]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/timer.c
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched...
[mirror_ubuntu-artful-kernel.git] / kernel / time / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched/signal.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45
46 #include <linux/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51
52 #include "tick-internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/timer.h>
56
57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
58
59 EXPORT_SYMBOL(jiffies_64);
60
61 /*
62 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
63 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
64 * level has a different granularity.
65 *
66 * The level granularity is: LVL_CLK_DIV ^ lvl
67 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
68 *
69 * The array level of a newly armed timer depends on the relative expiry
70 * time. The farther the expiry time is away the higher the array level and
71 * therefor the granularity becomes.
72 *
73 * Contrary to the original timer wheel implementation, which aims for 'exact'
74 * expiry of the timers, this implementation removes the need for recascading
75 * the timers into the lower array levels. The previous 'classic' timer wheel
76 * implementation of the kernel already violated the 'exact' expiry by adding
77 * slack to the expiry time to provide batched expiration. The granularity
78 * levels provide implicit batching.
79 *
80 * This is an optimization of the original timer wheel implementation for the
81 * majority of the timer wheel use cases: timeouts. The vast majority of
82 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
83 * the timeout expires it indicates that normal operation is disturbed, so it
84 * does not matter much whether the timeout comes with a slight delay.
85 *
86 * The only exception to this are networking timers with a small expiry
87 * time. They rely on the granularity. Those fit into the first wheel level,
88 * which has HZ granularity.
89 *
90 * We don't have cascading anymore. timers with a expiry time above the
91 * capacity of the last wheel level are force expired at the maximum timeout
92 * value of the last wheel level. From data sampling we know that the maximum
93 * value observed is 5 days (network connection tracking), so this should not
94 * be an issue.
95 *
96 * The currently chosen array constants values are a good compromise between
97 * array size and granularity.
98 *
99 * This results in the following granularity and range levels:
100 *
101 * HZ 1000 steps
102 * Level Offset Granularity Range
103 * 0 0 1 ms 0 ms - 63 ms
104 * 1 64 8 ms 64 ms - 511 ms
105 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
106 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
107 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
108 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
109 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
110 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
111 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
112 *
113 * HZ 300
114 * Level Offset Granularity Range
115 * 0 0 3 ms 0 ms - 210 ms
116 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
117 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
118 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
119 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
120 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
121 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
122 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
123 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
124 *
125 * HZ 250
126 * Level Offset Granularity Range
127 * 0 0 4 ms 0 ms - 255 ms
128 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
129 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
130 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
131 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
132 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
133 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
134 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
135 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
136 *
137 * HZ 100
138 * Level Offset Granularity Range
139 * 0 0 10 ms 0 ms - 630 ms
140 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
141 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
142 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
143 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
144 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
145 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
146 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
147 */
148
149 /* Clock divisor for the next level */
150 #define LVL_CLK_SHIFT 3
151 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
152 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
153 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
154 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
155
156 /*
157 * The time start value for each level to select the bucket at enqueue
158 * time.
159 */
160 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
161
162 /* Size of each clock level */
163 #define LVL_BITS 6
164 #define LVL_SIZE (1UL << LVL_BITS)
165 #define LVL_MASK (LVL_SIZE - 1)
166 #define LVL_OFFS(n) ((n) * LVL_SIZE)
167
168 /* Level depth */
169 #if HZ > 100
170 # define LVL_DEPTH 9
171 # else
172 # define LVL_DEPTH 8
173 #endif
174
175 /* The cutoff (max. capacity of the wheel) */
176 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
177 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
178
179 /*
180 * The resulting wheel size. If NOHZ is configured we allocate two
181 * wheels so we have a separate storage for the deferrable timers.
182 */
183 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
184
185 #ifdef CONFIG_NO_HZ_COMMON
186 # define NR_BASES 2
187 # define BASE_STD 0
188 # define BASE_DEF 1
189 #else
190 # define NR_BASES 1
191 # define BASE_STD 0
192 # define BASE_DEF 0
193 #endif
194
195 struct timer_base {
196 spinlock_t lock;
197 struct timer_list *running_timer;
198 unsigned long clk;
199 unsigned long next_expiry;
200 unsigned int cpu;
201 bool migration_enabled;
202 bool nohz_active;
203 bool is_idle;
204 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
205 struct hlist_head vectors[WHEEL_SIZE];
206 } ____cacheline_aligned;
207
208 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
209
210 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
211 unsigned int sysctl_timer_migration = 1;
212
213 void timers_update_migration(bool update_nohz)
214 {
215 bool on = sysctl_timer_migration && tick_nohz_active;
216 unsigned int cpu;
217
218 /* Avoid the loop, if nothing to update */
219 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
220 return;
221
222 for_each_possible_cpu(cpu) {
223 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
224 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
225 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
226 if (!update_nohz)
227 continue;
228 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
229 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
230 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
231 }
232 }
233
234 int timer_migration_handler(struct ctl_table *table, int write,
235 void __user *buffer, size_t *lenp,
236 loff_t *ppos)
237 {
238 static DEFINE_MUTEX(mutex);
239 int ret;
240
241 mutex_lock(&mutex);
242 ret = proc_dointvec(table, write, buffer, lenp, ppos);
243 if (!ret && write)
244 timers_update_migration(false);
245 mutex_unlock(&mutex);
246 return ret;
247 }
248 #endif
249
250 static unsigned long round_jiffies_common(unsigned long j, int cpu,
251 bool force_up)
252 {
253 int rem;
254 unsigned long original = j;
255
256 /*
257 * We don't want all cpus firing their timers at once hitting the
258 * same lock or cachelines, so we skew each extra cpu with an extra
259 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
260 * already did this.
261 * The skew is done by adding 3*cpunr, then round, then subtract this
262 * extra offset again.
263 */
264 j += cpu * 3;
265
266 rem = j % HZ;
267
268 /*
269 * If the target jiffie is just after a whole second (which can happen
270 * due to delays of the timer irq, long irq off times etc etc) then
271 * we should round down to the whole second, not up. Use 1/4th second
272 * as cutoff for this rounding as an extreme upper bound for this.
273 * But never round down if @force_up is set.
274 */
275 if (rem < HZ/4 && !force_up) /* round down */
276 j = j - rem;
277 else /* round up */
278 j = j - rem + HZ;
279
280 /* now that we have rounded, subtract the extra skew again */
281 j -= cpu * 3;
282
283 /*
284 * Make sure j is still in the future. Otherwise return the
285 * unmodified value.
286 */
287 return time_is_after_jiffies(j) ? j : original;
288 }
289
290 /**
291 * __round_jiffies - function to round jiffies to a full second
292 * @j: the time in (absolute) jiffies that should be rounded
293 * @cpu: the processor number on which the timeout will happen
294 *
295 * __round_jiffies() rounds an absolute time in the future (in jiffies)
296 * up or down to (approximately) full seconds. This is useful for timers
297 * for which the exact time they fire does not matter too much, as long as
298 * they fire approximately every X seconds.
299 *
300 * By rounding these timers to whole seconds, all such timers will fire
301 * at the same time, rather than at various times spread out. The goal
302 * of this is to have the CPU wake up less, which saves power.
303 *
304 * The exact rounding is skewed for each processor to avoid all
305 * processors firing at the exact same time, which could lead
306 * to lock contention or spurious cache line bouncing.
307 *
308 * The return value is the rounded version of the @j parameter.
309 */
310 unsigned long __round_jiffies(unsigned long j, int cpu)
311 {
312 return round_jiffies_common(j, cpu, false);
313 }
314 EXPORT_SYMBOL_GPL(__round_jiffies);
315
316 /**
317 * __round_jiffies_relative - function to round jiffies to a full second
318 * @j: the time in (relative) jiffies that should be rounded
319 * @cpu: the processor number on which the timeout will happen
320 *
321 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
322 * up or down to (approximately) full seconds. This is useful for timers
323 * for which the exact time they fire does not matter too much, as long as
324 * they fire approximately every X seconds.
325 *
326 * By rounding these timers to whole seconds, all such timers will fire
327 * at the same time, rather than at various times spread out. The goal
328 * of this is to have the CPU wake up less, which saves power.
329 *
330 * The exact rounding is skewed for each processor to avoid all
331 * processors firing at the exact same time, which could lead
332 * to lock contention or spurious cache line bouncing.
333 *
334 * The return value is the rounded version of the @j parameter.
335 */
336 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
337 {
338 unsigned long j0 = jiffies;
339
340 /* Use j0 because jiffies might change while we run */
341 return round_jiffies_common(j + j0, cpu, false) - j0;
342 }
343 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
344
345 /**
346 * round_jiffies - function to round jiffies to a full second
347 * @j: the time in (absolute) jiffies that should be rounded
348 *
349 * round_jiffies() rounds an absolute time in the future (in jiffies)
350 * up or down to (approximately) full seconds. This is useful for timers
351 * for which the exact time they fire does not matter too much, as long as
352 * they fire approximately every X seconds.
353 *
354 * By rounding these timers to whole seconds, all such timers will fire
355 * at the same time, rather than at various times spread out. The goal
356 * of this is to have the CPU wake up less, which saves power.
357 *
358 * The return value is the rounded version of the @j parameter.
359 */
360 unsigned long round_jiffies(unsigned long j)
361 {
362 return round_jiffies_common(j, raw_smp_processor_id(), false);
363 }
364 EXPORT_SYMBOL_GPL(round_jiffies);
365
366 /**
367 * round_jiffies_relative - function to round jiffies to a full second
368 * @j: the time in (relative) jiffies that should be rounded
369 *
370 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
371 * up or down to (approximately) full seconds. This is useful for timers
372 * for which the exact time they fire does not matter too much, as long as
373 * they fire approximately every X seconds.
374 *
375 * By rounding these timers to whole seconds, all such timers will fire
376 * at the same time, rather than at various times spread out. The goal
377 * of this is to have the CPU wake up less, which saves power.
378 *
379 * The return value is the rounded version of the @j parameter.
380 */
381 unsigned long round_jiffies_relative(unsigned long j)
382 {
383 return __round_jiffies_relative(j, raw_smp_processor_id());
384 }
385 EXPORT_SYMBOL_GPL(round_jiffies_relative);
386
387 /**
388 * __round_jiffies_up - function to round jiffies up to a full second
389 * @j: the time in (absolute) jiffies that should be rounded
390 * @cpu: the processor number on which the timeout will happen
391 *
392 * This is the same as __round_jiffies() except that it will never
393 * round down. This is useful for timeouts for which the exact time
394 * of firing does not matter too much, as long as they don't fire too
395 * early.
396 */
397 unsigned long __round_jiffies_up(unsigned long j, int cpu)
398 {
399 return round_jiffies_common(j, cpu, true);
400 }
401 EXPORT_SYMBOL_GPL(__round_jiffies_up);
402
403 /**
404 * __round_jiffies_up_relative - function to round jiffies up to a full second
405 * @j: the time in (relative) jiffies that should be rounded
406 * @cpu: the processor number on which the timeout will happen
407 *
408 * This is the same as __round_jiffies_relative() except that it will never
409 * round down. This is useful for timeouts for which the exact time
410 * of firing does not matter too much, as long as they don't fire too
411 * early.
412 */
413 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
414 {
415 unsigned long j0 = jiffies;
416
417 /* Use j0 because jiffies might change while we run */
418 return round_jiffies_common(j + j0, cpu, true) - j0;
419 }
420 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
421
422 /**
423 * round_jiffies_up - function to round jiffies up to a full second
424 * @j: the time in (absolute) jiffies that should be rounded
425 *
426 * This is the same as round_jiffies() except that it will never
427 * round down. This is useful for timeouts for which the exact time
428 * of firing does not matter too much, as long as they don't fire too
429 * early.
430 */
431 unsigned long round_jiffies_up(unsigned long j)
432 {
433 return round_jiffies_common(j, raw_smp_processor_id(), true);
434 }
435 EXPORT_SYMBOL_GPL(round_jiffies_up);
436
437 /**
438 * round_jiffies_up_relative - function to round jiffies up to a full second
439 * @j: the time in (relative) jiffies that should be rounded
440 *
441 * This is the same as round_jiffies_relative() except that it will never
442 * round down. This is useful for timeouts for which the exact time
443 * of firing does not matter too much, as long as they don't fire too
444 * early.
445 */
446 unsigned long round_jiffies_up_relative(unsigned long j)
447 {
448 return __round_jiffies_up_relative(j, raw_smp_processor_id());
449 }
450 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
451
452
453 static inline unsigned int timer_get_idx(struct timer_list *timer)
454 {
455 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
456 }
457
458 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
459 {
460 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
461 idx << TIMER_ARRAYSHIFT;
462 }
463
464 /*
465 * Helper function to calculate the array index for a given expiry
466 * time.
467 */
468 static inline unsigned calc_index(unsigned expires, unsigned lvl)
469 {
470 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
471 return LVL_OFFS(lvl) + (expires & LVL_MASK);
472 }
473
474 static int calc_wheel_index(unsigned long expires, unsigned long clk)
475 {
476 unsigned long delta = expires - clk;
477 unsigned int idx;
478
479 if (delta < LVL_START(1)) {
480 idx = calc_index(expires, 0);
481 } else if (delta < LVL_START(2)) {
482 idx = calc_index(expires, 1);
483 } else if (delta < LVL_START(3)) {
484 idx = calc_index(expires, 2);
485 } else if (delta < LVL_START(4)) {
486 idx = calc_index(expires, 3);
487 } else if (delta < LVL_START(5)) {
488 idx = calc_index(expires, 4);
489 } else if (delta < LVL_START(6)) {
490 idx = calc_index(expires, 5);
491 } else if (delta < LVL_START(7)) {
492 idx = calc_index(expires, 6);
493 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
494 idx = calc_index(expires, 7);
495 } else if ((long) delta < 0) {
496 idx = clk & LVL_MASK;
497 } else {
498 /*
499 * Force expire obscene large timeouts to expire at the
500 * capacity limit of the wheel.
501 */
502 if (expires >= WHEEL_TIMEOUT_CUTOFF)
503 expires = WHEEL_TIMEOUT_MAX;
504
505 idx = calc_index(expires, LVL_DEPTH - 1);
506 }
507 return idx;
508 }
509
510 /*
511 * Enqueue the timer into the hash bucket, mark it pending in
512 * the bitmap and store the index in the timer flags.
513 */
514 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
515 unsigned int idx)
516 {
517 hlist_add_head(&timer->entry, base->vectors + idx);
518 __set_bit(idx, base->pending_map);
519 timer_set_idx(timer, idx);
520 }
521
522 static void
523 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
524 {
525 unsigned int idx;
526
527 idx = calc_wheel_index(timer->expires, base->clk);
528 enqueue_timer(base, timer, idx);
529 }
530
531 static void
532 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
533 {
534 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
535 return;
536
537 /*
538 * TODO: This wants some optimizing similar to the code below, but we
539 * will do that when we switch from push to pull for deferrable timers.
540 */
541 if (timer->flags & TIMER_DEFERRABLE) {
542 if (tick_nohz_full_cpu(base->cpu))
543 wake_up_nohz_cpu(base->cpu);
544 return;
545 }
546
547 /*
548 * We might have to IPI the remote CPU if the base is idle and the
549 * timer is not deferrable. If the other CPU is on the way to idle
550 * then it can't set base->is_idle as we hold the base lock:
551 */
552 if (!base->is_idle)
553 return;
554
555 /* Check whether this is the new first expiring timer: */
556 if (time_after_eq(timer->expires, base->next_expiry))
557 return;
558
559 /*
560 * Set the next expiry time and kick the CPU so it can reevaluate the
561 * wheel:
562 */
563 base->next_expiry = timer->expires;
564 wake_up_nohz_cpu(base->cpu);
565 }
566
567 static void
568 internal_add_timer(struct timer_base *base, struct timer_list *timer)
569 {
570 __internal_add_timer(base, timer);
571 trigger_dyntick_cpu(base, timer);
572 }
573
574 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
575
576 static struct debug_obj_descr timer_debug_descr;
577
578 static void *timer_debug_hint(void *addr)
579 {
580 return ((struct timer_list *) addr)->function;
581 }
582
583 static bool timer_is_static_object(void *addr)
584 {
585 struct timer_list *timer = addr;
586
587 return (timer->entry.pprev == NULL &&
588 timer->entry.next == TIMER_ENTRY_STATIC);
589 }
590
591 /*
592 * fixup_init is called when:
593 * - an active object is initialized
594 */
595 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
596 {
597 struct timer_list *timer = addr;
598
599 switch (state) {
600 case ODEBUG_STATE_ACTIVE:
601 del_timer_sync(timer);
602 debug_object_init(timer, &timer_debug_descr);
603 return true;
604 default:
605 return false;
606 }
607 }
608
609 /* Stub timer callback for improperly used timers. */
610 static void stub_timer(unsigned long data)
611 {
612 WARN_ON(1);
613 }
614
615 /*
616 * fixup_activate is called when:
617 * - an active object is activated
618 * - an unknown non-static object is activated
619 */
620 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
621 {
622 struct timer_list *timer = addr;
623
624 switch (state) {
625 case ODEBUG_STATE_NOTAVAILABLE:
626 setup_timer(timer, stub_timer, 0);
627 return true;
628
629 case ODEBUG_STATE_ACTIVE:
630 WARN_ON(1);
631
632 default:
633 return false;
634 }
635 }
636
637 /*
638 * fixup_free is called when:
639 * - an active object is freed
640 */
641 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
642 {
643 struct timer_list *timer = addr;
644
645 switch (state) {
646 case ODEBUG_STATE_ACTIVE:
647 del_timer_sync(timer);
648 debug_object_free(timer, &timer_debug_descr);
649 return true;
650 default:
651 return false;
652 }
653 }
654
655 /*
656 * fixup_assert_init is called when:
657 * - an untracked/uninit-ed object is found
658 */
659 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
660 {
661 struct timer_list *timer = addr;
662
663 switch (state) {
664 case ODEBUG_STATE_NOTAVAILABLE:
665 setup_timer(timer, stub_timer, 0);
666 return true;
667 default:
668 return false;
669 }
670 }
671
672 static struct debug_obj_descr timer_debug_descr = {
673 .name = "timer_list",
674 .debug_hint = timer_debug_hint,
675 .is_static_object = timer_is_static_object,
676 .fixup_init = timer_fixup_init,
677 .fixup_activate = timer_fixup_activate,
678 .fixup_free = timer_fixup_free,
679 .fixup_assert_init = timer_fixup_assert_init,
680 };
681
682 static inline void debug_timer_init(struct timer_list *timer)
683 {
684 debug_object_init(timer, &timer_debug_descr);
685 }
686
687 static inline void debug_timer_activate(struct timer_list *timer)
688 {
689 debug_object_activate(timer, &timer_debug_descr);
690 }
691
692 static inline void debug_timer_deactivate(struct timer_list *timer)
693 {
694 debug_object_deactivate(timer, &timer_debug_descr);
695 }
696
697 static inline void debug_timer_free(struct timer_list *timer)
698 {
699 debug_object_free(timer, &timer_debug_descr);
700 }
701
702 static inline void debug_timer_assert_init(struct timer_list *timer)
703 {
704 debug_object_assert_init(timer, &timer_debug_descr);
705 }
706
707 static void do_init_timer(struct timer_list *timer, unsigned int flags,
708 const char *name, struct lock_class_key *key);
709
710 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
711 const char *name, struct lock_class_key *key)
712 {
713 debug_object_init_on_stack(timer, &timer_debug_descr);
714 do_init_timer(timer, flags, name, key);
715 }
716 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
717
718 void destroy_timer_on_stack(struct timer_list *timer)
719 {
720 debug_object_free(timer, &timer_debug_descr);
721 }
722 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
723
724 #else
725 static inline void debug_timer_init(struct timer_list *timer) { }
726 static inline void debug_timer_activate(struct timer_list *timer) { }
727 static inline void debug_timer_deactivate(struct timer_list *timer) { }
728 static inline void debug_timer_assert_init(struct timer_list *timer) { }
729 #endif
730
731 static inline void debug_init(struct timer_list *timer)
732 {
733 debug_timer_init(timer);
734 trace_timer_init(timer);
735 }
736
737 static inline void
738 debug_activate(struct timer_list *timer, unsigned long expires)
739 {
740 debug_timer_activate(timer);
741 trace_timer_start(timer, expires, timer->flags);
742 }
743
744 static inline void debug_deactivate(struct timer_list *timer)
745 {
746 debug_timer_deactivate(timer);
747 trace_timer_cancel(timer);
748 }
749
750 static inline void debug_assert_init(struct timer_list *timer)
751 {
752 debug_timer_assert_init(timer);
753 }
754
755 static void do_init_timer(struct timer_list *timer, unsigned int flags,
756 const char *name, struct lock_class_key *key)
757 {
758 timer->entry.pprev = NULL;
759 timer->flags = flags | raw_smp_processor_id();
760 lockdep_init_map(&timer->lockdep_map, name, key, 0);
761 }
762
763 /**
764 * init_timer_key - initialize a timer
765 * @timer: the timer to be initialized
766 * @flags: timer flags
767 * @name: name of the timer
768 * @key: lockdep class key of the fake lock used for tracking timer
769 * sync lock dependencies
770 *
771 * init_timer_key() must be done to a timer prior calling *any* of the
772 * other timer functions.
773 */
774 void init_timer_key(struct timer_list *timer, unsigned int flags,
775 const char *name, struct lock_class_key *key)
776 {
777 debug_init(timer);
778 do_init_timer(timer, flags, name, key);
779 }
780 EXPORT_SYMBOL(init_timer_key);
781
782 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
783 {
784 struct hlist_node *entry = &timer->entry;
785
786 debug_deactivate(timer);
787
788 __hlist_del(entry);
789 if (clear_pending)
790 entry->pprev = NULL;
791 entry->next = LIST_POISON2;
792 }
793
794 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
795 bool clear_pending)
796 {
797 unsigned idx = timer_get_idx(timer);
798
799 if (!timer_pending(timer))
800 return 0;
801
802 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
803 __clear_bit(idx, base->pending_map);
804
805 detach_timer(timer, clear_pending);
806 return 1;
807 }
808
809 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
810 {
811 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
812
813 /*
814 * If the timer is deferrable and nohz is active then we need to use
815 * the deferrable base.
816 */
817 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
818 (tflags & TIMER_DEFERRABLE))
819 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
820 return base;
821 }
822
823 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
824 {
825 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
826
827 /*
828 * If the timer is deferrable and nohz is active then we need to use
829 * the deferrable base.
830 */
831 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
832 (tflags & TIMER_DEFERRABLE))
833 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
834 return base;
835 }
836
837 static inline struct timer_base *get_timer_base(u32 tflags)
838 {
839 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
840 }
841
842 #ifdef CONFIG_NO_HZ_COMMON
843 static inline struct timer_base *
844 get_target_base(struct timer_base *base, unsigned tflags)
845 {
846 #ifdef CONFIG_SMP
847 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
848 return get_timer_this_cpu_base(tflags);
849 return get_timer_cpu_base(tflags, get_nohz_timer_target());
850 #else
851 return get_timer_this_cpu_base(tflags);
852 #endif
853 }
854
855 static inline void forward_timer_base(struct timer_base *base)
856 {
857 unsigned long jnow = READ_ONCE(jiffies);
858
859 /*
860 * We only forward the base when it's idle and we have a delta between
861 * base clock and jiffies.
862 */
863 if (!base->is_idle || (long) (jnow - base->clk) < 2)
864 return;
865
866 /*
867 * If the next expiry value is > jiffies, then we fast forward to
868 * jiffies otherwise we forward to the next expiry value.
869 */
870 if (time_after(base->next_expiry, jnow))
871 base->clk = jnow;
872 else
873 base->clk = base->next_expiry;
874 }
875 #else
876 static inline struct timer_base *
877 get_target_base(struct timer_base *base, unsigned tflags)
878 {
879 return get_timer_this_cpu_base(tflags);
880 }
881
882 static inline void forward_timer_base(struct timer_base *base) { }
883 #endif
884
885
886 /*
887 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
888 * that all timers which are tied to this base are locked, and the base itself
889 * is locked too.
890 *
891 * So __run_timers/migrate_timers can safely modify all timers which could
892 * be found in the base->vectors array.
893 *
894 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
895 * to wait until the migration is done.
896 */
897 static struct timer_base *lock_timer_base(struct timer_list *timer,
898 unsigned long *flags)
899 __acquires(timer->base->lock)
900 {
901 for (;;) {
902 struct timer_base *base;
903 u32 tf;
904
905 /*
906 * We need to use READ_ONCE() here, otherwise the compiler
907 * might re-read @tf between the check for TIMER_MIGRATING
908 * and spin_lock().
909 */
910 tf = READ_ONCE(timer->flags);
911
912 if (!(tf & TIMER_MIGRATING)) {
913 base = get_timer_base(tf);
914 spin_lock_irqsave(&base->lock, *flags);
915 if (timer->flags == tf)
916 return base;
917 spin_unlock_irqrestore(&base->lock, *flags);
918 }
919 cpu_relax();
920 }
921 }
922
923 static inline int
924 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
925 {
926 struct timer_base *base, *new_base;
927 unsigned int idx = UINT_MAX;
928 unsigned long clk = 0, flags;
929 int ret = 0;
930
931 BUG_ON(!timer->function);
932
933 /*
934 * This is a common optimization triggered by the networking code - if
935 * the timer is re-modified to have the same timeout or ends up in the
936 * same array bucket then just return:
937 */
938 if (timer_pending(timer)) {
939 if (timer->expires == expires)
940 return 1;
941
942 /*
943 * We lock timer base and calculate the bucket index right
944 * here. If the timer ends up in the same bucket, then we
945 * just update the expiry time and avoid the whole
946 * dequeue/enqueue dance.
947 */
948 base = lock_timer_base(timer, &flags);
949
950 clk = base->clk;
951 idx = calc_wheel_index(expires, clk);
952
953 /*
954 * Retrieve and compare the array index of the pending
955 * timer. If it matches set the expiry to the new value so a
956 * subsequent call will exit in the expires check above.
957 */
958 if (idx == timer_get_idx(timer)) {
959 timer->expires = expires;
960 ret = 1;
961 goto out_unlock;
962 }
963 } else {
964 base = lock_timer_base(timer, &flags);
965 }
966
967 ret = detach_if_pending(timer, base, false);
968 if (!ret && pending_only)
969 goto out_unlock;
970
971 debug_activate(timer, expires);
972
973 new_base = get_target_base(base, timer->flags);
974
975 if (base != new_base) {
976 /*
977 * We are trying to schedule the timer on the new base.
978 * However we can't change timer's base while it is running,
979 * otherwise del_timer_sync() can't detect that the timer's
980 * handler yet has not finished. This also guarantees that the
981 * timer is serialized wrt itself.
982 */
983 if (likely(base->running_timer != timer)) {
984 /* See the comment in lock_timer_base() */
985 timer->flags |= TIMER_MIGRATING;
986
987 spin_unlock(&base->lock);
988 base = new_base;
989 spin_lock(&base->lock);
990 WRITE_ONCE(timer->flags,
991 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
992 }
993 }
994
995 /* Try to forward a stale timer base clock */
996 forward_timer_base(base);
997
998 timer->expires = expires;
999 /*
1000 * If 'idx' was calculated above and the base time did not advance
1001 * between calculating 'idx' and possibly switching the base, only
1002 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1003 * we need to (re)calculate the wheel index via
1004 * internal_add_timer().
1005 */
1006 if (idx != UINT_MAX && clk == base->clk) {
1007 enqueue_timer(base, timer, idx);
1008 trigger_dyntick_cpu(base, timer);
1009 } else {
1010 internal_add_timer(base, timer);
1011 }
1012
1013 out_unlock:
1014 spin_unlock_irqrestore(&base->lock, flags);
1015
1016 return ret;
1017 }
1018
1019 /**
1020 * mod_timer_pending - modify a pending timer's timeout
1021 * @timer: the pending timer to be modified
1022 * @expires: new timeout in jiffies
1023 *
1024 * mod_timer_pending() is the same for pending timers as mod_timer(),
1025 * but will not re-activate and modify already deleted timers.
1026 *
1027 * It is useful for unserialized use of timers.
1028 */
1029 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1030 {
1031 return __mod_timer(timer, expires, true);
1032 }
1033 EXPORT_SYMBOL(mod_timer_pending);
1034
1035 /**
1036 * mod_timer - modify a timer's timeout
1037 * @timer: the timer to be modified
1038 * @expires: new timeout in jiffies
1039 *
1040 * mod_timer() is a more efficient way to update the expire field of an
1041 * active timer (if the timer is inactive it will be activated)
1042 *
1043 * mod_timer(timer, expires) is equivalent to:
1044 *
1045 * del_timer(timer); timer->expires = expires; add_timer(timer);
1046 *
1047 * Note that if there are multiple unserialized concurrent users of the
1048 * same timer, then mod_timer() is the only safe way to modify the timeout,
1049 * since add_timer() cannot modify an already running timer.
1050 *
1051 * The function returns whether it has modified a pending timer or not.
1052 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1053 * active timer returns 1.)
1054 */
1055 int mod_timer(struct timer_list *timer, unsigned long expires)
1056 {
1057 return __mod_timer(timer, expires, false);
1058 }
1059 EXPORT_SYMBOL(mod_timer);
1060
1061 /**
1062 * add_timer - start a timer
1063 * @timer: the timer to be added
1064 *
1065 * The kernel will do a ->function(->data) callback from the
1066 * timer interrupt at the ->expires point in the future. The
1067 * current time is 'jiffies'.
1068 *
1069 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1070 * fields must be set prior calling this function.
1071 *
1072 * Timers with an ->expires field in the past will be executed in the next
1073 * timer tick.
1074 */
1075 void add_timer(struct timer_list *timer)
1076 {
1077 BUG_ON(timer_pending(timer));
1078 mod_timer(timer, timer->expires);
1079 }
1080 EXPORT_SYMBOL(add_timer);
1081
1082 /**
1083 * add_timer_on - start a timer on a particular CPU
1084 * @timer: the timer to be added
1085 * @cpu: the CPU to start it on
1086 *
1087 * This is not very scalable on SMP. Double adds are not possible.
1088 */
1089 void add_timer_on(struct timer_list *timer, int cpu)
1090 {
1091 struct timer_base *new_base, *base;
1092 unsigned long flags;
1093
1094 BUG_ON(timer_pending(timer) || !timer->function);
1095
1096 new_base = get_timer_cpu_base(timer->flags, cpu);
1097
1098 /*
1099 * If @timer was on a different CPU, it should be migrated with the
1100 * old base locked to prevent other operations proceeding with the
1101 * wrong base locked. See lock_timer_base().
1102 */
1103 base = lock_timer_base(timer, &flags);
1104 if (base != new_base) {
1105 timer->flags |= TIMER_MIGRATING;
1106
1107 spin_unlock(&base->lock);
1108 base = new_base;
1109 spin_lock(&base->lock);
1110 WRITE_ONCE(timer->flags,
1111 (timer->flags & ~TIMER_BASEMASK) | cpu);
1112 }
1113
1114 debug_activate(timer, timer->expires);
1115 internal_add_timer(base, timer);
1116 spin_unlock_irqrestore(&base->lock, flags);
1117 }
1118 EXPORT_SYMBOL_GPL(add_timer_on);
1119
1120 /**
1121 * del_timer - deactive a timer.
1122 * @timer: the timer to be deactivated
1123 *
1124 * del_timer() deactivates a timer - this works on both active and inactive
1125 * timers.
1126 *
1127 * The function returns whether it has deactivated a pending timer or not.
1128 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1129 * active timer returns 1.)
1130 */
1131 int del_timer(struct timer_list *timer)
1132 {
1133 struct timer_base *base;
1134 unsigned long flags;
1135 int ret = 0;
1136
1137 debug_assert_init(timer);
1138
1139 if (timer_pending(timer)) {
1140 base = lock_timer_base(timer, &flags);
1141 ret = detach_if_pending(timer, base, true);
1142 spin_unlock_irqrestore(&base->lock, flags);
1143 }
1144
1145 return ret;
1146 }
1147 EXPORT_SYMBOL(del_timer);
1148
1149 /**
1150 * try_to_del_timer_sync - Try to deactivate a timer
1151 * @timer: timer do del
1152 *
1153 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1154 * exit the timer is not queued and the handler is not running on any CPU.
1155 */
1156 int try_to_del_timer_sync(struct timer_list *timer)
1157 {
1158 struct timer_base *base;
1159 unsigned long flags;
1160 int ret = -1;
1161
1162 debug_assert_init(timer);
1163
1164 base = lock_timer_base(timer, &flags);
1165
1166 if (base->running_timer != timer)
1167 ret = detach_if_pending(timer, base, true);
1168
1169 spin_unlock_irqrestore(&base->lock, flags);
1170
1171 return ret;
1172 }
1173 EXPORT_SYMBOL(try_to_del_timer_sync);
1174
1175 #ifdef CONFIG_SMP
1176 /**
1177 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1178 * @timer: the timer to be deactivated
1179 *
1180 * This function only differs from del_timer() on SMP: besides deactivating
1181 * the timer it also makes sure the handler has finished executing on other
1182 * CPUs.
1183 *
1184 * Synchronization rules: Callers must prevent restarting of the timer,
1185 * otherwise this function is meaningless. It must not be called from
1186 * interrupt contexts unless the timer is an irqsafe one. The caller must
1187 * not hold locks which would prevent completion of the timer's
1188 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1189 * timer is not queued and the handler is not running on any CPU.
1190 *
1191 * Note: For !irqsafe timers, you must not hold locks that are held in
1192 * interrupt context while calling this function. Even if the lock has
1193 * nothing to do with the timer in question. Here's why:
1194 *
1195 * CPU0 CPU1
1196 * ---- ----
1197 * <SOFTIRQ>
1198 * call_timer_fn();
1199 * base->running_timer = mytimer;
1200 * spin_lock_irq(somelock);
1201 * <IRQ>
1202 * spin_lock(somelock);
1203 * del_timer_sync(mytimer);
1204 * while (base->running_timer == mytimer);
1205 *
1206 * Now del_timer_sync() will never return and never release somelock.
1207 * The interrupt on the other CPU is waiting to grab somelock but
1208 * it has interrupted the softirq that CPU0 is waiting to finish.
1209 *
1210 * The function returns whether it has deactivated a pending timer or not.
1211 */
1212 int del_timer_sync(struct timer_list *timer)
1213 {
1214 #ifdef CONFIG_LOCKDEP
1215 unsigned long flags;
1216
1217 /*
1218 * If lockdep gives a backtrace here, please reference
1219 * the synchronization rules above.
1220 */
1221 local_irq_save(flags);
1222 lock_map_acquire(&timer->lockdep_map);
1223 lock_map_release(&timer->lockdep_map);
1224 local_irq_restore(flags);
1225 #endif
1226 /*
1227 * don't use it in hardirq context, because it
1228 * could lead to deadlock.
1229 */
1230 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1231 for (;;) {
1232 int ret = try_to_del_timer_sync(timer);
1233 if (ret >= 0)
1234 return ret;
1235 cpu_relax();
1236 }
1237 }
1238 EXPORT_SYMBOL(del_timer_sync);
1239 #endif
1240
1241 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1242 unsigned long data)
1243 {
1244 int count = preempt_count();
1245
1246 #ifdef CONFIG_LOCKDEP
1247 /*
1248 * It is permissible to free the timer from inside the
1249 * function that is called from it, this we need to take into
1250 * account for lockdep too. To avoid bogus "held lock freed"
1251 * warnings as well as problems when looking into
1252 * timer->lockdep_map, make a copy and use that here.
1253 */
1254 struct lockdep_map lockdep_map;
1255
1256 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1257 #endif
1258 /*
1259 * Couple the lock chain with the lock chain at
1260 * del_timer_sync() by acquiring the lock_map around the fn()
1261 * call here and in del_timer_sync().
1262 */
1263 lock_map_acquire(&lockdep_map);
1264
1265 trace_timer_expire_entry(timer);
1266 fn(data);
1267 trace_timer_expire_exit(timer);
1268
1269 lock_map_release(&lockdep_map);
1270
1271 if (count != preempt_count()) {
1272 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1273 fn, count, preempt_count());
1274 /*
1275 * Restore the preempt count. That gives us a decent
1276 * chance to survive and extract information. If the
1277 * callback kept a lock held, bad luck, but not worse
1278 * than the BUG() we had.
1279 */
1280 preempt_count_set(count);
1281 }
1282 }
1283
1284 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1285 {
1286 while (!hlist_empty(head)) {
1287 struct timer_list *timer;
1288 void (*fn)(unsigned long);
1289 unsigned long data;
1290
1291 timer = hlist_entry(head->first, struct timer_list, entry);
1292
1293 base->running_timer = timer;
1294 detach_timer(timer, true);
1295
1296 fn = timer->function;
1297 data = timer->data;
1298
1299 if (timer->flags & TIMER_IRQSAFE) {
1300 spin_unlock(&base->lock);
1301 call_timer_fn(timer, fn, data);
1302 spin_lock(&base->lock);
1303 } else {
1304 spin_unlock_irq(&base->lock);
1305 call_timer_fn(timer, fn, data);
1306 spin_lock_irq(&base->lock);
1307 }
1308 }
1309 }
1310
1311 static int __collect_expired_timers(struct timer_base *base,
1312 struct hlist_head *heads)
1313 {
1314 unsigned long clk = base->clk;
1315 struct hlist_head *vec;
1316 int i, levels = 0;
1317 unsigned int idx;
1318
1319 for (i = 0; i < LVL_DEPTH; i++) {
1320 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1321
1322 if (__test_and_clear_bit(idx, base->pending_map)) {
1323 vec = base->vectors + idx;
1324 hlist_move_list(vec, heads++);
1325 levels++;
1326 }
1327 /* Is it time to look at the next level? */
1328 if (clk & LVL_CLK_MASK)
1329 break;
1330 /* Shift clock for the next level granularity */
1331 clk >>= LVL_CLK_SHIFT;
1332 }
1333 return levels;
1334 }
1335
1336 #ifdef CONFIG_NO_HZ_COMMON
1337 /*
1338 * Find the next pending bucket of a level. Search from level start (@offset)
1339 * + @clk upwards and if nothing there, search from start of the level
1340 * (@offset) up to @offset + clk.
1341 */
1342 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1343 unsigned clk)
1344 {
1345 unsigned pos, start = offset + clk;
1346 unsigned end = offset + LVL_SIZE;
1347
1348 pos = find_next_bit(base->pending_map, end, start);
1349 if (pos < end)
1350 return pos - start;
1351
1352 pos = find_next_bit(base->pending_map, start, offset);
1353 return pos < start ? pos + LVL_SIZE - start : -1;
1354 }
1355
1356 /*
1357 * Search the first expiring timer in the various clock levels. Caller must
1358 * hold base->lock.
1359 */
1360 static unsigned long __next_timer_interrupt(struct timer_base *base)
1361 {
1362 unsigned long clk, next, adj;
1363 unsigned lvl, offset = 0;
1364
1365 next = base->clk + NEXT_TIMER_MAX_DELTA;
1366 clk = base->clk;
1367 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1368 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1369
1370 if (pos >= 0) {
1371 unsigned long tmp = clk + (unsigned long) pos;
1372
1373 tmp <<= LVL_SHIFT(lvl);
1374 if (time_before(tmp, next))
1375 next = tmp;
1376 }
1377 /*
1378 * Clock for the next level. If the current level clock lower
1379 * bits are zero, we look at the next level as is. If not we
1380 * need to advance it by one because that's going to be the
1381 * next expiring bucket in that level. base->clk is the next
1382 * expiring jiffie. So in case of:
1383 *
1384 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1385 * 0 0 0 0 0 0
1386 *
1387 * we have to look at all levels @index 0. With
1388 *
1389 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1390 * 0 0 0 0 0 2
1391 *
1392 * LVL0 has the next expiring bucket @index 2. The upper
1393 * levels have the next expiring bucket @index 1.
1394 *
1395 * In case that the propagation wraps the next level the same
1396 * rules apply:
1397 *
1398 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1399 * 0 0 0 0 F 2
1400 *
1401 * So after looking at LVL0 we get:
1402 *
1403 * LVL5 LVL4 LVL3 LVL2 LVL1
1404 * 0 0 0 1 0
1405 *
1406 * So no propagation from LVL1 to LVL2 because that happened
1407 * with the add already, but then we need to propagate further
1408 * from LVL2 to LVL3.
1409 *
1410 * So the simple check whether the lower bits of the current
1411 * level are 0 or not is sufficient for all cases.
1412 */
1413 adj = clk & LVL_CLK_MASK ? 1 : 0;
1414 clk >>= LVL_CLK_SHIFT;
1415 clk += adj;
1416 }
1417 return next;
1418 }
1419
1420 /*
1421 * Check, if the next hrtimer event is before the next timer wheel
1422 * event:
1423 */
1424 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1425 {
1426 u64 nextevt = hrtimer_get_next_event();
1427
1428 /*
1429 * If high resolution timers are enabled
1430 * hrtimer_get_next_event() returns KTIME_MAX.
1431 */
1432 if (expires <= nextevt)
1433 return expires;
1434
1435 /*
1436 * If the next timer is already expired, return the tick base
1437 * time so the tick is fired immediately.
1438 */
1439 if (nextevt <= basem)
1440 return basem;
1441
1442 /*
1443 * Round up to the next jiffie. High resolution timers are
1444 * off, so the hrtimers are expired in the tick and we need to
1445 * make sure that this tick really expires the timer to avoid
1446 * a ping pong of the nohz stop code.
1447 *
1448 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1449 */
1450 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1451 }
1452
1453 /**
1454 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1455 * @basej: base time jiffies
1456 * @basem: base time clock monotonic
1457 *
1458 * Returns the tick aligned clock monotonic time of the next pending
1459 * timer or KTIME_MAX if no timer is pending.
1460 */
1461 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1462 {
1463 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1464 u64 expires = KTIME_MAX;
1465 unsigned long nextevt;
1466 bool is_max_delta;
1467
1468 /*
1469 * Pretend that there is no timer pending if the cpu is offline.
1470 * Possible pending timers will be migrated later to an active cpu.
1471 */
1472 if (cpu_is_offline(smp_processor_id()))
1473 return expires;
1474
1475 spin_lock(&base->lock);
1476 nextevt = __next_timer_interrupt(base);
1477 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1478 base->next_expiry = nextevt;
1479 /*
1480 * We have a fresh next event. Check whether we can forward the
1481 * base. We can only do that when @basej is past base->clk
1482 * otherwise we might rewind base->clk.
1483 */
1484 if (time_after(basej, base->clk)) {
1485 if (time_after(nextevt, basej))
1486 base->clk = basej;
1487 else if (time_after(nextevt, base->clk))
1488 base->clk = nextevt;
1489 }
1490
1491 if (time_before_eq(nextevt, basej)) {
1492 expires = basem;
1493 base->is_idle = false;
1494 } else {
1495 if (!is_max_delta)
1496 expires = basem + (nextevt - basej) * TICK_NSEC;
1497 /*
1498 * If we expect to sleep more than a tick, mark the base idle:
1499 */
1500 if ((expires - basem) > TICK_NSEC)
1501 base->is_idle = true;
1502 }
1503 spin_unlock(&base->lock);
1504
1505 return cmp_next_hrtimer_event(basem, expires);
1506 }
1507
1508 /**
1509 * timer_clear_idle - Clear the idle state of the timer base
1510 *
1511 * Called with interrupts disabled
1512 */
1513 void timer_clear_idle(void)
1514 {
1515 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1516
1517 /*
1518 * We do this unlocked. The worst outcome is a remote enqueue sending
1519 * a pointless IPI, but taking the lock would just make the window for
1520 * sending the IPI a few instructions smaller for the cost of taking
1521 * the lock in the exit from idle path.
1522 */
1523 base->is_idle = false;
1524 }
1525
1526 static int collect_expired_timers(struct timer_base *base,
1527 struct hlist_head *heads)
1528 {
1529 /*
1530 * NOHZ optimization. After a long idle sleep we need to forward the
1531 * base to current jiffies. Avoid a loop by searching the bitfield for
1532 * the next expiring timer.
1533 */
1534 if ((long)(jiffies - base->clk) > 2) {
1535 unsigned long next = __next_timer_interrupt(base);
1536
1537 /*
1538 * If the next timer is ahead of time forward to current
1539 * jiffies, otherwise forward to the next expiry time:
1540 */
1541 if (time_after(next, jiffies)) {
1542 /* The call site will increment clock! */
1543 base->clk = jiffies - 1;
1544 return 0;
1545 }
1546 base->clk = next;
1547 }
1548 return __collect_expired_timers(base, heads);
1549 }
1550 #else
1551 static inline int collect_expired_timers(struct timer_base *base,
1552 struct hlist_head *heads)
1553 {
1554 return __collect_expired_timers(base, heads);
1555 }
1556 #endif
1557
1558 /*
1559 * Called from the timer interrupt handler to charge one tick to the current
1560 * process. user_tick is 1 if the tick is user time, 0 for system.
1561 */
1562 void update_process_times(int user_tick)
1563 {
1564 struct task_struct *p = current;
1565
1566 /* Note: this timer irq context must be accounted for as well. */
1567 account_process_tick(p, user_tick);
1568 run_local_timers();
1569 rcu_check_callbacks(user_tick);
1570 #ifdef CONFIG_IRQ_WORK
1571 if (in_irq())
1572 irq_work_tick();
1573 #endif
1574 scheduler_tick();
1575 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1576 run_posix_cpu_timers(p);
1577 }
1578
1579 /**
1580 * __run_timers - run all expired timers (if any) on this CPU.
1581 * @base: the timer vector to be processed.
1582 */
1583 static inline void __run_timers(struct timer_base *base)
1584 {
1585 struct hlist_head heads[LVL_DEPTH];
1586 int levels;
1587
1588 if (!time_after_eq(jiffies, base->clk))
1589 return;
1590
1591 spin_lock_irq(&base->lock);
1592
1593 while (time_after_eq(jiffies, base->clk)) {
1594
1595 levels = collect_expired_timers(base, heads);
1596 base->clk++;
1597
1598 while (levels--)
1599 expire_timers(base, heads + levels);
1600 }
1601 base->running_timer = NULL;
1602 spin_unlock_irq(&base->lock);
1603 }
1604
1605 /*
1606 * This function runs timers and the timer-tq in bottom half context.
1607 */
1608 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1609 {
1610 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1611
1612 __run_timers(base);
1613 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1614 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1615 }
1616
1617 /*
1618 * Called by the local, per-CPU timer interrupt on SMP.
1619 */
1620 void run_local_timers(void)
1621 {
1622 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1623
1624 hrtimer_run_queues();
1625 /* Raise the softirq only if required. */
1626 if (time_before(jiffies, base->clk)) {
1627 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1628 return;
1629 /* CPU is awake, so check the deferrable base. */
1630 base++;
1631 if (time_before(jiffies, base->clk))
1632 return;
1633 }
1634 raise_softirq(TIMER_SOFTIRQ);
1635 }
1636
1637 static void process_timeout(unsigned long __data)
1638 {
1639 wake_up_process((struct task_struct *)__data);
1640 }
1641
1642 /**
1643 * schedule_timeout - sleep until timeout
1644 * @timeout: timeout value in jiffies
1645 *
1646 * Make the current task sleep until @timeout jiffies have
1647 * elapsed. The routine will return immediately unless
1648 * the current task state has been set (see set_current_state()).
1649 *
1650 * You can set the task state as follows -
1651 *
1652 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1653 * pass before the routine returns unless the current task is explicitly
1654 * woken up, (e.g. by wake_up_process())".
1655 *
1656 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1657 * delivered to the current task or the current task is explicitly woken
1658 * up.
1659 *
1660 * The current task state is guaranteed to be TASK_RUNNING when this
1661 * routine returns.
1662 *
1663 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1664 * the CPU away without a bound on the timeout. In this case the return
1665 * value will be %MAX_SCHEDULE_TIMEOUT.
1666 *
1667 * Returns 0 when the timer has expired otherwise the remaining time in
1668 * jiffies will be returned. In all cases the return value is guaranteed
1669 * to be non-negative.
1670 */
1671 signed long __sched schedule_timeout(signed long timeout)
1672 {
1673 struct timer_list timer;
1674 unsigned long expire;
1675
1676 switch (timeout)
1677 {
1678 case MAX_SCHEDULE_TIMEOUT:
1679 /*
1680 * These two special cases are useful to be comfortable
1681 * in the caller. Nothing more. We could take
1682 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1683 * but I' d like to return a valid offset (>=0) to allow
1684 * the caller to do everything it want with the retval.
1685 */
1686 schedule();
1687 goto out;
1688 default:
1689 /*
1690 * Another bit of PARANOID. Note that the retval will be
1691 * 0 since no piece of kernel is supposed to do a check
1692 * for a negative retval of schedule_timeout() (since it
1693 * should never happens anyway). You just have the printk()
1694 * that will tell you if something is gone wrong and where.
1695 */
1696 if (timeout < 0) {
1697 printk(KERN_ERR "schedule_timeout: wrong timeout "
1698 "value %lx\n", timeout);
1699 dump_stack();
1700 current->state = TASK_RUNNING;
1701 goto out;
1702 }
1703 }
1704
1705 expire = timeout + jiffies;
1706
1707 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1708 __mod_timer(&timer, expire, false);
1709 schedule();
1710 del_singleshot_timer_sync(&timer);
1711
1712 /* Remove the timer from the object tracker */
1713 destroy_timer_on_stack(&timer);
1714
1715 timeout = expire - jiffies;
1716
1717 out:
1718 return timeout < 0 ? 0 : timeout;
1719 }
1720 EXPORT_SYMBOL(schedule_timeout);
1721
1722 /*
1723 * We can use __set_current_state() here because schedule_timeout() calls
1724 * schedule() unconditionally.
1725 */
1726 signed long __sched schedule_timeout_interruptible(signed long timeout)
1727 {
1728 __set_current_state(TASK_INTERRUPTIBLE);
1729 return schedule_timeout(timeout);
1730 }
1731 EXPORT_SYMBOL(schedule_timeout_interruptible);
1732
1733 signed long __sched schedule_timeout_killable(signed long timeout)
1734 {
1735 __set_current_state(TASK_KILLABLE);
1736 return schedule_timeout(timeout);
1737 }
1738 EXPORT_SYMBOL(schedule_timeout_killable);
1739
1740 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1741 {
1742 __set_current_state(TASK_UNINTERRUPTIBLE);
1743 return schedule_timeout(timeout);
1744 }
1745 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1746
1747 /*
1748 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1749 * to load average.
1750 */
1751 signed long __sched schedule_timeout_idle(signed long timeout)
1752 {
1753 __set_current_state(TASK_IDLE);
1754 return schedule_timeout(timeout);
1755 }
1756 EXPORT_SYMBOL(schedule_timeout_idle);
1757
1758 #ifdef CONFIG_HOTPLUG_CPU
1759 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1760 {
1761 struct timer_list *timer;
1762 int cpu = new_base->cpu;
1763
1764 while (!hlist_empty(head)) {
1765 timer = hlist_entry(head->first, struct timer_list, entry);
1766 detach_timer(timer, false);
1767 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1768 internal_add_timer(new_base, timer);
1769 }
1770 }
1771
1772 int timers_dead_cpu(unsigned int cpu)
1773 {
1774 struct timer_base *old_base;
1775 struct timer_base *new_base;
1776 int b, i;
1777
1778 BUG_ON(cpu_online(cpu));
1779
1780 for (b = 0; b < NR_BASES; b++) {
1781 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1782 new_base = get_cpu_ptr(&timer_bases[b]);
1783 /*
1784 * The caller is globally serialized and nobody else
1785 * takes two locks at once, deadlock is not possible.
1786 */
1787 spin_lock_irq(&new_base->lock);
1788 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1789
1790 BUG_ON(old_base->running_timer);
1791
1792 for (i = 0; i < WHEEL_SIZE; i++)
1793 migrate_timer_list(new_base, old_base->vectors + i);
1794
1795 spin_unlock(&old_base->lock);
1796 spin_unlock_irq(&new_base->lock);
1797 put_cpu_ptr(&timer_bases);
1798 }
1799 return 0;
1800 }
1801
1802 #endif /* CONFIG_HOTPLUG_CPU */
1803
1804 static void __init init_timer_cpu(int cpu)
1805 {
1806 struct timer_base *base;
1807 int i;
1808
1809 for (i = 0; i < NR_BASES; i++) {
1810 base = per_cpu_ptr(&timer_bases[i], cpu);
1811 base->cpu = cpu;
1812 spin_lock_init(&base->lock);
1813 base->clk = jiffies;
1814 }
1815 }
1816
1817 static void __init init_timer_cpus(void)
1818 {
1819 int cpu;
1820
1821 for_each_possible_cpu(cpu)
1822 init_timer_cpu(cpu);
1823 }
1824
1825 void __init init_timers(void)
1826 {
1827 init_timer_cpus();
1828 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1829 }
1830
1831 /**
1832 * msleep - sleep safely even with waitqueue interruptions
1833 * @msecs: Time in milliseconds to sleep for
1834 */
1835 void msleep(unsigned int msecs)
1836 {
1837 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1838
1839 while (timeout)
1840 timeout = schedule_timeout_uninterruptible(timeout);
1841 }
1842
1843 EXPORT_SYMBOL(msleep);
1844
1845 /**
1846 * msleep_interruptible - sleep waiting for signals
1847 * @msecs: Time in milliseconds to sleep for
1848 */
1849 unsigned long msleep_interruptible(unsigned int msecs)
1850 {
1851 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1852
1853 while (timeout && !signal_pending(current))
1854 timeout = schedule_timeout_interruptible(timeout);
1855 return jiffies_to_msecs(timeout);
1856 }
1857
1858 EXPORT_SYMBOL(msleep_interruptible);
1859
1860 /**
1861 * usleep_range - Sleep for an approximate time
1862 * @min: Minimum time in usecs to sleep
1863 * @max: Maximum time in usecs to sleep
1864 *
1865 * In non-atomic context where the exact wakeup time is flexible, use
1866 * usleep_range() instead of udelay(). The sleep improves responsiveness
1867 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1868 * power usage by allowing hrtimers to take advantage of an already-
1869 * scheduled interrupt instead of scheduling a new one just for this sleep.
1870 */
1871 void __sched usleep_range(unsigned long min, unsigned long max)
1872 {
1873 ktime_t exp = ktime_add_us(ktime_get(), min);
1874 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1875
1876 for (;;) {
1877 __set_current_state(TASK_UNINTERRUPTIBLE);
1878 /* Do not return before the requested sleep time has elapsed */
1879 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1880 break;
1881 }
1882 }
1883 EXPORT_SYMBOL(usleep_range);