]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcu/tree_plugin.h
rcu: Fix up pending cbs check in rcu_prepare_for_idle
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <uapi/linux/sched/types.h>
33 #include "../time/tick-internal.h"
34
35 #ifdef CONFIG_RCU_BOOST
36
37 #include "../locking/rtmutex_common.h"
38
39 /*
40 * Control variables for per-CPU and per-rcu_node kthreads. These
41 * handle all flavors of RCU.
42 */
43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work);
47
48 #else /* #ifdef CONFIG_RCU_BOOST */
49
50 /*
51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52 * all uses are in dead code. Provide a definition to keep the compiler
53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54 * This probably needs to be excluded from -rt builds.
55 */
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
57
58 #endif /* #else #ifdef CONFIG_RCU_BOOST */
59
60 #ifdef CONFIG_RCU_NOCB_CPU
61 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
62 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
63 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
65
66 /*
67 * Check the RCU kernel configuration parameters and print informative
68 * messages about anything out of the ordinary.
69 */
70 static void __init rcu_bootup_announce_oddness(void)
71 {
72 if (IS_ENABLED(CONFIG_RCU_TRACE))
73 pr_info("\tRCU event tracing is enabled.\n");
74 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
75 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
76 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
77 RCU_FANOUT);
78 if (rcu_fanout_exact)
79 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
81 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 if (IS_ENABLED(CONFIG_PROVE_RCU))
83 pr_info("\tRCU lockdep checking is enabled.\n");
84 if (RCU_NUM_LVLS >= 4)
85 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 if (RCU_FANOUT_LEAF != 16)
87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 RCU_FANOUT_LEAF);
89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 if (nr_cpu_ids != NR_CPUS)
92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93 #ifdef CONFIG_RCU_BOOST
94 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
95 #endif
96 if (blimit != DEFAULT_RCU_BLIMIT)
97 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
98 if (qhimark != DEFAULT_RCU_QHIMARK)
99 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
100 if (qlowmark != DEFAULT_RCU_QLOMARK)
101 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
102 if (jiffies_till_first_fqs != ULONG_MAX)
103 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
104 if (jiffies_till_next_fqs != ULONG_MAX)
105 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
106 if (rcu_kick_kthreads)
107 pr_info("\tKick kthreads if too-long grace period.\n");
108 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
109 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
110 if (gp_preinit_delay)
111 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
112 if (gp_init_delay)
113 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
114 if (gp_cleanup_delay)
115 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
116 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
117 pr_info("\tRCU debug extended QS entry/exit.\n");
118 rcupdate_announce_bootup_oddness();
119 }
120
121 #ifdef CONFIG_PREEMPT_RCU
122
123 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
124 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
125 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
126
127 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
128 bool wake);
129
130 /*
131 * Tell them what RCU they are running.
132 */
133 static void __init rcu_bootup_announce(void)
134 {
135 pr_info("Preemptible hierarchical RCU implementation.\n");
136 rcu_bootup_announce_oddness();
137 }
138
139 /* Flags for rcu_preempt_ctxt_queue() decision table. */
140 #define RCU_GP_TASKS 0x8
141 #define RCU_EXP_TASKS 0x4
142 #define RCU_GP_BLKD 0x2
143 #define RCU_EXP_BLKD 0x1
144
145 /*
146 * Queues a task preempted within an RCU-preempt read-side critical
147 * section into the appropriate location within the ->blkd_tasks list,
148 * depending on the states of any ongoing normal and expedited grace
149 * periods. The ->gp_tasks pointer indicates which element the normal
150 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
151 * indicates which element the expedited grace period is waiting on (again,
152 * NULL if none). If a grace period is waiting on a given element in the
153 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
154 * adding a task to the tail of the list blocks any grace period that is
155 * already waiting on one of the elements. In contrast, adding a task
156 * to the head of the list won't block any grace period that is already
157 * waiting on one of the elements.
158 *
159 * This queuing is imprecise, and can sometimes make an ongoing grace
160 * period wait for a task that is not strictly speaking blocking it.
161 * Given the choice, we needlessly block a normal grace period rather than
162 * blocking an expedited grace period.
163 *
164 * Note that an endless sequence of expedited grace periods still cannot
165 * indefinitely postpone a normal grace period. Eventually, all of the
166 * fixed number of preempted tasks blocking the normal grace period that are
167 * not also blocking the expedited grace period will resume and complete
168 * their RCU read-side critical sections. At that point, the ->gp_tasks
169 * pointer will equal the ->exp_tasks pointer, at which point the end of
170 * the corresponding expedited grace period will also be the end of the
171 * normal grace period.
172 */
173 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
174 __releases(rnp->lock) /* But leaves rrupts disabled. */
175 {
176 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
177 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
178 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
179 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
180 struct task_struct *t = current;
181
182 lockdep_assert_held(&rnp->lock);
183
184 /*
185 * Decide where to queue the newly blocked task. In theory,
186 * this could be an if-statement. In practice, when I tried
187 * that, it was quite messy.
188 */
189 switch (blkd_state) {
190 case 0:
191 case RCU_EXP_TASKS:
192 case RCU_EXP_TASKS + RCU_GP_BLKD:
193 case RCU_GP_TASKS:
194 case RCU_GP_TASKS + RCU_EXP_TASKS:
195
196 /*
197 * Blocking neither GP, or first task blocking the normal
198 * GP but not blocking the already-waiting expedited GP.
199 * Queue at the head of the list to avoid unnecessarily
200 * blocking the already-waiting GPs.
201 */
202 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
203 break;
204
205 case RCU_EXP_BLKD:
206 case RCU_GP_BLKD:
207 case RCU_GP_BLKD + RCU_EXP_BLKD:
208 case RCU_GP_TASKS + RCU_EXP_BLKD:
209 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
210 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
211
212 /*
213 * First task arriving that blocks either GP, or first task
214 * arriving that blocks the expedited GP (with the normal
215 * GP already waiting), or a task arriving that blocks
216 * both GPs with both GPs already waiting. Queue at the
217 * tail of the list to avoid any GP waiting on any of the
218 * already queued tasks that are not blocking it.
219 */
220 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
221 break;
222
223 case RCU_EXP_TASKS + RCU_EXP_BLKD:
224 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
225 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
226
227 /*
228 * Second or subsequent task blocking the expedited GP.
229 * The task either does not block the normal GP, or is the
230 * first task blocking the normal GP. Queue just after
231 * the first task blocking the expedited GP.
232 */
233 list_add(&t->rcu_node_entry, rnp->exp_tasks);
234 break;
235
236 case RCU_GP_TASKS + RCU_GP_BLKD:
237 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
238
239 /*
240 * Second or subsequent task blocking the normal GP.
241 * The task does not block the expedited GP. Queue just
242 * after the first task blocking the normal GP.
243 */
244 list_add(&t->rcu_node_entry, rnp->gp_tasks);
245 break;
246
247 default:
248
249 /* Yet another exercise in excessive paranoia. */
250 WARN_ON_ONCE(1);
251 break;
252 }
253
254 /*
255 * We have now queued the task. If it was the first one to
256 * block either grace period, update the ->gp_tasks and/or
257 * ->exp_tasks pointers, respectively, to reference the newly
258 * blocked tasks.
259 */
260 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
261 rnp->gp_tasks = &t->rcu_node_entry;
262 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
263 rnp->exp_tasks = &t->rcu_node_entry;
264 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
265
266 /*
267 * Report the quiescent state for the expedited GP. This expedited
268 * GP should not be able to end until we report, so there should be
269 * no need to check for a subsequent expedited GP. (Though we are
270 * still in a quiescent state in any case.)
271 */
272 if (blkd_state & RCU_EXP_BLKD &&
273 t->rcu_read_unlock_special.b.exp_need_qs) {
274 t->rcu_read_unlock_special.b.exp_need_qs = false;
275 rcu_report_exp_rdp(rdp->rsp, rdp, true);
276 } else {
277 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
278 }
279 }
280
281 /*
282 * Record a preemptible-RCU quiescent state for the specified CPU. Note
283 * that this just means that the task currently running on the CPU is
284 * not in a quiescent state. There might be any number of tasks blocked
285 * while in an RCU read-side critical section.
286 *
287 * As with the other rcu_*_qs() functions, callers to this function
288 * must disable preemption.
289 */
290 static void rcu_preempt_qs(void)
291 {
292 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
293 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
294 trace_rcu_grace_period(TPS("rcu_preempt"),
295 __this_cpu_read(rcu_data_p->gpnum),
296 TPS("cpuqs"));
297 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
298 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
299 current->rcu_read_unlock_special.b.need_qs = false;
300 }
301 }
302
303 /*
304 * We have entered the scheduler, and the current task might soon be
305 * context-switched away from. If this task is in an RCU read-side
306 * critical section, we will no longer be able to rely on the CPU to
307 * record that fact, so we enqueue the task on the blkd_tasks list.
308 * The task will dequeue itself when it exits the outermost enclosing
309 * RCU read-side critical section. Therefore, the current grace period
310 * cannot be permitted to complete until the blkd_tasks list entries
311 * predating the current grace period drain, in other words, until
312 * rnp->gp_tasks becomes NULL.
313 *
314 * Caller must disable interrupts.
315 */
316 static void rcu_preempt_note_context_switch(bool preempt)
317 {
318 struct task_struct *t = current;
319 struct rcu_data *rdp;
320 struct rcu_node *rnp;
321
322 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_preempt_note_context_switch() invoked with interrupts enabled!!!\n");
323 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
324 if (t->rcu_read_lock_nesting > 0 &&
325 !t->rcu_read_unlock_special.b.blocked) {
326
327 /* Possibly blocking in an RCU read-side critical section. */
328 rdp = this_cpu_ptr(rcu_state_p->rda);
329 rnp = rdp->mynode;
330 raw_spin_lock_rcu_node(rnp);
331 t->rcu_read_unlock_special.b.blocked = true;
332 t->rcu_blocked_node = rnp;
333
334 /*
335 * Verify the CPU's sanity, trace the preemption, and
336 * then queue the task as required based on the states
337 * of any ongoing and expedited grace periods.
338 */
339 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
340 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
341 trace_rcu_preempt_task(rdp->rsp->name,
342 t->pid,
343 (rnp->qsmask & rdp->grpmask)
344 ? rnp->gpnum
345 : rnp->gpnum + 1);
346 rcu_preempt_ctxt_queue(rnp, rdp);
347 } else if (t->rcu_read_lock_nesting < 0 &&
348 t->rcu_read_unlock_special.s) {
349
350 /*
351 * Complete exit from RCU read-side critical section on
352 * behalf of preempted instance of __rcu_read_unlock().
353 */
354 rcu_read_unlock_special(t);
355 }
356
357 /*
358 * Either we were not in an RCU read-side critical section to
359 * begin with, or we have now recorded that critical section
360 * globally. Either way, we can now note a quiescent state
361 * for this CPU. Again, if we were in an RCU read-side critical
362 * section, and if that critical section was blocking the current
363 * grace period, then the fact that the task has been enqueued
364 * means that we continue to block the current grace period.
365 */
366 rcu_preempt_qs();
367 }
368
369 /*
370 * Check for preempted RCU readers blocking the current grace period
371 * for the specified rcu_node structure. If the caller needs a reliable
372 * answer, it must hold the rcu_node's ->lock.
373 */
374 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
375 {
376 return rnp->gp_tasks != NULL;
377 }
378
379 /*
380 * Advance a ->blkd_tasks-list pointer to the next entry, instead
381 * returning NULL if at the end of the list.
382 */
383 static struct list_head *rcu_next_node_entry(struct task_struct *t,
384 struct rcu_node *rnp)
385 {
386 struct list_head *np;
387
388 np = t->rcu_node_entry.next;
389 if (np == &rnp->blkd_tasks)
390 np = NULL;
391 return np;
392 }
393
394 /*
395 * Return true if the specified rcu_node structure has tasks that were
396 * preempted within an RCU read-side critical section.
397 */
398 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
399 {
400 return !list_empty(&rnp->blkd_tasks);
401 }
402
403 /*
404 * Handle special cases during rcu_read_unlock(), such as needing to
405 * notify RCU core processing or task having blocked during the RCU
406 * read-side critical section.
407 */
408 void rcu_read_unlock_special(struct task_struct *t)
409 {
410 bool empty_exp;
411 bool empty_norm;
412 bool empty_exp_now;
413 unsigned long flags;
414 struct list_head *np;
415 bool drop_boost_mutex = false;
416 struct rcu_data *rdp;
417 struct rcu_node *rnp;
418 union rcu_special special;
419
420 /* NMI handlers cannot block and cannot safely manipulate state. */
421 if (in_nmi())
422 return;
423
424 local_irq_save(flags);
425
426 /*
427 * If RCU core is waiting for this CPU to exit its critical section,
428 * report the fact that it has exited. Because irqs are disabled,
429 * t->rcu_read_unlock_special cannot change.
430 */
431 special = t->rcu_read_unlock_special;
432 if (special.b.need_qs) {
433 rcu_preempt_qs();
434 t->rcu_read_unlock_special.b.need_qs = false;
435 if (!t->rcu_read_unlock_special.s) {
436 local_irq_restore(flags);
437 return;
438 }
439 }
440
441 /*
442 * Respond to a request for an expedited grace period, but only if
443 * we were not preempted, meaning that we were running on the same
444 * CPU throughout. If we were preempted, the exp_need_qs flag
445 * would have been cleared at the time of the first preemption,
446 * and the quiescent state would be reported when we were dequeued.
447 */
448 if (special.b.exp_need_qs) {
449 WARN_ON_ONCE(special.b.blocked);
450 t->rcu_read_unlock_special.b.exp_need_qs = false;
451 rdp = this_cpu_ptr(rcu_state_p->rda);
452 rcu_report_exp_rdp(rcu_state_p, rdp, true);
453 if (!t->rcu_read_unlock_special.s) {
454 local_irq_restore(flags);
455 return;
456 }
457 }
458
459 /* Hardware IRQ handlers cannot block, complain if they get here. */
460 if (in_irq() || in_serving_softirq()) {
461 lockdep_rcu_suspicious(__FILE__, __LINE__,
462 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
463 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
464 t->rcu_read_unlock_special.s,
465 t->rcu_read_unlock_special.b.blocked,
466 t->rcu_read_unlock_special.b.exp_need_qs,
467 t->rcu_read_unlock_special.b.need_qs);
468 local_irq_restore(flags);
469 return;
470 }
471
472 /* Clean up if blocked during RCU read-side critical section. */
473 if (special.b.blocked) {
474 t->rcu_read_unlock_special.b.blocked = false;
475
476 /*
477 * Remove this task from the list it blocked on. The task
478 * now remains queued on the rcu_node corresponding to the
479 * CPU it first blocked on, so there is no longer any need
480 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
481 */
482 rnp = t->rcu_blocked_node;
483 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
484 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
485 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
486 empty_exp = sync_rcu_preempt_exp_done(rnp);
487 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
488 np = rcu_next_node_entry(t, rnp);
489 list_del_init(&t->rcu_node_entry);
490 t->rcu_blocked_node = NULL;
491 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
492 rnp->gpnum, t->pid);
493 if (&t->rcu_node_entry == rnp->gp_tasks)
494 rnp->gp_tasks = np;
495 if (&t->rcu_node_entry == rnp->exp_tasks)
496 rnp->exp_tasks = np;
497 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
498 if (&t->rcu_node_entry == rnp->boost_tasks)
499 rnp->boost_tasks = np;
500 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
502 }
503
504 /*
505 * If this was the last task on the current list, and if
506 * we aren't waiting on any CPUs, report the quiescent state.
507 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
508 * so we must take a snapshot of the expedited state.
509 */
510 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
511 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
512 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
513 rnp->gpnum,
514 0, rnp->qsmask,
515 rnp->level,
516 rnp->grplo,
517 rnp->grphi,
518 !!rnp->gp_tasks);
519 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
520 } else {
521 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
522 }
523
524 /* Unboost if we were boosted. */
525 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
526 rt_mutex_unlock(&rnp->boost_mtx);
527
528 /*
529 * If this was the last task on the expedited lists,
530 * then we need to report up the rcu_node hierarchy.
531 */
532 if (!empty_exp && empty_exp_now)
533 rcu_report_exp_rnp(rcu_state_p, rnp, true);
534 } else {
535 local_irq_restore(flags);
536 }
537 }
538
539 /*
540 * Dump detailed information for all tasks blocking the current RCU
541 * grace period on the specified rcu_node structure.
542 */
543 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
544 {
545 unsigned long flags;
546 struct task_struct *t;
547
548 raw_spin_lock_irqsave_rcu_node(rnp, flags);
549 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
550 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
551 return;
552 }
553 t = list_entry(rnp->gp_tasks->prev,
554 struct task_struct, rcu_node_entry);
555 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
556 sched_show_task(t);
557 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
558 }
559
560 /*
561 * Dump detailed information for all tasks blocking the current RCU
562 * grace period.
563 */
564 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
565 {
566 struct rcu_node *rnp = rcu_get_root(rsp);
567
568 rcu_print_detail_task_stall_rnp(rnp);
569 rcu_for_each_leaf_node(rsp, rnp)
570 rcu_print_detail_task_stall_rnp(rnp);
571 }
572
573 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
574 {
575 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
576 rnp->level, rnp->grplo, rnp->grphi);
577 }
578
579 static void rcu_print_task_stall_end(void)
580 {
581 pr_cont("\n");
582 }
583
584 /*
585 * Scan the current list of tasks blocked within RCU read-side critical
586 * sections, printing out the tid of each.
587 */
588 static int rcu_print_task_stall(struct rcu_node *rnp)
589 {
590 struct task_struct *t;
591 int ndetected = 0;
592
593 if (!rcu_preempt_blocked_readers_cgp(rnp))
594 return 0;
595 rcu_print_task_stall_begin(rnp);
596 t = list_entry(rnp->gp_tasks->prev,
597 struct task_struct, rcu_node_entry);
598 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
599 pr_cont(" P%d", t->pid);
600 ndetected++;
601 }
602 rcu_print_task_stall_end();
603 return ndetected;
604 }
605
606 /*
607 * Scan the current list of tasks blocked within RCU read-side critical
608 * sections, printing out the tid of each that is blocking the current
609 * expedited grace period.
610 */
611 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
612 {
613 struct task_struct *t;
614 int ndetected = 0;
615
616 if (!rnp->exp_tasks)
617 return 0;
618 t = list_entry(rnp->exp_tasks->prev,
619 struct task_struct, rcu_node_entry);
620 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
621 pr_cont(" P%d", t->pid);
622 ndetected++;
623 }
624 return ndetected;
625 }
626
627 /*
628 * Check that the list of blocked tasks for the newly completed grace
629 * period is in fact empty. It is a serious bug to complete a grace
630 * period that still has RCU readers blocked! This function must be
631 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
632 * must be held by the caller.
633 *
634 * Also, if there are blocked tasks on the list, they automatically
635 * block the newly created grace period, so set up ->gp_tasks accordingly.
636 */
637 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
638 {
639 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
640 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
641 if (rcu_preempt_has_tasks(rnp))
642 rnp->gp_tasks = rnp->blkd_tasks.next;
643 WARN_ON_ONCE(rnp->qsmask);
644 }
645
646 /*
647 * Check for a quiescent state from the current CPU. When a task blocks,
648 * the task is recorded in the corresponding CPU's rcu_node structure,
649 * which is checked elsewhere.
650 *
651 * Caller must disable hard irqs.
652 */
653 static void rcu_preempt_check_callbacks(void)
654 {
655 struct task_struct *t = current;
656
657 if (t->rcu_read_lock_nesting == 0) {
658 rcu_preempt_qs();
659 return;
660 }
661 if (t->rcu_read_lock_nesting > 0 &&
662 __this_cpu_read(rcu_data_p->core_needs_qs) &&
663 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
664 t->rcu_read_unlock_special.b.need_qs = true;
665 }
666
667 #ifdef CONFIG_RCU_BOOST
668
669 static void rcu_preempt_do_callbacks(void)
670 {
671 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
672 }
673
674 #endif /* #ifdef CONFIG_RCU_BOOST */
675
676 /**
677 * call_rcu() - Queue an RCU callback for invocation after a grace period.
678 * @head: structure to be used for queueing the RCU updates.
679 * @func: actual callback function to be invoked after the grace period
680 *
681 * The callback function will be invoked some time after a full grace
682 * period elapses, in other words after all pre-existing RCU read-side
683 * critical sections have completed. However, the callback function
684 * might well execute concurrently with RCU read-side critical sections
685 * that started after call_rcu() was invoked. RCU read-side critical
686 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
687 * and may be nested.
688 *
689 * Note that all CPUs must agree that the grace period extended beyond
690 * all pre-existing RCU read-side critical section. On systems with more
691 * than one CPU, this means that when "func()" is invoked, each CPU is
692 * guaranteed to have executed a full memory barrier since the end of its
693 * last RCU read-side critical section whose beginning preceded the call
694 * to call_rcu(). It also means that each CPU executing an RCU read-side
695 * critical section that continues beyond the start of "func()" must have
696 * executed a memory barrier after the call_rcu() but before the beginning
697 * of that RCU read-side critical section. Note that these guarantees
698 * include CPUs that are offline, idle, or executing in user mode, as
699 * well as CPUs that are executing in the kernel.
700 *
701 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
702 * resulting RCU callback function "func()", then both CPU A and CPU B are
703 * guaranteed to execute a full memory barrier during the time interval
704 * between the call to call_rcu() and the invocation of "func()" -- even
705 * if CPU A and CPU B are the same CPU (but again only if the system has
706 * more than one CPU).
707 */
708 void call_rcu(struct rcu_head *head, rcu_callback_t func)
709 {
710 __call_rcu(head, func, rcu_state_p, -1, 0);
711 }
712 EXPORT_SYMBOL_GPL(call_rcu);
713
714 /**
715 * synchronize_rcu - wait until a grace period has elapsed.
716 *
717 * Control will return to the caller some time after a full grace
718 * period has elapsed, in other words after all currently executing RCU
719 * read-side critical sections have completed. Note, however, that
720 * upon return from synchronize_rcu(), the caller might well be executing
721 * concurrently with new RCU read-side critical sections that began while
722 * synchronize_rcu() was waiting. RCU read-side critical sections are
723 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
724 *
725 * See the description of synchronize_sched() for more detailed
726 * information on memory-ordering guarantees. However, please note
727 * that -only- the memory-ordering guarantees apply. For example,
728 * synchronize_rcu() is -not- guaranteed to wait on things like code
729 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
730 * guaranteed to wait on RCU read-side critical sections, that is, sections
731 * of code protected by rcu_read_lock().
732 */
733 void synchronize_rcu(void)
734 {
735 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
736 lock_is_held(&rcu_lock_map) ||
737 lock_is_held(&rcu_sched_lock_map),
738 "Illegal synchronize_rcu() in RCU read-side critical section");
739 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
740 return;
741 if (rcu_gp_is_expedited())
742 synchronize_rcu_expedited();
743 else
744 wait_rcu_gp(call_rcu);
745 }
746 EXPORT_SYMBOL_GPL(synchronize_rcu);
747
748 /**
749 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
750 *
751 * Note that this primitive does not necessarily wait for an RCU grace period
752 * to complete. For example, if there are no RCU callbacks queued anywhere
753 * in the system, then rcu_barrier() is within its rights to return
754 * immediately, without waiting for anything, much less an RCU grace period.
755 */
756 void rcu_barrier(void)
757 {
758 _rcu_barrier(rcu_state_p);
759 }
760 EXPORT_SYMBOL_GPL(rcu_barrier);
761
762 /*
763 * Initialize preemptible RCU's state structures.
764 */
765 static void __init __rcu_init_preempt(void)
766 {
767 rcu_init_one(rcu_state_p);
768 }
769
770 /*
771 * Check for a task exiting while in a preemptible-RCU read-side
772 * critical section, clean up if so. No need to issue warnings,
773 * as debug_check_no_locks_held() already does this if lockdep
774 * is enabled.
775 */
776 void exit_rcu(void)
777 {
778 struct task_struct *t = current;
779
780 if (likely(list_empty(&current->rcu_node_entry)))
781 return;
782 t->rcu_read_lock_nesting = 1;
783 barrier();
784 t->rcu_read_unlock_special.b.blocked = true;
785 __rcu_read_unlock();
786 }
787
788 #else /* #ifdef CONFIG_PREEMPT_RCU */
789
790 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
791
792 /*
793 * Tell them what RCU they are running.
794 */
795 static void __init rcu_bootup_announce(void)
796 {
797 pr_info("Hierarchical RCU implementation.\n");
798 rcu_bootup_announce_oddness();
799 }
800
801 /*
802 * Because preemptible RCU does not exist, we never have to check for
803 * CPUs being in quiescent states.
804 */
805 static void rcu_preempt_note_context_switch(bool preempt)
806 {
807 }
808
809 /*
810 * Because preemptible RCU does not exist, there are never any preempted
811 * RCU readers.
812 */
813 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
814 {
815 return 0;
816 }
817
818 /*
819 * Because there is no preemptible RCU, there can be no readers blocked.
820 */
821 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
822 {
823 return false;
824 }
825
826 /*
827 * Because preemptible RCU does not exist, we never have to check for
828 * tasks blocked within RCU read-side critical sections.
829 */
830 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
831 {
832 }
833
834 /*
835 * Because preemptible RCU does not exist, we never have to check for
836 * tasks blocked within RCU read-side critical sections.
837 */
838 static int rcu_print_task_stall(struct rcu_node *rnp)
839 {
840 return 0;
841 }
842
843 /*
844 * Because preemptible RCU does not exist, we never have to check for
845 * tasks blocked within RCU read-side critical sections that are
846 * blocking the current expedited grace period.
847 */
848 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
849 {
850 return 0;
851 }
852
853 /*
854 * Because there is no preemptible RCU, there can be no readers blocked,
855 * so there is no need to check for blocked tasks. So check only for
856 * bogus qsmask values.
857 */
858 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
859 {
860 WARN_ON_ONCE(rnp->qsmask);
861 }
862
863 /*
864 * Because preemptible RCU does not exist, it never has any callbacks
865 * to check.
866 */
867 static void rcu_preempt_check_callbacks(void)
868 {
869 }
870
871 /*
872 * Because preemptible RCU does not exist, rcu_barrier() is just
873 * another name for rcu_barrier_sched().
874 */
875 void rcu_barrier(void)
876 {
877 rcu_barrier_sched();
878 }
879 EXPORT_SYMBOL_GPL(rcu_barrier);
880
881 /*
882 * Because preemptible RCU does not exist, it need not be initialized.
883 */
884 static void __init __rcu_init_preempt(void)
885 {
886 }
887
888 /*
889 * Because preemptible RCU does not exist, tasks cannot possibly exit
890 * while in preemptible RCU read-side critical sections.
891 */
892 void exit_rcu(void)
893 {
894 }
895
896 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
897
898 #ifdef CONFIG_RCU_BOOST
899
900 #include "../locking/rtmutex_common.h"
901
902 static void rcu_wake_cond(struct task_struct *t, int status)
903 {
904 /*
905 * If the thread is yielding, only wake it when this
906 * is invoked from idle
907 */
908 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
909 wake_up_process(t);
910 }
911
912 /*
913 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
914 * or ->boost_tasks, advancing the pointer to the next task in the
915 * ->blkd_tasks list.
916 *
917 * Note that irqs must be enabled: boosting the task can block.
918 * Returns 1 if there are more tasks needing to be boosted.
919 */
920 static int rcu_boost(struct rcu_node *rnp)
921 {
922 unsigned long flags;
923 struct task_struct *t;
924 struct list_head *tb;
925
926 if (READ_ONCE(rnp->exp_tasks) == NULL &&
927 READ_ONCE(rnp->boost_tasks) == NULL)
928 return 0; /* Nothing left to boost. */
929
930 raw_spin_lock_irqsave_rcu_node(rnp, flags);
931
932 /*
933 * Recheck under the lock: all tasks in need of boosting
934 * might exit their RCU read-side critical sections on their own.
935 */
936 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
937 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
938 return 0;
939 }
940
941 /*
942 * Preferentially boost tasks blocking expedited grace periods.
943 * This cannot starve the normal grace periods because a second
944 * expedited grace period must boost all blocked tasks, including
945 * those blocking the pre-existing normal grace period.
946 */
947 if (rnp->exp_tasks != NULL) {
948 tb = rnp->exp_tasks;
949 rnp->n_exp_boosts++;
950 } else {
951 tb = rnp->boost_tasks;
952 rnp->n_normal_boosts++;
953 }
954 rnp->n_tasks_boosted++;
955
956 /*
957 * We boost task t by manufacturing an rt_mutex that appears to
958 * be held by task t. We leave a pointer to that rt_mutex where
959 * task t can find it, and task t will release the mutex when it
960 * exits its outermost RCU read-side critical section. Then
961 * simply acquiring this artificial rt_mutex will boost task
962 * t's priority. (Thanks to tglx for suggesting this approach!)
963 *
964 * Note that task t must acquire rnp->lock to remove itself from
965 * the ->blkd_tasks list, which it will do from exit() if from
966 * nowhere else. We therefore are guaranteed that task t will
967 * stay around at least until we drop rnp->lock. Note that
968 * rnp->lock also resolves races between our priority boosting
969 * and task t's exiting its outermost RCU read-side critical
970 * section.
971 */
972 t = container_of(tb, struct task_struct, rcu_node_entry);
973 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
974 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
975 /* Lock only for side effect: boosts task t's priority. */
976 rt_mutex_lock(&rnp->boost_mtx);
977 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
978
979 return READ_ONCE(rnp->exp_tasks) != NULL ||
980 READ_ONCE(rnp->boost_tasks) != NULL;
981 }
982
983 /*
984 * Priority-boosting kthread, one per leaf rcu_node.
985 */
986 static int rcu_boost_kthread(void *arg)
987 {
988 struct rcu_node *rnp = (struct rcu_node *)arg;
989 int spincnt = 0;
990 int more2boost;
991
992 trace_rcu_utilization(TPS("Start boost kthread@init"));
993 for (;;) {
994 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
995 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
996 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
997 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
998 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
999 more2boost = rcu_boost(rnp);
1000 if (more2boost)
1001 spincnt++;
1002 else
1003 spincnt = 0;
1004 if (spincnt > 10) {
1005 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1006 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1007 schedule_timeout_interruptible(2);
1008 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1009 spincnt = 0;
1010 }
1011 }
1012 /* NOTREACHED */
1013 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1014 return 0;
1015 }
1016
1017 /*
1018 * Check to see if it is time to start boosting RCU readers that are
1019 * blocking the current grace period, and, if so, tell the per-rcu_node
1020 * kthread to start boosting them. If there is an expedited grace
1021 * period in progress, it is always time to boost.
1022 *
1023 * The caller must hold rnp->lock, which this function releases.
1024 * The ->boost_kthread_task is immortal, so we don't need to worry
1025 * about it going away.
1026 */
1027 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1028 __releases(rnp->lock)
1029 {
1030 struct task_struct *t;
1031
1032 lockdep_assert_held(&rnp->lock);
1033 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1034 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1035 return;
1036 }
1037 if (rnp->exp_tasks != NULL ||
1038 (rnp->gp_tasks != NULL &&
1039 rnp->boost_tasks == NULL &&
1040 rnp->qsmask == 0 &&
1041 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1042 if (rnp->exp_tasks == NULL)
1043 rnp->boost_tasks = rnp->gp_tasks;
1044 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1045 t = rnp->boost_kthread_task;
1046 if (t)
1047 rcu_wake_cond(t, rnp->boost_kthread_status);
1048 } else {
1049 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1050 }
1051 }
1052
1053 /*
1054 * Wake up the per-CPU kthread to invoke RCU callbacks.
1055 */
1056 static void invoke_rcu_callbacks_kthread(void)
1057 {
1058 unsigned long flags;
1059
1060 local_irq_save(flags);
1061 __this_cpu_write(rcu_cpu_has_work, 1);
1062 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1063 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1064 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1065 __this_cpu_read(rcu_cpu_kthread_status));
1066 }
1067 local_irq_restore(flags);
1068 }
1069
1070 /*
1071 * Is the current CPU running the RCU-callbacks kthread?
1072 * Caller must have preemption disabled.
1073 */
1074 static bool rcu_is_callbacks_kthread(void)
1075 {
1076 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1077 }
1078
1079 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1080
1081 /*
1082 * Do priority-boost accounting for the start of a new grace period.
1083 */
1084 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1085 {
1086 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1087 }
1088
1089 /*
1090 * Create an RCU-boost kthread for the specified node if one does not
1091 * already exist. We only create this kthread for preemptible RCU.
1092 * Returns zero if all is well, a negated errno otherwise.
1093 */
1094 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1095 struct rcu_node *rnp)
1096 {
1097 int rnp_index = rnp - &rsp->node[0];
1098 unsigned long flags;
1099 struct sched_param sp;
1100 struct task_struct *t;
1101
1102 if (rcu_state_p != rsp)
1103 return 0;
1104
1105 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1106 return 0;
1107
1108 rsp->boost = 1;
1109 if (rnp->boost_kthread_task != NULL)
1110 return 0;
1111 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1112 "rcub/%d", rnp_index);
1113 if (IS_ERR(t))
1114 return PTR_ERR(t);
1115 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1116 rnp->boost_kthread_task = t;
1117 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1118 sp.sched_priority = kthread_prio;
1119 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1120 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1121 return 0;
1122 }
1123
1124 static void rcu_kthread_do_work(void)
1125 {
1126 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1127 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1128 rcu_preempt_do_callbacks();
1129 }
1130
1131 static void rcu_cpu_kthread_setup(unsigned int cpu)
1132 {
1133 struct sched_param sp;
1134
1135 sp.sched_priority = kthread_prio;
1136 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1137 }
1138
1139 static void rcu_cpu_kthread_park(unsigned int cpu)
1140 {
1141 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1142 }
1143
1144 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1145 {
1146 return __this_cpu_read(rcu_cpu_has_work);
1147 }
1148
1149 /*
1150 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1151 * RCU softirq used in flavors and configurations of RCU that do not
1152 * support RCU priority boosting.
1153 */
1154 static void rcu_cpu_kthread(unsigned int cpu)
1155 {
1156 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1157 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1158 int spincnt;
1159
1160 for (spincnt = 0; spincnt < 10; spincnt++) {
1161 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1162 local_bh_disable();
1163 *statusp = RCU_KTHREAD_RUNNING;
1164 this_cpu_inc(rcu_cpu_kthread_loops);
1165 local_irq_disable();
1166 work = *workp;
1167 *workp = 0;
1168 local_irq_enable();
1169 if (work)
1170 rcu_kthread_do_work();
1171 local_bh_enable();
1172 if (*workp == 0) {
1173 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1174 *statusp = RCU_KTHREAD_WAITING;
1175 return;
1176 }
1177 }
1178 *statusp = RCU_KTHREAD_YIELDING;
1179 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1180 schedule_timeout_interruptible(2);
1181 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1182 *statusp = RCU_KTHREAD_WAITING;
1183 }
1184
1185 /*
1186 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1187 * served by the rcu_node in question. The CPU hotplug lock is still
1188 * held, so the value of rnp->qsmaskinit will be stable.
1189 *
1190 * We don't include outgoingcpu in the affinity set, use -1 if there is
1191 * no outgoing CPU. If there are no CPUs left in the affinity set,
1192 * this function allows the kthread to execute on any CPU.
1193 */
1194 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1195 {
1196 struct task_struct *t = rnp->boost_kthread_task;
1197 unsigned long mask = rcu_rnp_online_cpus(rnp);
1198 cpumask_var_t cm;
1199 int cpu;
1200
1201 if (!t)
1202 return;
1203 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1204 return;
1205 for_each_leaf_node_possible_cpu(rnp, cpu)
1206 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1207 cpu != outgoingcpu)
1208 cpumask_set_cpu(cpu, cm);
1209 if (cpumask_weight(cm) == 0)
1210 cpumask_setall(cm);
1211 set_cpus_allowed_ptr(t, cm);
1212 free_cpumask_var(cm);
1213 }
1214
1215 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1216 .store = &rcu_cpu_kthread_task,
1217 .thread_should_run = rcu_cpu_kthread_should_run,
1218 .thread_fn = rcu_cpu_kthread,
1219 .thread_comm = "rcuc/%u",
1220 .setup = rcu_cpu_kthread_setup,
1221 .park = rcu_cpu_kthread_park,
1222 };
1223
1224 /*
1225 * Spawn boost kthreads -- called as soon as the scheduler is running.
1226 */
1227 static void __init rcu_spawn_boost_kthreads(void)
1228 {
1229 struct rcu_node *rnp;
1230 int cpu;
1231
1232 for_each_possible_cpu(cpu)
1233 per_cpu(rcu_cpu_has_work, cpu) = 0;
1234 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1235 rcu_for_each_leaf_node(rcu_state_p, rnp)
1236 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1237 }
1238
1239 static void rcu_prepare_kthreads(int cpu)
1240 {
1241 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1242 struct rcu_node *rnp = rdp->mynode;
1243
1244 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1245 if (rcu_scheduler_fully_active)
1246 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1247 }
1248
1249 #else /* #ifdef CONFIG_RCU_BOOST */
1250
1251 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1252 __releases(rnp->lock)
1253 {
1254 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1255 }
1256
1257 static void invoke_rcu_callbacks_kthread(void)
1258 {
1259 WARN_ON_ONCE(1);
1260 }
1261
1262 static bool rcu_is_callbacks_kthread(void)
1263 {
1264 return false;
1265 }
1266
1267 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1268 {
1269 }
1270
1271 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1272 {
1273 }
1274
1275 static void __init rcu_spawn_boost_kthreads(void)
1276 {
1277 }
1278
1279 static void rcu_prepare_kthreads(int cpu)
1280 {
1281 }
1282
1283 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1284
1285 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1286
1287 /*
1288 * Check to see if any future RCU-related work will need to be done
1289 * by the current CPU, even if none need be done immediately, returning
1290 * 1 if so. This function is part of the RCU implementation; it is -not-
1291 * an exported member of the RCU API.
1292 *
1293 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1294 * any flavor of RCU.
1295 */
1296 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1297 {
1298 *nextevt = KTIME_MAX;
1299 return rcu_cpu_has_callbacks(NULL);
1300 }
1301
1302 /*
1303 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1304 * after it.
1305 */
1306 static void rcu_cleanup_after_idle(void)
1307 {
1308 }
1309
1310 /*
1311 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1312 * is nothing.
1313 */
1314 static void rcu_prepare_for_idle(void)
1315 {
1316 }
1317
1318 /*
1319 * Don't bother keeping a running count of the number of RCU callbacks
1320 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1321 */
1322 static void rcu_idle_count_callbacks_posted(void)
1323 {
1324 }
1325
1326 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1327
1328 /*
1329 * This code is invoked when a CPU goes idle, at which point we want
1330 * to have the CPU do everything required for RCU so that it can enter
1331 * the energy-efficient dyntick-idle mode. This is handled by a
1332 * state machine implemented by rcu_prepare_for_idle() below.
1333 *
1334 * The following three proprocessor symbols control this state machine:
1335 *
1336 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1337 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1338 * is sized to be roughly one RCU grace period. Those energy-efficiency
1339 * benchmarkers who might otherwise be tempted to set this to a large
1340 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1341 * system. And if you are -that- concerned about energy efficiency,
1342 * just power the system down and be done with it!
1343 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1344 * permitted to sleep in dyntick-idle mode with only lazy RCU
1345 * callbacks pending. Setting this too high can OOM your system.
1346 *
1347 * The values below work well in practice. If future workloads require
1348 * adjustment, they can be converted into kernel config parameters, though
1349 * making the state machine smarter might be a better option.
1350 */
1351 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1352 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1353
1354 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1355 module_param(rcu_idle_gp_delay, int, 0644);
1356 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1357 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1358
1359 /*
1360 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1361 * only if it has been awhile since the last time we did so. Afterwards,
1362 * if there are any callbacks ready for immediate invocation, return true.
1363 */
1364 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1365 {
1366 bool cbs_ready = false;
1367 struct rcu_data *rdp;
1368 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1369 struct rcu_node *rnp;
1370 struct rcu_state *rsp;
1371
1372 /* Exit early if we advanced recently. */
1373 if (jiffies == rdtp->last_advance_all)
1374 return false;
1375 rdtp->last_advance_all = jiffies;
1376
1377 for_each_rcu_flavor(rsp) {
1378 rdp = this_cpu_ptr(rsp->rda);
1379 rnp = rdp->mynode;
1380
1381 /*
1382 * Don't bother checking unless a grace period has
1383 * completed since we last checked and there are
1384 * callbacks not yet ready to invoke.
1385 */
1386 if ((rdp->completed != rnp->completed ||
1387 unlikely(READ_ONCE(rdp->gpwrap))) &&
1388 rcu_segcblist_pend_cbs(&rdp->cblist))
1389 note_gp_changes(rsp, rdp);
1390
1391 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1392 cbs_ready = true;
1393 }
1394 return cbs_ready;
1395 }
1396
1397 /*
1398 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1399 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1400 * caller to set the timeout based on whether or not there are non-lazy
1401 * callbacks.
1402 *
1403 * The caller must have disabled interrupts.
1404 */
1405 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1406 {
1407 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1408 unsigned long dj;
1409
1410 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_needs_cpu() invoked with irqs enabled!!!");
1411
1412 /* Snapshot to detect later posting of non-lazy callback. */
1413 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1414
1415 /* If no callbacks, RCU doesn't need the CPU. */
1416 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1417 *nextevt = KTIME_MAX;
1418 return 0;
1419 }
1420
1421 /* Attempt to advance callbacks. */
1422 if (rcu_try_advance_all_cbs()) {
1423 /* Some ready to invoke, so initiate later invocation. */
1424 invoke_rcu_core();
1425 return 1;
1426 }
1427 rdtp->last_accelerate = jiffies;
1428
1429 /* Request timer delay depending on laziness, and round. */
1430 if (!rdtp->all_lazy) {
1431 dj = round_up(rcu_idle_gp_delay + jiffies,
1432 rcu_idle_gp_delay) - jiffies;
1433 } else {
1434 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1435 }
1436 *nextevt = basemono + dj * TICK_NSEC;
1437 return 0;
1438 }
1439
1440 /*
1441 * Prepare a CPU for idle from an RCU perspective. The first major task
1442 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1443 * The second major task is to check to see if a non-lazy callback has
1444 * arrived at a CPU that previously had only lazy callbacks. The third
1445 * major task is to accelerate (that is, assign grace-period numbers to)
1446 * any recently arrived callbacks.
1447 *
1448 * The caller must have disabled interrupts.
1449 */
1450 static void rcu_prepare_for_idle(void)
1451 {
1452 bool needwake;
1453 struct rcu_data *rdp;
1454 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1455 struct rcu_node *rnp;
1456 struct rcu_state *rsp;
1457 int tne;
1458
1459 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_prepare_for_idle() invoked with irqs enabled!!!");
1460 if (rcu_is_nocb_cpu(smp_processor_id()))
1461 return;
1462
1463 /* Handle nohz enablement switches conservatively. */
1464 tne = READ_ONCE(tick_nohz_active);
1465 if (tne != rdtp->tick_nohz_enabled_snap) {
1466 if (rcu_cpu_has_callbacks(NULL))
1467 invoke_rcu_core(); /* force nohz to see update. */
1468 rdtp->tick_nohz_enabled_snap = tne;
1469 return;
1470 }
1471 if (!tne)
1472 return;
1473
1474 /*
1475 * If a non-lazy callback arrived at a CPU having only lazy
1476 * callbacks, invoke RCU core for the side-effect of recalculating
1477 * idle duration on re-entry to idle.
1478 */
1479 if (rdtp->all_lazy &&
1480 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1481 rdtp->all_lazy = false;
1482 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1483 invoke_rcu_core();
1484 return;
1485 }
1486
1487 /*
1488 * If we have not yet accelerated this jiffy, accelerate all
1489 * callbacks on this CPU.
1490 */
1491 if (rdtp->last_accelerate == jiffies)
1492 return;
1493 rdtp->last_accelerate = jiffies;
1494 for_each_rcu_flavor(rsp) {
1495 rdp = this_cpu_ptr(rsp->rda);
1496 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1497 continue;
1498 rnp = rdp->mynode;
1499 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1500 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1501 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1502 if (needwake)
1503 rcu_gp_kthread_wake(rsp);
1504 }
1505 }
1506
1507 /*
1508 * Clean up for exit from idle. Attempt to advance callbacks based on
1509 * any grace periods that elapsed while the CPU was idle, and if any
1510 * callbacks are now ready to invoke, initiate invocation.
1511 */
1512 static void rcu_cleanup_after_idle(void)
1513 {
1514 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_cleanup_after_idle() invoked with irqs enabled!!!");
1515 if (rcu_is_nocb_cpu(smp_processor_id()))
1516 return;
1517 if (rcu_try_advance_all_cbs())
1518 invoke_rcu_core();
1519 }
1520
1521 /*
1522 * Keep a running count of the number of non-lazy callbacks posted
1523 * on this CPU. This running counter (which is never decremented) allows
1524 * rcu_prepare_for_idle() to detect when something out of the idle loop
1525 * posts a callback, even if an equal number of callbacks are invoked.
1526 * Of course, callbacks should only be posted from within a trace event
1527 * designed to be called from idle or from within RCU_NONIDLE().
1528 */
1529 static void rcu_idle_count_callbacks_posted(void)
1530 {
1531 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1532 }
1533
1534 /*
1535 * Data for flushing lazy RCU callbacks at OOM time.
1536 */
1537 static atomic_t oom_callback_count;
1538 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1539
1540 /*
1541 * RCU OOM callback -- decrement the outstanding count and deliver the
1542 * wake-up if we are the last one.
1543 */
1544 static void rcu_oom_callback(struct rcu_head *rhp)
1545 {
1546 if (atomic_dec_and_test(&oom_callback_count))
1547 wake_up(&oom_callback_wq);
1548 }
1549
1550 /*
1551 * Post an rcu_oom_notify callback on the current CPU if it has at
1552 * least one lazy callback. This will unnecessarily post callbacks
1553 * to CPUs that already have a non-lazy callback at the end of their
1554 * callback list, but this is an infrequent operation, so accept some
1555 * extra overhead to keep things simple.
1556 */
1557 static void rcu_oom_notify_cpu(void *unused)
1558 {
1559 struct rcu_state *rsp;
1560 struct rcu_data *rdp;
1561
1562 for_each_rcu_flavor(rsp) {
1563 rdp = raw_cpu_ptr(rsp->rda);
1564 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1565 atomic_inc(&oom_callback_count);
1566 rsp->call(&rdp->oom_head, rcu_oom_callback);
1567 }
1568 }
1569 }
1570
1571 /*
1572 * If low on memory, ensure that each CPU has a non-lazy callback.
1573 * This will wake up CPUs that have only lazy callbacks, in turn
1574 * ensuring that they free up the corresponding memory in a timely manner.
1575 * Because an uncertain amount of memory will be freed in some uncertain
1576 * timeframe, we do not claim to have freed anything.
1577 */
1578 static int rcu_oom_notify(struct notifier_block *self,
1579 unsigned long notused, void *nfreed)
1580 {
1581 int cpu;
1582
1583 /* Wait for callbacks from earlier instance to complete. */
1584 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1585 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1586
1587 /*
1588 * Prevent premature wakeup: ensure that all increments happen
1589 * before there is a chance of the counter reaching zero.
1590 */
1591 atomic_set(&oom_callback_count, 1);
1592
1593 for_each_online_cpu(cpu) {
1594 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1595 cond_resched_rcu_qs();
1596 }
1597
1598 /* Unconditionally decrement: no need to wake ourselves up. */
1599 atomic_dec(&oom_callback_count);
1600
1601 return NOTIFY_OK;
1602 }
1603
1604 static struct notifier_block rcu_oom_nb = {
1605 .notifier_call = rcu_oom_notify
1606 };
1607
1608 static int __init rcu_register_oom_notifier(void)
1609 {
1610 register_oom_notifier(&rcu_oom_nb);
1611 return 0;
1612 }
1613 early_initcall(rcu_register_oom_notifier);
1614
1615 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1616
1617 #ifdef CONFIG_RCU_FAST_NO_HZ
1618
1619 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1620 {
1621 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1622 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1623
1624 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1625 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1626 ulong2long(nlpd),
1627 rdtp->all_lazy ? 'L' : '.',
1628 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1629 }
1630
1631 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1632
1633 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1634 {
1635 *cp = '\0';
1636 }
1637
1638 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1639
1640 /* Initiate the stall-info list. */
1641 static void print_cpu_stall_info_begin(void)
1642 {
1643 pr_cont("\n");
1644 }
1645
1646 /*
1647 * Print out diagnostic information for the specified stalled CPU.
1648 *
1649 * If the specified CPU is aware of the current RCU grace period
1650 * (flavor specified by rsp), then print the number of scheduling
1651 * clock interrupts the CPU has taken during the time that it has
1652 * been aware. Otherwise, print the number of RCU grace periods
1653 * that this CPU is ignorant of, for example, "1" if the CPU was
1654 * aware of the previous grace period.
1655 *
1656 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1657 */
1658 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1659 {
1660 char fast_no_hz[72];
1661 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1662 struct rcu_dynticks *rdtp = rdp->dynticks;
1663 char *ticks_title;
1664 unsigned long ticks_value;
1665
1666 if (rsp->gpnum == rdp->gpnum) {
1667 ticks_title = "ticks this GP";
1668 ticks_value = rdp->ticks_this_gp;
1669 } else {
1670 ticks_title = "GPs behind";
1671 ticks_value = rsp->gpnum - rdp->gpnum;
1672 }
1673 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1674 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1675 cpu,
1676 "O."[!!cpu_online(cpu)],
1677 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1678 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1679 ticks_value, ticks_title,
1680 rcu_dynticks_snap(rdtp) & 0xfff,
1681 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1682 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1683 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1684 fast_no_hz);
1685 }
1686
1687 /* Terminate the stall-info list. */
1688 static void print_cpu_stall_info_end(void)
1689 {
1690 pr_err("\t");
1691 }
1692
1693 /* Zero ->ticks_this_gp for all flavors of RCU. */
1694 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1695 {
1696 rdp->ticks_this_gp = 0;
1697 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1698 }
1699
1700 /* Increment ->ticks_this_gp for all flavors of RCU. */
1701 static void increment_cpu_stall_ticks(void)
1702 {
1703 struct rcu_state *rsp;
1704
1705 for_each_rcu_flavor(rsp)
1706 raw_cpu_inc(rsp->rda->ticks_this_gp);
1707 }
1708
1709 #ifdef CONFIG_RCU_NOCB_CPU
1710
1711 /*
1712 * Offload callback processing from the boot-time-specified set of CPUs
1713 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1714 * kthread created that pulls the callbacks from the corresponding CPU,
1715 * waits for a grace period to elapse, and invokes the callbacks.
1716 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1717 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1718 * has been specified, in which case each kthread actively polls its
1719 * CPU. (Which isn't so great for energy efficiency, but which does
1720 * reduce RCU's overhead on that CPU.)
1721 *
1722 * This is intended to be used in conjunction with Frederic Weisbecker's
1723 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1724 * running CPU-bound user-mode computations.
1725 *
1726 * Offloading of callback processing could also in theory be used as
1727 * an energy-efficiency measure because CPUs with no RCU callbacks
1728 * queued are more aggressive about entering dyntick-idle mode.
1729 */
1730
1731
1732 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1733 static int __init rcu_nocb_setup(char *str)
1734 {
1735 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1736 have_rcu_nocb_mask = true;
1737 cpulist_parse(str, rcu_nocb_mask);
1738 return 1;
1739 }
1740 __setup("rcu_nocbs=", rcu_nocb_setup);
1741
1742 static int __init parse_rcu_nocb_poll(char *arg)
1743 {
1744 rcu_nocb_poll = true;
1745 return 0;
1746 }
1747 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1748
1749 /*
1750 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1751 * grace period.
1752 */
1753 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1754 {
1755 swake_up_all(sq);
1756 }
1757
1758 /*
1759 * Set the root rcu_node structure's ->need_future_gp field
1760 * based on the sum of those of all rcu_node structures. This does
1761 * double-count the root rcu_node structure's requests, but this
1762 * is necessary to handle the possibility of a rcu_nocb_kthread()
1763 * having awakened during the time that the rcu_node structures
1764 * were being updated for the end of the previous grace period.
1765 */
1766 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1767 {
1768 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1769 }
1770
1771 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1772 {
1773 return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1774 }
1775
1776 static void rcu_init_one_nocb(struct rcu_node *rnp)
1777 {
1778 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1779 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1780 }
1781
1782 /* Is the specified CPU a no-CBs CPU? */
1783 bool rcu_is_nocb_cpu(int cpu)
1784 {
1785 if (have_rcu_nocb_mask)
1786 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1787 return false;
1788 }
1789
1790 /*
1791 * Kick the leader kthread for this NOCB group.
1792 */
1793 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1794 {
1795 struct rcu_data *rdp_leader = rdp->nocb_leader;
1796
1797 if (!READ_ONCE(rdp_leader->nocb_kthread))
1798 return;
1799 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1800 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1801 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1802 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1803 swake_up(&rdp_leader->nocb_wq);
1804 }
1805 }
1806
1807 /*
1808 * Does the specified CPU need an RCU callback for the specified flavor
1809 * of rcu_barrier()?
1810 */
1811 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1812 {
1813 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1814 unsigned long ret;
1815 #ifdef CONFIG_PROVE_RCU
1816 struct rcu_head *rhp;
1817 #endif /* #ifdef CONFIG_PROVE_RCU */
1818
1819 /*
1820 * Check count of all no-CBs callbacks awaiting invocation.
1821 * There needs to be a barrier before this function is called,
1822 * but associated with a prior determination that no more
1823 * callbacks would be posted. In the worst case, the first
1824 * barrier in _rcu_barrier() suffices (but the caller cannot
1825 * necessarily rely on this, not a substitute for the caller
1826 * getting the concurrency design right!). There must also be
1827 * a barrier between the following load an posting of a callback
1828 * (if a callback is in fact needed). This is associated with an
1829 * atomic_inc() in the caller.
1830 */
1831 ret = atomic_long_read(&rdp->nocb_q_count);
1832
1833 #ifdef CONFIG_PROVE_RCU
1834 rhp = READ_ONCE(rdp->nocb_head);
1835 if (!rhp)
1836 rhp = READ_ONCE(rdp->nocb_gp_head);
1837 if (!rhp)
1838 rhp = READ_ONCE(rdp->nocb_follower_head);
1839
1840 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1841 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1842 rcu_scheduler_fully_active) {
1843 /* RCU callback enqueued before CPU first came online??? */
1844 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1845 cpu, rhp->func);
1846 WARN_ON_ONCE(1);
1847 }
1848 #endif /* #ifdef CONFIG_PROVE_RCU */
1849
1850 return !!ret;
1851 }
1852
1853 /*
1854 * Enqueue the specified string of rcu_head structures onto the specified
1855 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1856 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1857 * counts are supplied by rhcount and rhcount_lazy.
1858 *
1859 * If warranted, also wake up the kthread servicing this CPUs queues.
1860 */
1861 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1862 struct rcu_head *rhp,
1863 struct rcu_head **rhtp,
1864 int rhcount, int rhcount_lazy,
1865 unsigned long flags)
1866 {
1867 int len;
1868 struct rcu_head **old_rhpp;
1869 struct task_struct *t;
1870
1871 /* Enqueue the callback on the nocb list and update counts. */
1872 atomic_long_add(rhcount, &rdp->nocb_q_count);
1873 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1874 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1875 WRITE_ONCE(*old_rhpp, rhp);
1876 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1877 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1878
1879 /* If we are not being polled and there is a kthread, awaken it ... */
1880 t = READ_ONCE(rdp->nocb_kthread);
1881 if (rcu_nocb_poll || !t) {
1882 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1883 TPS("WakeNotPoll"));
1884 return;
1885 }
1886 len = atomic_long_read(&rdp->nocb_q_count);
1887 if (old_rhpp == &rdp->nocb_head) {
1888 if (!irqs_disabled_flags(flags)) {
1889 /* ... if queue was empty ... */
1890 wake_nocb_leader(rdp, false);
1891 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1892 TPS("WakeEmpty"));
1893 } else {
1894 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE);
1895 /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1896 smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
1897 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1898 TPS("WakeEmptyIsDeferred"));
1899 }
1900 rdp->qlen_last_fqs_check = 0;
1901 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1902 /* ... or if many callbacks queued. */
1903 if (!irqs_disabled_flags(flags)) {
1904 wake_nocb_leader(rdp, true);
1905 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1906 TPS("WakeOvf"));
1907 } else {
1908 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_FORCE);
1909 /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1910 smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
1911 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1912 TPS("WakeOvfIsDeferred"));
1913 }
1914 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1915 } else {
1916 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1917 }
1918 return;
1919 }
1920
1921 /*
1922 * This is a helper for __call_rcu(), which invokes this when the normal
1923 * callback queue is inoperable. If this is not a no-CBs CPU, this
1924 * function returns failure back to __call_rcu(), which can complain
1925 * appropriately.
1926 *
1927 * Otherwise, this function queues the callback where the corresponding
1928 * "rcuo" kthread can find it.
1929 */
1930 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1931 bool lazy, unsigned long flags)
1932 {
1933
1934 if (!rcu_is_nocb_cpu(rdp->cpu))
1935 return false;
1936 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1937 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1938 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1939 (unsigned long)rhp->func,
1940 -atomic_long_read(&rdp->nocb_q_count_lazy),
1941 -atomic_long_read(&rdp->nocb_q_count));
1942 else
1943 trace_rcu_callback(rdp->rsp->name, rhp,
1944 -atomic_long_read(&rdp->nocb_q_count_lazy),
1945 -atomic_long_read(&rdp->nocb_q_count));
1946
1947 /*
1948 * If called from an extended quiescent state with interrupts
1949 * disabled, invoke the RCU core in order to allow the idle-entry
1950 * deferred-wakeup check to function.
1951 */
1952 if (irqs_disabled_flags(flags) &&
1953 !rcu_is_watching() &&
1954 cpu_online(smp_processor_id()))
1955 invoke_rcu_core();
1956
1957 return true;
1958 }
1959
1960 /*
1961 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1962 * not a no-CBs CPU.
1963 */
1964 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1965 struct rcu_data *rdp,
1966 unsigned long flags)
1967 {
1968 long ql = rsp->orphan_done.len;
1969 long qll = rsp->orphan_done.len_lazy;
1970
1971 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1972 if (!rcu_is_nocb_cpu(smp_processor_id()))
1973 return false;
1974
1975 /* First, enqueue the donelist, if any. This preserves CB ordering. */
1976 if (rsp->orphan_done.head) {
1977 __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_done),
1978 rcu_cblist_tail(&rsp->orphan_done),
1979 ql, qll, flags);
1980 }
1981 if (rsp->orphan_pend.head) {
1982 __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_pend),
1983 rcu_cblist_tail(&rsp->orphan_pend),
1984 ql, qll, flags);
1985 }
1986 rcu_cblist_init(&rsp->orphan_done);
1987 rcu_cblist_init(&rsp->orphan_pend);
1988 return true;
1989 }
1990
1991 /*
1992 * If necessary, kick off a new grace period, and either way wait
1993 * for a subsequent grace period to complete.
1994 */
1995 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1996 {
1997 unsigned long c;
1998 bool d;
1999 unsigned long flags;
2000 bool needwake;
2001 struct rcu_node *rnp = rdp->mynode;
2002
2003 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2004 needwake = rcu_start_future_gp(rnp, rdp, &c);
2005 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2006 if (needwake)
2007 rcu_gp_kthread_wake(rdp->rsp);
2008
2009 /*
2010 * Wait for the grace period. Do so interruptibly to avoid messing
2011 * up the load average.
2012 */
2013 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2014 for (;;) {
2015 swait_event_interruptible(
2016 rnp->nocb_gp_wq[c & 0x1],
2017 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2018 if (likely(d))
2019 break;
2020 WARN_ON(signal_pending(current));
2021 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2022 }
2023 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2024 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2025 }
2026
2027 /*
2028 * Leaders come here to wait for additional callbacks to show up.
2029 * This function does not return until callbacks appear.
2030 */
2031 static void nocb_leader_wait(struct rcu_data *my_rdp)
2032 {
2033 bool firsttime = true;
2034 bool gotcbs;
2035 struct rcu_data *rdp;
2036 struct rcu_head **tail;
2037
2038 wait_again:
2039
2040 /* Wait for callbacks to appear. */
2041 if (!rcu_nocb_poll) {
2042 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2043 swait_event_interruptible(my_rdp->nocb_wq,
2044 !READ_ONCE(my_rdp->nocb_leader_sleep));
2045 /* Memory barrier handled by smp_mb() calls below and repoll. */
2046 } else if (firsttime) {
2047 firsttime = false; /* Don't drown trace log with "Poll"! */
2048 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2049 }
2050
2051 /*
2052 * Each pass through the following loop checks a follower for CBs.
2053 * We are our own first follower. Any CBs found are moved to
2054 * nocb_gp_head, where they await a grace period.
2055 */
2056 gotcbs = false;
2057 smp_mb(); /* wakeup before ->nocb_head reads. */
2058 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2059 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2060 if (!rdp->nocb_gp_head)
2061 continue; /* No CBs here, try next follower. */
2062
2063 /* Move callbacks to wait-for-GP list, which is empty. */
2064 WRITE_ONCE(rdp->nocb_head, NULL);
2065 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2066 gotcbs = true;
2067 }
2068
2069 /*
2070 * If there were no callbacks, sleep a bit, rescan after a
2071 * memory barrier, and go retry.
2072 */
2073 if (unlikely(!gotcbs)) {
2074 if (!rcu_nocb_poll)
2075 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2076 "WokeEmpty");
2077 WARN_ON(signal_pending(current));
2078 schedule_timeout_interruptible(1);
2079
2080 /* Rescan in case we were a victim of memory ordering. */
2081 my_rdp->nocb_leader_sleep = true;
2082 smp_mb(); /* Ensure _sleep true before scan. */
2083 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2084 if (READ_ONCE(rdp->nocb_head)) {
2085 /* Found CB, so short-circuit next wait. */
2086 my_rdp->nocb_leader_sleep = false;
2087 break;
2088 }
2089 goto wait_again;
2090 }
2091
2092 /* Wait for one grace period. */
2093 rcu_nocb_wait_gp(my_rdp);
2094
2095 /*
2096 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2097 * We set it now, but recheck for new callbacks while
2098 * traversing our follower list.
2099 */
2100 my_rdp->nocb_leader_sleep = true;
2101 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2102
2103 /* Each pass through the following loop wakes a follower, if needed. */
2104 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2105 if (READ_ONCE(rdp->nocb_head))
2106 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2107 if (!rdp->nocb_gp_head)
2108 continue; /* No CBs, so no need to wake follower. */
2109
2110 /* Append callbacks to follower's "done" list. */
2111 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2112 *tail = rdp->nocb_gp_head;
2113 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2114 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2115 /*
2116 * List was empty, wake up the follower.
2117 * Memory barriers supplied by atomic_long_add().
2118 */
2119 swake_up(&rdp->nocb_wq);
2120 }
2121 }
2122
2123 /* If we (the leader) don't have CBs, go wait some more. */
2124 if (!my_rdp->nocb_follower_head)
2125 goto wait_again;
2126 }
2127
2128 /*
2129 * Followers come here to wait for additional callbacks to show up.
2130 * This function does not return until callbacks appear.
2131 */
2132 static void nocb_follower_wait(struct rcu_data *rdp)
2133 {
2134 bool firsttime = true;
2135
2136 for (;;) {
2137 if (!rcu_nocb_poll) {
2138 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2139 "FollowerSleep");
2140 swait_event_interruptible(rdp->nocb_wq,
2141 READ_ONCE(rdp->nocb_follower_head));
2142 } else if (firsttime) {
2143 /* Don't drown trace log with "Poll"! */
2144 firsttime = false;
2145 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2146 }
2147 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2148 /* ^^^ Ensure CB invocation follows _head test. */
2149 return;
2150 }
2151 if (!rcu_nocb_poll)
2152 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2153 "WokeEmpty");
2154 WARN_ON(signal_pending(current));
2155 schedule_timeout_interruptible(1);
2156 }
2157 }
2158
2159 /*
2160 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2161 * callbacks queued by the corresponding no-CBs CPU, however, there is
2162 * an optional leader-follower relationship so that the grace-period
2163 * kthreads don't have to do quite so many wakeups.
2164 */
2165 static int rcu_nocb_kthread(void *arg)
2166 {
2167 int c, cl;
2168 struct rcu_head *list;
2169 struct rcu_head *next;
2170 struct rcu_head **tail;
2171 struct rcu_data *rdp = arg;
2172
2173 /* Each pass through this loop invokes one batch of callbacks */
2174 for (;;) {
2175 /* Wait for callbacks. */
2176 if (rdp->nocb_leader == rdp)
2177 nocb_leader_wait(rdp);
2178 else
2179 nocb_follower_wait(rdp);
2180
2181 /* Pull the ready-to-invoke callbacks onto local list. */
2182 list = READ_ONCE(rdp->nocb_follower_head);
2183 BUG_ON(!list);
2184 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2185 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2186 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2187
2188 /* Each pass through the following loop invokes a callback. */
2189 trace_rcu_batch_start(rdp->rsp->name,
2190 atomic_long_read(&rdp->nocb_q_count_lazy),
2191 atomic_long_read(&rdp->nocb_q_count), -1);
2192 c = cl = 0;
2193 while (list) {
2194 next = list->next;
2195 /* Wait for enqueuing to complete, if needed. */
2196 while (next == NULL && &list->next != tail) {
2197 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2198 TPS("WaitQueue"));
2199 schedule_timeout_interruptible(1);
2200 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2201 TPS("WokeQueue"));
2202 next = list->next;
2203 }
2204 debug_rcu_head_unqueue(list);
2205 local_bh_disable();
2206 if (__rcu_reclaim(rdp->rsp->name, list))
2207 cl++;
2208 c++;
2209 local_bh_enable();
2210 cond_resched_rcu_qs();
2211 list = next;
2212 }
2213 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2214 smp_mb__before_atomic(); /* _add after CB invocation. */
2215 atomic_long_add(-c, &rdp->nocb_q_count);
2216 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2217 rdp->n_nocbs_invoked += c;
2218 }
2219 return 0;
2220 }
2221
2222 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2223 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2224 {
2225 return READ_ONCE(rdp->nocb_defer_wakeup);
2226 }
2227
2228 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2229 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2230 {
2231 int ndw;
2232
2233 if (!rcu_nocb_need_deferred_wakeup(rdp))
2234 return;
2235 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2236 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2237 wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE);
2238 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2239 }
2240
2241 void __init rcu_init_nohz(void)
2242 {
2243 int cpu;
2244 bool need_rcu_nocb_mask = true;
2245 struct rcu_state *rsp;
2246
2247 #if defined(CONFIG_NO_HZ_FULL)
2248 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2249 need_rcu_nocb_mask = true;
2250 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2251
2252 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2253 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2254 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2255 return;
2256 }
2257 have_rcu_nocb_mask = true;
2258 }
2259 if (!have_rcu_nocb_mask)
2260 return;
2261
2262 #if defined(CONFIG_NO_HZ_FULL)
2263 if (tick_nohz_full_running)
2264 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2265 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2266
2267 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2268 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2269 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2270 rcu_nocb_mask);
2271 }
2272 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2273 cpumask_pr_args(rcu_nocb_mask));
2274 if (rcu_nocb_poll)
2275 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2276
2277 for_each_rcu_flavor(rsp) {
2278 for_each_cpu(cpu, rcu_nocb_mask)
2279 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2280 rcu_organize_nocb_kthreads(rsp);
2281 }
2282 }
2283
2284 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2285 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2286 {
2287 rdp->nocb_tail = &rdp->nocb_head;
2288 init_swait_queue_head(&rdp->nocb_wq);
2289 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2290 }
2291
2292 /*
2293 * If the specified CPU is a no-CBs CPU that does not already have its
2294 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2295 * brought online out of order, this can require re-organizing the
2296 * leader-follower relationships.
2297 */
2298 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2299 {
2300 struct rcu_data *rdp;
2301 struct rcu_data *rdp_last;
2302 struct rcu_data *rdp_old_leader;
2303 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2304 struct task_struct *t;
2305
2306 /*
2307 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2308 * then nothing to do.
2309 */
2310 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2311 return;
2312
2313 /* If we didn't spawn the leader first, reorganize! */
2314 rdp_old_leader = rdp_spawn->nocb_leader;
2315 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2316 rdp_last = NULL;
2317 rdp = rdp_old_leader;
2318 do {
2319 rdp->nocb_leader = rdp_spawn;
2320 if (rdp_last && rdp != rdp_spawn)
2321 rdp_last->nocb_next_follower = rdp;
2322 if (rdp == rdp_spawn) {
2323 rdp = rdp->nocb_next_follower;
2324 } else {
2325 rdp_last = rdp;
2326 rdp = rdp->nocb_next_follower;
2327 rdp_last->nocb_next_follower = NULL;
2328 }
2329 } while (rdp);
2330 rdp_spawn->nocb_next_follower = rdp_old_leader;
2331 }
2332
2333 /* Spawn the kthread for this CPU and RCU flavor. */
2334 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2335 "rcuo%c/%d", rsp->abbr, cpu);
2336 BUG_ON(IS_ERR(t));
2337 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2338 }
2339
2340 /*
2341 * If the specified CPU is a no-CBs CPU that does not already have its
2342 * rcuo kthreads, spawn them.
2343 */
2344 static void rcu_spawn_all_nocb_kthreads(int cpu)
2345 {
2346 struct rcu_state *rsp;
2347
2348 if (rcu_scheduler_fully_active)
2349 for_each_rcu_flavor(rsp)
2350 rcu_spawn_one_nocb_kthread(rsp, cpu);
2351 }
2352
2353 /*
2354 * Once the scheduler is running, spawn rcuo kthreads for all online
2355 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2356 * non-boot CPUs come online -- if this changes, we will need to add
2357 * some mutual exclusion.
2358 */
2359 static void __init rcu_spawn_nocb_kthreads(void)
2360 {
2361 int cpu;
2362
2363 for_each_online_cpu(cpu)
2364 rcu_spawn_all_nocb_kthreads(cpu);
2365 }
2366
2367 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2368 static int rcu_nocb_leader_stride = -1;
2369 module_param(rcu_nocb_leader_stride, int, 0444);
2370
2371 /*
2372 * Initialize leader-follower relationships for all no-CBs CPU.
2373 */
2374 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2375 {
2376 int cpu;
2377 int ls = rcu_nocb_leader_stride;
2378 int nl = 0; /* Next leader. */
2379 struct rcu_data *rdp;
2380 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2381 struct rcu_data *rdp_prev = NULL;
2382
2383 if (!have_rcu_nocb_mask)
2384 return;
2385 if (ls == -1) {
2386 ls = int_sqrt(nr_cpu_ids);
2387 rcu_nocb_leader_stride = ls;
2388 }
2389
2390 /*
2391 * Each pass through this loop sets up one rcu_data structure.
2392 * Should the corresponding CPU come online in the future, then
2393 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2394 */
2395 for_each_cpu(cpu, rcu_nocb_mask) {
2396 rdp = per_cpu_ptr(rsp->rda, cpu);
2397 if (rdp->cpu >= nl) {
2398 /* New leader, set up for followers & next leader. */
2399 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2400 rdp->nocb_leader = rdp;
2401 rdp_leader = rdp;
2402 } else {
2403 /* Another follower, link to previous leader. */
2404 rdp->nocb_leader = rdp_leader;
2405 rdp_prev->nocb_next_follower = rdp;
2406 }
2407 rdp_prev = rdp;
2408 }
2409 }
2410
2411 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2412 static bool init_nocb_callback_list(struct rcu_data *rdp)
2413 {
2414 if (!rcu_is_nocb_cpu(rdp->cpu))
2415 return false;
2416
2417 /* If there are early-boot callbacks, move them to nocb lists. */
2418 if (!rcu_segcblist_empty(&rdp->cblist)) {
2419 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2420 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2421 atomic_long_set(&rdp->nocb_q_count,
2422 rcu_segcblist_n_cbs(&rdp->cblist));
2423 atomic_long_set(&rdp->nocb_q_count_lazy,
2424 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2425 rcu_segcblist_init(&rdp->cblist);
2426 }
2427 rcu_segcblist_disable(&rdp->cblist);
2428 return true;
2429 }
2430
2431 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2432
2433 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2434 {
2435 WARN_ON_ONCE(1); /* Should be dead code. */
2436 return false;
2437 }
2438
2439 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2440 {
2441 }
2442
2443 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2444 {
2445 }
2446
2447 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2448 {
2449 return NULL;
2450 }
2451
2452 static void rcu_init_one_nocb(struct rcu_node *rnp)
2453 {
2454 }
2455
2456 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2457 bool lazy, unsigned long flags)
2458 {
2459 return false;
2460 }
2461
2462 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2463 struct rcu_data *rdp,
2464 unsigned long flags)
2465 {
2466 return false;
2467 }
2468
2469 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2470 {
2471 }
2472
2473 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2474 {
2475 return false;
2476 }
2477
2478 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2479 {
2480 }
2481
2482 static void rcu_spawn_all_nocb_kthreads(int cpu)
2483 {
2484 }
2485
2486 static void __init rcu_spawn_nocb_kthreads(void)
2487 {
2488 }
2489
2490 static bool init_nocb_callback_list(struct rcu_data *rdp)
2491 {
2492 return false;
2493 }
2494
2495 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2496
2497 /*
2498 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2499 * arbitrarily long period of time with the scheduling-clock tick turned
2500 * off. RCU will be paying attention to this CPU because it is in the
2501 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2502 * machine because the scheduling-clock tick has been disabled. Therefore,
2503 * if an adaptive-ticks CPU is failing to respond to the current grace
2504 * period and has not be idle from an RCU perspective, kick it.
2505 */
2506 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2507 {
2508 #ifdef CONFIG_NO_HZ_FULL
2509 if (tick_nohz_full_cpu(cpu))
2510 smp_send_reschedule(cpu);
2511 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2512 }
2513
2514 /*
2515 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2516 * grace-period kthread will do force_quiescent_state() processing?
2517 * The idea is to avoid waking up RCU core processing on such a
2518 * CPU unless the grace period has extended for too long.
2519 *
2520 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2521 * CONFIG_RCU_NOCB_CPU CPUs.
2522 */
2523 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2524 {
2525 #ifdef CONFIG_NO_HZ_FULL
2526 if (tick_nohz_full_cpu(smp_processor_id()) &&
2527 (!rcu_gp_in_progress(rsp) ||
2528 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2529 return true;
2530 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2531 return false;
2532 }
2533
2534 /*
2535 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2536 * timekeeping CPU.
2537 */
2538 static void rcu_bind_gp_kthread(void)
2539 {
2540 int __maybe_unused cpu;
2541
2542 if (!tick_nohz_full_enabled())
2543 return;
2544 housekeeping_affine(current);
2545 }
2546
2547 /* Record the current task on dyntick-idle entry. */
2548 static void rcu_dynticks_task_enter(void)
2549 {
2550 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2551 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2552 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2553 }
2554
2555 /* Record no current task on dyntick-idle exit. */
2556 static void rcu_dynticks_task_exit(void)
2557 {
2558 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2559 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2560 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2561 }