]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/printk/printk.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek...
[mirror_ubuntu-artful-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61
62 int console_printk[4] = {
63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
67 };
68
69 /*
70 * Low level drivers may need that to know if they can schedule in
71 * their unblank() callback or not. So let's export it.
72 */
73 int oops_in_progress;
74 EXPORT_SYMBOL(oops_in_progress);
75
76 /*
77 * console_sem protects the console_drivers list, and also
78 * provides serialisation for access to the entire console
79 * driver system.
80 */
81 static DEFINE_SEMAPHORE(console_sem);
82 struct console *console_drivers;
83 EXPORT_SYMBOL_GPL(console_drivers);
84
85 #ifdef CONFIG_LOCKDEP
86 static struct lockdep_map console_lock_dep_map = {
87 .name = "console_lock"
88 };
89 #endif
90
91 enum devkmsg_log_bits {
92 __DEVKMSG_LOG_BIT_ON = 0,
93 __DEVKMSG_LOG_BIT_OFF,
94 __DEVKMSG_LOG_BIT_LOCK,
95 };
96
97 enum devkmsg_log_masks {
98 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
99 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
100 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
101 };
102
103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
104 #define DEVKMSG_LOG_MASK_DEFAULT 0
105
106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
107
108 static int __control_devkmsg(char *str)
109 {
110 if (!str)
111 return -EINVAL;
112
113 if (!strncmp(str, "on", 2)) {
114 devkmsg_log = DEVKMSG_LOG_MASK_ON;
115 return 2;
116 } else if (!strncmp(str, "off", 3)) {
117 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
118 return 3;
119 } else if (!strncmp(str, "ratelimit", 9)) {
120 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 return 9;
122 }
123 return -EINVAL;
124 }
125
126 static int __init control_devkmsg(char *str)
127 {
128 if (__control_devkmsg(str) < 0)
129 return 1;
130
131 /*
132 * Set sysctl string accordingly:
133 */
134 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 strncpy(devkmsg_log_str, "on", 2);
137 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
138 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
139 strncpy(devkmsg_log_str, "off", 3);
140 }
141 /* else "ratelimit" which is set by default. */
142
143 /*
144 * Sysctl cannot change it anymore. The kernel command line setting of
145 * this parameter is to force the setting to be permanent throughout the
146 * runtime of the system. This is a precation measure against userspace
147 * trying to be a smarta** and attempting to change it up on us.
148 */
149 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150
151 return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156
157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 char old_str[DEVKMSG_STR_MAX_SIZE];
161 unsigned int old;
162 int err;
163
164 if (write) {
165 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 return -EINVAL;
167
168 old = devkmsg_log;
169 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 }
171
172 err = proc_dostring(table, write, buffer, lenp, ppos);
173 if (err)
174 return err;
175
176 if (write) {
177 err = __control_devkmsg(devkmsg_log_str);
178
179 /*
180 * Do not accept an unknown string OR a known string with
181 * trailing crap...
182 */
183 if (err < 0 || (err + 1 != *lenp)) {
184
185 /* ... and restore old setting. */
186 devkmsg_log = old;
187 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188
189 return -EINVAL;
190 }
191 }
192
193 return 0;
194 }
195
196 /*
197 * Number of registered extended console drivers.
198 *
199 * If extended consoles are present, in-kernel cont reassembly is disabled
200 * and each fragment is stored as a separate log entry with proper
201 * continuation flag so that every emitted message has full metadata. This
202 * doesn't change the result for regular consoles or /proc/kmsg. For
203 * /dev/kmsg, as long as the reader concatenates messages according to
204 * consecutive continuation flags, the end result should be the same too.
205 */
206 static int nr_ext_console_drivers;
207
208 /*
209 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
210 * macros instead of functions so that _RET_IP_ contains useful information.
211 */
212 #define down_console_sem() do { \
213 down(&console_sem);\
214 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
215 } while (0)
216
217 static int __down_trylock_console_sem(unsigned long ip)
218 {
219 int lock_failed;
220 unsigned long flags;
221
222 /*
223 * Here and in __up_console_sem() we need to be in safe mode,
224 * because spindump/WARN/etc from under console ->lock will
225 * deadlock in printk()->down_trylock_console_sem() otherwise.
226 */
227 printk_safe_enter_irqsave(flags);
228 lock_failed = down_trylock(&console_sem);
229 printk_safe_exit_irqrestore(flags);
230
231 if (lock_failed)
232 return 1;
233 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
234 return 0;
235 }
236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
237
238 static void __up_console_sem(unsigned long ip)
239 {
240 unsigned long flags;
241
242 mutex_release(&console_lock_dep_map, 1, ip);
243
244 printk_safe_enter_irqsave(flags);
245 up(&console_sem);
246 printk_safe_exit_irqrestore(flags);
247 }
248 #define up_console_sem() __up_console_sem(_RET_IP_)
249
250 /*
251 * This is used for debugging the mess that is the VT code by
252 * keeping track if we have the console semaphore held. It's
253 * definitely not the perfect debug tool (we don't know if _WE_
254 * hold it and are racing, but it helps tracking those weird code
255 * paths in the console code where we end up in places I want
256 * locked without the console sempahore held).
257 */
258 static int console_locked, console_suspended;
259
260 /*
261 * If exclusive_console is non-NULL then only this console is to be printed to.
262 */
263 static struct console *exclusive_console;
264
265 /*
266 * Array of consoles built from command line options (console=)
267 */
268
269 #define MAX_CMDLINECONSOLES 8
270
271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
272 static int console_cmdline_cnt;
273
274 static int preferred_console = -1;
275 int console_set_on_cmdline;
276 EXPORT_SYMBOL(console_set_on_cmdline);
277
278 /* Flag: console code may call schedule() */
279 static int console_may_schedule;
280
281 /*
282 * The printk log buffer consists of a chain of concatenated variable
283 * length records. Every record starts with a record header, containing
284 * the overall length of the record.
285 *
286 * The heads to the first and last entry in the buffer, as well as the
287 * sequence numbers of these entries are maintained when messages are
288 * stored.
289 *
290 * If the heads indicate available messages, the length in the header
291 * tells the start next message. A length == 0 for the next message
292 * indicates a wrap-around to the beginning of the buffer.
293 *
294 * Every record carries the monotonic timestamp in microseconds, as well as
295 * the standard userspace syslog level and syslog facility. The usual
296 * kernel messages use LOG_KERN; userspace-injected messages always carry
297 * a matching syslog facility, by default LOG_USER. The origin of every
298 * message can be reliably determined that way.
299 *
300 * The human readable log message directly follows the message header. The
301 * length of the message text is stored in the header, the stored message
302 * is not terminated.
303 *
304 * Optionally, a message can carry a dictionary of properties (key/value pairs),
305 * to provide userspace with a machine-readable message context.
306 *
307 * Examples for well-defined, commonly used property names are:
308 * DEVICE=b12:8 device identifier
309 * b12:8 block dev_t
310 * c127:3 char dev_t
311 * n8 netdev ifindex
312 * +sound:card0 subsystem:devname
313 * SUBSYSTEM=pci driver-core subsystem name
314 *
315 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
316 * follows directly after a '=' character. Every property is terminated by
317 * a '\0' character. The last property is not terminated.
318 *
319 * Example of a message structure:
320 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
321 * 0008 34 00 record is 52 bytes long
322 * 000a 0b 00 text is 11 bytes long
323 * 000c 1f 00 dictionary is 23 bytes long
324 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
325 * 0010 69 74 27 73 20 61 20 6c "it's a l"
326 * 69 6e 65 "ine"
327 * 001b 44 45 56 49 43 "DEVIC"
328 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
329 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
330 * 67 "g"
331 * 0032 00 00 00 padding to next message header
332 *
333 * The 'struct printk_log' buffer header must never be directly exported to
334 * userspace, it is a kernel-private implementation detail that might
335 * need to be changed in the future, when the requirements change.
336 *
337 * /dev/kmsg exports the structured data in the following line format:
338 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
339 *
340 * Users of the export format should ignore possible additional values
341 * separated by ',', and find the message after the ';' character.
342 *
343 * The optional key/value pairs are attached as continuation lines starting
344 * with a space character and terminated by a newline. All possible
345 * non-prinatable characters are escaped in the "\xff" notation.
346 */
347
348 enum log_flags {
349 LOG_NOCONS = 1, /* already flushed, do not print to console */
350 LOG_NEWLINE = 2, /* text ended with a newline */
351 LOG_PREFIX = 4, /* text started with a prefix */
352 LOG_CONT = 8, /* text is a fragment of a continuation line */
353 };
354
355 struct printk_log {
356 u64 ts_nsec; /* timestamp in nanoseconds */
357 u16 len; /* length of entire record */
358 u16 text_len; /* length of text buffer */
359 u16 dict_len; /* length of dictionary buffer */
360 u8 facility; /* syslog facility */
361 u8 flags:5; /* internal record flags */
362 u8 level:3; /* syslog level */
363 }
364 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
365 __packed __aligned(4)
366 #endif
367 ;
368
369 /*
370 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
371 * within the scheduler's rq lock. It must be released before calling
372 * console_unlock() or anything else that might wake up a process.
373 */
374 DEFINE_RAW_SPINLOCK(logbuf_lock);
375
376 /*
377 * Helper macros to lock/unlock logbuf_lock and switch between
378 * printk-safe/unsafe modes.
379 */
380 #define logbuf_lock_irq() \
381 do { \
382 printk_safe_enter_irq(); \
383 raw_spin_lock(&logbuf_lock); \
384 } while (0)
385
386 #define logbuf_unlock_irq() \
387 do { \
388 raw_spin_unlock(&logbuf_lock); \
389 printk_safe_exit_irq(); \
390 } while (0)
391
392 #define logbuf_lock_irqsave(flags) \
393 do { \
394 printk_safe_enter_irqsave(flags); \
395 raw_spin_lock(&logbuf_lock); \
396 } while (0)
397
398 #define logbuf_unlock_irqrestore(flags) \
399 do { \
400 raw_spin_unlock(&logbuf_lock); \
401 printk_safe_exit_irqrestore(flags); \
402 } while (0)
403
404 #ifdef CONFIG_PRINTK
405 DECLARE_WAIT_QUEUE_HEAD(log_wait);
406 /* the next printk record to read by syslog(READ) or /proc/kmsg */
407 static u64 syslog_seq;
408 static u32 syslog_idx;
409 static size_t syslog_partial;
410
411 /* index and sequence number of the first record stored in the buffer */
412 static u64 log_first_seq;
413 static u32 log_first_idx;
414
415 /* index and sequence number of the next record to store in the buffer */
416 static u64 log_next_seq;
417 static u32 log_next_idx;
418
419 /* the next printk record to write to the console */
420 static u64 console_seq;
421 static u32 console_idx;
422
423 /* the next printk record to read after the last 'clear' command */
424 static u64 clear_seq;
425 static u32 clear_idx;
426
427 #define PREFIX_MAX 32
428 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
429
430 #define LOG_LEVEL(v) ((v) & 0x07)
431 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
432
433 /* record buffer */
434 #define LOG_ALIGN __alignof__(struct printk_log)
435 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
436 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
437 static char *log_buf = __log_buf;
438 static u32 log_buf_len = __LOG_BUF_LEN;
439
440 /* Return log buffer address */
441 char *log_buf_addr_get(void)
442 {
443 return log_buf;
444 }
445
446 /* Return log buffer size */
447 u32 log_buf_len_get(void)
448 {
449 return log_buf_len;
450 }
451
452 /* human readable text of the record */
453 static char *log_text(const struct printk_log *msg)
454 {
455 return (char *)msg + sizeof(struct printk_log);
456 }
457
458 /* optional key/value pair dictionary attached to the record */
459 static char *log_dict(const struct printk_log *msg)
460 {
461 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
462 }
463
464 /* get record by index; idx must point to valid msg */
465 static struct printk_log *log_from_idx(u32 idx)
466 {
467 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
468
469 /*
470 * A length == 0 record is the end of buffer marker. Wrap around and
471 * read the message at the start of the buffer.
472 */
473 if (!msg->len)
474 return (struct printk_log *)log_buf;
475 return msg;
476 }
477
478 /* get next record; idx must point to valid msg */
479 static u32 log_next(u32 idx)
480 {
481 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
482
483 /* length == 0 indicates the end of the buffer; wrap */
484 /*
485 * A length == 0 record is the end of buffer marker. Wrap around and
486 * read the message at the start of the buffer as *this* one, and
487 * return the one after that.
488 */
489 if (!msg->len) {
490 msg = (struct printk_log *)log_buf;
491 return msg->len;
492 }
493 return idx + msg->len;
494 }
495
496 /*
497 * Check whether there is enough free space for the given message.
498 *
499 * The same values of first_idx and next_idx mean that the buffer
500 * is either empty or full.
501 *
502 * If the buffer is empty, we must respect the position of the indexes.
503 * They cannot be reset to the beginning of the buffer.
504 */
505 static int logbuf_has_space(u32 msg_size, bool empty)
506 {
507 u32 free;
508
509 if (log_next_idx > log_first_idx || empty)
510 free = max(log_buf_len - log_next_idx, log_first_idx);
511 else
512 free = log_first_idx - log_next_idx;
513
514 /*
515 * We need space also for an empty header that signalizes wrapping
516 * of the buffer.
517 */
518 return free >= msg_size + sizeof(struct printk_log);
519 }
520
521 static int log_make_free_space(u32 msg_size)
522 {
523 while (log_first_seq < log_next_seq &&
524 !logbuf_has_space(msg_size, false)) {
525 /* drop old messages until we have enough contiguous space */
526 log_first_idx = log_next(log_first_idx);
527 log_first_seq++;
528 }
529
530 if (clear_seq < log_first_seq) {
531 clear_seq = log_first_seq;
532 clear_idx = log_first_idx;
533 }
534
535 /* sequence numbers are equal, so the log buffer is empty */
536 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
537 return 0;
538
539 return -ENOMEM;
540 }
541
542 /* compute the message size including the padding bytes */
543 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
544 {
545 u32 size;
546
547 size = sizeof(struct printk_log) + text_len + dict_len;
548 *pad_len = (-size) & (LOG_ALIGN - 1);
549 size += *pad_len;
550
551 return size;
552 }
553
554 /*
555 * Define how much of the log buffer we could take at maximum. The value
556 * must be greater than two. Note that only half of the buffer is available
557 * when the index points to the middle.
558 */
559 #define MAX_LOG_TAKE_PART 4
560 static const char trunc_msg[] = "<truncated>";
561
562 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
563 u16 *dict_len, u32 *pad_len)
564 {
565 /*
566 * The message should not take the whole buffer. Otherwise, it might
567 * get removed too soon.
568 */
569 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
570 if (*text_len > max_text_len)
571 *text_len = max_text_len;
572 /* enable the warning message */
573 *trunc_msg_len = strlen(trunc_msg);
574 /* disable the "dict" completely */
575 *dict_len = 0;
576 /* compute the size again, count also the warning message */
577 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
578 }
579
580 /* insert record into the buffer, discard old ones, update heads */
581 static int log_store(int facility, int level,
582 enum log_flags flags, u64 ts_nsec,
583 const char *dict, u16 dict_len,
584 const char *text, u16 text_len)
585 {
586 struct printk_log *msg;
587 u32 size, pad_len;
588 u16 trunc_msg_len = 0;
589
590 /* number of '\0' padding bytes to next message */
591 size = msg_used_size(text_len, dict_len, &pad_len);
592
593 if (log_make_free_space(size)) {
594 /* truncate the message if it is too long for empty buffer */
595 size = truncate_msg(&text_len, &trunc_msg_len,
596 &dict_len, &pad_len);
597 /* survive when the log buffer is too small for trunc_msg */
598 if (log_make_free_space(size))
599 return 0;
600 }
601
602 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
603 /*
604 * This message + an additional empty header does not fit
605 * at the end of the buffer. Add an empty header with len == 0
606 * to signify a wrap around.
607 */
608 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
609 log_next_idx = 0;
610 }
611
612 /* fill message */
613 msg = (struct printk_log *)(log_buf + log_next_idx);
614 memcpy(log_text(msg), text, text_len);
615 msg->text_len = text_len;
616 if (trunc_msg_len) {
617 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
618 msg->text_len += trunc_msg_len;
619 }
620 memcpy(log_dict(msg), dict, dict_len);
621 msg->dict_len = dict_len;
622 msg->facility = facility;
623 msg->level = level & 7;
624 msg->flags = flags & 0x1f;
625 if (ts_nsec > 0)
626 msg->ts_nsec = ts_nsec;
627 else
628 msg->ts_nsec = local_clock();
629 memset(log_dict(msg) + dict_len, 0, pad_len);
630 msg->len = size;
631
632 /* insert message */
633 log_next_idx += msg->len;
634 log_next_seq++;
635
636 return msg->text_len;
637 }
638
639 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
640
641 static int syslog_action_restricted(int type)
642 {
643 if (dmesg_restrict)
644 return 1;
645 /*
646 * Unless restricted, we allow "read all" and "get buffer size"
647 * for everybody.
648 */
649 return type != SYSLOG_ACTION_READ_ALL &&
650 type != SYSLOG_ACTION_SIZE_BUFFER;
651 }
652
653 int check_syslog_permissions(int type, int source)
654 {
655 /*
656 * If this is from /proc/kmsg and we've already opened it, then we've
657 * already done the capabilities checks at open time.
658 */
659 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
660 goto ok;
661
662 if (syslog_action_restricted(type)) {
663 if (capable(CAP_SYSLOG))
664 goto ok;
665 /*
666 * For historical reasons, accept CAP_SYS_ADMIN too, with
667 * a warning.
668 */
669 if (capable(CAP_SYS_ADMIN)) {
670 pr_warn_once("%s (%d): Attempt to access syslog with "
671 "CAP_SYS_ADMIN but no CAP_SYSLOG "
672 "(deprecated).\n",
673 current->comm, task_pid_nr(current));
674 goto ok;
675 }
676 return -EPERM;
677 }
678 ok:
679 return security_syslog(type);
680 }
681 EXPORT_SYMBOL_GPL(check_syslog_permissions);
682
683 static void append_char(char **pp, char *e, char c)
684 {
685 if (*pp < e)
686 *(*pp)++ = c;
687 }
688
689 static ssize_t msg_print_ext_header(char *buf, size_t size,
690 struct printk_log *msg, u64 seq)
691 {
692 u64 ts_usec = msg->ts_nsec;
693
694 do_div(ts_usec, 1000);
695
696 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
697 (msg->facility << 3) | msg->level, seq, ts_usec,
698 msg->flags & LOG_CONT ? 'c' : '-');
699 }
700
701 static ssize_t msg_print_ext_body(char *buf, size_t size,
702 char *dict, size_t dict_len,
703 char *text, size_t text_len)
704 {
705 char *p = buf, *e = buf + size;
706 size_t i;
707
708 /* escape non-printable characters */
709 for (i = 0; i < text_len; i++) {
710 unsigned char c = text[i];
711
712 if (c < ' ' || c >= 127 || c == '\\')
713 p += scnprintf(p, e - p, "\\x%02x", c);
714 else
715 append_char(&p, e, c);
716 }
717 append_char(&p, e, '\n');
718
719 if (dict_len) {
720 bool line = true;
721
722 for (i = 0; i < dict_len; i++) {
723 unsigned char c = dict[i];
724
725 if (line) {
726 append_char(&p, e, ' ');
727 line = false;
728 }
729
730 if (c == '\0') {
731 append_char(&p, e, '\n');
732 line = true;
733 continue;
734 }
735
736 if (c < ' ' || c >= 127 || c == '\\') {
737 p += scnprintf(p, e - p, "\\x%02x", c);
738 continue;
739 }
740
741 append_char(&p, e, c);
742 }
743 append_char(&p, e, '\n');
744 }
745
746 return p - buf;
747 }
748
749 /* /dev/kmsg - userspace message inject/listen interface */
750 struct devkmsg_user {
751 u64 seq;
752 u32 idx;
753 struct ratelimit_state rs;
754 struct mutex lock;
755 char buf[CONSOLE_EXT_LOG_MAX];
756 };
757
758 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
759 {
760 char *buf, *line;
761 int level = default_message_loglevel;
762 int facility = 1; /* LOG_USER */
763 struct file *file = iocb->ki_filp;
764 struct devkmsg_user *user = file->private_data;
765 size_t len = iov_iter_count(from);
766 ssize_t ret = len;
767
768 if (!user || len > LOG_LINE_MAX)
769 return -EINVAL;
770
771 /* Ignore when user logging is disabled. */
772 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
773 return len;
774
775 /* Ratelimit when not explicitly enabled. */
776 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
777 if (!___ratelimit(&user->rs, current->comm))
778 return ret;
779 }
780
781 buf = kmalloc(len+1, GFP_KERNEL);
782 if (buf == NULL)
783 return -ENOMEM;
784
785 buf[len] = '\0';
786 if (!copy_from_iter_full(buf, len, from)) {
787 kfree(buf);
788 return -EFAULT;
789 }
790
791 /*
792 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
793 * the decimal value represents 32bit, the lower 3 bit are the log
794 * level, the rest are the log facility.
795 *
796 * If no prefix or no userspace facility is specified, we
797 * enforce LOG_USER, to be able to reliably distinguish
798 * kernel-generated messages from userspace-injected ones.
799 */
800 line = buf;
801 if (line[0] == '<') {
802 char *endp = NULL;
803 unsigned int u;
804
805 u = simple_strtoul(line + 1, &endp, 10);
806 if (endp && endp[0] == '>') {
807 level = LOG_LEVEL(u);
808 if (LOG_FACILITY(u) != 0)
809 facility = LOG_FACILITY(u);
810 endp++;
811 len -= endp - line;
812 line = endp;
813 }
814 }
815
816 printk_emit(facility, level, NULL, 0, "%s", line);
817 kfree(buf);
818 return ret;
819 }
820
821 static ssize_t devkmsg_read(struct file *file, char __user *buf,
822 size_t count, loff_t *ppos)
823 {
824 struct devkmsg_user *user = file->private_data;
825 struct printk_log *msg;
826 size_t len;
827 ssize_t ret;
828
829 if (!user)
830 return -EBADF;
831
832 ret = mutex_lock_interruptible(&user->lock);
833 if (ret)
834 return ret;
835
836 logbuf_lock_irq();
837 while (user->seq == log_next_seq) {
838 if (file->f_flags & O_NONBLOCK) {
839 ret = -EAGAIN;
840 logbuf_unlock_irq();
841 goto out;
842 }
843
844 logbuf_unlock_irq();
845 ret = wait_event_interruptible(log_wait,
846 user->seq != log_next_seq);
847 if (ret)
848 goto out;
849 logbuf_lock_irq();
850 }
851
852 if (user->seq < log_first_seq) {
853 /* our last seen message is gone, return error and reset */
854 user->idx = log_first_idx;
855 user->seq = log_first_seq;
856 ret = -EPIPE;
857 logbuf_unlock_irq();
858 goto out;
859 }
860
861 msg = log_from_idx(user->idx);
862 len = msg_print_ext_header(user->buf, sizeof(user->buf),
863 msg, user->seq);
864 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
865 log_dict(msg), msg->dict_len,
866 log_text(msg), msg->text_len);
867
868 user->idx = log_next(user->idx);
869 user->seq++;
870 logbuf_unlock_irq();
871
872 if (len > count) {
873 ret = -EINVAL;
874 goto out;
875 }
876
877 if (copy_to_user(buf, user->buf, len)) {
878 ret = -EFAULT;
879 goto out;
880 }
881 ret = len;
882 out:
883 mutex_unlock(&user->lock);
884 return ret;
885 }
886
887 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
888 {
889 struct devkmsg_user *user = file->private_data;
890 loff_t ret = 0;
891
892 if (!user)
893 return -EBADF;
894 if (offset)
895 return -ESPIPE;
896
897 logbuf_lock_irq();
898 switch (whence) {
899 case SEEK_SET:
900 /* the first record */
901 user->idx = log_first_idx;
902 user->seq = log_first_seq;
903 break;
904 case SEEK_DATA:
905 /*
906 * The first record after the last SYSLOG_ACTION_CLEAR,
907 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
908 * changes no global state, and does not clear anything.
909 */
910 user->idx = clear_idx;
911 user->seq = clear_seq;
912 break;
913 case SEEK_END:
914 /* after the last record */
915 user->idx = log_next_idx;
916 user->seq = log_next_seq;
917 break;
918 default:
919 ret = -EINVAL;
920 }
921 logbuf_unlock_irq();
922 return ret;
923 }
924
925 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
926 {
927 struct devkmsg_user *user = file->private_data;
928 int ret = 0;
929
930 if (!user)
931 return POLLERR|POLLNVAL;
932
933 poll_wait(file, &log_wait, wait);
934
935 logbuf_lock_irq();
936 if (user->seq < log_next_seq) {
937 /* return error when data has vanished underneath us */
938 if (user->seq < log_first_seq)
939 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
940 else
941 ret = POLLIN|POLLRDNORM;
942 }
943 logbuf_unlock_irq();
944
945 return ret;
946 }
947
948 static int devkmsg_open(struct inode *inode, struct file *file)
949 {
950 struct devkmsg_user *user;
951 int err;
952
953 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
954 return -EPERM;
955
956 /* write-only does not need any file context */
957 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
958 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
959 SYSLOG_FROM_READER);
960 if (err)
961 return err;
962 }
963
964 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
965 if (!user)
966 return -ENOMEM;
967
968 ratelimit_default_init(&user->rs);
969 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
970
971 mutex_init(&user->lock);
972
973 logbuf_lock_irq();
974 user->idx = log_first_idx;
975 user->seq = log_first_seq;
976 logbuf_unlock_irq();
977
978 file->private_data = user;
979 return 0;
980 }
981
982 static int devkmsg_release(struct inode *inode, struct file *file)
983 {
984 struct devkmsg_user *user = file->private_data;
985
986 if (!user)
987 return 0;
988
989 ratelimit_state_exit(&user->rs);
990
991 mutex_destroy(&user->lock);
992 kfree(user);
993 return 0;
994 }
995
996 const struct file_operations kmsg_fops = {
997 .open = devkmsg_open,
998 .read = devkmsg_read,
999 .write_iter = devkmsg_write,
1000 .llseek = devkmsg_llseek,
1001 .poll = devkmsg_poll,
1002 .release = devkmsg_release,
1003 };
1004
1005 #ifdef CONFIG_KEXEC_CORE
1006 /*
1007 * This appends the listed symbols to /proc/vmcore
1008 *
1009 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1010 * obtain access to symbols that are otherwise very difficult to locate. These
1011 * symbols are specifically used so that utilities can access and extract the
1012 * dmesg log from a vmcore file after a crash.
1013 */
1014 void log_buf_kexec_setup(void)
1015 {
1016 VMCOREINFO_SYMBOL(log_buf);
1017 VMCOREINFO_SYMBOL(log_buf_len);
1018 VMCOREINFO_SYMBOL(log_first_idx);
1019 VMCOREINFO_SYMBOL(clear_idx);
1020 VMCOREINFO_SYMBOL(log_next_idx);
1021 /*
1022 * Export struct printk_log size and field offsets. User space tools can
1023 * parse it and detect any changes to structure down the line.
1024 */
1025 VMCOREINFO_STRUCT_SIZE(printk_log);
1026 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1027 VMCOREINFO_OFFSET(printk_log, len);
1028 VMCOREINFO_OFFSET(printk_log, text_len);
1029 VMCOREINFO_OFFSET(printk_log, dict_len);
1030 }
1031 #endif
1032
1033 /* requested log_buf_len from kernel cmdline */
1034 static unsigned long __initdata new_log_buf_len;
1035
1036 /* we practice scaling the ring buffer by powers of 2 */
1037 static void __init log_buf_len_update(unsigned size)
1038 {
1039 if (size)
1040 size = roundup_pow_of_two(size);
1041 if (size > log_buf_len)
1042 new_log_buf_len = size;
1043 }
1044
1045 /* save requested log_buf_len since it's too early to process it */
1046 static int __init log_buf_len_setup(char *str)
1047 {
1048 unsigned size = memparse(str, &str);
1049
1050 log_buf_len_update(size);
1051
1052 return 0;
1053 }
1054 early_param("log_buf_len", log_buf_len_setup);
1055
1056 #ifdef CONFIG_SMP
1057 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1058
1059 static void __init log_buf_add_cpu(void)
1060 {
1061 unsigned int cpu_extra;
1062
1063 /*
1064 * archs should set up cpu_possible_bits properly with
1065 * set_cpu_possible() after setup_arch() but just in
1066 * case lets ensure this is valid.
1067 */
1068 if (num_possible_cpus() == 1)
1069 return;
1070
1071 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1072
1073 /* by default this will only continue through for large > 64 CPUs */
1074 if (cpu_extra <= __LOG_BUF_LEN / 2)
1075 return;
1076
1077 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1078 __LOG_CPU_MAX_BUF_LEN);
1079 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1080 cpu_extra);
1081 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1082
1083 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1084 }
1085 #else /* !CONFIG_SMP */
1086 static inline void log_buf_add_cpu(void) {}
1087 #endif /* CONFIG_SMP */
1088
1089 void __init setup_log_buf(int early)
1090 {
1091 unsigned long flags;
1092 char *new_log_buf;
1093 int free;
1094
1095 if (log_buf != __log_buf)
1096 return;
1097
1098 if (!early && !new_log_buf_len)
1099 log_buf_add_cpu();
1100
1101 if (!new_log_buf_len)
1102 return;
1103
1104 if (early) {
1105 new_log_buf =
1106 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1107 } else {
1108 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1109 LOG_ALIGN);
1110 }
1111
1112 if (unlikely(!new_log_buf)) {
1113 pr_err("log_buf_len: %ld bytes not available\n",
1114 new_log_buf_len);
1115 return;
1116 }
1117
1118 logbuf_lock_irqsave(flags);
1119 log_buf_len = new_log_buf_len;
1120 log_buf = new_log_buf;
1121 new_log_buf_len = 0;
1122 free = __LOG_BUF_LEN - log_next_idx;
1123 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1124 logbuf_unlock_irqrestore(flags);
1125
1126 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1127 pr_info("early log buf free: %d(%d%%)\n",
1128 free, (free * 100) / __LOG_BUF_LEN);
1129 }
1130
1131 static bool __read_mostly ignore_loglevel;
1132
1133 static int __init ignore_loglevel_setup(char *str)
1134 {
1135 ignore_loglevel = true;
1136 pr_info("debug: ignoring loglevel setting.\n");
1137
1138 return 0;
1139 }
1140
1141 early_param("ignore_loglevel", ignore_loglevel_setup);
1142 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1143 MODULE_PARM_DESC(ignore_loglevel,
1144 "ignore loglevel setting (prints all kernel messages to the console)");
1145
1146 static bool suppress_message_printing(int level)
1147 {
1148 return (level >= console_loglevel && !ignore_loglevel);
1149 }
1150
1151 #ifdef CONFIG_BOOT_PRINTK_DELAY
1152
1153 static int boot_delay; /* msecs delay after each printk during bootup */
1154 static unsigned long long loops_per_msec; /* based on boot_delay */
1155
1156 static int __init boot_delay_setup(char *str)
1157 {
1158 unsigned long lpj;
1159
1160 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1161 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1162
1163 get_option(&str, &boot_delay);
1164 if (boot_delay > 10 * 1000)
1165 boot_delay = 0;
1166
1167 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1168 "HZ: %d, loops_per_msec: %llu\n",
1169 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1170 return 0;
1171 }
1172 early_param("boot_delay", boot_delay_setup);
1173
1174 static void boot_delay_msec(int level)
1175 {
1176 unsigned long long k;
1177 unsigned long timeout;
1178
1179 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1180 || suppress_message_printing(level)) {
1181 return;
1182 }
1183
1184 k = (unsigned long long)loops_per_msec * boot_delay;
1185
1186 timeout = jiffies + msecs_to_jiffies(boot_delay);
1187 while (k) {
1188 k--;
1189 cpu_relax();
1190 /*
1191 * use (volatile) jiffies to prevent
1192 * compiler reduction; loop termination via jiffies
1193 * is secondary and may or may not happen.
1194 */
1195 if (time_after(jiffies, timeout))
1196 break;
1197 touch_nmi_watchdog();
1198 }
1199 }
1200 #else
1201 static inline void boot_delay_msec(int level)
1202 {
1203 }
1204 #endif
1205
1206 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1207 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1208
1209 static size_t print_time(u64 ts, char *buf)
1210 {
1211 unsigned long rem_nsec;
1212
1213 if (!printk_time)
1214 return 0;
1215
1216 rem_nsec = do_div(ts, 1000000000);
1217
1218 if (!buf)
1219 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1220
1221 return sprintf(buf, "[%5lu.%06lu] ",
1222 (unsigned long)ts, rem_nsec / 1000);
1223 }
1224
1225 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1226 {
1227 size_t len = 0;
1228 unsigned int prefix = (msg->facility << 3) | msg->level;
1229
1230 if (syslog) {
1231 if (buf) {
1232 len += sprintf(buf, "<%u>", prefix);
1233 } else {
1234 len += 3;
1235 if (prefix > 999)
1236 len += 3;
1237 else if (prefix > 99)
1238 len += 2;
1239 else if (prefix > 9)
1240 len++;
1241 }
1242 }
1243
1244 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1245 return len;
1246 }
1247
1248 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1249 {
1250 const char *text = log_text(msg);
1251 size_t text_size = msg->text_len;
1252 size_t len = 0;
1253
1254 do {
1255 const char *next = memchr(text, '\n', text_size);
1256 size_t text_len;
1257
1258 if (next) {
1259 text_len = next - text;
1260 next++;
1261 text_size -= next - text;
1262 } else {
1263 text_len = text_size;
1264 }
1265
1266 if (buf) {
1267 if (print_prefix(msg, syslog, NULL) +
1268 text_len + 1 >= size - len)
1269 break;
1270
1271 len += print_prefix(msg, syslog, buf + len);
1272 memcpy(buf + len, text, text_len);
1273 len += text_len;
1274 buf[len++] = '\n';
1275 } else {
1276 /* SYSLOG_ACTION_* buffer size only calculation */
1277 len += print_prefix(msg, syslog, NULL);
1278 len += text_len;
1279 len++;
1280 }
1281
1282 text = next;
1283 } while (text);
1284
1285 return len;
1286 }
1287
1288 static int syslog_print(char __user *buf, int size)
1289 {
1290 char *text;
1291 struct printk_log *msg;
1292 int len = 0;
1293
1294 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1295 if (!text)
1296 return -ENOMEM;
1297
1298 while (size > 0) {
1299 size_t n;
1300 size_t skip;
1301
1302 logbuf_lock_irq();
1303 if (syslog_seq < log_first_seq) {
1304 /* messages are gone, move to first one */
1305 syslog_seq = log_first_seq;
1306 syslog_idx = log_first_idx;
1307 syslog_partial = 0;
1308 }
1309 if (syslog_seq == log_next_seq) {
1310 logbuf_unlock_irq();
1311 break;
1312 }
1313
1314 skip = syslog_partial;
1315 msg = log_from_idx(syslog_idx);
1316 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1317 if (n - syslog_partial <= size) {
1318 /* message fits into buffer, move forward */
1319 syslog_idx = log_next(syslog_idx);
1320 syslog_seq++;
1321 n -= syslog_partial;
1322 syslog_partial = 0;
1323 } else if (!len){
1324 /* partial read(), remember position */
1325 n = size;
1326 syslog_partial += n;
1327 } else
1328 n = 0;
1329 logbuf_unlock_irq();
1330
1331 if (!n)
1332 break;
1333
1334 if (copy_to_user(buf, text + skip, n)) {
1335 if (!len)
1336 len = -EFAULT;
1337 break;
1338 }
1339
1340 len += n;
1341 size -= n;
1342 buf += n;
1343 }
1344
1345 kfree(text);
1346 return len;
1347 }
1348
1349 static int syslog_print_all(char __user *buf, int size, bool clear)
1350 {
1351 char *text;
1352 int len = 0;
1353
1354 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1355 if (!text)
1356 return -ENOMEM;
1357
1358 logbuf_lock_irq();
1359 if (buf) {
1360 u64 next_seq;
1361 u64 seq;
1362 u32 idx;
1363
1364 /*
1365 * Find first record that fits, including all following records,
1366 * into the user-provided buffer for this dump.
1367 */
1368 seq = clear_seq;
1369 idx = clear_idx;
1370 while (seq < log_next_seq) {
1371 struct printk_log *msg = log_from_idx(idx);
1372
1373 len += msg_print_text(msg, true, NULL, 0);
1374 idx = log_next(idx);
1375 seq++;
1376 }
1377
1378 /* move first record forward until length fits into the buffer */
1379 seq = clear_seq;
1380 idx = clear_idx;
1381 while (len > size && seq < log_next_seq) {
1382 struct printk_log *msg = log_from_idx(idx);
1383
1384 len -= msg_print_text(msg, true, NULL, 0);
1385 idx = log_next(idx);
1386 seq++;
1387 }
1388
1389 /* last message fitting into this dump */
1390 next_seq = log_next_seq;
1391
1392 len = 0;
1393 while (len >= 0 && seq < next_seq) {
1394 struct printk_log *msg = log_from_idx(idx);
1395 int textlen;
1396
1397 textlen = msg_print_text(msg, true, text,
1398 LOG_LINE_MAX + PREFIX_MAX);
1399 if (textlen < 0) {
1400 len = textlen;
1401 break;
1402 }
1403 idx = log_next(idx);
1404 seq++;
1405
1406 logbuf_unlock_irq();
1407 if (copy_to_user(buf + len, text, textlen))
1408 len = -EFAULT;
1409 else
1410 len += textlen;
1411 logbuf_lock_irq();
1412
1413 if (seq < log_first_seq) {
1414 /* messages are gone, move to next one */
1415 seq = log_first_seq;
1416 idx = log_first_idx;
1417 }
1418 }
1419 }
1420
1421 if (clear) {
1422 clear_seq = log_next_seq;
1423 clear_idx = log_next_idx;
1424 }
1425 logbuf_unlock_irq();
1426
1427 kfree(text);
1428 return len;
1429 }
1430
1431 int do_syslog(int type, char __user *buf, int len, int source)
1432 {
1433 bool clear = false;
1434 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1435 int error;
1436
1437 error = check_syslog_permissions(type, source);
1438 if (error)
1439 goto out;
1440
1441 switch (type) {
1442 case SYSLOG_ACTION_CLOSE: /* Close log */
1443 break;
1444 case SYSLOG_ACTION_OPEN: /* Open log */
1445 break;
1446 case SYSLOG_ACTION_READ: /* Read from log */
1447 error = -EINVAL;
1448 if (!buf || len < 0)
1449 goto out;
1450 error = 0;
1451 if (!len)
1452 goto out;
1453 if (!access_ok(VERIFY_WRITE, buf, len)) {
1454 error = -EFAULT;
1455 goto out;
1456 }
1457 error = wait_event_interruptible(log_wait,
1458 syslog_seq != log_next_seq);
1459 if (error)
1460 goto out;
1461 error = syslog_print(buf, len);
1462 break;
1463 /* Read/clear last kernel messages */
1464 case SYSLOG_ACTION_READ_CLEAR:
1465 clear = true;
1466 /* FALL THRU */
1467 /* Read last kernel messages */
1468 case SYSLOG_ACTION_READ_ALL:
1469 error = -EINVAL;
1470 if (!buf || len < 0)
1471 goto out;
1472 error = 0;
1473 if (!len)
1474 goto out;
1475 if (!access_ok(VERIFY_WRITE, buf, len)) {
1476 error = -EFAULT;
1477 goto out;
1478 }
1479 error = syslog_print_all(buf, len, clear);
1480 break;
1481 /* Clear ring buffer */
1482 case SYSLOG_ACTION_CLEAR:
1483 syslog_print_all(NULL, 0, true);
1484 break;
1485 /* Disable logging to console */
1486 case SYSLOG_ACTION_CONSOLE_OFF:
1487 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1488 saved_console_loglevel = console_loglevel;
1489 console_loglevel = minimum_console_loglevel;
1490 break;
1491 /* Enable logging to console */
1492 case SYSLOG_ACTION_CONSOLE_ON:
1493 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1494 console_loglevel = saved_console_loglevel;
1495 saved_console_loglevel = LOGLEVEL_DEFAULT;
1496 }
1497 break;
1498 /* Set level of messages printed to console */
1499 case SYSLOG_ACTION_CONSOLE_LEVEL:
1500 error = -EINVAL;
1501 if (len < 1 || len > 8)
1502 goto out;
1503 if (len < minimum_console_loglevel)
1504 len = minimum_console_loglevel;
1505 console_loglevel = len;
1506 /* Implicitly re-enable logging to console */
1507 saved_console_loglevel = LOGLEVEL_DEFAULT;
1508 error = 0;
1509 break;
1510 /* Number of chars in the log buffer */
1511 case SYSLOG_ACTION_SIZE_UNREAD:
1512 logbuf_lock_irq();
1513 if (syslog_seq < log_first_seq) {
1514 /* messages are gone, move to first one */
1515 syslog_seq = log_first_seq;
1516 syslog_idx = log_first_idx;
1517 syslog_partial = 0;
1518 }
1519 if (source == SYSLOG_FROM_PROC) {
1520 /*
1521 * Short-cut for poll(/"proc/kmsg") which simply checks
1522 * for pending data, not the size; return the count of
1523 * records, not the length.
1524 */
1525 error = log_next_seq - syslog_seq;
1526 } else {
1527 u64 seq = syslog_seq;
1528 u32 idx = syslog_idx;
1529
1530 error = 0;
1531 while (seq < log_next_seq) {
1532 struct printk_log *msg = log_from_idx(idx);
1533
1534 error += msg_print_text(msg, true, NULL, 0);
1535 idx = log_next(idx);
1536 seq++;
1537 }
1538 error -= syslog_partial;
1539 }
1540 logbuf_unlock_irq();
1541 break;
1542 /* Size of the log buffer */
1543 case SYSLOG_ACTION_SIZE_BUFFER:
1544 error = log_buf_len;
1545 break;
1546 default:
1547 error = -EINVAL;
1548 break;
1549 }
1550 out:
1551 return error;
1552 }
1553
1554 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1555 {
1556 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1557 }
1558
1559 /*
1560 * Call the console drivers, asking them to write out
1561 * log_buf[start] to log_buf[end - 1].
1562 * The console_lock must be held.
1563 */
1564 static void call_console_drivers(const char *ext_text, size_t ext_len,
1565 const char *text, size_t len)
1566 {
1567 struct console *con;
1568
1569 trace_console_rcuidle(text, len);
1570
1571 if (!console_drivers)
1572 return;
1573
1574 for_each_console(con) {
1575 if (exclusive_console && con != exclusive_console)
1576 continue;
1577 if (!(con->flags & CON_ENABLED))
1578 continue;
1579 if (!con->write)
1580 continue;
1581 if (!cpu_online(smp_processor_id()) &&
1582 !(con->flags & CON_ANYTIME))
1583 continue;
1584 if (con->flags & CON_EXTENDED)
1585 con->write(con, ext_text, ext_len);
1586 else
1587 con->write(con, text, len);
1588 }
1589 }
1590
1591 int printk_delay_msec __read_mostly;
1592
1593 static inline void printk_delay(void)
1594 {
1595 if (unlikely(printk_delay_msec)) {
1596 int m = printk_delay_msec;
1597
1598 while (m--) {
1599 mdelay(1);
1600 touch_nmi_watchdog();
1601 }
1602 }
1603 }
1604
1605 /*
1606 * Continuation lines are buffered, and not committed to the record buffer
1607 * until the line is complete, or a race forces it. The line fragments
1608 * though, are printed immediately to the consoles to ensure everything has
1609 * reached the console in case of a kernel crash.
1610 */
1611 static struct cont {
1612 char buf[LOG_LINE_MAX];
1613 size_t len; /* length == 0 means unused buffer */
1614 struct task_struct *owner; /* task of first print*/
1615 u64 ts_nsec; /* time of first print */
1616 u8 level; /* log level of first message */
1617 u8 facility; /* log facility of first message */
1618 enum log_flags flags; /* prefix, newline flags */
1619 } cont;
1620
1621 static void cont_flush(void)
1622 {
1623 if (cont.len == 0)
1624 return;
1625
1626 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1627 NULL, 0, cont.buf, cont.len);
1628 cont.len = 0;
1629 }
1630
1631 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1632 {
1633 /*
1634 * If ext consoles are present, flush and skip in-kernel
1635 * continuation. See nr_ext_console_drivers definition. Also, if
1636 * the line gets too long, split it up in separate records.
1637 */
1638 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1639 cont_flush();
1640 return false;
1641 }
1642
1643 if (!cont.len) {
1644 cont.facility = facility;
1645 cont.level = level;
1646 cont.owner = current;
1647 cont.ts_nsec = local_clock();
1648 cont.flags = flags;
1649 }
1650
1651 memcpy(cont.buf + cont.len, text, len);
1652 cont.len += len;
1653
1654 // The original flags come from the first line,
1655 // but later continuations can add a newline.
1656 if (flags & LOG_NEWLINE) {
1657 cont.flags |= LOG_NEWLINE;
1658 cont_flush();
1659 }
1660
1661 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1662 cont_flush();
1663
1664 return true;
1665 }
1666
1667 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1668 {
1669 /*
1670 * If an earlier line was buffered, and we're a continuation
1671 * write from the same process, try to add it to the buffer.
1672 */
1673 if (cont.len) {
1674 if (cont.owner == current && (lflags & LOG_CONT)) {
1675 if (cont_add(facility, level, lflags, text, text_len))
1676 return text_len;
1677 }
1678 /* Otherwise, make sure it's flushed */
1679 cont_flush();
1680 }
1681
1682 /* Skip empty continuation lines that couldn't be added - they just flush */
1683 if (!text_len && (lflags & LOG_CONT))
1684 return 0;
1685
1686 /* If it doesn't end in a newline, try to buffer the current line */
1687 if (!(lflags & LOG_NEWLINE)) {
1688 if (cont_add(facility, level, lflags, text, text_len))
1689 return text_len;
1690 }
1691
1692 /* Store it in the record log */
1693 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1694 }
1695
1696 asmlinkage int vprintk_emit(int facility, int level,
1697 const char *dict, size_t dictlen,
1698 const char *fmt, va_list args)
1699 {
1700 static char textbuf[LOG_LINE_MAX];
1701 char *text = textbuf;
1702 size_t text_len = 0;
1703 enum log_flags lflags = 0;
1704 unsigned long flags;
1705 int printed_len = 0;
1706 bool in_sched = false;
1707
1708 if (level == LOGLEVEL_SCHED) {
1709 level = LOGLEVEL_DEFAULT;
1710 in_sched = true;
1711 }
1712
1713 boot_delay_msec(level);
1714 printk_delay();
1715
1716 /* This stops the holder of console_sem just where we want him */
1717 logbuf_lock_irqsave(flags);
1718 /*
1719 * The printf needs to come first; we need the syslog
1720 * prefix which might be passed-in as a parameter.
1721 */
1722 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1723
1724 /* mark and strip a trailing newline */
1725 if (text_len && text[text_len-1] == '\n') {
1726 text_len--;
1727 lflags |= LOG_NEWLINE;
1728 }
1729
1730 /* strip kernel syslog prefix and extract log level or control flags */
1731 if (facility == 0) {
1732 int kern_level;
1733
1734 while ((kern_level = printk_get_level(text)) != 0) {
1735 switch (kern_level) {
1736 case '0' ... '7':
1737 if (level == LOGLEVEL_DEFAULT)
1738 level = kern_level - '0';
1739 /* fallthrough */
1740 case 'd': /* KERN_DEFAULT */
1741 lflags |= LOG_PREFIX;
1742 break;
1743 case 'c': /* KERN_CONT */
1744 lflags |= LOG_CONT;
1745 }
1746
1747 text_len -= 2;
1748 text += 2;
1749 }
1750 }
1751
1752 if (level == LOGLEVEL_DEFAULT)
1753 level = default_message_loglevel;
1754
1755 if (dict)
1756 lflags |= LOG_PREFIX|LOG_NEWLINE;
1757
1758 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1759
1760 logbuf_unlock_irqrestore(flags);
1761
1762 /* If called from the scheduler, we can not call up(). */
1763 if (!in_sched) {
1764 /*
1765 * Try to acquire and then immediately release the console
1766 * semaphore. The release will print out buffers and wake up
1767 * /dev/kmsg and syslog() users.
1768 */
1769 if (console_trylock())
1770 console_unlock();
1771 }
1772
1773 return printed_len;
1774 }
1775 EXPORT_SYMBOL(vprintk_emit);
1776
1777 asmlinkage int vprintk(const char *fmt, va_list args)
1778 {
1779 return vprintk_func(fmt, args);
1780 }
1781 EXPORT_SYMBOL(vprintk);
1782
1783 asmlinkage int printk_emit(int facility, int level,
1784 const char *dict, size_t dictlen,
1785 const char *fmt, ...)
1786 {
1787 va_list args;
1788 int r;
1789
1790 va_start(args, fmt);
1791 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1792 va_end(args);
1793
1794 return r;
1795 }
1796 EXPORT_SYMBOL(printk_emit);
1797
1798 int vprintk_default(const char *fmt, va_list args)
1799 {
1800 int r;
1801
1802 #ifdef CONFIG_KGDB_KDB
1803 /* Allow to pass printk() to kdb but avoid a recursion. */
1804 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1805 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1806 return r;
1807 }
1808 #endif
1809 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1810
1811 return r;
1812 }
1813 EXPORT_SYMBOL_GPL(vprintk_default);
1814
1815 /**
1816 * printk - print a kernel message
1817 * @fmt: format string
1818 *
1819 * This is printk(). It can be called from any context. We want it to work.
1820 *
1821 * We try to grab the console_lock. If we succeed, it's easy - we log the
1822 * output and call the console drivers. If we fail to get the semaphore, we
1823 * place the output into the log buffer and return. The current holder of
1824 * the console_sem will notice the new output in console_unlock(); and will
1825 * send it to the consoles before releasing the lock.
1826 *
1827 * One effect of this deferred printing is that code which calls printk() and
1828 * then changes console_loglevel may break. This is because console_loglevel
1829 * is inspected when the actual printing occurs.
1830 *
1831 * See also:
1832 * printf(3)
1833 *
1834 * See the vsnprintf() documentation for format string extensions over C99.
1835 */
1836 asmlinkage __visible int printk(const char *fmt, ...)
1837 {
1838 va_list args;
1839 int r;
1840
1841 va_start(args, fmt);
1842 r = vprintk_func(fmt, args);
1843 va_end(args);
1844
1845 return r;
1846 }
1847 EXPORT_SYMBOL(printk);
1848
1849 #else /* CONFIG_PRINTK */
1850
1851 #define LOG_LINE_MAX 0
1852 #define PREFIX_MAX 0
1853
1854 static u64 syslog_seq;
1855 static u32 syslog_idx;
1856 static u64 console_seq;
1857 static u32 console_idx;
1858 static u64 log_first_seq;
1859 static u32 log_first_idx;
1860 static u64 log_next_seq;
1861 static char *log_text(const struct printk_log *msg) { return NULL; }
1862 static char *log_dict(const struct printk_log *msg) { return NULL; }
1863 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1864 static u32 log_next(u32 idx) { return 0; }
1865 static ssize_t msg_print_ext_header(char *buf, size_t size,
1866 struct printk_log *msg,
1867 u64 seq) { return 0; }
1868 static ssize_t msg_print_ext_body(char *buf, size_t size,
1869 char *dict, size_t dict_len,
1870 char *text, size_t text_len) { return 0; }
1871 static void call_console_drivers(const char *ext_text, size_t ext_len,
1872 const char *text, size_t len) {}
1873 static size_t msg_print_text(const struct printk_log *msg,
1874 bool syslog, char *buf, size_t size) { return 0; }
1875 static bool suppress_message_printing(int level) { return false; }
1876
1877 #endif /* CONFIG_PRINTK */
1878
1879 #ifdef CONFIG_EARLY_PRINTK
1880 struct console *early_console;
1881
1882 asmlinkage __visible void early_printk(const char *fmt, ...)
1883 {
1884 va_list ap;
1885 char buf[512];
1886 int n;
1887
1888 if (!early_console)
1889 return;
1890
1891 va_start(ap, fmt);
1892 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1893 va_end(ap);
1894
1895 early_console->write(early_console, buf, n);
1896 }
1897 #endif
1898
1899 static int __add_preferred_console(char *name, int idx, char *options,
1900 char *brl_options)
1901 {
1902 struct console_cmdline *c;
1903 int i;
1904
1905 /*
1906 * See if this tty is not yet registered, and
1907 * if we have a slot free.
1908 */
1909 for (i = 0, c = console_cmdline; i < console_cmdline_cnt; i++, c++) {
1910 if (strcmp(c->name, name) == 0 && c->index == idx) {
1911 if (brl_options)
1912 return 0;
1913
1914 /*
1915 * Maintain an invariant that will help to find if
1916 * the matching console is preferred, see
1917 * register_console():
1918 *
1919 * The last non-braille console is always
1920 * the preferred one.
1921 */
1922 if (i != console_cmdline_cnt - 1)
1923 swap(console_cmdline[i],
1924 console_cmdline[console_cmdline_cnt - 1]);
1925
1926 preferred_console = console_cmdline_cnt - 1;
1927
1928 return 0;
1929 }
1930 }
1931 if (i == MAX_CMDLINECONSOLES)
1932 return -E2BIG;
1933 if (!brl_options)
1934 preferred_console = i;
1935 strlcpy(c->name, name, sizeof(c->name));
1936 c->options = options;
1937 braille_set_options(c, brl_options);
1938
1939 c->index = idx;
1940 console_cmdline_cnt++;
1941 return 0;
1942 }
1943 /*
1944 * Set up a console. Called via do_early_param() in init/main.c
1945 * for each "console=" parameter in the boot command line.
1946 */
1947 static int __init console_setup(char *str)
1948 {
1949 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1950 char *s, *options, *brl_options = NULL;
1951 int idx;
1952
1953 if (_braille_console_setup(&str, &brl_options))
1954 return 1;
1955
1956 /*
1957 * Decode str into name, index, options.
1958 */
1959 if (str[0] >= '0' && str[0] <= '9') {
1960 strcpy(buf, "ttyS");
1961 strncpy(buf + 4, str, sizeof(buf) - 5);
1962 } else {
1963 strncpy(buf, str, sizeof(buf) - 1);
1964 }
1965 buf[sizeof(buf) - 1] = 0;
1966 options = strchr(str, ',');
1967 if (options)
1968 *(options++) = 0;
1969 #ifdef __sparc__
1970 if (!strcmp(str, "ttya"))
1971 strcpy(buf, "ttyS0");
1972 if (!strcmp(str, "ttyb"))
1973 strcpy(buf, "ttyS1");
1974 #endif
1975 for (s = buf; *s; s++)
1976 if (isdigit(*s) || *s == ',')
1977 break;
1978 idx = simple_strtoul(s, NULL, 10);
1979 *s = 0;
1980
1981 __add_preferred_console(buf, idx, options, brl_options);
1982 console_set_on_cmdline = 1;
1983 return 1;
1984 }
1985 __setup("console=", console_setup);
1986
1987 /**
1988 * add_preferred_console - add a device to the list of preferred consoles.
1989 * @name: device name
1990 * @idx: device index
1991 * @options: options for this console
1992 *
1993 * The last preferred console added will be used for kernel messages
1994 * and stdin/out/err for init. Normally this is used by console_setup
1995 * above to handle user-supplied console arguments; however it can also
1996 * be used by arch-specific code either to override the user or more
1997 * commonly to provide a default console (ie from PROM variables) when
1998 * the user has not supplied one.
1999 */
2000 int add_preferred_console(char *name, int idx, char *options)
2001 {
2002 return __add_preferred_console(name, idx, options, NULL);
2003 }
2004
2005 bool console_suspend_enabled = true;
2006 EXPORT_SYMBOL(console_suspend_enabled);
2007
2008 static int __init console_suspend_disable(char *str)
2009 {
2010 console_suspend_enabled = false;
2011 return 1;
2012 }
2013 __setup("no_console_suspend", console_suspend_disable);
2014 module_param_named(console_suspend, console_suspend_enabled,
2015 bool, S_IRUGO | S_IWUSR);
2016 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2017 " and hibernate operations");
2018
2019 /**
2020 * suspend_console - suspend the console subsystem
2021 *
2022 * This disables printk() while we go into suspend states
2023 */
2024 void suspend_console(void)
2025 {
2026 if (!console_suspend_enabled)
2027 return;
2028 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2029 console_lock();
2030 console_suspended = 1;
2031 up_console_sem();
2032 }
2033
2034 void resume_console(void)
2035 {
2036 if (!console_suspend_enabled)
2037 return;
2038 down_console_sem();
2039 console_suspended = 0;
2040 console_unlock();
2041 }
2042
2043 /**
2044 * console_cpu_notify - print deferred console messages after CPU hotplug
2045 * @cpu: unused
2046 *
2047 * If printk() is called from a CPU that is not online yet, the messages
2048 * will be printed on the console only if there are CON_ANYTIME consoles.
2049 * This function is called when a new CPU comes online (or fails to come
2050 * up) or goes offline.
2051 */
2052 static int console_cpu_notify(unsigned int cpu)
2053 {
2054 if (!cpuhp_tasks_frozen) {
2055 /* If trylock fails, someone else is doing the printing */
2056 if (console_trylock())
2057 console_unlock();
2058 }
2059 return 0;
2060 }
2061
2062 /**
2063 * console_lock - lock the console system for exclusive use.
2064 *
2065 * Acquires a lock which guarantees that the caller has
2066 * exclusive access to the console system and the console_drivers list.
2067 *
2068 * Can sleep, returns nothing.
2069 */
2070 void console_lock(void)
2071 {
2072 might_sleep();
2073
2074 down_console_sem();
2075 if (console_suspended)
2076 return;
2077 console_locked = 1;
2078 console_may_schedule = 1;
2079 }
2080 EXPORT_SYMBOL(console_lock);
2081
2082 /**
2083 * console_trylock - try to lock the console system for exclusive use.
2084 *
2085 * Try to acquire a lock which guarantees that the caller has exclusive
2086 * access to the console system and the console_drivers list.
2087 *
2088 * returns 1 on success, and 0 on failure to acquire the lock.
2089 */
2090 int console_trylock(void)
2091 {
2092 if (down_trylock_console_sem())
2093 return 0;
2094 if (console_suspended) {
2095 up_console_sem();
2096 return 0;
2097 }
2098 console_locked = 1;
2099 /*
2100 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2101 * safe to schedule (e.g. calling printk while holding a spin_lock),
2102 * because preempt_disable()/preempt_enable() are just barriers there
2103 * and preempt_count() is always 0.
2104 *
2105 * RCU read sections have a separate preemption counter when
2106 * PREEMPT_RCU enabled thus we must take extra care and check
2107 * rcu_preempt_depth(), otherwise RCU read sections modify
2108 * preempt_count().
2109 */
2110 console_may_schedule = !oops_in_progress &&
2111 preemptible() &&
2112 !rcu_preempt_depth();
2113 return 1;
2114 }
2115 EXPORT_SYMBOL(console_trylock);
2116
2117 int is_console_locked(void)
2118 {
2119 return console_locked;
2120 }
2121
2122 /*
2123 * Check if we have any console that is capable of printing while cpu is
2124 * booting or shutting down. Requires console_sem.
2125 */
2126 static int have_callable_console(void)
2127 {
2128 struct console *con;
2129
2130 for_each_console(con)
2131 if ((con->flags & CON_ENABLED) &&
2132 (con->flags & CON_ANYTIME))
2133 return 1;
2134
2135 return 0;
2136 }
2137
2138 /*
2139 * Can we actually use the console at this time on this cpu?
2140 *
2141 * Console drivers may assume that per-cpu resources have been allocated. So
2142 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2143 * call them until this CPU is officially up.
2144 */
2145 static inline int can_use_console(void)
2146 {
2147 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2148 }
2149
2150 /**
2151 * console_unlock - unlock the console system
2152 *
2153 * Releases the console_lock which the caller holds on the console system
2154 * and the console driver list.
2155 *
2156 * While the console_lock was held, console output may have been buffered
2157 * by printk(). If this is the case, console_unlock(); emits
2158 * the output prior to releasing the lock.
2159 *
2160 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2161 *
2162 * console_unlock(); may be called from any context.
2163 */
2164 void console_unlock(void)
2165 {
2166 static char ext_text[CONSOLE_EXT_LOG_MAX];
2167 static char text[LOG_LINE_MAX + PREFIX_MAX];
2168 static u64 seen_seq;
2169 unsigned long flags;
2170 bool wake_klogd = false;
2171 bool do_cond_resched, retry;
2172
2173 if (console_suspended) {
2174 up_console_sem();
2175 return;
2176 }
2177
2178 /*
2179 * Console drivers are called with interrupts disabled, so
2180 * @console_may_schedule should be cleared before; however, we may
2181 * end up dumping a lot of lines, for example, if called from
2182 * console registration path, and should invoke cond_resched()
2183 * between lines if allowable. Not doing so can cause a very long
2184 * scheduling stall on a slow console leading to RCU stall and
2185 * softlockup warnings which exacerbate the issue with more
2186 * messages practically incapacitating the system.
2187 *
2188 * console_trylock() is not able to detect the preemptive
2189 * context reliably. Therefore the value must be stored before
2190 * and cleared after the the "again" goto label.
2191 */
2192 do_cond_resched = console_may_schedule;
2193 again:
2194 console_may_schedule = 0;
2195
2196 /*
2197 * We released the console_sem lock, so we need to recheck if
2198 * cpu is online and (if not) is there at least one CON_ANYTIME
2199 * console.
2200 */
2201 if (!can_use_console()) {
2202 console_locked = 0;
2203 up_console_sem();
2204 return;
2205 }
2206
2207 for (;;) {
2208 struct printk_log *msg;
2209 size_t ext_len = 0;
2210 size_t len;
2211
2212 printk_safe_enter_irqsave(flags);
2213 raw_spin_lock(&logbuf_lock);
2214 if (seen_seq != log_next_seq) {
2215 wake_klogd = true;
2216 seen_seq = log_next_seq;
2217 }
2218
2219 if (console_seq < log_first_seq) {
2220 len = sprintf(text, "** %u printk messages dropped ** ",
2221 (unsigned)(log_first_seq - console_seq));
2222
2223 /* messages are gone, move to first one */
2224 console_seq = log_first_seq;
2225 console_idx = log_first_idx;
2226 } else {
2227 len = 0;
2228 }
2229 skip:
2230 if (console_seq == log_next_seq)
2231 break;
2232
2233 msg = log_from_idx(console_idx);
2234 if (suppress_message_printing(msg->level)) {
2235 /*
2236 * Skip record we have buffered and already printed
2237 * directly to the console when we received it, and
2238 * record that has level above the console loglevel.
2239 */
2240 console_idx = log_next(console_idx);
2241 console_seq++;
2242 goto skip;
2243 }
2244
2245 len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2246 if (nr_ext_console_drivers) {
2247 ext_len = msg_print_ext_header(ext_text,
2248 sizeof(ext_text),
2249 msg, console_seq);
2250 ext_len += msg_print_ext_body(ext_text + ext_len,
2251 sizeof(ext_text) - ext_len,
2252 log_dict(msg), msg->dict_len,
2253 log_text(msg), msg->text_len);
2254 }
2255 console_idx = log_next(console_idx);
2256 console_seq++;
2257 raw_spin_unlock(&logbuf_lock);
2258
2259 stop_critical_timings(); /* don't trace print latency */
2260 call_console_drivers(ext_text, ext_len, text, len);
2261 start_critical_timings();
2262 printk_safe_exit_irqrestore(flags);
2263
2264 if (do_cond_resched)
2265 cond_resched();
2266 }
2267 console_locked = 0;
2268
2269 /* Release the exclusive_console once it is used */
2270 if (unlikely(exclusive_console))
2271 exclusive_console = NULL;
2272
2273 raw_spin_unlock(&logbuf_lock);
2274
2275 up_console_sem();
2276
2277 /*
2278 * Someone could have filled up the buffer again, so re-check if there's
2279 * something to flush. In case we cannot trylock the console_sem again,
2280 * there's a new owner and the console_unlock() from them will do the
2281 * flush, no worries.
2282 */
2283 raw_spin_lock(&logbuf_lock);
2284 retry = console_seq != log_next_seq;
2285 raw_spin_unlock(&logbuf_lock);
2286 printk_safe_exit_irqrestore(flags);
2287
2288 if (retry && console_trylock())
2289 goto again;
2290
2291 if (wake_klogd)
2292 wake_up_klogd();
2293 }
2294 EXPORT_SYMBOL(console_unlock);
2295
2296 /**
2297 * console_conditional_schedule - yield the CPU if required
2298 *
2299 * If the console code is currently allowed to sleep, and
2300 * if this CPU should yield the CPU to another task, do
2301 * so here.
2302 *
2303 * Must be called within console_lock();.
2304 */
2305 void __sched console_conditional_schedule(void)
2306 {
2307 if (console_may_schedule)
2308 cond_resched();
2309 }
2310 EXPORT_SYMBOL(console_conditional_schedule);
2311
2312 void console_unblank(void)
2313 {
2314 struct console *c;
2315
2316 /*
2317 * console_unblank can no longer be called in interrupt context unless
2318 * oops_in_progress is set to 1..
2319 */
2320 if (oops_in_progress) {
2321 if (down_trylock_console_sem() != 0)
2322 return;
2323 } else
2324 console_lock();
2325
2326 console_locked = 1;
2327 console_may_schedule = 0;
2328 for_each_console(c)
2329 if ((c->flags & CON_ENABLED) && c->unblank)
2330 c->unblank();
2331 console_unlock();
2332 }
2333
2334 /**
2335 * console_flush_on_panic - flush console content on panic
2336 *
2337 * Immediately output all pending messages no matter what.
2338 */
2339 void console_flush_on_panic(void)
2340 {
2341 /*
2342 * If someone else is holding the console lock, trylock will fail
2343 * and may_schedule may be set. Ignore and proceed to unlock so
2344 * that messages are flushed out. As this can be called from any
2345 * context and we don't want to get preempted while flushing,
2346 * ensure may_schedule is cleared.
2347 */
2348 console_trylock();
2349 console_may_schedule = 0;
2350 console_unlock();
2351 }
2352
2353 /*
2354 * Return the console tty driver structure and its associated index
2355 */
2356 struct tty_driver *console_device(int *index)
2357 {
2358 struct console *c;
2359 struct tty_driver *driver = NULL;
2360
2361 console_lock();
2362 for_each_console(c) {
2363 if (!c->device)
2364 continue;
2365 driver = c->device(c, index);
2366 if (driver)
2367 break;
2368 }
2369 console_unlock();
2370 return driver;
2371 }
2372
2373 /*
2374 * Prevent further output on the passed console device so that (for example)
2375 * serial drivers can disable console output before suspending a port, and can
2376 * re-enable output afterwards.
2377 */
2378 void console_stop(struct console *console)
2379 {
2380 console_lock();
2381 console->flags &= ~CON_ENABLED;
2382 console_unlock();
2383 }
2384 EXPORT_SYMBOL(console_stop);
2385
2386 void console_start(struct console *console)
2387 {
2388 console_lock();
2389 console->flags |= CON_ENABLED;
2390 console_unlock();
2391 }
2392 EXPORT_SYMBOL(console_start);
2393
2394 static int __read_mostly keep_bootcon;
2395
2396 static int __init keep_bootcon_setup(char *str)
2397 {
2398 keep_bootcon = 1;
2399 pr_info("debug: skip boot console de-registration.\n");
2400
2401 return 0;
2402 }
2403
2404 early_param("keep_bootcon", keep_bootcon_setup);
2405
2406 /*
2407 * The console driver calls this routine during kernel initialization
2408 * to register the console printing procedure with printk() and to
2409 * print any messages that were printed by the kernel before the
2410 * console driver was initialized.
2411 *
2412 * This can happen pretty early during the boot process (because of
2413 * early_printk) - sometimes before setup_arch() completes - be careful
2414 * of what kernel features are used - they may not be initialised yet.
2415 *
2416 * There are two types of consoles - bootconsoles (early_printk) and
2417 * "real" consoles (everything which is not a bootconsole) which are
2418 * handled differently.
2419 * - Any number of bootconsoles can be registered at any time.
2420 * - As soon as a "real" console is registered, all bootconsoles
2421 * will be unregistered automatically.
2422 * - Once a "real" console is registered, any attempt to register a
2423 * bootconsoles will be rejected
2424 */
2425 void register_console(struct console *newcon)
2426 {
2427 int i;
2428 unsigned long flags;
2429 struct console *bcon = NULL;
2430 struct console_cmdline *c;
2431 static bool has_preferred;
2432
2433 if (console_drivers)
2434 for_each_console(bcon)
2435 if (WARN(bcon == newcon,
2436 "console '%s%d' already registered\n",
2437 bcon->name, bcon->index))
2438 return;
2439
2440 /*
2441 * before we register a new CON_BOOT console, make sure we don't
2442 * already have a valid console
2443 */
2444 if (console_drivers && newcon->flags & CON_BOOT) {
2445 /* find the last or real console */
2446 for_each_console(bcon) {
2447 if (!(bcon->flags & CON_BOOT)) {
2448 pr_info("Too late to register bootconsole %s%d\n",
2449 newcon->name, newcon->index);
2450 return;
2451 }
2452 }
2453 }
2454
2455 if (console_drivers && console_drivers->flags & CON_BOOT)
2456 bcon = console_drivers;
2457
2458 if (!has_preferred || bcon || !console_drivers)
2459 has_preferred = preferred_console >= 0;
2460
2461 /*
2462 * See if we want to use this console driver. If we
2463 * didn't select a console we take the first one
2464 * that registers here.
2465 */
2466 if (!has_preferred) {
2467 if (newcon->index < 0)
2468 newcon->index = 0;
2469 if (newcon->setup == NULL ||
2470 newcon->setup(newcon, NULL) == 0) {
2471 newcon->flags |= CON_ENABLED;
2472 if (newcon->device) {
2473 newcon->flags |= CON_CONSDEV;
2474 has_preferred = true;
2475 }
2476 }
2477 }
2478
2479 /*
2480 * See if this console matches one we selected on the command line.
2481 *
2482 * There may be several entries in the console_cmdline array matching
2483 * with the same console, one with newcon->match(), another by
2484 * name/index:
2485 *
2486 * pl011,mmio,0x87e024000000,115200 -- added from SPCR
2487 * ttyAMA0 -- added from command line
2488 *
2489 * Traverse the console_cmdline array in reverse order to be
2490 * sure that if this console is preferred then it will be the first
2491 * matching entry. We use the invariant that is maintained in
2492 * __add_preferred_console().
2493 */
2494 for (i = console_cmdline_cnt - 1; i >= 0; i--) {
2495 c = console_cmdline + i;
2496
2497 if (!newcon->match ||
2498 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2499 /* default matching */
2500 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2501 if (strcmp(c->name, newcon->name) != 0)
2502 continue;
2503 if (newcon->index >= 0 &&
2504 newcon->index != c->index)
2505 continue;
2506 if (newcon->index < 0)
2507 newcon->index = c->index;
2508
2509 if (_braille_register_console(newcon, c))
2510 return;
2511
2512 if (newcon->setup &&
2513 newcon->setup(newcon, c->options) != 0)
2514 break;
2515 }
2516
2517 newcon->flags |= CON_ENABLED;
2518 if (i == preferred_console) {
2519 newcon->flags |= CON_CONSDEV;
2520 has_preferred = true;
2521 }
2522 break;
2523 }
2524
2525 if (!(newcon->flags & CON_ENABLED))
2526 return;
2527
2528 /*
2529 * If we have a bootconsole, and are switching to a real console,
2530 * don't print everything out again, since when the boot console, and
2531 * the real console are the same physical device, it's annoying to
2532 * see the beginning boot messages twice
2533 */
2534 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2535 newcon->flags &= ~CON_PRINTBUFFER;
2536
2537 /*
2538 * Put this console in the list - keep the
2539 * preferred driver at the head of the list.
2540 */
2541 console_lock();
2542 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2543 newcon->next = console_drivers;
2544 console_drivers = newcon;
2545 if (newcon->next)
2546 newcon->next->flags &= ~CON_CONSDEV;
2547 } else {
2548 newcon->next = console_drivers->next;
2549 console_drivers->next = newcon;
2550 }
2551
2552 if (newcon->flags & CON_EXTENDED)
2553 if (!nr_ext_console_drivers++)
2554 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2555
2556 if (newcon->flags & CON_PRINTBUFFER) {
2557 /*
2558 * console_unlock(); will print out the buffered messages
2559 * for us.
2560 */
2561 logbuf_lock_irqsave(flags);
2562 console_seq = syslog_seq;
2563 console_idx = syslog_idx;
2564 logbuf_unlock_irqrestore(flags);
2565 /*
2566 * We're about to replay the log buffer. Only do this to the
2567 * just-registered console to avoid excessive message spam to
2568 * the already-registered consoles.
2569 */
2570 exclusive_console = newcon;
2571 }
2572 console_unlock();
2573 console_sysfs_notify();
2574
2575 /*
2576 * By unregistering the bootconsoles after we enable the real console
2577 * we get the "console xxx enabled" message on all the consoles -
2578 * boot consoles, real consoles, etc - this is to ensure that end
2579 * users know there might be something in the kernel's log buffer that
2580 * went to the bootconsole (that they do not see on the real console)
2581 */
2582 pr_info("%sconsole [%s%d] enabled\n",
2583 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2584 newcon->name, newcon->index);
2585 if (bcon &&
2586 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2587 !keep_bootcon) {
2588 /* We need to iterate through all boot consoles, to make
2589 * sure we print everything out, before we unregister them.
2590 */
2591 for_each_console(bcon)
2592 if (bcon->flags & CON_BOOT)
2593 unregister_console(bcon);
2594 }
2595 }
2596 EXPORT_SYMBOL(register_console);
2597
2598 int unregister_console(struct console *console)
2599 {
2600 struct console *a, *b;
2601 int res;
2602
2603 pr_info("%sconsole [%s%d] disabled\n",
2604 (console->flags & CON_BOOT) ? "boot" : "" ,
2605 console->name, console->index);
2606
2607 res = _braille_unregister_console(console);
2608 if (res)
2609 return res;
2610
2611 res = 1;
2612 console_lock();
2613 if (console_drivers == console) {
2614 console_drivers=console->next;
2615 res = 0;
2616 } else if (console_drivers) {
2617 for (a=console_drivers->next, b=console_drivers ;
2618 a; b=a, a=b->next) {
2619 if (a == console) {
2620 b->next = a->next;
2621 res = 0;
2622 break;
2623 }
2624 }
2625 }
2626
2627 if (!res && (console->flags & CON_EXTENDED))
2628 nr_ext_console_drivers--;
2629
2630 /*
2631 * If this isn't the last console and it has CON_CONSDEV set, we
2632 * need to set it on the next preferred console.
2633 */
2634 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2635 console_drivers->flags |= CON_CONSDEV;
2636
2637 console->flags &= ~CON_ENABLED;
2638 console_unlock();
2639 console_sysfs_notify();
2640 return res;
2641 }
2642 EXPORT_SYMBOL(unregister_console);
2643
2644 /*
2645 * Some boot consoles access data that is in the init section and which will
2646 * be discarded after the initcalls have been run. To make sure that no code
2647 * will access this data, unregister the boot consoles in a late initcall.
2648 *
2649 * If for some reason, such as deferred probe or the driver being a loadable
2650 * module, the real console hasn't registered yet at this point, there will
2651 * be a brief interval in which no messages are logged to the console, which
2652 * makes it difficult to diagnose problems that occur during this time.
2653 *
2654 * To mitigate this problem somewhat, only unregister consoles whose memory
2655 * intersects with the init section. Note that code exists elsewhere to get
2656 * rid of the boot console as soon as the proper console shows up, so there
2657 * won't be side-effects from postponing the removal.
2658 */
2659 static int __init printk_late_init(void)
2660 {
2661 struct console *con;
2662 int ret;
2663
2664 for_each_console(con) {
2665 if (!keep_bootcon && con->flags & CON_BOOT) {
2666 /*
2667 * Make sure to unregister boot consoles whose data
2668 * resides in the init section before the init section
2669 * is discarded. Boot consoles whose data will stick
2670 * around will automatically be unregistered when the
2671 * proper console replaces them.
2672 */
2673 if (init_section_intersects(con, sizeof(*con)))
2674 unregister_console(con);
2675 }
2676 }
2677 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2678 console_cpu_notify);
2679 WARN_ON(ret < 0);
2680 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2681 console_cpu_notify, NULL);
2682 WARN_ON(ret < 0);
2683 return 0;
2684 }
2685 late_initcall(printk_late_init);
2686
2687 #if defined CONFIG_PRINTK
2688 /*
2689 * Delayed printk version, for scheduler-internal messages:
2690 */
2691 #define PRINTK_PENDING_WAKEUP 0x01
2692 #define PRINTK_PENDING_OUTPUT 0x02
2693
2694 static DEFINE_PER_CPU(int, printk_pending);
2695
2696 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2697 {
2698 int pending = __this_cpu_xchg(printk_pending, 0);
2699
2700 if (pending & PRINTK_PENDING_OUTPUT) {
2701 /* If trylock fails, someone else is doing the printing */
2702 if (console_trylock())
2703 console_unlock();
2704 }
2705
2706 if (pending & PRINTK_PENDING_WAKEUP)
2707 wake_up_interruptible(&log_wait);
2708 }
2709
2710 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2711 .func = wake_up_klogd_work_func,
2712 .flags = IRQ_WORK_LAZY,
2713 };
2714
2715 void wake_up_klogd(void)
2716 {
2717 preempt_disable();
2718 if (waitqueue_active(&log_wait)) {
2719 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2720 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2721 }
2722 preempt_enable();
2723 }
2724
2725 int printk_deferred(const char *fmt, ...)
2726 {
2727 va_list args;
2728 int r;
2729
2730 preempt_disable();
2731 va_start(args, fmt);
2732 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2733 va_end(args);
2734
2735 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2736 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2737 preempt_enable();
2738
2739 return r;
2740 }
2741
2742 /*
2743 * printk rate limiting, lifted from the networking subsystem.
2744 *
2745 * This enforces a rate limit: not more than 10 kernel messages
2746 * every 5s to make a denial-of-service attack impossible.
2747 */
2748 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2749
2750 int __printk_ratelimit(const char *func)
2751 {
2752 return ___ratelimit(&printk_ratelimit_state, func);
2753 }
2754 EXPORT_SYMBOL(__printk_ratelimit);
2755
2756 /**
2757 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2758 * @caller_jiffies: pointer to caller's state
2759 * @interval_msecs: minimum interval between prints
2760 *
2761 * printk_timed_ratelimit() returns true if more than @interval_msecs
2762 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2763 * returned true.
2764 */
2765 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2766 unsigned int interval_msecs)
2767 {
2768 unsigned long elapsed = jiffies - *caller_jiffies;
2769
2770 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2771 return false;
2772
2773 *caller_jiffies = jiffies;
2774 return true;
2775 }
2776 EXPORT_SYMBOL(printk_timed_ratelimit);
2777
2778 static DEFINE_SPINLOCK(dump_list_lock);
2779 static LIST_HEAD(dump_list);
2780
2781 /**
2782 * kmsg_dump_register - register a kernel log dumper.
2783 * @dumper: pointer to the kmsg_dumper structure
2784 *
2785 * Adds a kernel log dumper to the system. The dump callback in the
2786 * structure will be called when the kernel oopses or panics and must be
2787 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2788 */
2789 int kmsg_dump_register(struct kmsg_dumper *dumper)
2790 {
2791 unsigned long flags;
2792 int err = -EBUSY;
2793
2794 /* The dump callback needs to be set */
2795 if (!dumper->dump)
2796 return -EINVAL;
2797
2798 spin_lock_irqsave(&dump_list_lock, flags);
2799 /* Don't allow registering multiple times */
2800 if (!dumper->registered) {
2801 dumper->registered = 1;
2802 list_add_tail_rcu(&dumper->list, &dump_list);
2803 err = 0;
2804 }
2805 spin_unlock_irqrestore(&dump_list_lock, flags);
2806
2807 return err;
2808 }
2809 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2810
2811 /**
2812 * kmsg_dump_unregister - unregister a kmsg dumper.
2813 * @dumper: pointer to the kmsg_dumper structure
2814 *
2815 * Removes a dump device from the system. Returns zero on success and
2816 * %-EINVAL otherwise.
2817 */
2818 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2819 {
2820 unsigned long flags;
2821 int err = -EINVAL;
2822
2823 spin_lock_irqsave(&dump_list_lock, flags);
2824 if (dumper->registered) {
2825 dumper->registered = 0;
2826 list_del_rcu(&dumper->list);
2827 err = 0;
2828 }
2829 spin_unlock_irqrestore(&dump_list_lock, flags);
2830 synchronize_rcu();
2831
2832 return err;
2833 }
2834 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2835
2836 static bool always_kmsg_dump;
2837 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2838
2839 /**
2840 * kmsg_dump - dump kernel log to kernel message dumpers.
2841 * @reason: the reason (oops, panic etc) for dumping
2842 *
2843 * Call each of the registered dumper's dump() callback, which can
2844 * retrieve the kmsg records with kmsg_dump_get_line() or
2845 * kmsg_dump_get_buffer().
2846 */
2847 void kmsg_dump(enum kmsg_dump_reason reason)
2848 {
2849 struct kmsg_dumper *dumper;
2850 unsigned long flags;
2851
2852 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2853 return;
2854
2855 rcu_read_lock();
2856 list_for_each_entry_rcu(dumper, &dump_list, list) {
2857 if (dumper->max_reason && reason > dumper->max_reason)
2858 continue;
2859
2860 /* initialize iterator with data about the stored records */
2861 dumper->active = true;
2862
2863 logbuf_lock_irqsave(flags);
2864 dumper->cur_seq = clear_seq;
2865 dumper->cur_idx = clear_idx;
2866 dumper->next_seq = log_next_seq;
2867 dumper->next_idx = log_next_idx;
2868 logbuf_unlock_irqrestore(flags);
2869
2870 /* invoke dumper which will iterate over records */
2871 dumper->dump(dumper, reason);
2872
2873 /* reset iterator */
2874 dumper->active = false;
2875 }
2876 rcu_read_unlock();
2877 }
2878
2879 /**
2880 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2881 * @dumper: registered kmsg dumper
2882 * @syslog: include the "<4>" prefixes
2883 * @line: buffer to copy the line to
2884 * @size: maximum size of the buffer
2885 * @len: length of line placed into buffer
2886 *
2887 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2888 * record, and copy one record into the provided buffer.
2889 *
2890 * Consecutive calls will return the next available record moving
2891 * towards the end of the buffer with the youngest messages.
2892 *
2893 * A return value of FALSE indicates that there are no more records to
2894 * read.
2895 *
2896 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2897 */
2898 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2899 char *line, size_t size, size_t *len)
2900 {
2901 struct printk_log *msg;
2902 size_t l = 0;
2903 bool ret = false;
2904
2905 if (!dumper->active)
2906 goto out;
2907
2908 if (dumper->cur_seq < log_first_seq) {
2909 /* messages are gone, move to first available one */
2910 dumper->cur_seq = log_first_seq;
2911 dumper->cur_idx = log_first_idx;
2912 }
2913
2914 /* last entry */
2915 if (dumper->cur_seq >= log_next_seq)
2916 goto out;
2917
2918 msg = log_from_idx(dumper->cur_idx);
2919 l = msg_print_text(msg, syslog, line, size);
2920
2921 dumper->cur_idx = log_next(dumper->cur_idx);
2922 dumper->cur_seq++;
2923 ret = true;
2924 out:
2925 if (len)
2926 *len = l;
2927 return ret;
2928 }
2929
2930 /**
2931 * kmsg_dump_get_line - retrieve one kmsg log line
2932 * @dumper: registered kmsg dumper
2933 * @syslog: include the "<4>" prefixes
2934 * @line: buffer to copy the line to
2935 * @size: maximum size of the buffer
2936 * @len: length of line placed into buffer
2937 *
2938 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2939 * record, and copy one record into the provided buffer.
2940 *
2941 * Consecutive calls will return the next available record moving
2942 * towards the end of the buffer with the youngest messages.
2943 *
2944 * A return value of FALSE indicates that there are no more records to
2945 * read.
2946 */
2947 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2948 char *line, size_t size, size_t *len)
2949 {
2950 unsigned long flags;
2951 bool ret;
2952
2953 logbuf_lock_irqsave(flags);
2954 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2955 logbuf_unlock_irqrestore(flags);
2956
2957 return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2960
2961 /**
2962 * kmsg_dump_get_buffer - copy kmsg log lines
2963 * @dumper: registered kmsg dumper
2964 * @syslog: include the "<4>" prefixes
2965 * @buf: buffer to copy the line to
2966 * @size: maximum size of the buffer
2967 * @len: length of line placed into buffer
2968 *
2969 * Start at the end of the kmsg buffer and fill the provided buffer
2970 * with as many of the the *youngest* kmsg records that fit into it.
2971 * If the buffer is large enough, all available kmsg records will be
2972 * copied with a single call.
2973 *
2974 * Consecutive calls will fill the buffer with the next block of
2975 * available older records, not including the earlier retrieved ones.
2976 *
2977 * A return value of FALSE indicates that there are no more records to
2978 * read.
2979 */
2980 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2981 char *buf, size_t size, size_t *len)
2982 {
2983 unsigned long flags;
2984 u64 seq;
2985 u32 idx;
2986 u64 next_seq;
2987 u32 next_idx;
2988 size_t l = 0;
2989 bool ret = false;
2990
2991 if (!dumper->active)
2992 goto out;
2993
2994 logbuf_lock_irqsave(flags);
2995 if (dumper->cur_seq < log_first_seq) {
2996 /* messages are gone, move to first available one */
2997 dumper->cur_seq = log_first_seq;
2998 dumper->cur_idx = log_first_idx;
2999 }
3000
3001 /* last entry */
3002 if (dumper->cur_seq >= dumper->next_seq) {
3003 logbuf_unlock_irqrestore(flags);
3004 goto out;
3005 }
3006
3007 /* calculate length of entire buffer */
3008 seq = dumper->cur_seq;
3009 idx = dumper->cur_idx;
3010 while (seq < dumper->next_seq) {
3011 struct printk_log *msg = log_from_idx(idx);
3012
3013 l += msg_print_text(msg, true, NULL, 0);
3014 idx = log_next(idx);
3015 seq++;
3016 }
3017
3018 /* move first record forward until length fits into the buffer */
3019 seq = dumper->cur_seq;
3020 idx = dumper->cur_idx;
3021 while (l > size && seq < dumper->next_seq) {
3022 struct printk_log *msg = log_from_idx(idx);
3023
3024 l -= msg_print_text(msg, true, NULL, 0);
3025 idx = log_next(idx);
3026 seq++;
3027 }
3028
3029 /* last message in next interation */
3030 next_seq = seq;
3031 next_idx = idx;
3032
3033 l = 0;
3034 while (seq < dumper->next_seq) {
3035 struct printk_log *msg = log_from_idx(idx);
3036
3037 l += msg_print_text(msg, syslog, buf + l, size - l);
3038 idx = log_next(idx);
3039 seq++;
3040 }
3041
3042 dumper->next_seq = next_seq;
3043 dumper->next_idx = next_idx;
3044 ret = true;
3045 logbuf_unlock_irqrestore(flags);
3046 out:
3047 if (len)
3048 *len = l;
3049 return ret;
3050 }
3051 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3052
3053 /**
3054 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3055 * @dumper: registered kmsg dumper
3056 *
3057 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3058 * kmsg_dump_get_buffer() can be called again and used multiple
3059 * times within the same dumper.dump() callback.
3060 *
3061 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3062 */
3063 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3064 {
3065 dumper->cur_seq = clear_seq;
3066 dumper->cur_idx = clear_idx;
3067 dumper->next_seq = log_next_seq;
3068 dumper->next_idx = log_next_idx;
3069 }
3070
3071 /**
3072 * kmsg_dump_rewind - reset the interator
3073 * @dumper: registered kmsg dumper
3074 *
3075 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3076 * kmsg_dump_get_buffer() can be called again and used multiple
3077 * times within the same dumper.dump() callback.
3078 */
3079 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3080 {
3081 unsigned long flags;
3082
3083 logbuf_lock_irqsave(flags);
3084 kmsg_dump_rewind_nolock(dumper);
3085 logbuf_unlock_irqrestore(flags);
3086 }
3087 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3088
3089 static char dump_stack_arch_desc_str[128];
3090
3091 /**
3092 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3093 * @fmt: printf-style format string
3094 * @...: arguments for the format string
3095 *
3096 * The configured string will be printed right after utsname during task
3097 * dumps. Usually used to add arch-specific system identifiers. If an
3098 * arch wants to make use of such an ID string, it should initialize this
3099 * as soon as possible during boot.
3100 */
3101 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3102 {
3103 va_list args;
3104
3105 va_start(args, fmt);
3106 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3107 fmt, args);
3108 va_end(args);
3109 }
3110
3111 /**
3112 * dump_stack_print_info - print generic debug info for dump_stack()
3113 * @log_lvl: log level
3114 *
3115 * Arch-specific dump_stack() implementations can use this function to
3116 * print out the same debug information as the generic dump_stack().
3117 */
3118 void dump_stack_print_info(const char *log_lvl)
3119 {
3120 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3121 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3122 print_tainted(), init_utsname()->release,
3123 (int)strcspn(init_utsname()->version, " "),
3124 init_utsname()->version);
3125
3126 if (dump_stack_arch_desc_str[0] != '\0')
3127 printk("%sHardware name: %s\n",
3128 log_lvl, dump_stack_arch_desc_str);
3129
3130 print_worker_info(log_lvl, current);
3131 }
3132
3133 /**
3134 * show_regs_print_info - print generic debug info for show_regs()
3135 * @log_lvl: log level
3136 *
3137 * show_regs() implementations can use this function to print out generic
3138 * debug information.
3139 */
3140 void show_regs_print_info(const char *log_lvl)
3141 {
3142 dump_stack_print_info(log_lvl);
3143
3144 printk("%stask: %p task.stack: %p\n",
3145 log_lvl, current, task_stack_page(current));
3146 }
3147
3148 #endif