long get_offset(struct module *mod, unsigned int *size,
2345 Elf_Shdr *sechdr, unsigned int section)
2346 {
2347 long ret;
2348
2349 *size += arch_mod_section_prepend(mod, section);
2350 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2351 *size = ret + sechdr->sh_size;
2352 return ret;
2353 }
2354
2355 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2356 might -- code, read-only data, read-write data, small data. Tally
2357 sizes, and place the offsets into sh_entsize fields: high bit means it
2358 belongs in init. */
2359 static void layout_sections(struct module *mod, struct load_info *info)
2360 {
2361 static unsigned long const masks[][2] = {
2362 /* NOTE: all executable code must be the first section
2363 * in this array; otherwise modify the text_size
2364 * finder in the two loops below */
2365 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2366 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2367 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2368 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2369 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2370 };
2371 unsigned int m, i;
2372
2373 for (i = 0; i < info->hdr->e_shnum; i++)
2374 info->sechdrs[i].sh_entsize = ~0UL;
2375
2376 pr_debug("Core section allocation order:\n");
2377 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2378 for (i = 0; i < info->hdr->e_shnum; ++i) {
2379 Elf_Shdr *s = &info->sechdrs[i];
2380 const char *sname = info->secstrings + s->sh_name;
2381
2382 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2383 || (s->sh_flags & masks[m][1])
2384 || s->sh_entsize != ~0UL
2385 || strstarts(sname, ".init"))
2386 continue;
2387 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2388 pr_debug("\t%s\n", sname);
2389 }
2390 switch (m) {
2391 case 0: /* executable */
2392 mod->core_layout.size = debug_align(mod->core_layout.size);
2393 mod->core_layout.text_size = mod->core_layout.size;
2394 break;
2395 case 1: /* RO: text and ro-data */
2396 mod->core_layout.size = debug_align(mod->core_layout.size);
2397 mod->core_layout.ro_size = mod->core_layout.size;
2398 break;
2399 case 2: /* RO after init */
2400 mod->core_layout.size = debug_align(mod->core_layout.size);
2401 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2402 break;
2403 case 4: /* whole core */
2404 mod->core_layout.size = debug_align(mod->core_layout.size);
2405 break;
2406 }
2407 }
2408
2409 pr_debug("Init section allocation order:\n");
2410 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2411 for (i = 0; i < info->hdr->e_shnum; ++i) {
2412 Elf_Shdr *s = &info->sechdrs[i];
2413 const char *sname = info->secstrings + s->sh_name;
2414
2415 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2416 || (s->sh_flags & masks[m][1])
2417 || s->sh_entsize != ~0UL
2418 || !strstarts(sname, ".init"))
2419 continue;
2420 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2421 | INIT_OFFSET_MASK);
2422 pr_debug("\t%s\n", sname);
2423 }
2424 switch (m) {
2425 case 0: /* executable */
2426 mod->init_layout.size = debug_align(mod->init_layout.size);
2427 mod->init_layout.text_size = mod->init_layout.size;
2428 break;
2429 case 1: /* RO: text and ro-data */
2430 mod->init_layout.size = debug_align(mod->init_layout.size);
2431 mod->init_layout.ro_size = mod->init_layout.size;
2432 break;
2433 case 2:
2434 /*
2435 * RO after init doesn't apply to init_layout (only
2436 * core_layout), so it just takes the value of ro_size.
2437 */
2438 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2439 break;
2440 case 4: /* whole init */
2441 mod->init_layout.size = debug_align(mod->init_layout.size);
2442 break;
2443 }
2444 }
2445 }
2446
2447 static void set_license(struct module *mod, const char *license)
2448 {
2449 if (!license)
2450 license = "unspecified";
2451
2452 if (!license_is_gpl_compatible(license)) {
2453 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2454 pr_warn("%s: module license '%s' taints kernel.\n",
2455 mod->name, license);
2456 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2457 LOCKDEP_NOW_UNRELIABLE);
2458 }
2459 }
2460
2461 /* Parse tag=value strings from .modinfo section */
2462 static char *next_string(char *string, unsigned long *secsize)
2463 {
2464 /* Skip non-zero chars */
2465 while (string[0]) {
2466 string++;
2467 if ((*secsize)-- <= 1)
2468 return NULL;
2469 }
2470
2471 /* Skip any zero padding. */
2472 while (!string[0]) {
2473 string++;
2474 if ((*secsize)-- <= 1)
2475 return NULL;
2476 }
2477 return string;
2478 }
2479
2480 static char *get_modinfo(struct load_info *info, const char *tag)
2481 {
2482 char *p;
2483 unsigned int taglen = strlen(tag);
2484 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2485 unsigned long size = infosec->sh_size;
2486
2487 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2488 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2489 return p + taglen + 1;
2490 }
2491 return NULL;
2492 }
2493
2494 static void setup_modinfo(struct module *mod, struct load_info *info)
2495 {
2496 struct module_attribute *attr;
2497 int i;
2498
2499 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2500 if (attr->setup)
2501 attr->setup(mod, get_modinfo(info, attr->attr.name));
2502 }
2503 }
2504
2505 static void free_modinfo(struct module *mod)
2506 {
2507 struct module_attribute *attr;
2508 int i;
2509
2510 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2511 if (attr->free)
2512 attr->free(mod);
2513 }
2514 }
2515
2516 #ifdef CONFIG_KALLSYMS
2517
2518 /* lookup symbol in given range of kernel_symbols */
2519 static const struct kernel_symbol *lookup_symbol(const char *name,
2520 const struct kernel_symbol *start,
2521 const struct kernel_symbol *stop)
2522 {
2523 return bsearch(name, start, stop - start,
2524 sizeof(struct kernel_symbol), cmp_name);
2525 }
2526
2527 static int is_exported(const char *name, unsigned long value,
2528 const struct module *mod)
2529 {
2530 const struct kernel_symbol *ks;
2531 if (!mod)
2532 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2533 else
2534 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2535 return ks != NULL && ks->value == value;
2536 }
2537
2538 /* As per nm */
2539 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2540 {
2541 const Elf_Shdr *sechdrs = info->sechdrs;
2542
2543 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2544 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2545 return 'v';
2546 else
2547 return 'w';
2548 }
2549 if (sym->st_shndx == SHN_UNDEF)
2550 return 'U';
2551 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2552 return 'a';
2553 if (sym->st_shndx >= SHN_LORESERVE)
2554 return '?';
2555 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2556 return 't';
2557 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2558 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2559 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2560 return 'r';
2561 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2562 return 'g';
2563 else
2564 return 'd';
2565 }
2566 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2567 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2568 return 's';
2569 else
2570 return 'b';
2571 }
2572 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2573 ".debug")) {
2574 return 'n';
2575 }
2576 return '?';
2577 }
2578
2579 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2580 unsigned int shnum, unsigned int pcpundx)
2581 {
2582 const Elf_Shdr *sec;
2583
2584 if (src->st_shndx == SHN_UNDEF
2585 || src->st_shndx >= shnum
2586 || !src->st_name)
2587 return false;
2588
2589 #ifdef CONFIG_KALLSYMS_ALL
2590 if (src->st_shndx == pcpundx)
2591 return true;
2592 #endif
2593
2594 sec = sechdrs + src->st_shndx;
2595 if (!(sec->sh_flags & SHF_ALLOC)
2596 #ifndef CONFIG_KALLSYMS_ALL
2597 || !(sec->sh_flags & SHF_EXECINSTR)
2598 #endif
2599 || (sec->sh_entsize & INIT_OFFSET_MASK))
2600 return false;
2601
2602 return true;
2603 }
2604
2605 /*
2606 * We only allocate and copy the strings needed by the parts of symtab
2607 * we keep. This is simple, but has the effect of making multiple
2608 * copies of duplicates. We could be more sophisticated, see
2609 * linux-kernel thread starting with
2610 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2611 */
2612 static void layout_symtab(struct module *mod, struct load_info *info)
2613 {
2614 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2615 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2616 const Elf_Sym *src;
2617 unsigned int i, nsrc, ndst, strtab_size = 0;
2618
2619 /* Put symbol section at end of init part of module. */
2620 symsect->sh_flags |= SHF_ALLOC;
2621 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2622 info->index.sym) | INIT_OFFSET_MASK;
2623 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2624
2625 src = (void *)info->hdr + symsect->sh_offset;
2626 nsrc = symsect->sh_size / sizeof(*src);
2627
2628 /* Compute total space required for the core symbols' strtab. */
2629 for (ndst = i = 0; i < nsrc; i++) {
2630 if (i == 0 || is_livepatch_module(mod) ||
2631 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2632 info->index.pcpu)) {
2633 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2634 ndst++;
2635 }
2636 }
2637
2638 /* Append room for core symbols at end of core part. */
2639 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2640 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2641 mod->core_layout.size += strtab_size;
2642 mod->core_layout.size = debug_align(mod->core_layout.size);
2643
2644 /* Put string table section at end of init part of module. */
2645 strsect->sh_flags |= SHF_ALLOC;
2646 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2647 info->index.str) | INIT_OFFSET_MASK;
2648 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2649
2650 /* We'll tack temporary mod_kallsyms on the end. */
2651 mod->init_layout.size = ALIGN(mod->init_layout.size,
2652 __alignof__(struct mod_kallsyms));
2653 info->mod_kallsyms_init_off = mod->init_layout.size;
2654 mod->init_layout.size += sizeof(struct mod_kallsyms);
2655 mod->init_layout.size = debug_align(mod->init_layout.size);
2656 }
2657
2658 /*
2659 * We use the full symtab and strtab which layout_symtab arranged to
2660 * be appended to the init section. Later we switch to the cut-down
2661 * core-only ones.
2662 */
2663 static void add_kallsyms(struct module *mod, const struct load_info *info)
2664 {
2665 unsigned int i, ndst;
2666 const Elf_Sym *src;
2667 Elf_Sym *dst;
2668 char *s;
2669 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2670
2671 /* Set up to point into init section. */
2672 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2673
2674 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2675 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2676 /* Make sure we get permanent strtab: don't use info->strtab. */
2677 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2678
2679 /* Set types up while we still have access to sections. */
2680 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2681 mod->kallsyms->symtab[i].st_info
2682 = elf_type(&mod->kallsyms->symtab[i], info);
2683
2684 /* Now populate the cut down core kallsyms for after init. */
2685 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2686 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2687 src = mod->kallsyms->symtab;
2688 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2689 if (i == 0 || is_livepatch_module(mod) ||
2690 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2691 info->index.pcpu)) {
2692 dst[ndst] = src[i];
2693 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2694 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2695 KSYM_NAME_LEN) + 1;
2696 }
2697 }
2698 mod->core_kallsyms.num_symtab = ndst;
2699 }
2700 #else
2701 static inline void layout_symtab(struct module *mod, struct load_info *info)
2702 {
2703 }
2704
2705 static void add_kallsyms(struct module *mod, const struct load_info *info)
2706 {
2707 }
2708 #endif /* CONFIG_KALLSYMS */
2709
2710 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2711 {
2712 if (!debug)
2713 return;
2714 #ifdef CONFIG_DYNAMIC_DEBUG
2715 if (ddebug_add_module(debug, num, debug->modname))
2716 pr_err("dynamic debug error adding module: %s\n",
2717 debug->modname);
2718 #endif
2719 }
2720
2721 static void dynamic_debug_remove(struct _ddebug *debug)
2722 {
2723 if (debug)
2724 ddebug_remove_module(debug->modname);
2725 }
2726
2727 void * __weak module_alloc(unsigned long size)
2728 {
2729 return vmalloc_exec(size);
2730 }
2731
2732 #ifdef CONFIG_DEBUG_KMEMLEAK
2733 static void kmemleak_load_module(const struct module *mod,
2734 const struct load_info *info)
2735 {
2736 unsigned int i;
2737
2738 /* only scan the sections containing data */
2739 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2740
2741 for (i = 1; i < info->hdr->e_shnum; i++) {
2742 /* Scan all writable sections that's not executable */
2743 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2744 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2745 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2746 continue;
2747
2748 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2749 info->sechdrs[i].sh_size, GFP_KERNEL);
2750 }
2751 }
2752 #else
2753 static inline void kmemleak_load_module(const struct module *mod,
2754 const struct load_info *info)
2755 {
2756 }
2757 #endif
2758
2759 #ifdef CONFIG_MODULE_SIG
2760 static int module_sig_check(struct load_info *info, int flags)
2761 {
2762 int err = -ENOKEY;
2763 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2764 const void *mod = info->hdr;
2765
2766 /*
2767 * Require flags == 0, as a module with version information
2768 * removed is no longer the module that was signed
2769 */
2770 if (flags == 0 &&
2771 info->len > markerlen &&
2772 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2773 /* We truncate the module to discard the signature */
2774 info->len -= markerlen;
2775 err = mod_verify_sig(mod, &info->len);
2776 }
2777
2778 if (!err) {
2779 info->sig_ok = true;
2780 return 0;
2781 }
2782
2783 /* Not having a signature is only an error if we're strict. */
2784 if (err == -ENOKEY && !sig_enforce && !kernel_is_locked_down())
2785 err = 0;
2786
2787 return err;
2788 }
2789 #else /* !CONFIG_MODULE_SIG */
2790 static int module_sig_check(struct load_info *info, int flags)
2791 {
2792 return 0;
2793 }
2794 #endif /* !CONFIG_MODULE_SIG */
2795
2796 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2797 static int elf_header_check(struct load_info *info)
2798 {
2799 if (info->len < sizeof(*(info->hdr)))
2800 return -ENOEXEC;
2801
2802 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2803 || info->hdr->e_type != ET_REL
2804 || !elf_check_arch(info->hdr)
2805 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2806 return -ENOEXEC;
2807
2808 if (info->hdr->e_shoff >= info->len
2809 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2810 info->len - info->hdr->e_shoff))
2811 return -ENOEXEC;
2812
2813 return 0;
2814 }
2815
2816 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2817
2818 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2819 {
2820 do {
2821 unsigned long n = min(len, COPY_CHUNK_SIZE);
2822
2823 if (copy_from_user(dst, usrc, n) != 0)
2824 return -EFAULT;
2825 cond_resched();
2826 dst += n;
2827 usrc += n;
2828 len -= n;
2829 } while (len);
2830 return 0;
2831 }
2832
2833 #ifdef CONFIG_LIVEPATCH
2834 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2835 {
2836 if (get_modinfo(info, "livepatch")) {
2837 mod->klp = true;
2838 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2839 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2840 mod->name);
2841 }
2842
2843 return 0;
2844 }
2845 #else /* !CONFIG_LIVEPATCH */
2846 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2847 {
2848 if (get_modinfo(info, "livepatch")) {
2849 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2850 mod->name);
2851 return -ENOEXEC;
2852 }
2853
2854 return 0;
2855 }
2856 #endif /* CONFIG_LIVEPATCH */
2857
2858 /* Sets info->hdr and info->len. */
2859 static int copy_module_from_user(const void __user *umod, unsigned long len,
2860 struct load_info *info)
2861 {
2862 int err;
2863
2864 info->len = len;
2865 if (info->len < sizeof(*(info->hdr)))
2866 return -ENOEXEC;
2867
2868 err = security_kernel_read_file(NULL, READING_MODULE);
2869 if (err)
2870 return err;
2871
2872 /* Suck in entire file: we'll want most of it. */
2873 info->hdr = __vmalloc(info->len,
2874 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2875 if (!info->hdr)
2876 return -ENOMEM;
2877
2878 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2879 vfree(info->hdr);
2880 return -EFAULT;
2881 }
2882
2883 return 0;
2884 }
2885
2886 static void free_copy(struct load_info *info)
2887 {
2888 vfree(info->hdr);
2889 }
2890
2891 static int rewrite_section_headers(struct load_info *info, int flags)
2892 {
2893 unsigned int i;
2894
2895 /* This should always be true, but let's be sure. */
2896 info->sechdrs[0].sh_addr = 0;
2897
2898 for (i = 1; i < info->hdr->e_shnum; i++) {
2899 Elf_Shdr *shdr = &info->sechdrs[i];
2900 if (shdr->sh_type != SHT_NOBITS
2901 && info->len < shdr->sh_offset + shdr->sh_size) {
2902 pr_err("Module len %lu truncated\n", info->len);
2903 return -ENOEXEC;
2904 }
2905
2906 /* Mark all sections sh_addr with their address in the
2907 temporary image. */
2908 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2909
2910 #ifndef CONFIG_MODULE_UNLOAD
2911 /* Don't load .exit sections */
2912 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2913 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2914 #endif
2915 }
2916
2917 /* Track but don't keep modinfo and version sections. */
2918 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2919 info->index.vers = 0; /* Pretend no __versions section! */
2920 else
2921 info->index.vers = find_sec(info, "__versions");
2922 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2923
2924 info->index.info = find_sec(info, ".modinfo");
2925 if (!info->index.info)
2926 info->name = "(missing .modinfo section)";
2927 else
2928 info->name = get_modinfo(info, "name");
2929 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2930
2931 return 0;
2932 }
2933
2934 /*
2935 * Set up our basic convenience variables (pointers to section headers,
2936 * search for module section index etc), and do some basic section
2937 * verification.
2938 *
2939 * Return the temporary module pointer (we'll replace it with the final
2940 * one when we move the module sections around).
2941 */
2942 static struct module *setup_load_info(struct load_info *info, int flags)
2943 {
2944 unsigned int i;
2945 int err;
2946 struct module *mod;
2947
2948 /* Set up the convenience variables */
2949 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2950 info->secstrings = (void *)info->hdr
2951 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2952
2953 err = rewrite_section_headers(info, flags);
2954 if (err)
2955 return ERR_PTR(err);
2956
2957 /* Find internal symbols and strings. */
2958 for (i = 1; i < info->hdr->e_shnum; i++) {
2959 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2960 info->index.sym = i;
2961 info->index.str = info->sechdrs[i].sh_link;
2962 info->strtab = (char *)info->hdr
2963 + info->sechdrs[info->index.str].sh_offset;
2964 break;
2965 }
2966 }
2967
2968 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2969 if (!info->index.mod) {
2970 pr_warn("%s: No module found in object\n",
2971 info->name ?: "(missing .modinfo name field)");
2972 return ERR_PTR(-ENOEXEC);
2973 }
2974 /* This is temporary: point mod into copy of data. */
2975 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2976
2977 /*
2978 * If we didn't load the .modinfo 'name' field, fall back to
2979 * on-disk struct mod 'name' field.
2980 */
2981 if (!info->name)
2982 info->name = mod->name;
2983
2984 if (info->index.sym == 0) {
2985 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
2986 return ERR_PTR(-ENOEXEC);
2987 }
2988
2989 info->index.pcpu = find_pcpusec(info);
2990
2991 /* Check module struct version now, before we try to use module. */
2992 if (!check_modstruct_version(info, mod))
2993 return ERR_PTR(-ENOEXEC);
2994
2995 return mod;
2996 }
2997
2998 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2999 {
3000 const char *modmagic = get_modinfo(info, "vermagic");
3001 int err;
3002
3003 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3004 modmagic = NULL;
3005
3006 /* This is allowed: modprobe --force will invalidate it. */
3007 if (!modmagic) {
3008 err = try_to_force_load(mod, "bad vermagic");
3009 if (err)
3010 return err;
3011 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3012 pr_err("%s: version magic '%s' should be '%s'\n",
3013 info->name, modmagic, vermagic);
3014 return -ENOEXEC;
3015 }
3016
3017 if (!get_modinfo(info, "intree")) {
3018 if (!test_taint(TAINT_OOT_MODULE))
3019 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3020 mod->name);
3021 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3022 }
3023
3024 if (get_modinfo(info, "staging")) {
3025 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3026 pr_warn("%s: module is from the staging directory, the quality "
3027 "is unknown, you have been warned.\n", mod->name);
3028 }
3029
3030 err = check_modinfo_livepatch(mod, info);
3031 if (err)
3032 return err;
3033
3034 /* Set up license info based on the info section */
3035 set_license(mod, get_modinfo(info, "license"));
3036
3037 return 0;
3038 }
3039
3040 static int find_module_sections(struct module *mod, struct load_info *info)
3041 {
3042 mod->kp = section_objs(info, "__param",
3043 sizeof(*mod->kp), &mod->num_kp);
3044 mod->syms = section_objs(info, "__ksymtab",
3045 sizeof(*mod->syms), &mod->num_syms);
3046 mod->crcs = section_addr(info, "__kcrctab");
3047 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3048 sizeof(*mod->gpl_syms),
3049 &mod->num_gpl_syms);
3050 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3051 mod->gpl_future_syms = section_objs(info,
3052 "__ksymtab_gpl_future",
3053 sizeof(*mod->gpl_future_syms),
3054 &mod->num_gpl_future_syms);
3055 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3056
3057 #ifdef CONFIG_UNUSED_SYMBOLS
3058 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3059 sizeof(*mod->unused_syms),
3060 &mod->num_unused_syms);
3061 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3062 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3063 sizeof(*mod->unused_gpl_syms),
3064 &mod->num_unused_gpl_syms);
3065 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3066 #endif
3067 #ifdef CONFIG_CONSTRUCTORS
3068 mod->ctors = section_objs(info, ".ctors",
3069 sizeof(*mod->ctors), &mod->num_ctors);
3070 if (!mod->ctors)
3071 mod->ctors = section_objs(info, ".init_array",
3072 sizeof(*mod->ctors), &mod->num_ctors);
3073 else if (find_sec(info, ".init_array")) {
3074 /*
3075 * This shouldn't happen with same compiler and binutils
3076 * building all parts of the module.
3077 */
3078 pr_warn("%s: has both .ctors and .init_array.\n",
3079 mod->name);
3080 return -EINVAL;
3081 }
3082 #endif
3083
3084 #ifdef CONFIG_TRACEPOINTS
3085 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3086 sizeof(*mod->tracepoints_ptrs),
3087 &mod->num_tracepoints);
3088 #endif
3089 #ifdef HAVE_JUMP_LABEL
3090 mod->jump_entries = section_objs(info, "__jump_table",
3091 sizeof(*mod->jump_entries),
3092 &mod->num_jump_entries);
3093 #endif
3094 #ifdef CONFIG_EVENT_TRACING
3095 mod->trace_events = section_objs(info, "_ftrace_events",
3096 sizeof(*mod->trace_events),
3097 &mod->num_trace_events);
3098 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3099 sizeof(*mod->trace_evals),
3100 &mod->num_trace_evals);
3101 #endif
3102 #ifdef CONFIG_TRACING
3103 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3104 sizeof(*mod->trace_bprintk_fmt_start),
3105 &mod->num_trace_bprintk_fmt);
3106 #endif
3107 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3108 /* sechdrs[0].sh_size is always zero */
3109 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3110 sizeof(*mod->ftrace_callsites),
3111 &mod->num_ftrace_callsites);
3112 #endif
3113
3114 mod->extable = section_objs(info, "__ex_table",
3115 sizeof(*mod->extable), &mod->num_exentries);
3116
3117 if (section_addr(info, "__obsparm"))
3118 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3119
3120 info->debug = section_objs(info, "__verbose",
3121 sizeof(*info->debug), &info->num_debug);
3122
3123 return 0;
3124 }
3125
3126 static int move_module(struct module *mod, struct load_info *info)
3127 {
3128 int i;
3129 void *ptr;
3130
3131 /* Do the allocs. */
3132 ptr = module_alloc(mod->core_layout.size);
3133 /*
3134 * The pointer to this block is stored in the module structure
3135 * which is inside the block. Just mark it as not being a
3136 * leak.
3137 */
3138 kmemleak_not_leak(ptr);
3139 if (!ptr)
3140 return -ENOMEM;
3141
3142 memset(ptr, 0, mod->core_layout.size);
3143 mod->core_layout.base = ptr;
3144
3145 if (mod->init_layout.size) {
3146 ptr = module_alloc(mod->init_layout.size);
3147 /*
3148 * The pointer to this block is stored in the module structure
3149 * which is inside the block. This block doesn't need to be
3150 * scanned as it contains data and code that will be freed
3151 * after the module is initialized.
3152 */
3153 kmemleak_ignore(ptr);
3154 if (!ptr) {
3155 module_memfree(mod->core_layout.base);
3156 return -ENOMEM;
3157 }
3158 memset(ptr, 0, mod->init_layout.size);
3159 mod->init_layout.base = ptr;
3160 } else
3161 mod->init_layout.base = NULL;
3162
3163 /* Transfer each section which specifies SHF_ALLOC */
3164 pr_debug("final section addresses:\n");
3165 for (i = 0; i < info->hdr->e_shnum; i++) {
3166 void *dest;
3167 Elf_Shdr *shdr = &info->sechdrs[i];
3168
3169 if (!(shdr->sh_flags & SHF_ALLOC))
3170 continue;
3171
3172 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3173 dest = mod->init_layout.base
3174 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3175 else
3176 dest = mod->core_layout.base + shdr->sh_entsize;
3177
3178 if (shdr->sh_type != SHT_NOBITS)
3179 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3180 /* Update sh_addr to point to copy in image. */
3181 shdr->sh_addr = (unsigned long)dest;
3182 pr_debug("\t0x%lx %s\n",
3183 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3184 }
3185
3186 return 0;
3187 }
3188
3189 static int check_module_license_and_versions(struct module *mod)
3190 {
3191 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3192
3193 /*
3194 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3195 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3196 * using GPL-only symbols it needs.
3197 */
3198 if (strcmp(mod->name, "ndiswrapper") == 0)
3199 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3200
3201 /* driverloader was caught wrongly pretending to be under GPL */
3202 if (strcmp(mod->name, "driverloader") == 0)
3203 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3204 LOCKDEP_NOW_UNRELIABLE);
3205
3206 /* lve claims to be GPL but upstream won't provide source */
3207 if (strcmp(mod->name, "lve") == 0)
3208 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3209 LOCKDEP_NOW_UNRELIABLE);
3210
3211 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3212 pr_warn("%s: module license taints kernel.\n", mod->name);
3213
3214 #ifdef CONFIG_MODVERSIONS
3215 if ((mod->num_syms && !mod->crcs)
3216 || (mod->num_gpl_syms && !mod->gpl_crcs)
3217 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3218 #ifdef CONFIG_UNUSED_SYMBOLS
3219 || (mod->num_unused_syms && !mod->unused_crcs)
3220 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3221 #endif
3222 ) {
3223 return try_to_force_load(mod,
3224 "no versions for exported symbols");
3225 }
3226 #endif
3227 return 0;
3228 }
3229
3230 static void flush_module_icache(const struct module *mod)
3231 {
3232 mm_segment_t old_fs;
3233
3234 /* flush the icache in correct context */
3235 old_fs = get_fs();
3236 set_fs(KERNEL_DS);
3237
3238 /*
3239 * Flush the instruction cache, since we've played with text.
3240 * Do it before processing of module parameters, so the module
3241 * can provide parameter accessor functions of its own.
3242 */
3243 if (mod->init_layout.base)
3244 flush_icache_range((unsigned long)mod->init_layout.base,
3245 (unsigned long)mod->init_layout.base
3246 + mod->init_layout.size);
3247 flush_icache_range((unsigned long)mod->core_layout.base,
3248 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3249
3250 set_fs(old_fs);
3251 }
3252
3253 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3254 Elf_Shdr *sechdrs,
3255 char *secstrings,
3256 struct module *mod)
3257 {
3258 return 0;
3259 }
3260
3261 /* module_blacklist is a comma-separated list of module names */
3262 static char *module_blacklist;
3263 static bool blacklisted(const char *module_name)
3264 {
3265 const char *p;
3266 size_t len;
3267
3268 if (!module_blacklist)
3269 return false;
3270
3271 for (p = module_blacklist; *p; p += len) {
3272 len = strcspn(p, ",");
3273 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3274 return true;
3275 if (p[len] == ',')
3276 len++;
3277 }
3278 return false;
3279 }
3280 core_param(module_blacklist, module_blacklist, charp, 0400);
3281
3282 static struct module *layout_and_allocate(struct load_info *info, int flags)
3283 {
3284 /* Module within temporary copy. */
3285 struct module *mod;
3286 unsigned int ndx;
3287 int err;
3288
3289 mod = setup_load_info(info, flags);
3290 if (IS_ERR(mod))
3291 return mod;
3292
3293 if (blacklisted(info->name))
3294 return ERR_PTR(-EPERM);
3295
3296 err = check_modinfo(mod, info, flags);
3297 if (err)
3298 return ERR_PTR(err);
3299
3300 /* Allow arches to frob section contents and sizes. */
3301 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3302 info->secstrings, mod);
3303 if (err < 0)
3304 return ERR_PTR(err);
3305
3306 /* We will do a special allocation for per-cpu sections later. */
3307 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3308
3309 /*
3310 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3311 * layout_sections() can put it in the right place.
3312 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3313 */
3314 ndx = find_sec(info, ".data..ro_after_init");
3315 if (ndx)
3316 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3317
3318 /* Determine total sizes, and put offsets in sh_entsize. For now
3319 this is done generically; there doesn't appear to be any
3320 special cases for the architectures. */
3321 layout_sections(mod, info);
3322 layout_symtab(mod, info);
3323
3324 /* Allocate and move to the final place */
3325 err = move_module(mod, info);
3326 if (err)
3327 return ERR_PTR(err);
3328
3329 /* Module has been copied to its final place now: return it. */
3330 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3331 kmemleak_load_module(mod, info);
3332 return mod;
3333 }
3334
3335 /* mod is no longer valid after this! */
3336 static void module_deallocate(struct module *mod, struct load_info *info)
3337 {
3338 percpu_modfree(mod);
3339 module_arch_freeing_init(mod);
3340 module_memfree(mod->init_layout.base);
3341 module_memfree(mod->core_layout.base);
3342 }
3343
3344 int __weak module_finalize(const Elf_Ehdr *hdr,
3345 const Elf_Shdr *sechdrs,
3346 struct module *me)
3347 {
3348 return 0;
3349 }
3350
3351 static int post_relocation(struct module *mod, const struct load_info *info)
3352 {
3353 /* Sort exception table now relocations are done. */
3354 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3355
3356 /* Copy relocated percpu area over. */
3357 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3358 info->sechdrs[info->index.pcpu].sh_size);
3359
3360 /* Setup kallsyms-specific fields. */
3361 add_kallsyms(mod, info);
3362
3363 /* Arch-specific module finalizing. */
3364 return module_finalize(info->hdr, info->sechdrs, mod);
3365 }
3366
3367 /* Is this module of this name done loading? No locks held. */
3368 static bool finished_loading(const char *name)
3369 {
3370 struct module *mod;
3371 bool ret;
3372
3373 /*
3374 * The module_mutex should not be a heavily contended lock;
3375 * if we get the occasional sleep here, we'll go an extra iteration
3376 * in the wait_event_interruptible(), which is harmless.
3377 */
3378 sched_annotate_sleep();
3379 mutex_lock(&module_mutex);
3380 mod = find_module_all(name, strlen(name), true);
3381 ret = !mod || mod->state == MODULE_STATE_LIVE
3382 || mod->state == MODULE_STATE_GOING;
3383 mutex_unlock(&module_mutex);
3384
3385 return ret;
3386 }
3387
3388 /* Call module constructors. */
3389 static void do_mod_ctors(struct module *mod)
3390 {
3391 #ifdef CONFIG_CONSTRUCTORS
3392 unsigned long i;
3393
3394 for (i = 0; i < mod->num_ctors; i++)
3395 mod->ctors[i]();
3396 #endif
3397 }
3398
3399 /* For freeing module_init on success, in case kallsyms traversing */
3400 struct mod_initfree {
3401 struct rcu_head rcu;
3402 void *module_init;
3403 };
3404
3405 static void do_free_init(struct rcu_head *head)
3406 {
3407 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3408 module_memfree(m->module_init);
3409 kfree(m);
3410 }
3411
3412 /*
3413 * This is where the real work happens.
3414 *
3415 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3416 * helper command 'lx-symbols'.
3417 */
3418 static noinline int do_init_module(struct module *mod)
3419 {
3420 int ret = 0;
3421 struct mod_initfree *freeinit;
3422
3423 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3424 if (!freeinit) {
3425 ret = -ENOMEM;
3426 goto fail;
3427 }
3428 freeinit->module_init = mod->init_layout.base;
3429
3430 /*
3431 * We want to find out whether @mod uses async during init. Clear
3432 * PF_USED_ASYNC. async_schedule*() will set it.
3433 */
3434 current->flags &= ~PF_USED_ASYNC;
3435
3436 do_mod_ctors(mod);
3437 /* Start the module */
3438 if (mod->init != NULL)
3439 ret = do_one_initcall(mod->init);
3440 if (ret < 0) {
3441 goto fail_free_freeinit;
3442 }
3443 if (ret > 0) {
3444 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3445 "follow 0/-E convention\n"
3446 "%s: loading module anyway...\n",
3447 __func__, mod->name, ret, __func__);
3448 dump_stack();
3449 }
3450
3451 /* Now it's a first class citizen! */
3452 mod->state = MODULE_STATE_LIVE;
3453 blocking_notifier_call_chain(&module_notify_list,
3454 MODULE_STATE_LIVE, mod);
3455
3456 /*
3457 * We need to finish all async code before the module init sequence
3458 * is done. This has potential to deadlock. For example, a newly
3459 * detected block device can trigger request_module() of the
3460 * default iosched from async probing task. Once userland helper
3461 * reaches here, async_synchronize_full() will wait on the async
3462 * task waiting on request_module() and deadlock.
3463 *
3464 * This deadlock is avoided by perfomring async_synchronize_full()
3465 * iff module init queued any async jobs. This isn't a full
3466 * solution as it will deadlock the same if module loading from
3467 * async jobs nests more than once; however, due to the various
3468 * constraints, this hack seems to be the best option for now.
3469 * Please refer to the following thread for details.
3470 *
3471 * http://thread.gmane.org/gmane.linux.kernel/1420814
3472 */
3473 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3474 async_synchronize_full();
3475
3476 mutex_lock(&module_mutex);
3477 /* Drop initial reference. */
3478 module_put(mod);
3479 trim_init_extable(mod);
3480 #ifdef CONFIG_KALLSYMS
3481 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3482 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3483 #endif
3484 module_enable_ro(mod, true);
3485 mod_tree_remove_init(mod);
3486 disable_ro_nx(&mod->init_layout);
3487 module_arch_freeing_init(mod);
3488 mod->init_layout.base = NULL;
3489 mod->init_layout.size = 0;
3490 mod->init_layout.ro_size = 0;
3491 mod->init_layout.ro_after_init_size = 0;
3492 mod->init_layout.text_size = 0;
3493 /*
3494 * We want to free module_init, but be aware that kallsyms may be
3495 * walking this with preempt disabled. In all the failure paths, we
3496 * call synchronize_sched(), but we don't want to slow down the success
3497 * path, so use actual RCU here.
3498 */
3499 call_rcu_sched(&freeinit->rcu, do_free_init);
3500 mutex_unlock(&module_mutex);
3501 wake_up_all(&module_wq);
3502
3503 return 0;
3504
3505 fail_free_freeinit:
3506 kfree(freeinit);
3507 fail:
3508 /* Try to protect us from buggy refcounters. */
3509 mod->state = MODULE_STATE_GOING;
3510 synchronize_sched();
3511 module_put(mod);
3512 blocking_notifier_call_chain(&module_notify_list,
3513 MODULE_STATE_GOING, mod);
3514 klp_module_going(mod);
3515 ftrace_release_mod(mod);
3516 free_module(mod);
3517 wake_up_all(&module_wq);
3518 return ret;
3519 }
3520
3521 static int may_init_module(void)
3522 {
3523 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3524 return -EPERM;
3525
3526 return 0;
3527 }
3528
3529 /*
3530 * We try to place it in the list now to make sure it's unique before
3531 * we dedicate too many resources. In particular, temporary percpu
3532 * memory exhaustion.
3533 */
3534 static int add_unformed_module(struct module *mod)
3535 {
3536 int err;
3537 struct module *old;
3538
3539 mod->state = MODULE_STATE_UNFORMED;
3540
3541 again:
3542 mutex_lock(&module_mutex);
3543 old = find_module_all(mod->name, strlen(mod->name), true);
3544 if (old != NULL) {
3545 if (old->state == MODULE_STATE_COMING
3546 || old->state == MODULE_STATE_UNFORMED) {
3547 /* Wait in case it fails to load. */
3548 mutex_unlock(&module_mutex);
3549 err = wait_event_interruptible(module_wq,
3550 finished_loading(mod->name));
3551 if (err)
3552 goto out_unlocked;
3553 goto again;
3554 }
3555 err = -EEXIST;
3556 goto out;
3557 }
3558 mod_update_bounds(mod);
3559 list_add_rcu(&mod->list, &modules);
3560 mod_tree_insert(mod);
3561 err = 0;
3562
3563 out:
3564 mutex_unlock(&module_mutex);
3565 out_unlocked:
3566 return err;
3567 }
3568
3569 static int complete_formation(struct module *mod, struct load_info *info)
3570 {
3571 int err;
3572
3573 mutex_lock(&module_mutex);
3574
3575 /* Find duplicate symbols (must be called under lock). */
3576 err = verify_export_symbols(mod);
3577 if (err < 0)
3578 goto out;
3579
3580 /* This relies on module_mutex for list integrity. */
3581 module_bug_finalize(info->hdr, info->sechdrs, mod);
3582
3583 module_enable_ro(mod, false);
3584 module_enable_nx(mod);
3585
3586 /* Mark state as coming so strong_try_module_get() ignores us,
3587 * but kallsyms etc. can see us. */
3588 mod->state = MODULE_STATE_COMING;
3589 mutex_unlock(&module_mutex);
3590
3591 return 0;
3592
3593 out:
3594 mutex_unlock(&module_mutex);
3595 return err;
3596 }
3597
3598 static int prepare_coming_module(struct module *mod)
3599 {
3600 int err;
3601
3602 ftrace_module_enable(mod);
3603 err = klp_module_coming(mod);
3604 if (err)
3605 return err;
3606
3607 blocking_notifier_call_chain(&module_notify_list,
3608 MODULE_STATE_COMING, mod);
3609 return 0;
3610 }
3611
3612 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3613 void *arg)
3614 {
3615 struct module *mod = arg;
3616 int ret;
3617
3618 if (strcmp(param, "async_probe") == 0) {
3619 mod->async_probe_requested = true;
3620 return 0;
3621 }
3622
3623 /* Check for magic 'dyndbg' arg */
3624 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3625 if (ret != 0)
3626 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3627 return 0;
3628 }
3629
3630 /* Allocate and load the module: note that size of section 0 is always
3631 zero, and we rely on this for optional sections. */
3632 static int load_module(struct load_info *info, const char __user *uargs,
3633 int flags)
3634 {
3635 struct module *mod;
3636 long err;
3637 char *after_dashes;
3638
3639 err = module_sig_check(info, flags);
3640 if (err)
3641 goto free_copy;
3642
3643 err = elf_header_check(info);
3644 if (err)
3645 goto free_copy;
3646
3647 /* Figure out module layout, and allocate all the memory. */
3648 mod = layout_and_allocate(info, flags);
3649 if (IS_ERR(mod)) {
3650 err = PTR_ERR(mod);
3651 goto free_copy;
3652 }
3653
3654 audit_log_kern_module(mod->name);
3655
3656 /* Reserve our place in the list. */
3657 err = add_unformed_module(mod);
3658 if (err)
3659 goto free_module;
3660
3661 #ifdef CONFIG_MODULE_SIG
3662 mod->sig_ok = info->sig_ok;
3663 if (!mod->sig_ok) {
3664 pr_notice_once("%s: module verification failed: signature "
3665 "and/or required key missing - tainting "
3666 "kernel\n", mod->name);
3667 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3668 }
3669 #endif
3670
3671 /* To avoid stressing percpu allocator, do this once we're unique. */
3672 err = percpu_modalloc(mod, info);
3673 if (err)
3674 goto unlink_mod;
3675
3676 /* Now module is in final location, initialize linked lists, etc. */
3677 err = module_unload_init(mod);
3678 if (err)
3679 goto unlink_mod;
3680
3681 init_param_lock(mod);
3682
3683 /* Now we've got everything in the final locations, we can
3684 * find optional sections. */
3685 err = find_module_sections(mod, info);
3686 if (err)
3687 goto free_unload;
3688
3689 err = check_module_license_and_versions(mod);
3690 if (err)
3691 goto free_unload;
3692
3693 /* Set up MODINFO_ATTR fields */
3694 setup_modinfo(mod, info);
3695
3696 /* Fix up syms, so that st_value is a pointer to location. */
3697 err = simplify_symbols(mod, info);
3698 if (err < 0)
3699 goto free_modinfo;
3700
3701 err = apply_relocations(mod, info);
3702 if (err < 0)
3703 goto free_modinfo;
3704
3705 err = post_relocation(mod, info);
3706 if (err < 0)
3707 goto free_modinfo;
3708
3709 flush_module_icache(mod);
3710
3711 /* Now copy in args */
3712 mod->args = strndup_user(uargs, ~0UL >> 1);
3713 if (IS_ERR(mod->args)) {
3714 err = PTR_ERR(mod->args);
3715 goto free_arch_cleanup;
3716 }
3717
3718 dynamic_debug_setup(info->debug, info->num_debug);
3719
3720 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3721 ftrace_module_init(mod);
3722
3723 /* Finally it's fully formed, ready to start executing. */
3724 err = complete_formation(mod, info);
3725 if (err)
3726 goto ddebug_cleanup;
3727
3728 err = prepare_coming_module(mod);
3729 if (err)
3730 goto bug_cleanup;
3731
3732 /* Module is ready to execute: parsing args may do that. */
3733 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3734 -32768, 32767, mod,
3735 unknown_module_param_cb);
3736 if (IS_ERR(after_dashes)) {
3737 err = PTR_ERR(after_dashes);
3738 goto coming_cleanup;
3739 } else if (after_dashes) {
3740 pr_warn("%s: parameters '%s' after `--' ignored\n",
3741 mod->name, after_dashes);
3742 }
3743
3744 /* Link in to sysfs. */
3745 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3746 if (err < 0)
3747 goto coming_cleanup;
3748
3749 if (is_livepatch_module(mod)) {
3750 err = copy_module_elf(mod, info);
3751 if (err < 0)
3752 goto sysfs_cleanup;
3753 }
3754
3755 /* Get rid of temporary copy. */
3756 free_copy(info);
3757
3758 /* Done! */
3759 trace_module_load(mod);
3760
3761 return do_init_module(mod);
3762
3763 sysfs_cleanup:
3764 mod_sysfs_teardown(mod);
3765 coming_cleanup:
3766 mod->state = MODULE_STATE_GOING;
3767 destroy_params(mod->kp, mod->num_kp);
3768 blocking_notifier_call_chain(&module_notify_list,
3769 MODULE_STATE_GOING, mod);
3770 klp_module_going(mod);
3771 bug_cleanup:
3772 /* module_bug_cleanup needs module_mutex protection */
3773 mutex_lock(&module_mutex);
3774 module_bug_cleanup(mod);
3775 mutex_unlock(&module_mutex);
3776
3777 /* we can't deallocate the module until we clear memory protection */
3778 module_disable_ro(mod);
3779 module_disable_nx(mod);
3780
3781 ddebug_cleanup:
3782 dynamic_debug_remove(info->debug);
3783 synchronize_sched();
3784 kfree(mod->args);
3785 free_arch_cleanup:
3786 module_arch_cleanup(mod);
3787 free_modinfo:
3788 free_modinfo(mod);
3789 free_unload:
3790 module_unload_free(mod);
3791 unlink_mod:
3792 mutex_lock(&module_mutex);
3793 /* Unlink carefully: kallsyms could be walking list. */
3794 list_del_rcu(&mod->list);
3795 mod_tree_remove(mod);
3796 wake_up_all(&module_wq);
3797 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3798 synchronize_sched();
3799 mutex_unlock(&module_mutex);
3800 free_module:
3801 /*
3802 * Ftrace needs to clean up what it initialized.
3803 * This does nothing if ftrace_module_init() wasn't called,
3804 * but it must be called outside of module_mutex.
3805 */
3806 ftrace_release_mod(mod);
3807 /* Free lock-classes; relies on the preceding sync_rcu() */
3808 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3809
3810 module_deallocate(mod, info);
3811 free_copy:
3812 free_copy(info);
3813 return err;
3814 }
3815
3816 SYSCALL_DEFINE3(init_module, void __user *, umod,
3817 unsigned long, len, const char __user *, uargs)
3818 {
3819 int err;
3820 struct load_info info = { };
3821
3822 err = may_init_module();
3823 if (err)
3824 return err;
3825
3826 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3827 umod, len, uargs);
3828
3829 err = copy_module_from_user(umod, len, &info);
3830 if (err)
3831 return err;
3832
3833 return load_module(&info, uargs, 0);
3834 }
3835
3836 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3837 {
3838 struct load_info info = { };
3839 loff_t size;
3840 void *hdr;
3841 int err;
3842
3843 err = may_init_module();
3844 if (err)
3845 return err;
3846
3847 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3848
3849 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3850 |MODULE_INIT_IGNORE_VERMAGIC))
3851 return -EINVAL;
3852
3853 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3854 READING_MODULE);
3855 if (err)
3856 return err;
3857 info.hdr = hdr;
3858 info.len = size;
3859
3860 return load_module(&info, uargs, flags);
3861 }
3862
3863 static inline int within(unsigned long addr, void *start, unsigned long size)
3864 {
3865 return ((void *)addr >= start && (void *)addr < start + size);
3866 }
3867
3868 #ifdef CONFIG_KALLSYMS
3869 /*
3870 * This ignores the intensely annoying "mapping symbols" found
3871 * in ARM ELF files: $a, $t and $d.
3872 */
3873 static inline int is_arm_mapping_symbol(const char *str)
3874 {
3875 if (str[0] == '.' && str[1] == 'L')
3876 return true;
3877 return str[0] == '$' && strchr("axtd", str[1])
3878 && (str[2] == '\0' || str[2] == '.');
3879 }
3880
3881 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3882 {
3883 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3884 }
3885
3886 static const char *get_ksymbol(struct module *mod,
3887 unsigned long addr,
3888 unsigned long *size,
3889 unsigned long *offset)
3890 {
3891 unsigned int i, best = 0;
3892 unsigned long nextval;
3893 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3894
3895 /* At worse, next value is at end of module */
3896 if (within_module_init(addr, mod))
3897 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3898 else
3899 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3900
3901 /* Scan for closest preceding symbol, and next symbol. (ELF
3902 starts real symbols at 1). */
3903 for (i = 1; i < kallsyms->num_symtab; i++) {
3904 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3905 continue;
3906
3907 /* We ignore unnamed symbols: they're uninformative
3908 * and inserted at a whim. */
3909 if (*symname(kallsyms, i) == '\0'
3910 || is_arm_mapping_symbol(symname(kallsyms, i)))
3911 continue;
3912
3913 if (kallsyms->symtab[i].st_value <= addr
3914 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3915 best = i;
3916 if (kallsyms->symtab[i].st_value > addr
3917 && kallsyms->symtab[i].st_value < nextval)
3918 nextval = kallsyms->symtab[i].st_value;
3919 }
3920
3921 if (!best)
3922 return NULL;
3923
3924 if (size)
3925 *size = nextval - kallsyms->symtab[best].st_value;
3926 if (offset)
3927 *offset = addr - kallsyms->symtab[best].st_value;
3928 return symname(kallsyms, best);
3929 }
3930
3931 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3932 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3933 const char *module_address_lookup(unsigned long addr,
3934 unsigned long *size,
3935 unsigned long *offset,
3936 char **modname,
3937 char *namebuf)
3938 {
3939 const char *ret = NULL;
3940 struct module *mod;
3941
3942 preempt_disable();
3943 mod = __module_address(addr);
3944 if (mod) {
3945 if (modname)
3946 *modname = mod->name;
3947 ret = get_ksymbol(mod, addr, size, offset);
3948 }
3949 /* Make a copy in here where it's safe */
3950 if (ret) {
3951 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3952 ret = namebuf;
3953 }
3954 preempt_enable();
3955
3956 return ret;
3957 }
3958
3959 int lookup_module_symbol_name(unsigned long addr, char *symname)
3960 {
3961 struct module *mod;
3962
3963 preempt_disable();
3964 list_for_each_entry_rcu(mod, &modules, list) {
3965 if (mod->state == MODULE_STATE_UNFORMED)
3966 continue;
3967 if (within_module(addr, mod)) {
3968 const char *sym;
3969
3970 sym = get_ksymbol(mod, addr, NULL, NULL);
3971 if (!sym)
3972 goto out;
3973 strlcpy(symname, sym, KSYM_NAME_LEN);
3974 preempt_enable();
3975 return 0;
3976 }
3977 }
3978 out:
3979 preempt_enable();
3980 return -ERANGE;
3981 }
3982
3983 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3984 unsigned long *offset, char *modname, char *name)
3985 {
3986 struct module *mod;
3987
3988 preempt_disable();
3989 list_for_each_entry_rcu(mod, &modules, list) {
3990 if (mod->state == MODULE_STATE_UNFORMED)
3991 continue;
3992 if (within_module(addr, mod)) {
3993 const char *sym;
3994
3995 sym = get_ksymbol(mod, addr, size, offset);
3996 if (!sym)
3997 goto out;
3998 if (modname)
3999 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4000 if (name)
4001 strlcpy(name, sym, KSYM_NAME_LEN);
4002 preempt_enable();
4003 return 0;
4004 }
4005 }
4006 out:
4007 preempt_enable();
4008 return -ERANGE;
4009 }
4010
4011 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4012 char *name, char *module_name, int *exported)
4013 {
4014 struct module *mod;
4015
4016 preempt_disable();
4017 list_for_each_entry_rcu(mod, &modules, list) {
4018 struct mod_kallsyms *kallsyms;
4019
4020 if (mod->state == MODULE_STATE_UNFORMED)
4021 continue;
4022 kallsyms = rcu_dereference_sched(mod->kallsyms);
4023 if (symnum < kallsyms->num_symtab) {
4024 *value = kallsyms->symtab[symnum].st_value;
4025 *type = kallsyms->symtab[symnum].st_info;
4026 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4027 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4028 *exported = is_exported(name, *value, mod);
4029 preempt_enable();
4030 return 0;
4031 }
4032 symnum -= kallsyms->num_symtab;
4033 }
4034 preempt_enable();
4035 return -ERANGE;
4036 }
4037
4038 static unsigned long mod_find_symname(struct module *mod, const char *name)
4039 {
4040 unsigned int i;
4041 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4042
4043 for (i = 0; i < kallsyms->num_symtab; i++)
4044 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4045 kallsyms->symtab[i].st_info != 'U')
4046 return kallsyms->symtab[i].st_value;
4047 return 0;
4048 }
4049
4050 /* Look for this name: can be of form module:name. */
4051 unsigned long module_kallsyms_lookup_name(const char *name)
4052 {
4053 struct module *mod;
4054 char *colon;
4055 unsigned long ret = 0;
4056
4057 /* Don't lock: we're in enough trouble already. */
4058 preempt_disable();
4059 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4060 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4061 ret = mod_find_symname(mod, colon+1);
4062 } else {
4063 list_for_each_entry_rcu(mod, &modules, list) {
4064 if (mod->state == MODULE_STATE_UNFORMED)
4065 continue;
4066 if ((ret = mod_find_symname(mod, name)) != 0)
4067 break;
4068 }
4069 }
4070 preempt_enable();
4071 return ret;
4072 }
4073
4074 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4075 struct module *, unsigned long),
4076 void *data)
4077 {
4078 struct module *mod;
4079 unsigned int i;
4080 int ret;
4081
4082 module_assert_mutex();
4083
4084 list_for_each_entry(mod, &modules, list) {
4085 /* We hold module_mutex: no need for rcu_dereference_sched */
4086 struct mod_kallsyms *kallsyms = mod->kallsyms;
4087
4088 if (mod->state == MODULE_STATE_UNFORMED)
4089 continue;
4090 for (i = 0; i < kallsyms->num_symtab; i++) {
4091 ret = fn(data, symname(kallsyms, i),
4092 mod, kallsyms->symtab[i].st_value);
4093 if (ret != 0)
4094 return ret;
4095 }
4096 }
4097 return 0;
4098 }
4099 #endif /* CONFIG_KALLSYMS */
4100
4101 /* Maximum number of characters written by module_flags() */
4102 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4103
4104 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4105 static char *module_flags(struct module *mod, char *buf)
4106 {
4107 int bx = 0;
4108
4109 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4110 if (mod->taints ||
4111 mod->state == MODULE_STATE_GOING ||
4112 mod->state == MODULE_STATE_COMING) {
4113 buf[bx++] = '(';
4114 bx += module_flags_taint(mod, buf + bx);
4115 /* Show a - for module-is-being-unloaded */
4116 if (mod->state == MODULE_STATE_GOING)
4117 buf[bx++] = '-';
4118 /* Show a + for module-is-being-loaded */
4119 if (mod->state == MODULE_STATE_COMING)
4120 buf[bx++] = '+';
4121 buf[bx++] = ')';
4122 }
4123 buf[bx] = '\0';
4124
4125 return buf;
4126 }
4127
4128 #ifdef CONFIG_PROC_FS
4129 /* Called by the /proc file system to return a list of modules. */
4130 static void *m_start(struct seq_file *m, loff_t *pos)
4131 {
4132 mutex_lock(&module_mutex);
4133 return seq_list_start(&modules, *pos);
4134 }
4135
4136 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4137 {
4138 return seq_list_next(p, &modules, pos);
4139 }
4140
4141 static void m_stop(struct seq_file *m, void *p)
4142 {
4143 mutex_unlock(&module_mutex);
4144 }
4145
4146 static int m_show(struct seq_file *m, void *p)
4147 {
4148 struct module *mod = list_entry(p, struct module, list);
4149 char buf[MODULE_FLAGS_BUF_SIZE];
4150
4151 /* We always ignore unformed modules. */
4152 if (mod->state == MODULE_STATE_UNFORMED)
4153 return 0;
4154
4155 seq_printf(m, "%s %u",
4156 mod->name, mod->init_layout.size + mod->core_layout.size);
4157 print_unload_info(m, mod);
4158
4159 /* Informative for users. */
4160 seq_printf(m, " %s",
4161 mod->state == MODULE_STATE_GOING ? "Unloading" :
4162 mod->state == MODULE_STATE_COMING ? "Loading" :
4163 "Live");
4164 /* Used by oprofile and other similar tools. */
4165 seq_printf(m, " 0x%pK", mod->core_layout.base);
4166
4167 /* Taints info */
4168 if (mod->taints)
4169 seq_printf(m, " %s", module_flags(mod, buf));
4170
4171 seq_puts(m, "\n");
4172 return 0;
4173 }
4174
4175 /* Format: modulename size refcount deps address
4176
4177 Where refcount is a number or -, and deps is a comma-separated list
4178 of depends or -.
4179 */
4180 static const struct seq_operations modules_op = {
4181 .start = m_start,
4182 .next = m_next,
4183 .stop = m_stop,
4184 .show = m_show
4185 };
4186
4187 static int modules_open(struct inode *inode, struct file *file)
4188 {
4189 return seq_open(file, &modules_op);
4190 }
4191
4192 static const struct file_operations proc_modules_operations = {
4193 .open = modules_open,
4194 .read = seq_read,
4195 .llseek = seq_lseek,
4196 .release = seq_release,
4197 };
4198
4199 static int __init proc_modules_init(void)
4200 {
4201 proc_create("modules", 0, NULL, &proc_modules_operations);
4202 return 0;
4203 }
4204 module_init(proc_modules_init);
4205 #endif
4206
4207 /* Given an address, look for it in the module exception tables. */
4208 const struct exception_table_entry *search_module_extables(unsigned long addr)
4209 {
4210 const struct exception_table_entry *e = NULL;
4211 struct module *mod;
4212
4213 preempt_disable();
4214 mod = __module_address(addr);
4215 if (!mod)
4216 goto out;
4217
4218 if (!mod->num_exentries)
4219 goto out;
4220
4221 e = search_extable(mod->extable,
4222 mod->num_exentries,
4223 addr);
4224 out:
4225 preempt_enable();
4226
4227 /*
4228 * Now, if we found one, we are running inside it now, hence
4229 * we cannot unload the module, hence no refcnt needed.
4230 */
4231 return e;
4232 }
4233
4234 /*
4235 * is_module_address - is this address inside a module?
4236 * @addr: the address to check.
4237 *
4238 * See is_module_text_address() if you simply want to see if the address
4239 * is code (not data).
4240 */
4241 bool is_module_address(unsigned long addr)
4242 {
4243 bool ret;
4244
4245 preempt_disable();
4246 ret = __module_address(addr) != NULL;
4247 preempt_enable();
4248
4249 return ret;
4250 }
4251
4252 /*
4253 * __module_address - get the module which contains an address.
4254 * @addr: the address.
4255 *
4256 * Must be called with preempt disabled or module mutex held so that
4257 * module doesn't get freed during this.
4258 */
4259 struct module *__module_address(unsigned long addr)
4260 {
4261 struct module *mod;
4262
4263 if (addr < module_addr_min || addr > module_addr_max)
4264 return NULL;
4265
4266 module_assert_mutex_or_preempt();
4267
4268 mod = mod_find(addr);
4269 if (mod) {
4270 BUG_ON(!within_module(addr, mod));
4271 if (mod->state == MODULE_STATE_UNFORMED)
4272 mod = NULL;
4273 }
4274 return mod;
4275 }
4276 EXPORT_SYMBOL_GPL(__module_address);
4277
4278 /*
4279 * is_module_text_address - is this address inside module code?
4280 * @addr: the address to check.
4281 *
4282 * See is_module_address() if you simply want to see if the address is
4283 * anywhere in a module. See kernel_text_address() for testing if an
4284 * address corresponds to kernel or module code.
4285 */
4286 bool is_module_text_address(unsigned long addr)
4287 {
4288 bool ret;
4289
4290 preempt_disable();
4291 ret = __module_text_address(addr) != NULL;
4292 preempt_enable();
4293
4294 return ret;
4295 }
4296
4297 /*
4298 * __module_text_address - get the module whose code contains an address.
4299 * @addr: the address.
4300 *
4301 * Must be called with preempt disabled or module mutex held so that
4302 * module doesn't get freed during this.
4303 */
4304 struct module *__module_text_address(unsigned long addr)
4305 {
4306 struct module *mod = __module_address(addr);
4307 if (mod) {
4308 /* Make sure it's within the text section. */
4309 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4310 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4311 mod = NULL;
4312 }
4313 return mod;
4314 }
4315 EXPORT_SYMBOL_GPL(__module_text_address);
4316
4317 /* Don't grab lock, we're oopsing. */
4318 void print_modules(void)
4319 {
4320 struct module *mod;
4321 char buf[MODULE_FLAGS_BUF_SIZE];
4322
4323 printk(KERN_DEFAULT "Modules linked in:");
4324 /* Most callers should already have preempt disabled, but make sure */
4325 preempt_disable();
4326 list_for_each_entry_rcu(mod, &modules, list) {
4327 if (mod->state == MODULE_STATE_UNFORMED)
4328 continue;
4329 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4330 }
4331 preempt_enable();
4332 if (last_unloaded_module[0])
4333 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4334 pr_cont("\n");
4335 }
4336
4337 #ifdef CONFIG_MODVERSIONS
4338 /* Generate the signature for all relevant module structures here.
4339 * If these change, we don't want to try to parse the module. */
4340 void module_layout(struct module *mod,
4341 struct modversion_info *ver,
4342 struct kernel_param *kp,
4343 struct kernel_symbol *ks,
4344 struct tracepoint * const *tp)
4345 {
4346 }
4347 EXPORT_SYMBOL(module_layout);
4348 #endif