]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sys.c
userns: prevent speculative execution
[mirror_ubuntu-artful-kernel.git] / kernel / sys.c
1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
50
51 #include <linux/sched.h>
52 #include <linux/sched/autogroup.h>
53 #include <linux/sched/loadavg.h>
54 #include <linux/sched/stat.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/coredump.h>
57 #include <linux/sched/task.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/rcupdate.h>
60 #include <linux/uidgid.h>
61 #include <linux/cred.h>
62
63 #include <linux/kmsg_dump.h>
64 /* Move somewhere else to avoid recompiling? */
65 #include <generated/utsrelease.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/io.h>
69 #include <asm/unistd.h>
70
71 #ifndef SET_UNALIGN_CTL
72 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
73 #endif
74 #ifndef GET_UNALIGN_CTL
75 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
76 #endif
77 #ifndef SET_FPEMU_CTL
78 # define SET_FPEMU_CTL(a, b) (-EINVAL)
79 #endif
80 #ifndef GET_FPEMU_CTL
81 # define GET_FPEMU_CTL(a, b) (-EINVAL)
82 #endif
83 #ifndef SET_FPEXC_CTL
84 # define SET_FPEXC_CTL(a, b) (-EINVAL)
85 #endif
86 #ifndef GET_FPEXC_CTL
87 # define GET_FPEXC_CTL(a, b) (-EINVAL)
88 #endif
89 #ifndef GET_ENDIAN
90 # define GET_ENDIAN(a, b) (-EINVAL)
91 #endif
92 #ifndef SET_ENDIAN
93 # define SET_ENDIAN(a, b) (-EINVAL)
94 #endif
95 #ifndef GET_TSC_CTL
96 # define GET_TSC_CTL(a) (-EINVAL)
97 #endif
98 #ifndef SET_TSC_CTL
99 # define SET_TSC_CTL(a) (-EINVAL)
100 #endif
101 #ifndef MPX_ENABLE_MANAGEMENT
102 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
103 #endif
104 #ifndef MPX_DISABLE_MANAGEMENT
105 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
106 #endif
107 #ifndef GET_FP_MODE
108 # define GET_FP_MODE(a) (-EINVAL)
109 #endif
110 #ifndef SET_FP_MODE
111 # define SET_FP_MODE(a,b) (-EINVAL)
112 #endif
113
114 /*
115 * this is where the system-wide overflow UID and GID are defined, for
116 * architectures that now have 32-bit UID/GID but didn't in the past
117 */
118
119 int overflowuid = DEFAULT_OVERFLOWUID;
120 int overflowgid = DEFAULT_OVERFLOWGID;
121
122 EXPORT_SYMBOL(overflowuid);
123 EXPORT_SYMBOL(overflowgid);
124
125 /*
126 * the same as above, but for filesystems which can only store a 16-bit
127 * UID and GID. as such, this is needed on all architectures
128 */
129
130 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
131 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
132
133 EXPORT_SYMBOL(fs_overflowuid);
134 EXPORT_SYMBOL(fs_overflowgid);
135
136 /*
137 * Returns true if current's euid is same as p's uid or euid,
138 * or has CAP_SYS_NICE to p's user_ns.
139 *
140 * Called with rcu_read_lock, creds are safe
141 */
142 static bool set_one_prio_perm(struct task_struct *p)
143 {
144 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
145
146 if (uid_eq(pcred->uid, cred->euid) ||
147 uid_eq(pcred->euid, cred->euid))
148 return true;
149 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
150 return true;
151 return false;
152 }
153
154 /*
155 * set the priority of a task
156 * - the caller must hold the RCU read lock
157 */
158 static int set_one_prio(struct task_struct *p, int niceval, int error)
159 {
160 int no_nice;
161
162 if (!set_one_prio_perm(p)) {
163 error = -EPERM;
164 goto out;
165 }
166 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
167 error = -EACCES;
168 goto out;
169 }
170 no_nice = security_task_setnice(p, niceval);
171 if (no_nice) {
172 error = no_nice;
173 goto out;
174 }
175 if (error == -ESRCH)
176 error = 0;
177 set_user_nice(p, niceval);
178 out:
179 return error;
180 }
181
182 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
183 {
184 struct task_struct *g, *p;
185 struct user_struct *user;
186 const struct cred *cred = current_cred();
187 int error = -EINVAL;
188 struct pid *pgrp;
189 kuid_t uid;
190
191 if (which > PRIO_USER || which < PRIO_PROCESS)
192 goto out;
193
194 /* normalize: avoid signed division (rounding problems) */
195 error = -ESRCH;
196 if (niceval < MIN_NICE)
197 niceval = MIN_NICE;
198 if (niceval > MAX_NICE)
199 niceval = MAX_NICE;
200
201 rcu_read_lock();
202 read_lock(&tasklist_lock);
203 switch (which) {
204 case PRIO_PROCESS:
205 if (who)
206 p = find_task_by_vpid(who);
207 else
208 p = current;
209 if (p)
210 error = set_one_prio(p, niceval, error);
211 break;
212 case PRIO_PGRP:
213 if (who)
214 pgrp = find_vpid(who);
215 else
216 pgrp = task_pgrp(current);
217 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
218 error = set_one_prio(p, niceval, error);
219 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
220 break;
221 case PRIO_USER:
222 uid = make_kuid(cred->user_ns, who);
223 user = cred->user;
224 if (!who)
225 uid = cred->uid;
226 else if (!uid_eq(uid, cred->uid)) {
227 user = find_user(uid);
228 if (!user)
229 goto out_unlock; /* No processes for this user */
230 }
231 do_each_thread(g, p) {
232 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
233 error = set_one_prio(p, niceval, error);
234 } while_each_thread(g, p);
235 if (!uid_eq(uid, cred->uid))
236 free_uid(user); /* For find_user() */
237 break;
238 }
239 out_unlock:
240 read_unlock(&tasklist_lock);
241 rcu_read_unlock();
242 out:
243 return error;
244 }
245
246 /*
247 * Ugh. To avoid negative return values, "getpriority()" will
248 * not return the normal nice-value, but a negated value that
249 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
250 * to stay compatible.
251 */
252 SYSCALL_DEFINE2(getpriority, int, which, int, who)
253 {
254 struct task_struct *g, *p;
255 struct user_struct *user;
256 const struct cred *cred = current_cred();
257 long niceval, retval = -ESRCH;
258 struct pid *pgrp;
259 kuid_t uid;
260
261 if (which > PRIO_USER || which < PRIO_PROCESS)
262 return -EINVAL;
263
264 rcu_read_lock();
265 read_lock(&tasklist_lock);
266 switch (which) {
267 case PRIO_PROCESS:
268 if (who)
269 p = find_task_by_vpid(who);
270 else
271 p = current;
272 if (p) {
273 niceval = nice_to_rlimit(task_nice(p));
274 if (niceval > retval)
275 retval = niceval;
276 }
277 break;
278 case PRIO_PGRP:
279 if (who)
280 pgrp = find_vpid(who);
281 else
282 pgrp = task_pgrp(current);
283 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
284 niceval = nice_to_rlimit(task_nice(p));
285 if (niceval > retval)
286 retval = niceval;
287 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
288 break;
289 case PRIO_USER:
290 uid = make_kuid(cred->user_ns, who);
291 user = cred->user;
292 if (!who)
293 uid = cred->uid;
294 else if (!uid_eq(uid, cred->uid)) {
295 user = find_user(uid);
296 if (!user)
297 goto out_unlock; /* No processes for this user */
298 }
299 do_each_thread(g, p) {
300 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
301 niceval = nice_to_rlimit(task_nice(p));
302 if (niceval > retval)
303 retval = niceval;
304 }
305 } while_each_thread(g, p);
306 if (!uid_eq(uid, cred->uid))
307 free_uid(user); /* for find_user() */
308 break;
309 }
310 out_unlock:
311 read_unlock(&tasklist_lock);
312 rcu_read_unlock();
313
314 return retval;
315 }
316
317 /*
318 * Unprivileged users may change the real gid to the effective gid
319 * or vice versa. (BSD-style)
320 *
321 * If you set the real gid at all, or set the effective gid to a value not
322 * equal to the real gid, then the saved gid is set to the new effective gid.
323 *
324 * This makes it possible for a setgid program to completely drop its
325 * privileges, which is often a useful assertion to make when you are doing
326 * a security audit over a program.
327 *
328 * The general idea is that a program which uses just setregid() will be
329 * 100% compatible with BSD. A program which uses just setgid() will be
330 * 100% compatible with POSIX with saved IDs.
331 *
332 * SMP: There are not races, the GIDs are checked only by filesystem
333 * operations (as far as semantic preservation is concerned).
334 */
335 #ifdef CONFIG_MULTIUSER
336 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
337 {
338 struct user_namespace *ns = current_user_ns();
339 const struct cred *old;
340 struct cred *new;
341 int retval;
342 kgid_t krgid, kegid;
343
344 krgid = make_kgid(ns, rgid);
345 kegid = make_kgid(ns, egid);
346
347 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
348 return -EINVAL;
349 if ((egid != (gid_t) -1) && !gid_valid(kegid))
350 return -EINVAL;
351
352 new = prepare_creds();
353 if (!new)
354 return -ENOMEM;
355 old = current_cred();
356
357 retval = -EPERM;
358 if (rgid != (gid_t) -1) {
359 if (gid_eq(old->gid, krgid) ||
360 gid_eq(old->egid, krgid) ||
361 ns_capable(old->user_ns, CAP_SETGID))
362 new->gid = krgid;
363 else
364 goto error;
365 }
366 if (egid != (gid_t) -1) {
367 if (gid_eq(old->gid, kegid) ||
368 gid_eq(old->egid, kegid) ||
369 gid_eq(old->sgid, kegid) ||
370 ns_capable(old->user_ns, CAP_SETGID))
371 new->egid = kegid;
372 else
373 goto error;
374 }
375
376 if (rgid != (gid_t) -1 ||
377 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
378 new->sgid = new->egid;
379 new->fsgid = new->egid;
380
381 return commit_creds(new);
382
383 error:
384 abort_creds(new);
385 return retval;
386 }
387
388 /*
389 * setgid() is implemented like SysV w/ SAVED_IDS
390 *
391 * SMP: Same implicit races as above.
392 */
393 SYSCALL_DEFINE1(setgid, gid_t, gid)
394 {
395 struct user_namespace *ns = current_user_ns();
396 const struct cred *old;
397 struct cred *new;
398 int retval;
399 kgid_t kgid;
400
401 kgid = make_kgid(ns, gid);
402 if (!gid_valid(kgid))
403 return -EINVAL;
404
405 new = prepare_creds();
406 if (!new)
407 return -ENOMEM;
408 old = current_cred();
409
410 retval = -EPERM;
411 if (ns_capable(old->user_ns, CAP_SETGID))
412 new->gid = new->egid = new->sgid = new->fsgid = kgid;
413 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
414 new->egid = new->fsgid = kgid;
415 else
416 goto error;
417
418 return commit_creds(new);
419
420 error:
421 abort_creds(new);
422 return retval;
423 }
424
425 /*
426 * change the user struct in a credentials set to match the new UID
427 */
428 static int set_user(struct cred *new)
429 {
430 struct user_struct *new_user;
431
432 new_user = alloc_uid(new->uid);
433 if (!new_user)
434 return -EAGAIN;
435
436 /*
437 * We don't fail in case of NPROC limit excess here because too many
438 * poorly written programs don't check set*uid() return code, assuming
439 * it never fails if called by root. We may still enforce NPROC limit
440 * for programs doing set*uid()+execve() by harmlessly deferring the
441 * failure to the execve() stage.
442 */
443 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
444 new_user != INIT_USER)
445 current->flags |= PF_NPROC_EXCEEDED;
446 else
447 current->flags &= ~PF_NPROC_EXCEEDED;
448
449 free_uid(new->user);
450 new->user = new_user;
451 return 0;
452 }
453
454 /*
455 * Unprivileged users may change the real uid to the effective uid
456 * or vice versa. (BSD-style)
457 *
458 * If you set the real uid at all, or set the effective uid to a value not
459 * equal to the real uid, then the saved uid is set to the new effective uid.
460 *
461 * This makes it possible for a setuid program to completely drop its
462 * privileges, which is often a useful assertion to make when you are doing
463 * a security audit over a program.
464 *
465 * The general idea is that a program which uses just setreuid() will be
466 * 100% compatible with BSD. A program which uses just setuid() will be
467 * 100% compatible with POSIX with saved IDs.
468 */
469 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
470 {
471 struct user_namespace *ns = current_user_ns();
472 const struct cred *old;
473 struct cred *new;
474 int retval;
475 kuid_t kruid, keuid;
476
477 kruid = make_kuid(ns, ruid);
478 keuid = make_kuid(ns, euid);
479
480 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
481 return -EINVAL;
482 if ((euid != (uid_t) -1) && !uid_valid(keuid))
483 return -EINVAL;
484
485 new = prepare_creds();
486 if (!new)
487 return -ENOMEM;
488 old = current_cred();
489
490 retval = -EPERM;
491 if (ruid != (uid_t) -1) {
492 new->uid = kruid;
493 if (!uid_eq(old->uid, kruid) &&
494 !uid_eq(old->euid, kruid) &&
495 !ns_capable(old->user_ns, CAP_SETUID))
496 goto error;
497 }
498
499 if (euid != (uid_t) -1) {
500 new->euid = keuid;
501 if (!uid_eq(old->uid, keuid) &&
502 !uid_eq(old->euid, keuid) &&
503 !uid_eq(old->suid, keuid) &&
504 !ns_capable(old->user_ns, CAP_SETUID))
505 goto error;
506 }
507
508 if (!uid_eq(new->uid, old->uid)) {
509 retval = set_user(new);
510 if (retval < 0)
511 goto error;
512 }
513 if (ruid != (uid_t) -1 ||
514 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
515 new->suid = new->euid;
516 new->fsuid = new->euid;
517
518 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
519 if (retval < 0)
520 goto error;
521
522 return commit_creds(new);
523
524 error:
525 abort_creds(new);
526 return retval;
527 }
528
529 /*
530 * setuid() is implemented like SysV with SAVED_IDS
531 *
532 * Note that SAVED_ID's is deficient in that a setuid root program
533 * like sendmail, for example, cannot set its uid to be a normal
534 * user and then switch back, because if you're root, setuid() sets
535 * the saved uid too. If you don't like this, blame the bright people
536 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
537 * will allow a root program to temporarily drop privileges and be able to
538 * regain them by swapping the real and effective uid.
539 */
540 SYSCALL_DEFINE1(setuid, uid_t, uid)
541 {
542 struct user_namespace *ns = current_user_ns();
543 const struct cred *old;
544 struct cred *new;
545 int retval;
546 kuid_t kuid;
547
548 kuid = make_kuid(ns, uid);
549 if (!uid_valid(kuid))
550 return -EINVAL;
551
552 new = prepare_creds();
553 if (!new)
554 return -ENOMEM;
555 old = current_cred();
556
557 retval = -EPERM;
558 if (ns_capable(old->user_ns, CAP_SETUID)) {
559 new->suid = new->uid = kuid;
560 if (!uid_eq(kuid, old->uid)) {
561 retval = set_user(new);
562 if (retval < 0)
563 goto error;
564 }
565 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
566 goto error;
567 }
568
569 new->fsuid = new->euid = kuid;
570
571 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
572 if (retval < 0)
573 goto error;
574
575 return commit_creds(new);
576
577 error:
578 abort_creds(new);
579 return retval;
580 }
581
582
583 /*
584 * This function implements a generic ability to update ruid, euid,
585 * and suid. This allows you to implement the 4.4 compatible seteuid().
586 */
587 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
588 {
589 struct user_namespace *ns = current_user_ns();
590 const struct cred *old;
591 struct cred *new;
592 int retval;
593 kuid_t kruid, keuid, ksuid;
594
595 kruid = make_kuid(ns, ruid);
596 keuid = make_kuid(ns, euid);
597 ksuid = make_kuid(ns, suid);
598
599 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
600 return -EINVAL;
601
602 if ((euid != (uid_t) -1) && !uid_valid(keuid))
603 return -EINVAL;
604
605 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
606 return -EINVAL;
607
608 new = prepare_creds();
609 if (!new)
610 return -ENOMEM;
611
612 old = current_cred();
613
614 retval = -EPERM;
615 if (!ns_capable(old->user_ns, CAP_SETUID)) {
616 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
617 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
618 goto error;
619 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
620 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
621 goto error;
622 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
623 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
624 goto error;
625 }
626
627 if (ruid != (uid_t) -1) {
628 new->uid = kruid;
629 if (!uid_eq(kruid, old->uid)) {
630 retval = set_user(new);
631 if (retval < 0)
632 goto error;
633 }
634 }
635 if (euid != (uid_t) -1)
636 new->euid = keuid;
637 if (suid != (uid_t) -1)
638 new->suid = ksuid;
639 new->fsuid = new->euid;
640
641 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
642 if (retval < 0)
643 goto error;
644
645 return commit_creds(new);
646
647 error:
648 abort_creds(new);
649 return retval;
650 }
651
652 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
653 {
654 const struct cred *cred = current_cred();
655 int retval;
656 uid_t ruid, euid, suid;
657
658 ruid = from_kuid_munged(cred->user_ns, cred->uid);
659 euid = from_kuid_munged(cred->user_ns, cred->euid);
660 suid = from_kuid_munged(cred->user_ns, cred->suid);
661
662 retval = put_user(ruid, ruidp);
663 if (!retval) {
664 retval = put_user(euid, euidp);
665 if (!retval)
666 return put_user(suid, suidp);
667 }
668 return retval;
669 }
670
671 /*
672 * Same as above, but for rgid, egid, sgid.
673 */
674 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
675 {
676 struct user_namespace *ns = current_user_ns();
677 const struct cred *old;
678 struct cred *new;
679 int retval;
680 kgid_t krgid, kegid, ksgid;
681
682 krgid = make_kgid(ns, rgid);
683 kegid = make_kgid(ns, egid);
684 ksgid = make_kgid(ns, sgid);
685
686 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
687 return -EINVAL;
688 if ((egid != (gid_t) -1) && !gid_valid(kegid))
689 return -EINVAL;
690 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
691 return -EINVAL;
692
693 new = prepare_creds();
694 if (!new)
695 return -ENOMEM;
696 old = current_cred();
697
698 retval = -EPERM;
699 if (!ns_capable(old->user_ns, CAP_SETGID)) {
700 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
701 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
702 goto error;
703 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
704 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
705 goto error;
706 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
707 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
708 goto error;
709 }
710
711 if (rgid != (gid_t) -1)
712 new->gid = krgid;
713 if (egid != (gid_t) -1)
714 new->egid = kegid;
715 if (sgid != (gid_t) -1)
716 new->sgid = ksgid;
717 new->fsgid = new->egid;
718
719 return commit_creds(new);
720
721 error:
722 abort_creds(new);
723 return retval;
724 }
725
726 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
727 {
728 const struct cred *cred = current_cred();
729 int retval;
730 gid_t rgid, egid, sgid;
731
732 rgid = from_kgid_munged(cred->user_ns, cred->gid);
733 egid = from_kgid_munged(cred->user_ns, cred->egid);
734 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
735
736 retval = put_user(rgid, rgidp);
737 if (!retval) {
738 retval = put_user(egid, egidp);
739 if (!retval)
740 retval = put_user(sgid, sgidp);
741 }
742
743 return retval;
744 }
745
746
747 /*
748 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
749 * is used for "access()" and for the NFS daemon (letting nfsd stay at
750 * whatever uid it wants to). It normally shadows "euid", except when
751 * explicitly set by setfsuid() or for access..
752 */
753 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
754 {
755 const struct cred *old;
756 struct cred *new;
757 uid_t old_fsuid;
758 kuid_t kuid;
759
760 old = current_cred();
761 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
762
763 kuid = make_kuid(old->user_ns, uid);
764 if (!uid_valid(kuid))
765 return old_fsuid;
766
767 new = prepare_creds();
768 if (!new)
769 return old_fsuid;
770
771 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
772 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
773 ns_capable(old->user_ns, CAP_SETUID)) {
774 if (!uid_eq(kuid, old->fsuid)) {
775 new->fsuid = kuid;
776 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
777 goto change_okay;
778 }
779 }
780
781 abort_creds(new);
782 return old_fsuid;
783
784 change_okay:
785 commit_creds(new);
786 return old_fsuid;
787 }
788
789 /*
790 * Samma på svenska..
791 */
792 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
793 {
794 const struct cred *old;
795 struct cred *new;
796 gid_t old_fsgid;
797 kgid_t kgid;
798
799 old = current_cred();
800 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
801
802 kgid = make_kgid(old->user_ns, gid);
803 if (!gid_valid(kgid))
804 return old_fsgid;
805
806 new = prepare_creds();
807 if (!new)
808 return old_fsgid;
809
810 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
811 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
812 ns_capable(old->user_ns, CAP_SETGID)) {
813 if (!gid_eq(kgid, old->fsgid)) {
814 new->fsgid = kgid;
815 goto change_okay;
816 }
817 }
818
819 abort_creds(new);
820 return old_fsgid;
821
822 change_okay:
823 commit_creds(new);
824 return old_fsgid;
825 }
826 #endif /* CONFIG_MULTIUSER */
827
828 /**
829 * sys_getpid - return the thread group id of the current process
830 *
831 * Note, despite the name, this returns the tgid not the pid. The tgid and
832 * the pid are identical unless CLONE_THREAD was specified on clone() in
833 * which case the tgid is the same in all threads of the same group.
834 *
835 * This is SMP safe as current->tgid does not change.
836 */
837 SYSCALL_DEFINE0(getpid)
838 {
839 return task_tgid_vnr(current);
840 }
841
842 /* Thread ID - the internal kernel "pid" */
843 SYSCALL_DEFINE0(gettid)
844 {
845 return task_pid_vnr(current);
846 }
847
848 /*
849 * Accessing ->real_parent is not SMP-safe, it could
850 * change from under us. However, we can use a stale
851 * value of ->real_parent under rcu_read_lock(), see
852 * release_task()->call_rcu(delayed_put_task_struct).
853 */
854 SYSCALL_DEFINE0(getppid)
855 {
856 int pid;
857
858 rcu_read_lock();
859 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
860 rcu_read_unlock();
861
862 return pid;
863 }
864
865 SYSCALL_DEFINE0(getuid)
866 {
867 /* Only we change this so SMP safe */
868 return from_kuid_munged(current_user_ns(), current_uid());
869 }
870
871 SYSCALL_DEFINE0(geteuid)
872 {
873 /* Only we change this so SMP safe */
874 return from_kuid_munged(current_user_ns(), current_euid());
875 }
876
877 SYSCALL_DEFINE0(getgid)
878 {
879 /* Only we change this so SMP safe */
880 return from_kgid_munged(current_user_ns(), current_gid());
881 }
882
883 SYSCALL_DEFINE0(getegid)
884 {
885 /* Only we change this so SMP safe */
886 return from_kgid_munged(current_user_ns(), current_egid());
887 }
888
889 static void do_sys_times(struct tms *tms)
890 {
891 u64 tgutime, tgstime, cutime, cstime;
892
893 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
894 cutime = current->signal->cutime;
895 cstime = current->signal->cstime;
896 tms->tms_utime = nsec_to_clock_t(tgutime);
897 tms->tms_stime = nsec_to_clock_t(tgstime);
898 tms->tms_cutime = nsec_to_clock_t(cutime);
899 tms->tms_cstime = nsec_to_clock_t(cstime);
900 }
901
902 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
903 {
904 if (tbuf) {
905 struct tms tmp;
906
907 do_sys_times(&tmp);
908 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
909 return -EFAULT;
910 }
911 force_successful_syscall_return();
912 return (long) jiffies_64_to_clock_t(get_jiffies_64());
913 }
914
915 #ifdef CONFIG_COMPAT
916 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
917 {
918 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
919 }
920
921 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
922 {
923 if (tbuf) {
924 struct tms tms;
925 struct compat_tms tmp;
926
927 do_sys_times(&tms);
928 /* Convert our struct tms to the compat version. */
929 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
930 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
931 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
932 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
933 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
934 return -EFAULT;
935 }
936 force_successful_syscall_return();
937 return compat_jiffies_to_clock_t(jiffies);
938 }
939 #endif
940
941 /*
942 * This needs some heavy checking ...
943 * I just haven't the stomach for it. I also don't fully
944 * understand sessions/pgrp etc. Let somebody who does explain it.
945 *
946 * OK, I think I have the protection semantics right.... this is really
947 * only important on a multi-user system anyway, to make sure one user
948 * can't send a signal to a process owned by another. -TYT, 12/12/91
949 *
950 * !PF_FORKNOEXEC check to conform completely to POSIX.
951 */
952 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
953 {
954 struct task_struct *p;
955 struct task_struct *group_leader = current->group_leader;
956 struct pid *pgrp;
957 int err;
958
959 if (!pid)
960 pid = task_pid_vnr(group_leader);
961 if (!pgid)
962 pgid = pid;
963 if (pgid < 0)
964 return -EINVAL;
965 rcu_read_lock();
966
967 /* From this point forward we keep holding onto the tasklist lock
968 * so that our parent does not change from under us. -DaveM
969 */
970 write_lock_irq(&tasklist_lock);
971
972 err = -ESRCH;
973 p = find_task_by_vpid(pid);
974 if (!p)
975 goto out;
976
977 err = -EINVAL;
978 if (!thread_group_leader(p))
979 goto out;
980
981 if (same_thread_group(p->real_parent, group_leader)) {
982 err = -EPERM;
983 if (task_session(p) != task_session(group_leader))
984 goto out;
985 err = -EACCES;
986 if (!(p->flags & PF_FORKNOEXEC))
987 goto out;
988 } else {
989 err = -ESRCH;
990 if (p != group_leader)
991 goto out;
992 }
993
994 err = -EPERM;
995 if (p->signal->leader)
996 goto out;
997
998 pgrp = task_pid(p);
999 if (pgid != pid) {
1000 struct task_struct *g;
1001
1002 pgrp = find_vpid(pgid);
1003 g = pid_task(pgrp, PIDTYPE_PGID);
1004 if (!g || task_session(g) != task_session(group_leader))
1005 goto out;
1006 }
1007
1008 err = security_task_setpgid(p, pgid);
1009 if (err)
1010 goto out;
1011
1012 if (task_pgrp(p) != pgrp)
1013 change_pid(p, PIDTYPE_PGID, pgrp);
1014
1015 err = 0;
1016 out:
1017 /* All paths lead to here, thus we are safe. -DaveM */
1018 write_unlock_irq(&tasklist_lock);
1019 rcu_read_unlock();
1020 return err;
1021 }
1022
1023 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1024 {
1025 struct task_struct *p;
1026 struct pid *grp;
1027 int retval;
1028
1029 rcu_read_lock();
1030 if (!pid)
1031 grp = task_pgrp(current);
1032 else {
1033 retval = -ESRCH;
1034 p = find_task_by_vpid(pid);
1035 if (!p)
1036 goto out;
1037 grp = task_pgrp(p);
1038 if (!grp)
1039 goto out;
1040
1041 retval = security_task_getpgid(p);
1042 if (retval)
1043 goto out;
1044 }
1045 retval = pid_vnr(grp);
1046 out:
1047 rcu_read_unlock();
1048 return retval;
1049 }
1050
1051 #ifdef __ARCH_WANT_SYS_GETPGRP
1052
1053 SYSCALL_DEFINE0(getpgrp)
1054 {
1055 return sys_getpgid(0);
1056 }
1057
1058 #endif
1059
1060 SYSCALL_DEFINE1(getsid, pid_t, pid)
1061 {
1062 struct task_struct *p;
1063 struct pid *sid;
1064 int retval;
1065
1066 rcu_read_lock();
1067 if (!pid)
1068 sid = task_session(current);
1069 else {
1070 retval = -ESRCH;
1071 p = find_task_by_vpid(pid);
1072 if (!p)
1073 goto out;
1074 sid = task_session(p);
1075 if (!sid)
1076 goto out;
1077
1078 retval = security_task_getsid(p);
1079 if (retval)
1080 goto out;
1081 }
1082 retval = pid_vnr(sid);
1083 out:
1084 rcu_read_unlock();
1085 return retval;
1086 }
1087
1088 static void set_special_pids(struct pid *pid)
1089 {
1090 struct task_struct *curr = current->group_leader;
1091
1092 if (task_session(curr) != pid)
1093 change_pid(curr, PIDTYPE_SID, pid);
1094
1095 if (task_pgrp(curr) != pid)
1096 change_pid(curr, PIDTYPE_PGID, pid);
1097 }
1098
1099 SYSCALL_DEFINE0(setsid)
1100 {
1101 struct task_struct *group_leader = current->group_leader;
1102 struct pid *sid = task_pid(group_leader);
1103 pid_t session = pid_vnr(sid);
1104 int err = -EPERM;
1105
1106 write_lock_irq(&tasklist_lock);
1107 /* Fail if I am already a session leader */
1108 if (group_leader->signal->leader)
1109 goto out;
1110
1111 /* Fail if a process group id already exists that equals the
1112 * proposed session id.
1113 */
1114 if (pid_task(sid, PIDTYPE_PGID))
1115 goto out;
1116
1117 group_leader->signal->leader = 1;
1118 set_special_pids(sid);
1119
1120 proc_clear_tty(group_leader);
1121
1122 err = session;
1123 out:
1124 write_unlock_irq(&tasklist_lock);
1125 if (err > 0) {
1126 proc_sid_connector(group_leader);
1127 sched_autogroup_create_attach(group_leader);
1128 }
1129 return err;
1130 }
1131
1132 DECLARE_RWSEM(uts_sem);
1133
1134 #ifdef COMPAT_UTS_MACHINE
1135 static char compat_uts_machine[__OLD_UTS_LEN+1] = COMPAT_UTS_MACHINE;
1136
1137 static int __init parse_compat_uts_machine(char *arg)
1138 {
1139 strncpy(compat_uts_machine, arg, __OLD_UTS_LEN);
1140 compat_uts_machine[__OLD_UTS_LEN] = 0;
1141 return 0;
1142 }
1143 early_param("compat_uts_machine", parse_compat_uts_machine);
1144
1145 #undef COMPAT_UTS_MACHINE
1146 #define COMPAT_UTS_MACHINE compat_uts_machine
1147 #endif
1148
1149 #ifdef COMPAT_UTS_MACHINE
1150 #define override_architecture(name) \
1151 (personality(current->personality) == PER_LINUX32 && \
1152 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1153 sizeof(COMPAT_UTS_MACHINE)))
1154 #else
1155 #define override_architecture(name) 0
1156 #endif
1157
1158 /*
1159 * Work around broken programs that cannot handle "Linux 3.0".
1160 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1161 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1162 */
1163 static int override_release(char __user *release, size_t len)
1164 {
1165 int ret = 0;
1166
1167 if (current->personality & UNAME26) {
1168 const char *rest = UTS_RELEASE;
1169 char buf[65] = { 0 };
1170 int ndots = 0;
1171 unsigned v;
1172 size_t copy;
1173
1174 while (*rest) {
1175 if (*rest == '.' && ++ndots >= 3)
1176 break;
1177 if (!isdigit(*rest) && *rest != '.')
1178 break;
1179 rest++;
1180 }
1181 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1182 copy = clamp_t(size_t, len, 1, sizeof(buf));
1183 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1184 ret = copy_to_user(release, buf, copy + 1);
1185 }
1186 return ret;
1187 }
1188
1189 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1190 {
1191 int errno = 0;
1192
1193 down_read(&uts_sem);
1194 if (copy_to_user(name, utsname(), sizeof *name))
1195 errno = -EFAULT;
1196 up_read(&uts_sem);
1197
1198 if (!errno && override_release(name->release, sizeof(name->release)))
1199 errno = -EFAULT;
1200 if (!errno && override_architecture(name))
1201 errno = -EFAULT;
1202 return errno;
1203 }
1204
1205 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1206 /*
1207 * Old cruft
1208 */
1209 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1210 {
1211 int error = 0;
1212
1213 if (!name)
1214 return -EFAULT;
1215
1216 down_read(&uts_sem);
1217 if (copy_to_user(name, utsname(), sizeof(*name)))
1218 error = -EFAULT;
1219 up_read(&uts_sem);
1220
1221 if (!error && override_release(name->release, sizeof(name->release)))
1222 error = -EFAULT;
1223 if (!error && override_architecture(name))
1224 error = -EFAULT;
1225 return error;
1226 }
1227
1228 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1229 {
1230 int error;
1231
1232 if (!name)
1233 return -EFAULT;
1234 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1235 return -EFAULT;
1236
1237 down_read(&uts_sem);
1238 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1239 __OLD_UTS_LEN);
1240 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1241 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1242 __OLD_UTS_LEN);
1243 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1244 error |= __copy_to_user(&name->release, &utsname()->release,
1245 __OLD_UTS_LEN);
1246 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1247 error |= __copy_to_user(&name->version, &utsname()->version,
1248 __OLD_UTS_LEN);
1249 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1250 error |= __copy_to_user(&name->machine, &utsname()->machine,
1251 __OLD_UTS_LEN);
1252 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1253 up_read(&uts_sem);
1254
1255 if (!error && override_architecture(name))
1256 error = -EFAULT;
1257 if (!error && override_release(name->release, sizeof(name->release)))
1258 error = -EFAULT;
1259 return error ? -EFAULT : 0;
1260 }
1261 #endif
1262
1263 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1264 {
1265 int errno;
1266 char tmp[__NEW_UTS_LEN];
1267
1268 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1269 return -EPERM;
1270
1271 if (len < 0 || len > __NEW_UTS_LEN)
1272 return -EINVAL;
1273 down_write(&uts_sem);
1274 errno = -EFAULT;
1275 if (!copy_from_user(tmp, name, len)) {
1276 struct new_utsname *u = utsname();
1277
1278 memcpy(u->nodename, tmp, len);
1279 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1280 errno = 0;
1281 uts_proc_notify(UTS_PROC_HOSTNAME);
1282 }
1283 up_write(&uts_sem);
1284 return errno;
1285 }
1286
1287 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1288
1289 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1290 {
1291 int i, errno;
1292 struct new_utsname *u;
1293
1294 if (len < 0)
1295 return -EINVAL;
1296 down_read(&uts_sem);
1297 u = utsname();
1298 i = 1 + strlen(u->nodename);
1299 if (i > len)
1300 i = len;
1301 errno = 0;
1302 if (copy_to_user(name, u->nodename, i))
1303 errno = -EFAULT;
1304 up_read(&uts_sem);
1305 return errno;
1306 }
1307
1308 #endif
1309
1310 /*
1311 * Only setdomainname; getdomainname can be implemented by calling
1312 * uname()
1313 */
1314 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1315 {
1316 int errno;
1317 char tmp[__NEW_UTS_LEN];
1318
1319 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1320 return -EPERM;
1321 if (len < 0 || len > __NEW_UTS_LEN)
1322 return -EINVAL;
1323
1324 down_write(&uts_sem);
1325 errno = -EFAULT;
1326 if (!copy_from_user(tmp, name, len)) {
1327 struct new_utsname *u = utsname();
1328
1329 memcpy(u->domainname, tmp, len);
1330 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1331 errno = 0;
1332 uts_proc_notify(UTS_PROC_DOMAINNAME);
1333 }
1334 up_write(&uts_sem);
1335 return errno;
1336 }
1337
1338 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1339 {
1340 struct rlimit value;
1341 int ret;
1342
1343 ret = do_prlimit(current, resource, NULL, &value);
1344 if (!ret)
1345 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1346
1347 return ret;
1348 }
1349
1350 #ifdef CONFIG_COMPAT
1351
1352 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1353 struct compat_rlimit __user *, rlim)
1354 {
1355 struct rlimit r;
1356 struct compat_rlimit r32;
1357
1358 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1359 return -EFAULT;
1360
1361 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1362 r.rlim_cur = RLIM_INFINITY;
1363 else
1364 r.rlim_cur = r32.rlim_cur;
1365 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1366 r.rlim_max = RLIM_INFINITY;
1367 else
1368 r.rlim_max = r32.rlim_max;
1369 return do_prlimit(current, resource, &r, NULL);
1370 }
1371
1372 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1373 struct compat_rlimit __user *, rlim)
1374 {
1375 struct rlimit r;
1376 int ret;
1377
1378 ret = do_prlimit(current, resource, NULL, &r);
1379 if (!ret) {
1380 struct compat_rlimit r32;
1381 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1382 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1383 else
1384 r32.rlim_cur = r.rlim_cur;
1385 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1386 r32.rlim_max = COMPAT_RLIM_INFINITY;
1387 else
1388 r32.rlim_max = r.rlim_max;
1389
1390 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1391 return -EFAULT;
1392 }
1393 return ret;
1394 }
1395
1396 #endif
1397
1398 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1399
1400 /*
1401 * Back compatibility for getrlimit. Needed for some apps.
1402 */
1403 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1404 struct rlimit __user *, rlim)
1405 {
1406 struct rlimit x;
1407 if (resource >= RLIM_NLIMITS)
1408 return -EINVAL;
1409
1410 task_lock(current->group_leader);
1411 x = current->signal->rlim[resource];
1412 task_unlock(current->group_leader);
1413 if (x.rlim_cur > 0x7FFFFFFF)
1414 x.rlim_cur = 0x7FFFFFFF;
1415 if (x.rlim_max > 0x7FFFFFFF)
1416 x.rlim_max = 0x7FFFFFFF;
1417 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1418 }
1419
1420 #ifdef CONFIG_COMPAT
1421 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1422 struct compat_rlimit __user *, rlim)
1423 {
1424 struct rlimit r;
1425
1426 if (resource >= RLIM_NLIMITS)
1427 return -EINVAL;
1428
1429 task_lock(current->group_leader);
1430 r = current->signal->rlim[resource];
1431 task_unlock(current->group_leader);
1432 if (r.rlim_cur > 0x7FFFFFFF)
1433 r.rlim_cur = 0x7FFFFFFF;
1434 if (r.rlim_max > 0x7FFFFFFF)
1435 r.rlim_max = 0x7FFFFFFF;
1436
1437 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1438 put_user(r.rlim_max, &rlim->rlim_max))
1439 return -EFAULT;
1440 return 0;
1441 }
1442 #endif
1443
1444 #endif
1445
1446 static inline bool rlim64_is_infinity(__u64 rlim64)
1447 {
1448 #if BITS_PER_LONG < 64
1449 return rlim64 >= ULONG_MAX;
1450 #else
1451 return rlim64 == RLIM64_INFINITY;
1452 #endif
1453 }
1454
1455 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1456 {
1457 if (rlim->rlim_cur == RLIM_INFINITY)
1458 rlim64->rlim_cur = RLIM64_INFINITY;
1459 else
1460 rlim64->rlim_cur = rlim->rlim_cur;
1461 if (rlim->rlim_max == RLIM_INFINITY)
1462 rlim64->rlim_max = RLIM64_INFINITY;
1463 else
1464 rlim64->rlim_max = rlim->rlim_max;
1465 }
1466
1467 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1468 {
1469 if (rlim64_is_infinity(rlim64->rlim_cur))
1470 rlim->rlim_cur = RLIM_INFINITY;
1471 else
1472 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1473 if (rlim64_is_infinity(rlim64->rlim_max))
1474 rlim->rlim_max = RLIM_INFINITY;
1475 else
1476 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1477 }
1478
1479 /* make sure you are allowed to change @tsk limits before calling this */
1480 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1481 struct rlimit *new_rlim, struct rlimit *old_rlim)
1482 {
1483 struct rlimit *rlim;
1484 int retval = 0;
1485
1486 if (resource >= RLIM_NLIMITS)
1487 return -EINVAL;
1488 if (new_rlim) {
1489 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1490 return -EINVAL;
1491 if (resource == RLIMIT_NOFILE &&
1492 new_rlim->rlim_max > sysctl_nr_open)
1493 return -EPERM;
1494 }
1495
1496 /* protect tsk->signal and tsk->sighand from disappearing */
1497 read_lock(&tasklist_lock);
1498 if (!tsk->sighand) {
1499 retval = -ESRCH;
1500 goto out;
1501 }
1502
1503 rlim = tsk->signal->rlim + resource;
1504 task_lock(tsk->group_leader);
1505 if (new_rlim) {
1506 /* Keep the capable check against init_user_ns until
1507 cgroups can contain all limits */
1508 if (new_rlim->rlim_max > rlim->rlim_max &&
1509 !capable(CAP_SYS_RESOURCE))
1510 retval = -EPERM;
1511 if (!retval)
1512 retval = security_task_setrlimit(tsk, resource, new_rlim);
1513 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1514 /*
1515 * The caller is asking for an immediate RLIMIT_CPU
1516 * expiry. But we use the zero value to mean "it was
1517 * never set". So let's cheat and make it one second
1518 * instead
1519 */
1520 new_rlim->rlim_cur = 1;
1521 }
1522 }
1523 if (!retval) {
1524 if (old_rlim)
1525 *old_rlim = *rlim;
1526 if (new_rlim)
1527 *rlim = *new_rlim;
1528 }
1529 task_unlock(tsk->group_leader);
1530
1531 /*
1532 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1533 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1534 * very long-standing error, and fixing it now risks breakage of
1535 * applications, so we live with it
1536 */
1537 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1538 new_rlim->rlim_cur != RLIM_INFINITY &&
1539 IS_ENABLED(CONFIG_POSIX_TIMERS))
1540 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1541 out:
1542 read_unlock(&tasklist_lock);
1543 return retval;
1544 }
1545
1546 /* rcu lock must be held */
1547 static int check_prlimit_permission(struct task_struct *task,
1548 unsigned int flags)
1549 {
1550 const struct cred *cred = current_cred(), *tcred;
1551 bool id_match;
1552
1553 if (current == task)
1554 return 0;
1555
1556 tcred = __task_cred(task);
1557 id_match = (uid_eq(cred->uid, tcred->euid) &&
1558 uid_eq(cred->uid, tcred->suid) &&
1559 uid_eq(cred->uid, tcred->uid) &&
1560 gid_eq(cred->gid, tcred->egid) &&
1561 gid_eq(cred->gid, tcred->sgid) &&
1562 gid_eq(cred->gid, tcred->gid));
1563 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1564 return -EPERM;
1565
1566 return security_task_prlimit(cred, tcred, flags);
1567 }
1568
1569 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1570 const struct rlimit64 __user *, new_rlim,
1571 struct rlimit64 __user *, old_rlim)
1572 {
1573 struct rlimit64 old64, new64;
1574 struct rlimit old, new;
1575 struct task_struct *tsk;
1576 unsigned int checkflags = 0;
1577 int ret;
1578
1579 if (old_rlim)
1580 checkflags |= LSM_PRLIMIT_READ;
1581
1582 if (new_rlim) {
1583 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1584 return -EFAULT;
1585 rlim64_to_rlim(&new64, &new);
1586 checkflags |= LSM_PRLIMIT_WRITE;
1587 }
1588
1589 rcu_read_lock();
1590 tsk = pid ? find_task_by_vpid(pid) : current;
1591 if (!tsk) {
1592 rcu_read_unlock();
1593 return -ESRCH;
1594 }
1595 ret = check_prlimit_permission(tsk, checkflags);
1596 if (ret) {
1597 rcu_read_unlock();
1598 return ret;
1599 }
1600 get_task_struct(tsk);
1601 rcu_read_unlock();
1602
1603 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1604 old_rlim ? &old : NULL);
1605
1606 if (!ret && old_rlim) {
1607 rlim_to_rlim64(&old, &old64);
1608 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1609 ret = -EFAULT;
1610 }
1611
1612 put_task_struct(tsk);
1613 return ret;
1614 }
1615
1616 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1617 {
1618 struct rlimit new_rlim;
1619
1620 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1621 return -EFAULT;
1622 return do_prlimit(current, resource, &new_rlim, NULL);
1623 }
1624
1625 /*
1626 * It would make sense to put struct rusage in the task_struct,
1627 * except that would make the task_struct be *really big*. After
1628 * task_struct gets moved into malloc'ed memory, it would
1629 * make sense to do this. It will make moving the rest of the information
1630 * a lot simpler! (Which we're not doing right now because we're not
1631 * measuring them yet).
1632 *
1633 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1634 * races with threads incrementing their own counters. But since word
1635 * reads are atomic, we either get new values or old values and we don't
1636 * care which for the sums. We always take the siglock to protect reading
1637 * the c* fields from p->signal from races with exit.c updating those
1638 * fields when reaping, so a sample either gets all the additions of a
1639 * given child after it's reaped, or none so this sample is before reaping.
1640 *
1641 * Locking:
1642 * We need to take the siglock for CHILDEREN, SELF and BOTH
1643 * for the cases current multithreaded, non-current single threaded
1644 * non-current multithreaded. Thread traversal is now safe with
1645 * the siglock held.
1646 * Strictly speaking, we donot need to take the siglock if we are current and
1647 * single threaded, as no one else can take our signal_struct away, no one
1648 * else can reap the children to update signal->c* counters, and no one else
1649 * can race with the signal-> fields. If we do not take any lock, the
1650 * signal-> fields could be read out of order while another thread was just
1651 * exiting. So we should place a read memory barrier when we avoid the lock.
1652 * On the writer side, write memory barrier is implied in __exit_signal
1653 * as __exit_signal releases the siglock spinlock after updating the signal->
1654 * fields. But we don't do this yet to keep things simple.
1655 *
1656 */
1657
1658 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1659 {
1660 r->ru_nvcsw += t->nvcsw;
1661 r->ru_nivcsw += t->nivcsw;
1662 r->ru_minflt += t->min_flt;
1663 r->ru_majflt += t->maj_flt;
1664 r->ru_inblock += task_io_get_inblock(t);
1665 r->ru_oublock += task_io_get_oublock(t);
1666 }
1667
1668 void getrusage(struct task_struct *p, int who, struct rusage *r)
1669 {
1670 struct task_struct *t;
1671 unsigned long flags;
1672 u64 tgutime, tgstime, utime, stime;
1673 unsigned long maxrss = 0;
1674
1675 memset((char *)r, 0, sizeof (*r));
1676 utime = stime = 0;
1677
1678 if (who == RUSAGE_THREAD) {
1679 task_cputime_adjusted(current, &utime, &stime);
1680 accumulate_thread_rusage(p, r);
1681 maxrss = p->signal->maxrss;
1682 goto out;
1683 }
1684
1685 if (!lock_task_sighand(p, &flags))
1686 return;
1687
1688 switch (who) {
1689 case RUSAGE_BOTH:
1690 case RUSAGE_CHILDREN:
1691 utime = p->signal->cutime;
1692 stime = p->signal->cstime;
1693 r->ru_nvcsw = p->signal->cnvcsw;
1694 r->ru_nivcsw = p->signal->cnivcsw;
1695 r->ru_minflt = p->signal->cmin_flt;
1696 r->ru_majflt = p->signal->cmaj_flt;
1697 r->ru_inblock = p->signal->cinblock;
1698 r->ru_oublock = p->signal->coublock;
1699 maxrss = p->signal->cmaxrss;
1700
1701 if (who == RUSAGE_CHILDREN)
1702 break;
1703
1704 case RUSAGE_SELF:
1705 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1706 utime += tgutime;
1707 stime += tgstime;
1708 r->ru_nvcsw += p->signal->nvcsw;
1709 r->ru_nivcsw += p->signal->nivcsw;
1710 r->ru_minflt += p->signal->min_flt;
1711 r->ru_majflt += p->signal->maj_flt;
1712 r->ru_inblock += p->signal->inblock;
1713 r->ru_oublock += p->signal->oublock;
1714 if (maxrss < p->signal->maxrss)
1715 maxrss = p->signal->maxrss;
1716 t = p;
1717 do {
1718 accumulate_thread_rusage(t, r);
1719 } while_each_thread(p, t);
1720 break;
1721
1722 default:
1723 BUG();
1724 }
1725 unlock_task_sighand(p, &flags);
1726
1727 out:
1728 r->ru_utime = ns_to_timeval(utime);
1729 r->ru_stime = ns_to_timeval(stime);
1730
1731 if (who != RUSAGE_CHILDREN) {
1732 struct mm_struct *mm = get_task_mm(p);
1733
1734 if (mm) {
1735 setmax_mm_hiwater_rss(&maxrss, mm);
1736 mmput(mm);
1737 }
1738 }
1739 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1740 }
1741
1742 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1743 {
1744 struct rusage r;
1745
1746 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1747 who != RUSAGE_THREAD)
1748 return -EINVAL;
1749
1750 getrusage(current, who, &r);
1751 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1752 }
1753
1754 #ifdef CONFIG_COMPAT
1755 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1756 {
1757 struct rusage r;
1758
1759 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1760 who != RUSAGE_THREAD)
1761 return -EINVAL;
1762
1763 getrusage(current, who, &r);
1764 return put_compat_rusage(&r, ru);
1765 }
1766 #endif
1767
1768 SYSCALL_DEFINE1(umask, int, mask)
1769 {
1770 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1771 return mask;
1772 }
1773
1774 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1775 {
1776 struct fd exe;
1777 struct file *old_exe, *exe_file;
1778 struct inode *inode;
1779 int err;
1780
1781 exe = fdget(fd);
1782 if (!exe.file)
1783 return -EBADF;
1784
1785 inode = file_inode(exe.file);
1786
1787 /*
1788 * Because the original mm->exe_file points to executable file, make
1789 * sure that this one is executable as well, to avoid breaking an
1790 * overall picture.
1791 */
1792 err = -EACCES;
1793 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1794 goto exit;
1795
1796 err = inode_permission(inode, MAY_EXEC);
1797 if (err)
1798 goto exit;
1799
1800 /*
1801 * Forbid mm->exe_file change if old file still mapped.
1802 */
1803 exe_file = get_mm_exe_file(mm);
1804 err = -EBUSY;
1805 if (exe_file) {
1806 struct vm_area_struct *vma;
1807
1808 down_read(&mm->mmap_sem);
1809 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1810 if (!vma->vm_file)
1811 continue;
1812 if (path_equal(&vma->vm_file->f_path,
1813 &exe_file->f_path))
1814 goto exit_err;
1815 }
1816
1817 up_read(&mm->mmap_sem);
1818 fput(exe_file);
1819 }
1820
1821 err = 0;
1822 /* set the new file, lockless */
1823 get_file(exe.file);
1824 old_exe = xchg(&mm->exe_file, exe.file);
1825 if (old_exe)
1826 fput(old_exe);
1827 exit:
1828 fdput(exe);
1829 return err;
1830 exit_err:
1831 up_read(&mm->mmap_sem);
1832 fput(exe_file);
1833 goto exit;
1834 }
1835
1836 /*
1837 * WARNING: we don't require any capability here so be very careful
1838 * in what is allowed for modification from userspace.
1839 */
1840 static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1841 {
1842 unsigned long mmap_max_addr = TASK_SIZE;
1843 struct mm_struct *mm = current->mm;
1844 int error = -EINVAL, i;
1845
1846 static const unsigned char offsets[] = {
1847 offsetof(struct prctl_mm_map, start_code),
1848 offsetof(struct prctl_mm_map, end_code),
1849 offsetof(struct prctl_mm_map, start_data),
1850 offsetof(struct prctl_mm_map, end_data),
1851 offsetof(struct prctl_mm_map, start_brk),
1852 offsetof(struct prctl_mm_map, brk),
1853 offsetof(struct prctl_mm_map, start_stack),
1854 offsetof(struct prctl_mm_map, arg_start),
1855 offsetof(struct prctl_mm_map, arg_end),
1856 offsetof(struct prctl_mm_map, env_start),
1857 offsetof(struct prctl_mm_map, env_end),
1858 };
1859
1860 /*
1861 * Make sure the members are not somewhere outside
1862 * of allowed address space.
1863 */
1864 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1865 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1866
1867 if ((unsigned long)val >= mmap_max_addr ||
1868 (unsigned long)val < mmap_min_addr)
1869 goto out;
1870 }
1871
1872 /*
1873 * Make sure the pairs are ordered.
1874 */
1875 #define __prctl_check_order(__m1, __op, __m2) \
1876 ((unsigned long)prctl_map->__m1 __op \
1877 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1878 error = __prctl_check_order(start_code, <, end_code);
1879 error |= __prctl_check_order(start_data, <, end_data);
1880 error |= __prctl_check_order(start_brk, <=, brk);
1881 error |= __prctl_check_order(arg_start, <=, arg_end);
1882 error |= __prctl_check_order(env_start, <=, env_end);
1883 if (error)
1884 goto out;
1885 #undef __prctl_check_order
1886
1887 error = -EINVAL;
1888
1889 /*
1890 * @brk should be after @end_data in traditional maps.
1891 */
1892 if (prctl_map->start_brk <= prctl_map->end_data ||
1893 prctl_map->brk <= prctl_map->end_data)
1894 goto out;
1895
1896 /*
1897 * Neither we should allow to override limits if they set.
1898 */
1899 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1900 prctl_map->start_brk, prctl_map->end_data,
1901 prctl_map->start_data))
1902 goto out;
1903
1904 /*
1905 * Someone is trying to cheat the auxv vector.
1906 */
1907 if (prctl_map->auxv_size) {
1908 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1909 goto out;
1910 }
1911
1912 /*
1913 * Finally, make sure the caller has the rights to
1914 * change /proc/pid/exe link: only local root should
1915 * be allowed to.
1916 */
1917 if (prctl_map->exe_fd != (u32)-1) {
1918 struct user_namespace *ns = current_user_ns();
1919 const struct cred *cred = current_cred();
1920
1921 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1922 !gid_eq(cred->gid, make_kgid(ns, 0)))
1923 goto out;
1924 }
1925
1926 error = 0;
1927 out:
1928 return error;
1929 }
1930
1931 #ifdef CONFIG_CHECKPOINT_RESTORE
1932 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1933 {
1934 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1935 unsigned long user_auxv[AT_VECTOR_SIZE];
1936 struct mm_struct *mm = current->mm;
1937 int error;
1938
1939 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1940 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1941
1942 if (opt == PR_SET_MM_MAP_SIZE)
1943 return put_user((unsigned int)sizeof(prctl_map),
1944 (unsigned int __user *)addr);
1945
1946 if (data_size != sizeof(prctl_map))
1947 return -EINVAL;
1948
1949 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1950 return -EFAULT;
1951
1952 error = validate_prctl_map(&prctl_map);
1953 if (error)
1954 return error;
1955
1956 if (prctl_map.auxv_size) {
1957 memset(user_auxv, 0, sizeof(user_auxv));
1958 if (copy_from_user(user_auxv,
1959 (const void __user *)prctl_map.auxv,
1960 prctl_map.auxv_size))
1961 return -EFAULT;
1962
1963 /* Last entry must be AT_NULL as specification requires */
1964 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1965 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1966 }
1967
1968 if (prctl_map.exe_fd != (u32)-1) {
1969 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1970 if (error)
1971 return error;
1972 }
1973
1974 down_write(&mm->mmap_sem);
1975
1976 /*
1977 * We don't validate if these members are pointing to
1978 * real present VMAs because application may have correspond
1979 * VMAs already unmapped and kernel uses these members for statistics
1980 * output in procfs mostly, except
1981 *
1982 * - @start_brk/@brk which are used in do_brk but kernel lookups
1983 * for VMAs when updating these memvers so anything wrong written
1984 * here cause kernel to swear at userspace program but won't lead
1985 * to any problem in kernel itself
1986 */
1987
1988 mm->start_code = prctl_map.start_code;
1989 mm->end_code = prctl_map.end_code;
1990 mm->start_data = prctl_map.start_data;
1991 mm->end_data = prctl_map.end_data;
1992 mm->start_brk = prctl_map.start_brk;
1993 mm->brk = prctl_map.brk;
1994 mm->start_stack = prctl_map.start_stack;
1995 mm->arg_start = prctl_map.arg_start;
1996 mm->arg_end = prctl_map.arg_end;
1997 mm->env_start = prctl_map.env_start;
1998 mm->env_end = prctl_map.env_end;
1999
2000 /*
2001 * Note this update of @saved_auxv is lockless thus
2002 * if someone reads this member in procfs while we're
2003 * updating -- it may get partly updated results. It's
2004 * known and acceptable trade off: we leave it as is to
2005 * not introduce additional locks here making the kernel
2006 * more complex.
2007 */
2008 if (prctl_map.auxv_size)
2009 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2010
2011 up_write(&mm->mmap_sem);
2012 return 0;
2013 }
2014 #endif /* CONFIG_CHECKPOINT_RESTORE */
2015
2016 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2017 unsigned long len)
2018 {
2019 /*
2020 * This doesn't move the auxiliary vector itself since it's pinned to
2021 * mm_struct, but it permits filling the vector with new values. It's
2022 * up to the caller to provide sane values here, otherwise userspace
2023 * tools which use this vector might be unhappy.
2024 */
2025 unsigned long user_auxv[AT_VECTOR_SIZE];
2026
2027 if (len > sizeof(user_auxv))
2028 return -EINVAL;
2029
2030 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2031 return -EFAULT;
2032
2033 /* Make sure the last entry is always AT_NULL */
2034 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2035 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2036
2037 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2038
2039 task_lock(current);
2040 memcpy(mm->saved_auxv, user_auxv, len);
2041 task_unlock(current);
2042
2043 return 0;
2044 }
2045
2046 static int prctl_set_mm(int opt, unsigned long addr,
2047 unsigned long arg4, unsigned long arg5)
2048 {
2049 struct mm_struct *mm = current->mm;
2050 struct prctl_mm_map prctl_map;
2051 struct vm_area_struct *vma;
2052 int error;
2053
2054 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2055 opt != PR_SET_MM_MAP &&
2056 opt != PR_SET_MM_MAP_SIZE)))
2057 return -EINVAL;
2058
2059 #ifdef CONFIG_CHECKPOINT_RESTORE
2060 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2061 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2062 #endif
2063
2064 if (!capable(CAP_SYS_RESOURCE))
2065 return -EPERM;
2066
2067 if (opt == PR_SET_MM_EXE_FILE)
2068 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2069
2070 if (opt == PR_SET_MM_AUXV)
2071 return prctl_set_auxv(mm, addr, arg4);
2072
2073 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2074 return -EINVAL;
2075
2076 error = -EINVAL;
2077
2078 down_write(&mm->mmap_sem);
2079 vma = find_vma(mm, addr);
2080
2081 prctl_map.start_code = mm->start_code;
2082 prctl_map.end_code = mm->end_code;
2083 prctl_map.start_data = mm->start_data;
2084 prctl_map.end_data = mm->end_data;
2085 prctl_map.start_brk = mm->start_brk;
2086 prctl_map.brk = mm->brk;
2087 prctl_map.start_stack = mm->start_stack;
2088 prctl_map.arg_start = mm->arg_start;
2089 prctl_map.arg_end = mm->arg_end;
2090 prctl_map.env_start = mm->env_start;
2091 prctl_map.env_end = mm->env_end;
2092 prctl_map.auxv = NULL;
2093 prctl_map.auxv_size = 0;
2094 prctl_map.exe_fd = -1;
2095
2096 switch (opt) {
2097 case PR_SET_MM_START_CODE:
2098 prctl_map.start_code = addr;
2099 break;
2100 case PR_SET_MM_END_CODE:
2101 prctl_map.end_code = addr;
2102 break;
2103 case PR_SET_MM_START_DATA:
2104 prctl_map.start_data = addr;
2105 break;
2106 case PR_SET_MM_END_DATA:
2107 prctl_map.end_data = addr;
2108 break;
2109 case PR_SET_MM_START_STACK:
2110 prctl_map.start_stack = addr;
2111 break;
2112 case PR_SET_MM_START_BRK:
2113 prctl_map.start_brk = addr;
2114 break;
2115 case PR_SET_MM_BRK:
2116 prctl_map.brk = addr;
2117 break;
2118 case PR_SET_MM_ARG_START:
2119 prctl_map.arg_start = addr;
2120 break;
2121 case PR_SET_MM_ARG_END:
2122 prctl_map.arg_end = addr;
2123 break;
2124 case PR_SET_MM_ENV_START:
2125 prctl_map.env_start = addr;
2126 break;
2127 case PR_SET_MM_ENV_END:
2128 prctl_map.env_end = addr;
2129 break;
2130 default:
2131 goto out;
2132 }
2133
2134 error = validate_prctl_map(&prctl_map);
2135 if (error)
2136 goto out;
2137
2138 switch (opt) {
2139 /*
2140 * If command line arguments and environment
2141 * are placed somewhere else on stack, we can
2142 * set them up here, ARG_START/END to setup
2143 * command line argumets and ENV_START/END
2144 * for environment.
2145 */
2146 case PR_SET_MM_START_STACK:
2147 case PR_SET_MM_ARG_START:
2148 case PR_SET_MM_ARG_END:
2149 case PR_SET_MM_ENV_START:
2150 case PR_SET_MM_ENV_END:
2151 if (!vma) {
2152 error = -EFAULT;
2153 goto out;
2154 }
2155 }
2156
2157 mm->start_code = prctl_map.start_code;
2158 mm->end_code = prctl_map.end_code;
2159 mm->start_data = prctl_map.start_data;
2160 mm->end_data = prctl_map.end_data;
2161 mm->start_brk = prctl_map.start_brk;
2162 mm->brk = prctl_map.brk;
2163 mm->start_stack = prctl_map.start_stack;
2164 mm->arg_start = prctl_map.arg_start;
2165 mm->arg_end = prctl_map.arg_end;
2166 mm->env_start = prctl_map.env_start;
2167 mm->env_end = prctl_map.env_end;
2168
2169 error = 0;
2170 out:
2171 up_write(&mm->mmap_sem);
2172 return error;
2173 }
2174
2175 #ifdef CONFIG_CHECKPOINT_RESTORE
2176 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2177 {
2178 return put_user(me->clear_child_tid, tid_addr);
2179 }
2180 #else
2181 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2182 {
2183 return -EINVAL;
2184 }
2185 #endif
2186
2187 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2188 {
2189 /*
2190 * If task has has_child_subreaper - all its decendants
2191 * already have these flag too and new decendants will
2192 * inherit it on fork, skip them.
2193 *
2194 * If we've found child_reaper - skip descendants in
2195 * it's subtree as they will never get out pidns.
2196 */
2197 if (p->signal->has_child_subreaper ||
2198 is_child_reaper(task_pid(p)))
2199 return 0;
2200
2201 p->signal->has_child_subreaper = 1;
2202 return 1;
2203 }
2204
2205 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2206 unsigned long, arg4, unsigned long, arg5)
2207 {
2208 struct task_struct *me = current;
2209 unsigned char comm[sizeof(me->comm)];
2210 long error;
2211
2212 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2213 if (error != -ENOSYS)
2214 return error;
2215
2216 error = 0;
2217 switch (option) {
2218 case PR_SET_PDEATHSIG:
2219 if (!valid_signal(arg2)) {
2220 error = -EINVAL;
2221 break;
2222 }
2223 me->pdeath_signal = arg2;
2224 break;
2225 case PR_GET_PDEATHSIG:
2226 error = put_user(me->pdeath_signal, (int __user *)arg2);
2227 break;
2228 case PR_GET_DUMPABLE:
2229 error = get_dumpable(me->mm);
2230 break;
2231 case PR_SET_DUMPABLE:
2232 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2233 error = -EINVAL;
2234 break;
2235 }
2236 set_dumpable(me->mm, arg2);
2237 break;
2238
2239 case PR_SET_UNALIGN:
2240 error = SET_UNALIGN_CTL(me, arg2);
2241 break;
2242 case PR_GET_UNALIGN:
2243 error = GET_UNALIGN_CTL(me, arg2);
2244 break;
2245 case PR_SET_FPEMU:
2246 error = SET_FPEMU_CTL(me, arg2);
2247 break;
2248 case PR_GET_FPEMU:
2249 error = GET_FPEMU_CTL(me, arg2);
2250 break;
2251 case PR_SET_FPEXC:
2252 error = SET_FPEXC_CTL(me, arg2);
2253 break;
2254 case PR_GET_FPEXC:
2255 error = GET_FPEXC_CTL(me, arg2);
2256 break;
2257 case PR_GET_TIMING:
2258 error = PR_TIMING_STATISTICAL;
2259 break;
2260 case PR_SET_TIMING:
2261 if (arg2 != PR_TIMING_STATISTICAL)
2262 error = -EINVAL;
2263 break;
2264 case PR_SET_NAME:
2265 comm[sizeof(me->comm) - 1] = 0;
2266 if (strncpy_from_user(comm, (char __user *)arg2,
2267 sizeof(me->comm) - 1) < 0)
2268 return -EFAULT;
2269 set_task_comm(me, comm);
2270 proc_comm_connector(me);
2271 break;
2272 case PR_GET_NAME:
2273 get_task_comm(comm, me);
2274 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2275 return -EFAULT;
2276 break;
2277 case PR_GET_ENDIAN:
2278 error = GET_ENDIAN(me, arg2);
2279 break;
2280 case PR_SET_ENDIAN:
2281 error = SET_ENDIAN(me, arg2);
2282 break;
2283 case PR_GET_SECCOMP:
2284 error = prctl_get_seccomp();
2285 break;
2286 case PR_SET_SECCOMP:
2287 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2288 break;
2289 case PR_GET_TSC:
2290 error = GET_TSC_CTL(arg2);
2291 break;
2292 case PR_SET_TSC:
2293 error = SET_TSC_CTL(arg2);
2294 break;
2295 case PR_TASK_PERF_EVENTS_DISABLE:
2296 error = perf_event_task_disable();
2297 break;
2298 case PR_TASK_PERF_EVENTS_ENABLE:
2299 error = perf_event_task_enable();
2300 break;
2301 case PR_GET_TIMERSLACK:
2302 if (current->timer_slack_ns > ULONG_MAX)
2303 error = ULONG_MAX;
2304 else
2305 error = current->timer_slack_ns;
2306 break;
2307 case PR_SET_TIMERSLACK:
2308 if (arg2 <= 0)
2309 current->timer_slack_ns =
2310 current->default_timer_slack_ns;
2311 else
2312 current->timer_slack_ns = arg2;
2313 break;
2314 case PR_MCE_KILL:
2315 if (arg4 | arg5)
2316 return -EINVAL;
2317 switch (arg2) {
2318 case PR_MCE_KILL_CLEAR:
2319 if (arg3 != 0)
2320 return -EINVAL;
2321 current->flags &= ~PF_MCE_PROCESS;
2322 break;
2323 case PR_MCE_KILL_SET:
2324 current->flags |= PF_MCE_PROCESS;
2325 if (arg3 == PR_MCE_KILL_EARLY)
2326 current->flags |= PF_MCE_EARLY;
2327 else if (arg3 == PR_MCE_KILL_LATE)
2328 current->flags &= ~PF_MCE_EARLY;
2329 else if (arg3 == PR_MCE_KILL_DEFAULT)
2330 current->flags &=
2331 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2332 else
2333 return -EINVAL;
2334 break;
2335 default:
2336 return -EINVAL;
2337 }
2338 break;
2339 case PR_MCE_KILL_GET:
2340 if (arg2 | arg3 | arg4 | arg5)
2341 return -EINVAL;
2342 if (current->flags & PF_MCE_PROCESS)
2343 error = (current->flags & PF_MCE_EARLY) ?
2344 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2345 else
2346 error = PR_MCE_KILL_DEFAULT;
2347 break;
2348 case PR_SET_MM:
2349 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2350 break;
2351 case PR_GET_TID_ADDRESS:
2352 error = prctl_get_tid_address(me, (int __user **)arg2);
2353 break;
2354 case PR_SET_CHILD_SUBREAPER:
2355 me->signal->is_child_subreaper = !!arg2;
2356 if (!arg2)
2357 break;
2358
2359 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2360 break;
2361 case PR_GET_CHILD_SUBREAPER:
2362 error = put_user(me->signal->is_child_subreaper,
2363 (int __user *)arg2);
2364 break;
2365 case PR_SET_NO_NEW_PRIVS:
2366 if (arg2 != 1 || arg3 || arg4 || arg5)
2367 return -EINVAL;
2368
2369 task_set_no_new_privs(current);
2370 break;
2371 case PR_GET_NO_NEW_PRIVS:
2372 if (arg2 || arg3 || arg4 || arg5)
2373 return -EINVAL;
2374 return task_no_new_privs(current) ? 1 : 0;
2375 case PR_GET_THP_DISABLE:
2376 if (arg2 || arg3 || arg4 || arg5)
2377 return -EINVAL;
2378 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2379 break;
2380 case PR_SET_THP_DISABLE:
2381 if (arg3 || arg4 || arg5)
2382 return -EINVAL;
2383 if (down_write_killable(&me->mm->mmap_sem))
2384 return -EINTR;
2385 if (arg2)
2386 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2387 else
2388 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2389 up_write(&me->mm->mmap_sem);
2390 break;
2391 case PR_MPX_ENABLE_MANAGEMENT:
2392 if (arg2 || arg3 || arg4 || arg5)
2393 return -EINVAL;
2394 error = MPX_ENABLE_MANAGEMENT();
2395 break;
2396 case PR_MPX_DISABLE_MANAGEMENT:
2397 if (arg2 || arg3 || arg4 || arg5)
2398 return -EINVAL;
2399 error = MPX_DISABLE_MANAGEMENT();
2400 break;
2401 case PR_SET_FP_MODE:
2402 error = SET_FP_MODE(me, arg2);
2403 break;
2404 case PR_GET_FP_MODE:
2405 error = GET_FP_MODE(me);
2406 break;
2407 default:
2408 error = -EINVAL;
2409 break;
2410 }
2411 return error;
2412 }
2413
2414 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2415 struct getcpu_cache __user *, unused)
2416 {
2417 int err = 0;
2418 int cpu = raw_smp_processor_id();
2419
2420 if (cpup)
2421 err |= put_user(cpu, cpup);
2422 if (nodep)
2423 err |= put_user(cpu_to_node(cpu), nodep);
2424 return err ? -EFAULT : 0;
2425 }
2426
2427 /**
2428 * do_sysinfo - fill in sysinfo struct
2429 * @info: pointer to buffer to fill
2430 */
2431 static int do_sysinfo(struct sysinfo *info)
2432 {
2433 unsigned long mem_total, sav_total;
2434 unsigned int mem_unit, bitcount;
2435 struct timespec tp;
2436
2437 memset(info, 0, sizeof(struct sysinfo));
2438
2439 get_monotonic_boottime(&tp);
2440 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2441
2442 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2443
2444 info->procs = nr_threads;
2445
2446 si_meminfo(info);
2447 si_swapinfo(info);
2448
2449 /*
2450 * If the sum of all the available memory (i.e. ram + swap)
2451 * is less than can be stored in a 32 bit unsigned long then
2452 * we can be binary compatible with 2.2.x kernels. If not,
2453 * well, in that case 2.2.x was broken anyways...
2454 *
2455 * -Erik Andersen <andersee@debian.org>
2456 */
2457
2458 mem_total = info->totalram + info->totalswap;
2459 if (mem_total < info->totalram || mem_total < info->totalswap)
2460 goto out;
2461 bitcount = 0;
2462 mem_unit = info->mem_unit;
2463 while (mem_unit > 1) {
2464 bitcount++;
2465 mem_unit >>= 1;
2466 sav_total = mem_total;
2467 mem_total <<= 1;
2468 if (mem_total < sav_total)
2469 goto out;
2470 }
2471
2472 /*
2473 * If mem_total did not overflow, multiply all memory values by
2474 * info->mem_unit and set it to 1. This leaves things compatible
2475 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2476 * kernels...
2477 */
2478
2479 info->mem_unit = 1;
2480 info->totalram <<= bitcount;
2481 info->freeram <<= bitcount;
2482 info->sharedram <<= bitcount;
2483 info->bufferram <<= bitcount;
2484 info->totalswap <<= bitcount;
2485 info->freeswap <<= bitcount;
2486 info->totalhigh <<= bitcount;
2487 info->freehigh <<= bitcount;
2488
2489 out:
2490 return 0;
2491 }
2492
2493 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2494 {
2495 struct sysinfo val;
2496
2497 do_sysinfo(&val);
2498
2499 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2500 return -EFAULT;
2501
2502 return 0;
2503 }
2504
2505 #ifdef CONFIG_COMPAT
2506 struct compat_sysinfo {
2507 s32 uptime;
2508 u32 loads[3];
2509 u32 totalram;
2510 u32 freeram;
2511 u32 sharedram;
2512 u32 bufferram;
2513 u32 totalswap;
2514 u32 freeswap;
2515 u16 procs;
2516 u16 pad;
2517 u32 totalhigh;
2518 u32 freehigh;
2519 u32 mem_unit;
2520 char _f[20-2*sizeof(u32)-sizeof(int)];
2521 };
2522
2523 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2524 {
2525 struct sysinfo s;
2526
2527 do_sysinfo(&s);
2528
2529 /* Check to see if any memory value is too large for 32-bit and scale
2530 * down if needed
2531 */
2532 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2533 int bitcount = 0;
2534
2535 while (s.mem_unit < PAGE_SIZE) {
2536 s.mem_unit <<= 1;
2537 bitcount++;
2538 }
2539
2540 s.totalram >>= bitcount;
2541 s.freeram >>= bitcount;
2542 s.sharedram >>= bitcount;
2543 s.bufferram >>= bitcount;
2544 s.totalswap >>= bitcount;
2545 s.freeswap >>= bitcount;
2546 s.totalhigh >>= bitcount;
2547 s.freehigh >>= bitcount;
2548 }
2549
2550 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2551 __put_user(s.uptime, &info->uptime) ||
2552 __put_user(s.loads[0], &info->loads[0]) ||
2553 __put_user(s.loads[1], &info->loads[1]) ||
2554 __put_user(s.loads[2], &info->loads[2]) ||
2555 __put_user(s.totalram, &info->totalram) ||
2556 __put_user(s.freeram, &info->freeram) ||
2557 __put_user(s.sharedram, &info->sharedram) ||
2558 __put_user(s.bufferram, &info->bufferram) ||
2559 __put_user(s.totalswap, &info->totalswap) ||
2560 __put_user(s.freeswap, &info->freeswap) ||
2561 __put_user(s.procs, &info->procs) ||
2562 __put_user(s.totalhigh, &info->totalhigh) ||
2563 __put_user(s.freehigh, &info->freehigh) ||
2564 __put_user(s.mem_unit, &info->mem_unit))
2565 return -EFAULT;
2566
2567 return 0;
2568 }
2569 #endif /* CONFIG_COMPAT */