]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - lib/radix-tree.c
Merge tag 'wireless-drivers-for-davem-2017-08-25' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/cpu.h>
28 #include <linux/errno.h>
29 #include <linux/export.h>
30 #include <linux/idr.h>
31 #include <linux/init.h>
32 #include <linux/kernel.h>
33 #include <linux/kmemleak.h>
34 #include <linux/percpu.h>
35 #include <linux/preempt.h> /* in_interrupt() */
36 #include <linux/radix-tree.h>
37 #include <linux/rcupdate.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40
41
42 /* Number of nodes in fully populated tree of given height */
43 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44
45 /*
46 * Radix tree node cache.
47 */
48 static struct kmem_cache *radix_tree_node_cachep;
49
50 /*
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
54 * radix_tree_extend).
55 *
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59 * Hence:
60 */
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62
63 /*
64 * The IDR does not have to be as high as the radix tree since it uses
65 * signed integers, not unsigned longs.
66 */
67 #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
68 #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
69 RADIX_TREE_MAP_SHIFT))
70 #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
71
72 /*
73 * The IDA is even shorter since it uses a bitmap at the last level.
74 */
75 #define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
76 #define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
77 RADIX_TREE_MAP_SHIFT))
78 #define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
79
80 /*
81 * Per-cpu pool of preloaded nodes
82 */
83 struct radix_tree_preload {
84 unsigned nr;
85 /* nodes->parent points to next preallocated node */
86 struct radix_tree_node *nodes;
87 };
88 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
89
90 static inline struct radix_tree_node *entry_to_node(void *ptr)
91 {
92 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
93 }
94
95 static inline void *node_to_entry(void *ptr)
96 {
97 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
98 }
99
100 #define RADIX_TREE_RETRY node_to_entry(NULL)
101
102 #ifdef CONFIG_RADIX_TREE_MULTIORDER
103 /* Sibling slots point directly to another slot in the same node */
104 static inline
105 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
106 {
107 void __rcu **ptr = node;
108 return (parent->slots <= ptr) &&
109 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
110 }
111 #else
112 static inline
113 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
114 {
115 return false;
116 }
117 #endif
118
119 static inline unsigned long
120 get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
121 {
122 return slot - parent->slots;
123 }
124
125 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
126 struct radix_tree_node **nodep, unsigned long index)
127 {
128 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
129 void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
130
131 #ifdef CONFIG_RADIX_TREE_MULTIORDER
132 if (radix_tree_is_internal_node(entry)) {
133 if (is_sibling_entry(parent, entry)) {
134 void __rcu **sibentry;
135 sibentry = (void __rcu **) entry_to_node(entry);
136 offset = get_slot_offset(parent, sibentry);
137 entry = rcu_dereference_raw(*sibentry);
138 }
139 }
140 #endif
141
142 *nodep = (void *)entry;
143 return offset;
144 }
145
146 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
147 {
148 return root->gfp_mask & __GFP_BITS_MASK;
149 }
150
151 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
152 int offset)
153 {
154 __set_bit(offset, node->tags[tag]);
155 }
156
157 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
158 int offset)
159 {
160 __clear_bit(offset, node->tags[tag]);
161 }
162
163 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
164 int offset)
165 {
166 return test_bit(offset, node->tags[tag]);
167 }
168
169 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
170 {
171 root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
172 }
173
174 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
175 {
176 root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
177 }
178
179 static inline void root_tag_clear_all(struct radix_tree_root *root)
180 {
181 root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
182 }
183
184 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
185 {
186 return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
187 }
188
189 static inline unsigned root_tags_get(const struct radix_tree_root *root)
190 {
191 return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
192 }
193
194 static inline bool is_idr(const struct radix_tree_root *root)
195 {
196 return !!(root->gfp_mask & ROOT_IS_IDR);
197 }
198
199 /*
200 * Returns 1 if any slot in the node has this tag set.
201 * Otherwise returns 0.
202 */
203 static inline int any_tag_set(const struct radix_tree_node *node,
204 unsigned int tag)
205 {
206 unsigned idx;
207 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
208 if (node->tags[tag][idx])
209 return 1;
210 }
211 return 0;
212 }
213
214 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
215 {
216 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
217 }
218
219 /**
220 * radix_tree_find_next_bit - find the next set bit in a memory region
221 *
222 * @addr: The address to base the search on
223 * @size: The bitmap size in bits
224 * @offset: The bitnumber to start searching at
225 *
226 * Unrollable variant of find_next_bit() for constant size arrays.
227 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
228 * Returns next bit offset, or size if nothing found.
229 */
230 static __always_inline unsigned long
231 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
232 unsigned long offset)
233 {
234 const unsigned long *addr = node->tags[tag];
235
236 if (offset < RADIX_TREE_MAP_SIZE) {
237 unsigned long tmp;
238
239 addr += offset / BITS_PER_LONG;
240 tmp = *addr >> (offset % BITS_PER_LONG);
241 if (tmp)
242 return __ffs(tmp) + offset;
243 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
244 while (offset < RADIX_TREE_MAP_SIZE) {
245 tmp = *++addr;
246 if (tmp)
247 return __ffs(tmp) + offset;
248 offset += BITS_PER_LONG;
249 }
250 }
251 return RADIX_TREE_MAP_SIZE;
252 }
253
254 static unsigned int iter_offset(const struct radix_tree_iter *iter)
255 {
256 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
257 }
258
259 /*
260 * The maximum index which can be stored in a radix tree
261 */
262 static inline unsigned long shift_maxindex(unsigned int shift)
263 {
264 return (RADIX_TREE_MAP_SIZE << shift) - 1;
265 }
266
267 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
268 {
269 return shift_maxindex(node->shift);
270 }
271
272 static unsigned long next_index(unsigned long index,
273 const struct radix_tree_node *node,
274 unsigned long offset)
275 {
276 return (index & ~node_maxindex(node)) + (offset << node->shift);
277 }
278
279 #ifndef __KERNEL__
280 static void dump_node(struct radix_tree_node *node, unsigned long index)
281 {
282 unsigned long i;
283
284 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
285 node, node->offset, index, index | node_maxindex(node),
286 node->parent,
287 node->tags[0][0], node->tags[1][0], node->tags[2][0],
288 node->shift, node->count, node->exceptional);
289
290 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
291 unsigned long first = index | (i << node->shift);
292 unsigned long last = first | ((1UL << node->shift) - 1);
293 void *entry = node->slots[i];
294 if (!entry)
295 continue;
296 if (entry == RADIX_TREE_RETRY) {
297 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
298 i, first, last, node);
299 } else if (!radix_tree_is_internal_node(entry)) {
300 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
301 entry, i, first, last, node);
302 } else if (is_sibling_entry(node, entry)) {
303 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
304 entry, i, first, last, node,
305 *(void **)entry_to_node(entry));
306 } else {
307 dump_node(entry_to_node(entry), first);
308 }
309 }
310 }
311
312 /* For debug */
313 static void radix_tree_dump(struct radix_tree_root *root)
314 {
315 pr_debug("radix root: %p rnode %p tags %x\n",
316 root, root->rnode,
317 root->gfp_mask >> ROOT_TAG_SHIFT);
318 if (!radix_tree_is_internal_node(root->rnode))
319 return;
320 dump_node(entry_to_node(root->rnode), 0);
321 }
322
323 static void dump_ida_node(void *entry, unsigned long index)
324 {
325 unsigned long i;
326
327 if (!entry)
328 return;
329
330 if (radix_tree_is_internal_node(entry)) {
331 struct radix_tree_node *node = entry_to_node(entry);
332
333 pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
334 node, node->offset, index * IDA_BITMAP_BITS,
335 ((index | node_maxindex(node)) + 1) *
336 IDA_BITMAP_BITS - 1,
337 node->parent, node->tags[0][0], node->shift,
338 node->count);
339 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
340 dump_ida_node(node->slots[i],
341 index | (i << node->shift));
342 } else if (radix_tree_exceptional_entry(entry)) {
343 pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
344 entry, (int)(index & RADIX_TREE_MAP_MASK),
345 index * IDA_BITMAP_BITS,
346 index * IDA_BITMAP_BITS + BITS_PER_LONG -
347 RADIX_TREE_EXCEPTIONAL_SHIFT,
348 (unsigned long)entry >>
349 RADIX_TREE_EXCEPTIONAL_SHIFT);
350 } else {
351 struct ida_bitmap *bitmap = entry;
352
353 pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
354 (int)(index & RADIX_TREE_MAP_MASK),
355 index * IDA_BITMAP_BITS,
356 (index + 1) * IDA_BITMAP_BITS - 1);
357 for (i = 0; i < IDA_BITMAP_LONGS; i++)
358 pr_cont(" %lx", bitmap->bitmap[i]);
359 pr_cont("\n");
360 }
361 }
362
363 static void ida_dump(struct ida *ida)
364 {
365 struct radix_tree_root *root = &ida->ida_rt;
366 pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
367 root->gfp_mask >> ROOT_TAG_SHIFT);
368 dump_ida_node(root->rnode, 0);
369 }
370 #endif
371
372 /*
373 * This assumes that the caller has performed appropriate preallocation, and
374 * that the caller has pinned this thread of control to the current CPU.
375 */
376 static struct radix_tree_node *
377 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
378 struct radix_tree_root *root,
379 unsigned int shift, unsigned int offset,
380 unsigned int count, unsigned int exceptional)
381 {
382 struct radix_tree_node *ret = NULL;
383
384 /*
385 * Preload code isn't irq safe and it doesn't make sense to use
386 * preloading during an interrupt anyway as all the allocations have
387 * to be atomic. So just do normal allocation when in interrupt.
388 */
389 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
390 struct radix_tree_preload *rtp;
391
392 /*
393 * Even if the caller has preloaded, try to allocate from the
394 * cache first for the new node to get accounted to the memory
395 * cgroup.
396 */
397 ret = kmem_cache_alloc(radix_tree_node_cachep,
398 gfp_mask | __GFP_NOWARN);
399 if (ret)
400 goto out;
401
402 /*
403 * Provided the caller has preloaded here, we will always
404 * succeed in getting a node here (and never reach
405 * kmem_cache_alloc)
406 */
407 rtp = this_cpu_ptr(&radix_tree_preloads);
408 if (rtp->nr) {
409 ret = rtp->nodes;
410 rtp->nodes = ret->parent;
411 rtp->nr--;
412 }
413 /*
414 * Update the allocation stack trace as this is more useful
415 * for debugging.
416 */
417 kmemleak_update_trace(ret);
418 goto out;
419 }
420 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
421 out:
422 BUG_ON(radix_tree_is_internal_node(ret));
423 if (ret) {
424 ret->shift = shift;
425 ret->offset = offset;
426 ret->count = count;
427 ret->exceptional = exceptional;
428 ret->parent = parent;
429 ret->root = root;
430 }
431 return ret;
432 }
433
434 static void radix_tree_node_rcu_free(struct rcu_head *head)
435 {
436 struct radix_tree_node *node =
437 container_of(head, struct radix_tree_node, rcu_head);
438
439 /*
440 * Must only free zeroed nodes into the slab. We can be left with
441 * non-NULL entries by radix_tree_free_nodes, so clear the entries
442 * and tags here.
443 */
444 memset(node->slots, 0, sizeof(node->slots));
445 memset(node->tags, 0, sizeof(node->tags));
446 INIT_LIST_HEAD(&node->private_list);
447
448 kmem_cache_free(radix_tree_node_cachep, node);
449 }
450
451 static inline void
452 radix_tree_node_free(struct radix_tree_node *node)
453 {
454 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
455 }
456
457 /*
458 * Load up this CPU's radix_tree_node buffer with sufficient objects to
459 * ensure that the addition of a single element in the tree cannot fail. On
460 * success, return zero, with preemption disabled. On error, return -ENOMEM
461 * with preemption not disabled.
462 *
463 * To make use of this facility, the radix tree must be initialised without
464 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
465 */
466 static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
467 {
468 struct radix_tree_preload *rtp;
469 struct radix_tree_node *node;
470 int ret = -ENOMEM;
471
472 /*
473 * Nodes preloaded by one cgroup can be be used by another cgroup, so
474 * they should never be accounted to any particular memory cgroup.
475 */
476 gfp_mask &= ~__GFP_ACCOUNT;
477
478 preempt_disable();
479 rtp = this_cpu_ptr(&radix_tree_preloads);
480 while (rtp->nr < nr) {
481 preempt_enable();
482 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
483 if (node == NULL)
484 goto out;
485 preempt_disable();
486 rtp = this_cpu_ptr(&radix_tree_preloads);
487 if (rtp->nr < nr) {
488 node->parent = rtp->nodes;
489 rtp->nodes = node;
490 rtp->nr++;
491 } else {
492 kmem_cache_free(radix_tree_node_cachep, node);
493 }
494 }
495 ret = 0;
496 out:
497 return ret;
498 }
499
500 /*
501 * Load up this CPU's radix_tree_node buffer with sufficient objects to
502 * ensure that the addition of a single element in the tree cannot fail. On
503 * success, return zero, with preemption disabled. On error, return -ENOMEM
504 * with preemption not disabled.
505 *
506 * To make use of this facility, the radix tree must be initialised without
507 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
508 */
509 int radix_tree_preload(gfp_t gfp_mask)
510 {
511 /* Warn on non-sensical use... */
512 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
513 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
514 }
515 EXPORT_SYMBOL(radix_tree_preload);
516
517 /*
518 * The same as above function, except we don't guarantee preloading happens.
519 * We do it, if we decide it helps. On success, return zero with preemption
520 * disabled. On error, return -ENOMEM with preemption not disabled.
521 */
522 int radix_tree_maybe_preload(gfp_t gfp_mask)
523 {
524 if (gfpflags_allow_blocking(gfp_mask))
525 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
526 /* Preloading doesn't help anything with this gfp mask, skip it */
527 preempt_disable();
528 return 0;
529 }
530 EXPORT_SYMBOL(radix_tree_maybe_preload);
531
532 #ifdef CONFIG_RADIX_TREE_MULTIORDER
533 /*
534 * Preload with enough objects to ensure that we can split a single entry
535 * of order @old_order into many entries of size @new_order
536 */
537 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
538 gfp_t gfp_mask)
539 {
540 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
541 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
542 (new_order / RADIX_TREE_MAP_SHIFT);
543 unsigned nr = 0;
544
545 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
546 BUG_ON(new_order >= old_order);
547
548 while (layers--)
549 nr = nr * RADIX_TREE_MAP_SIZE + 1;
550 return __radix_tree_preload(gfp_mask, top * nr);
551 }
552 #endif
553
554 /*
555 * The same as function above, but preload number of nodes required to insert
556 * (1 << order) continuous naturally-aligned elements.
557 */
558 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
559 {
560 unsigned long nr_subtrees;
561 int nr_nodes, subtree_height;
562
563 /* Preloading doesn't help anything with this gfp mask, skip it */
564 if (!gfpflags_allow_blocking(gfp_mask)) {
565 preempt_disable();
566 return 0;
567 }
568
569 /*
570 * Calculate number and height of fully populated subtrees it takes to
571 * store (1 << order) elements.
572 */
573 nr_subtrees = 1 << order;
574 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
575 subtree_height++)
576 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
577
578 /*
579 * The worst case is zero height tree with a single item at index 0 and
580 * then inserting items starting at ULONG_MAX - (1 << order).
581 *
582 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
583 * 0-index item.
584 */
585 nr_nodes = RADIX_TREE_MAX_PATH;
586
587 /* Plus branch to fully populated subtrees. */
588 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
589
590 /* Root node is shared. */
591 nr_nodes--;
592
593 /* Plus nodes required to build subtrees. */
594 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
595
596 return __radix_tree_preload(gfp_mask, nr_nodes);
597 }
598
599 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
600 struct radix_tree_node **nodep, unsigned long *maxindex)
601 {
602 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
603
604 *nodep = node;
605
606 if (likely(radix_tree_is_internal_node(node))) {
607 node = entry_to_node(node);
608 *maxindex = node_maxindex(node);
609 return node->shift + RADIX_TREE_MAP_SHIFT;
610 }
611
612 *maxindex = 0;
613 return 0;
614 }
615
616 /*
617 * Extend a radix tree so it can store key @index.
618 */
619 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
620 unsigned long index, unsigned int shift)
621 {
622 void *entry;
623 unsigned int maxshift;
624 int tag;
625
626 /* Figure out what the shift should be. */
627 maxshift = shift;
628 while (index > shift_maxindex(maxshift))
629 maxshift += RADIX_TREE_MAP_SHIFT;
630
631 entry = rcu_dereference_raw(root->rnode);
632 if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
633 goto out;
634
635 do {
636 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
637 root, shift, 0, 1, 0);
638 if (!node)
639 return -ENOMEM;
640
641 if (is_idr(root)) {
642 all_tag_set(node, IDR_FREE);
643 if (!root_tag_get(root, IDR_FREE)) {
644 tag_clear(node, IDR_FREE, 0);
645 root_tag_set(root, IDR_FREE);
646 }
647 } else {
648 /* Propagate the aggregated tag info to the new child */
649 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
650 if (root_tag_get(root, tag))
651 tag_set(node, tag, 0);
652 }
653 }
654
655 BUG_ON(shift > BITS_PER_LONG);
656 if (radix_tree_is_internal_node(entry)) {
657 entry_to_node(entry)->parent = node;
658 } else if (radix_tree_exceptional_entry(entry)) {
659 /* Moving an exceptional root->rnode to a node */
660 node->exceptional = 1;
661 }
662 /*
663 * entry was already in the radix tree, so we do not need
664 * rcu_assign_pointer here
665 */
666 node->slots[0] = (void __rcu *)entry;
667 entry = node_to_entry(node);
668 rcu_assign_pointer(root->rnode, entry);
669 shift += RADIX_TREE_MAP_SHIFT;
670 } while (shift <= maxshift);
671 out:
672 return maxshift + RADIX_TREE_MAP_SHIFT;
673 }
674
675 /**
676 * radix_tree_shrink - shrink radix tree to minimum height
677 * @root radix tree root
678 */
679 static inline bool radix_tree_shrink(struct radix_tree_root *root,
680 radix_tree_update_node_t update_node,
681 void *private)
682 {
683 bool shrunk = false;
684
685 for (;;) {
686 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
687 struct radix_tree_node *child;
688
689 if (!radix_tree_is_internal_node(node))
690 break;
691 node = entry_to_node(node);
692
693 /*
694 * The candidate node has more than one child, or its child
695 * is not at the leftmost slot, or the child is a multiorder
696 * entry, we cannot shrink.
697 */
698 if (node->count != 1)
699 break;
700 child = rcu_dereference_raw(node->slots[0]);
701 if (!child)
702 break;
703 if (!radix_tree_is_internal_node(child) && node->shift)
704 break;
705
706 if (radix_tree_is_internal_node(child))
707 entry_to_node(child)->parent = NULL;
708
709 /*
710 * We don't need rcu_assign_pointer(), since we are simply
711 * moving the node from one part of the tree to another: if it
712 * was safe to dereference the old pointer to it
713 * (node->slots[0]), it will be safe to dereference the new
714 * one (root->rnode) as far as dependent read barriers go.
715 */
716 root->rnode = (void __rcu *)child;
717 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
718 root_tag_clear(root, IDR_FREE);
719
720 /*
721 * We have a dilemma here. The node's slot[0] must not be
722 * NULLed in case there are concurrent lookups expecting to
723 * find the item. However if this was a bottom-level node,
724 * then it may be subject to the slot pointer being visible
725 * to callers dereferencing it. If item corresponding to
726 * slot[0] is subsequently deleted, these callers would expect
727 * their slot to become empty sooner or later.
728 *
729 * For example, lockless pagecache will look up a slot, deref
730 * the page pointer, and if the page has 0 refcount it means it
731 * was concurrently deleted from pagecache so try the deref
732 * again. Fortunately there is already a requirement for logic
733 * to retry the entire slot lookup -- the indirect pointer
734 * problem (replacing direct root node with an indirect pointer
735 * also results in a stale slot). So tag the slot as indirect
736 * to force callers to retry.
737 */
738 node->count = 0;
739 if (!radix_tree_is_internal_node(child)) {
740 node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
741 if (update_node)
742 update_node(node, private);
743 }
744
745 WARN_ON_ONCE(!list_empty(&node->private_list));
746 radix_tree_node_free(node);
747 shrunk = true;
748 }
749
750 return shrunk;
751 }
752
753 static bool delete_node(struct radix_tree_root *root,
754 struct radix_tree_node *node,
755 radix_tree_update_node_t update_node, void *private)
756 {
757 bool deleted = false;
758
759 do {
760 struct radix_tree_node *parent;
761
762 if (node->count) {
763 if (node_to_entry(node) ==
764 rcu_dereference_raw(root->rnode))
765 deleted |= radix_tree_shrink(root, update_node,
766 private);
767 return deleted;
768 }
769
770 parent = node->parent;
771 if (parent) {
772 parent->slots[node->offset] = NULL;
773 parent->count--;
774 } else {
775 /*
776 * Shouldn't the tags already have all been cleared
777 * by the caller?
778 */
779 if (!is_idr(root))
780 root_tag_clear_all(root);
781 root->rnode = NULL;
782 }
783
784 WARN_ON_ONCE(!list_empty(&node->private_list));
785 radix_tree_node_free(node);
786 deleted = true;
787
788 node = parent;
789 } while (node);
790
791 return deleted;
792 }
793
794 /**
795 * __radix_tree_create - create a slot in a radix tree
796 * @root: radix tree root
797 * @index: index key
798 * @order: index occupies 2^order aligned slots
799 * @nodep: returns node
800 * @slotp: returns slot
801 *
802 * Create, if necessary, and return the node and slot for an item
803 * at position @index in the radix tree @root.
804 *
805 * Until there is more than one item in the tree, no nodes are
806 * allocated and @root->rnode is used as a direct slot instead of
807 * pointing to a node, in which case *@nodep will be NULL.
808 *
809 * Returns -ENOMEM, or 0 for success.
810 */
811 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
812 unsigned order, struct radix_tree_node **nodep,
813 void __rcu ***slotp)
814 {
815 struct radix_tree_node *node = NULL, *child;
816 void __rcu **slot = (void __rcu **)&root->rnode;
817 unsigned long maxindex;
818 unsigned int shift, offset = 0;
819 unsigned long max = index | ((1UL << order) - 1);
820 gfp_t gfp = root_gfp_mask(root);
821
822 shift = radix_tree_load_root(root, &child, &maxindex);
823
824 /* Make sure the tree is high enough. */
825 if (order > 0 && max == ((1UL << order) - 1))
826 max++;
827 if (max > maxindex) {
828 int error = radix_tree_extend(root, gfp, max, shift);
829 if (error < 0)
830 return error;
831 shift = error;
832 child = rcu_dereference_raw(root->rnode);
833 }
834
835 while (shift > order) {
836 shift -= RADIX_TREE_MAP_SHIFT;
837 if (child == NULL) {
838 /* Have to add a child node. */
839 child = radix_tree_node_alloc(gfp, node, root, shift,
840 offset, 0, 0);
841 if (!child)
842 return -ENOMEM;
843 rcu_assign_pointer(*slot, node_to_entry(child));
844 if (node)
845 node->count++;
846 } else if (!radix_tree_is_internal_node(child))
847 break;
848
849 /* Go a level down */
850 node = entry_to_node(child);
851 offset = radix_tree_descend(node, &child, index);
852 slot = &node->slots[offset];
853 }
854
855 if (nodep)
856 *nodep = node;
857 if (slotp)
858 *slotp = slot;
859 return 0;
860 }
861
862 /*
863 * Free any nodes below this node. The tree is presumed to not need
864 * shrinking, and any user data in the tree is presumed to not need a
865 * destructor called on it. If we need to add a destructor, we can
866 * add that functionality later. Note that we may not clear tags or
867 * slots from the tree as an RCU walker may still have a pointer into
868 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
869 * but we'll still have to clear those in rcu_free.
870 */
871 static void radix_tree_free_nodes(struct radix_tree_node *node)
872 {
873 unsigned offset = 0;
874 struct radix_tree_node *child = entry_to_node(node);
875
876 for (;;) {
877 void *entry = rcu_dereference_raw(child->slots[offset]);
878 if (radix_tree_is_internal_node(entry) &&
879 !is_sibling_entry(child, entry)) {
880 child = entry_to_node(entry);
881 offset = 0;
882 continue;
883 }
884 offset++;
885 while (offset == RADIX_TREE_MAP_SIZE) {
886 struct radix_tree_node *old = child;
887 offset = child->offset + 1;
888 child = child->parent;
889 WARN_ON_ONCE(!list_empty(&old->private_list));
890 radix_tree_node_free(old);
891 if (old == entry_to_node(node))
892 return;
893 }
894 }
895 }
896
897 #ifdef CONFIG_RADIX_TREE_MULTIORDER
898 static inline int insert_entries(struct radix_tree_node *node,
899 void __rcu **slot, void *item, unsigned order, bool replace)
900 {
901 struct radix_tree_node *child;
902 unsigned i, n, tag, offset, tags = 0;
903
904 if (node) {
905 if (order > node->shift)
906 n = 1 << (order - node->shift);
907 else
908 n = 1;
909 offset = get_slot_offset(node, slot);
910 } else {
911 n = 1;
912 offset = 0;
913 }
914
915 if (n > 1) {
916 offset = offset & ~(n - 1);
917 slot = &node->slots[offset];
918 }
919 child = node_to_entry(slot);
920
921 for (i = 0; i < n; i++) {
922 if (slot[i]) {
923 if (replace) {
924 node->count--;
925 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
926 if (tag_get(node, tag, offset + i))
927 tags |= 1 << tag;
928 } else
929 return -EEXIST;
930 }
931 }
932
933 for (i = 0; i < n; i++) {
934 struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
935 if (i) {
936 rcu_assign_pointer(slot[i], child);
937 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
938 if (tags & (1 << tag))
939 tag_clear(node, tag, offset + i);
940 } else {
941 rcu_assign_pointer(slot[i], item);
942 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
943 if (tags & (1 << tag))
944 tag_set(node, tag, offset);
945 }
946 if (radix_tree_is_internal_node(old) &&
947 !is_sibling_entry(node, old) &&
948 (old != RADIX_TREE_RETRY))
949 radix_tree_free_nodes(old);
950 if (radix_tree_exceptional_entry(old))
951 node->exceptional--;
952 }
953 if (node) {
954 node->count += n;
955 if (radix_tree_exceptional_entry(item))
956 node->exceptional += n;
957 }
958 return n;
959 }
960 #else
961 static inline int insert_entries(struct radix_tree_node *node,
962 void __rcu **slot, void *item, unsigned order, bool replace)
963 {
964 if (*slot)
965 return -EEXIST;
966 rcu_assign_pointer(*slot, item);
967 if (node) {
968 node->count++;
969 if (radix_tree_exceptional_entry(item))
970 node->exceptional++;
971 }
972 return 1;
973 }
974 #endif
975
976 /**
977 * __radix_tree_insert - insert into a radix tree
978 * @root: radix tree root
979 * @index: index key
980 * @order: key covers the 2^order indices around index
981 * @item: item to insert
982 *
983 * Insert an item into the radix tree at position @index.
984 */
985 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
986 unsigned order, void *item)
987 {
988 struct radix_tree_node *node;
989 void __rcu **slot;
990 int error;
991
992 BUG_ON(radix_tree_is_internal_node(item));
993
994 error = __radix_tree_create(root, index, order, &node, &slot);
995 if (error)
996 return error;
997
998 error = insert_entries(node, slot, item, order, false);
999 if (error < 0)
1000 return error;
1001
1002 if (node) {
1003 unsigned offset = get_slot_offset(node, slot);
1004 BUG_ON(tag_get(node, 0, offset));
1005 BUG_ON(tag_get(node, 1, offset));
1006 BUG_ON(tag_get(node, 2, offset));
1007 } else {
1008 BUG_ON(root_tags_get(root));
1009 }
1010
1011 return 0;
1012 }
1013 EXPORT_SYMBOL(__radix_tree_insert);
1014
1015 /**
1016 * __radix_tree_lookup - lookup an item in a radix tree
1017 * @root: radix tree root
1018 * @index: index key
1019 * @nodep: returns node
1020 * @slotp: returns slot
1021 *
1022 * Lookup and return the item at position @index in the radix
1023 * tree @root.
1024 *
1025 * Until there is more than one item in the tree, no nodes are
1026 * allocated and @root->rnode is used as a direct slot instead of
1027 * pointing to a node, in which case *@nodep will be NULL.
1028 */
1029 void *__radix_tree_lookup(const struct radix_tree_root *root,
1030 unsigned long index, struct radix_tree_node **nodep,
1031 void __rcu ***slotp)
1032 {
1033 struct radix_tree_node *node, *parent;
1034 unsigned long maxindex;
1035 void __rcu **slot;
1036
1037 restart:
1038 parent = NULL;
1039 slot = (void __rcu **)&root->rnode;
1040 radix_tree_load_root(root, &node, &maxindex);
1041 if (index > maxindex)
1042 return NULL;
1043
1044 while (radix_tree_is_internal_node(node)) {
1045 unsigned offset;
1046
1047 if (node == RADIX_TREE_RETRY)
1048 goto restart;
1049 parent = entry_to_node(node);
1050 offset = radix_tree_descend(parent, &node, index);
1051 slot = parent->slots + offset;
1052 }
1053
1054 if (nodep)
1055 *nodep = parent;
1056 if (slotp)
1057 *slotp = slot;
1058 return node;
1059 }
1060
1061 /**
1062 * radix_tree_lookup_slot - lookup a slot in a radix tree
1063 * @root: radix tree root
1064 * @index: index key
1065 *
1066 * Returns: the slot corresponding to the position @index in the
1067 * radix tree @root. This is useful for update-if-exists operations.
1068 *
1069 * This function can be called under rcu_read_lock iff the slot is not
1070 * modified by radix_tree_replace_slot, otherwise it must be called
1071 * exclusive from other writers. Any dereference of the slot must be done
1072 * using radix_tree_deref_slot.
1073 */
1074 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
1075 unsigned long index)
1076 {
1077 void __rcu **slot;
1078
1079 if (!__radix_tree_lookup(root, index, NULL, &slot))
1080 return NULL;
1081 return slot;
1082 }
1083 EXPORT_SYMBOL(radix_tree_lookup_slot);
1084
1085 /**
1086 * radix_tree_lookup - perform lookup operation on a radix tree
1087 * @root: radix tree root
1088 * @index: index key
1089 *
1090 * Lookup the item at the position @index in the radix tree @root.
1091 *
1092 * This function can be called under rcu_read_lock, however the caller
1093 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1094 * them safely). No RCU barriers are required to access or modify the
1095 * returned item, however.
1096 */
1097 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
1098 {
1099 return __radix_tree_lookup(root, index, NULL, NULL);
1100 }
1101 EXPORT_SYMBOL(radix_tree_lookup);
1102
1103 static inline void replace_sibling_entries(struct radix_tree_node *node,
1104 void __rcu **slot, int count, int exceptional)
1105 {
1106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1107 void *ptr = node_to_entry(slot);
1108 unsigned offset = get_slot_offset(node, slot) + 1;
1109
1110 while (offset < RADIX_TREE_MAP_SIZE) {
1111 if (rcu_dereference_raw(node->slots[offset]) != ptr)
1112 break;
1113 if (count < 0) {
1114 node->slots[offset] = NULL;
1115 node->count--;
1116 }
1117 node->exceptional += exceptional;
1118 offset++;
1119 }
1120 #endif
1121 }
1122
1123 static void replace_slot(void __rcu **slot, void *item,
1124 struct radix_tree_node *node, int count, int exceptional)
1125 {
1126 if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1127 return;
1128
1129 if (node && (count || exceptional)) {
1130 node->count += count;
1131 node->exceptional += exceptional;
1132 replace_sibling_entries(node, slot, count, exceptional);
1133 }
1134
1135 rcu_assign_pointer(*slot, item);
1136 }
1137
1138 static bool node_tag_get(const struct radix_tree_root *root,
1139 const struct radix_tree_node *node,
1140 unsigned int tag, unsigned int offset)
1141 {
1142 if (node)
1143 return tag_get(node, tag, offset);
1144 return root_tag_get(root, tag);
1145 }
1146
1147 /*
1148 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1149 * free, don't adjust the count, even if it's transitioning between NULL and
1150 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
1151 * have empty bits, but it only stores NULL in slots when they're being
1152 * deleted.
1153 */
1154 static int calculate_count(struct radix_tree_root *root,
1155 struct radix_tree_node *node, void __rcu **slot,
1156 void *item, void *old)
1157 {
1158 if (is_idr(root)) {
1159 unsigned offset = get_slot_offset(node, slot);
1160 bool free = node_tag_get(root, node, IDR_FREE, offset);
1161 if (!free)
1162 return 0;
1163 if (!old)
1164 return 1;
1165 }
1166 return !!item - !!old;
1167 }
1168
1169 /**
1170 * __radix_tree_replace - replace item in a slot
1171 * @root: radix tree root
1172 * @node: pointer to tree node
1173 * @slot: pointer to slot in @node
1174 * @item: new item to store in the slot.
1175 * @update_node: callback for changing leaf nodes
1176 * @private: private data to pass to @update_node
1177 *
1178 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1179 * across slot lookup and replacement.
1180 */
1181 void __radix_tree_replace(struct radix_tree_root *root,
1182 struct radix_tree_node *node,
1183 void __rcu **slot, void *item,
1184 radix_tree_update_node_t update_node, void *private)
1185 {
1186 void *old = rcu_dereference_raw(*slot);
1187 int exceptional = !!radix_tree_exceptional_entry(item) -
1188 !!radix_tree_exceptional_entry(old);
1189 int count = calculate_count(root, node, slot, item, old);
1190
1191 /*
1192 * This function supports replacing exceptional entries and
1193 * deleting entries, but that needs accounting against the
1194 * node unless the slot is root->rnode.
1195 */
1196 WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
1197 (count || exceptional));
1198 replace_slot(slot, item, node, count, exceptional);
1199
1200 if (!node)
1201 return;
1202
1203 if (update_node)
1204 update_node(node, private);
1205
1206 delete_node(root, node, update_node, private);
1207 }
1208
1209 /**
1210 * radix_tree_replace_slot - replace item in a slot
1211 * @root: radix tree root
1212 * @slot: pointer to slot
1213 * @item: new item to store in the slot.
1214 *
1215 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1216 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1217 * across slot lookup and replacement.
1218 *
1219 * NOTE: This cannot be used to switch between non-entries (empty slots),
1220 * regular entries, and exceptional entries, as that requires accounting
1221 * inside the radix tree node. When switching from one type of entry or
1222 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1223 * radix_tree_iter_replace().
1224 */
1225 void radix_tree_replace_slot(struct radix_tree_root *root,
1226 void __rcu **slot, void *item)
1227 {
1228 __radix_tree_replace(root, NULL, slot, item, NULL, NULL);
1229 }
1230 EXPORT_SYMBOL(radix_tree_replace_slot);
1231
1232 /**
1233 * radix_tree_iter_replace - replace item in a slot
1234 * @root: radix tree root
1235 * @slot: pointer to slot
1236 * @item: new item to store in the slot.
1237 *
1238 * For use with radix_tree_split() and radix_tree_for_each_slot().
1239 * Caller must hold tree write locked across split and replacement.
1240 */
1241 void radix_tree_iter_replace(struct radix_tree_root *root,
1242 const struct radix_tree_iter *iter,
1243 void __rcu **slot, void *item)
1244 {
1245 __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1246 }
1247
1248 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1249 /**
1250 * radix_tree_join - replace multiple entries with one multiorder entry
1251 * @root: radix tree root
1252 * @index: an index inside the new entry
1253 * @order: order of the new entry
1254 * @item: new entry
1255 *
1256 * Call this function to replace several entries with one larger entry.
1257 * The existing entries are presumed to not need freeing as a result of
1258 * this call.
1259 *
1260 * The replacement entry will have all the tags set on it that were set
1261 * on any of the entries it is replacing.
1262 */
1263 int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1264 unsigned order, void *item)
1265 {
1266 struct radix_tree_node *node;
1267 void __rcu **slot;
1268 int error;
1269
1270 BUG_ON(radix_tree_is_internal_node(item));
1271
1272 error = __radix_tree_create(root, index, order, &node, &slot);
1273 if (!error)
1274 error = insert_entries(node, slot, item, order, true);
1275 if (error > 0)
1276 error = 0;
1277
1278 return error;
1279 }
1280
1281 /**
1282 * radix_tree_split - Split an entry into smaller entries
1283 * @root: radix tree root
1284 * @index: An index within the large entry
1285 * @order: Order of new entries
1286 *
1287 * Call this function as the first step in replacing a multiorder entry
1288 * with several entries of lower order. After this function returns,
1289 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1290 * and call radix_tree_iter_replace() to set up each new entry.
1291 *
1292 * The tags from this entry are replicated to all the new entries.
1293 *
1294 * The radix tree should be locked against modification during the entire
1295 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1296 * should prompt RCU walkers to restart the lookup from the root.
1297 */
1298 int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1299 unsigned order)
1300 {
1301 struct radix_tree_node *parent, *node, *child;
1302 void __rcu **slot;
1303 unsigned int offset, end;
1304 unsigned n, tag, tags = 0;
1305 gfp_t gfp = root_gfp_mask(root);
1306
1307 if (!__radix_tree_lookup(root, index, &parent, &slot))
1308 return -ENOENT;
1309 if (!parent)
1310 return -ENOENT;
1311
1312 offset = get_slot_offset(parent, slot);
1313
1314 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1315 if (tag_get(parent, tag, offset))
1316 tags |= 1 << tag;
1317
1318 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1319 if (!is_sibling_entry(parent,
1320 rcu_dereference_raw(parent->slots[end])))
1321 break;
1322 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1323 if (tags & (1 << tag))
1324 tag_set(parent, tag, end);
1325 /* rcu_assign_pointer ensures tags are set before RETRY */
1326 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1327 }
1328 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1329 parent->exceptional -= (end - offset);
1330
1331 if (order == parent->shift)
1332 return 0;
1333 if (order > parent->shift) {
1334 while (offset < end)
1335 offset += insert_entries(parent, &parent->slots[offset],
1336 RADIX_TREE_RETRY, order, true);
1337 return 0;
1338 }
1339
1340 node = parent;
1341
1342 for (;;) {
1343 if (node->shift > order) {
1344 child = radix_tree_node_alloc(gfp, node, root,
1345 node->shift - RADIX_TREE_MAP_SHIFT,
1346 offset, 0, 0);
1347 if (!child)
1348 goto nomem;
1349 if (node != parent) {
1350 node->count++;
1351 rcu_assign_pointer(node->slots[offset],
1352 node_to_entry(child));
1353 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1354 if (tags & (1 << tag))
1355 tag_set(node, tag, offset);
1356 }
1357
1358 node = child;
1359 offset = 0;
1360 continue;
1361 }
1362
1363 n = insert_entries(node, &node->slots[offset],
1364 RADIX_TREE_RETRY, order, false);
1365 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1366
1367 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1368 if (tags & (1 << tag))
1369 tag_set(node, tag, offset);
1370 offset += n;
1371
1372 while (offset == RADIX_TREE_MAP_SIZE) {
1373 if (node == parent)
1374 break;
1375 offset = node->offset;
1376 child = node;
1377 node = node->parent;
1378 rcu_assign_pointer(node->slots[offset],
1379 node_to_entry(child));
1380 offset++;
1381 }
1382 if ((node == parent) && (offset == end))
1383 return 0;
1384 }
1385
1386 nomem:
1387 /* Shouldn't happen; did user forget to preload? */
1388 /* TODO: free all the allocated nodes */
1389 WARN_ON(1);
1390 return -ENOMEM;
1391 }
1392 #endif
1393
1394 static void node_tag_set(struct radix_tree_root *root,
1395 struct radix_tree_node *node,
1396 unsigned int tag, unsigned int offset)
1397 {
1398 while (node) {
1399 if (tag_get(node, tag, offset))
1400 return;
1401 tag_set(node, tag, offset);
1402 offset = node->offset;
1403 node = node->parent;
1404 }
1405
1406 if (!root_tag_get(root, tag))
1407 root_tag_set(root, tag);
1408 }
1409
1410 /**
1411 * radix_tree_tag_set - set a tag on a radix tree node
1412 * @root: radix tree root
1413 * @index: index key
1414 * @tag: tag index
1415 *
1416 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1417 * corresponding to @index in the radix tree. From
1418 * the root all the way down to the leaf node.
1419 *
1420 * Returns the address of the tagged item. Setting a tag on a not-present
1421 * item is a bug.
1422 */
1423 void *radix_tree_tag_set(struct radix_tree_root *root,
1424 unsigned long index, unsigned int tag)
1425 {
1426 struct radix_tree_node *node, *parent;
1427 unsigned long maxindex;
1428
1429 radix_tree_load_root(root, &node, &maxindex);
1430 BUG_ON(index > maxindex);
1431
1432 while (radix_tree_is_internal_node(node)) {
1433 unsigned offset;
1434
1435 parent = entry_to_node(node);
1436 offset = radix_tree_descend(parent, &node, index);
1437 BUG_ON(!node);
1438
1439 if (!tag_get(parent, tag, offset))
1440 tag_set(parent, tag, offset);
1441 }
1442
1443 /* set the root's tag bit */
1444 if (!root_tag_get(root, tag))
1445 root_tag_set(root, tag);
1446
1447 return node;
1448 }
1449 EXPORT_SYMBOL(radix_tree_tag_set);
1450
1451 /**
1452 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1453 * @root: radix tree root
1454 * @iter: iterator state
1455 * @tag: tag to set
1456 */
1457 void radix_tree_iter_tag_set(struct radix_tree_root *root,
1458 const struct radix_tree_iter *iter, unsigned int tag)
1459 {
1460 node_tag_set(root, iter->node, tag, iter_offset(iter));
1461 }
1462
1463 static void node_tag_clear(struct radix_tree_root *root,
1464 struct radix_tree_node *node,
1465 unsigned int tag, unsigned int offset)
1466 {
1467 while (node) {
1468 if (!tag_get(node, tag, offset))
1469 return;
1470 tag_clear(node, tag, offset);
1471 if (any_tag_set(node, tag))
1472 return;
1473
1474 offset = node->offset;
1475 node = node->parent;
1476 }
1477
1478 /* clear the root's tag bit */
1479 if (root_tag_get(root, tag))
1480 root_tag_clear(root, tag);
1481 }
1482
1483 /**
1484 * radix_tree_tag_clear - clear a tag on a radix tree node
1485 * @root: radix tree root
1486 * @index: index key
1487 * @tag: tag index
1488 *
1489 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1490 * corresponding to @index in the radix tree. If this causes
1491 * the leaf node to have no tags set then clear the tag in the
1492 * next-to-leaf node, etc.
1493 *
1494 * Returns the address of the tagged item on success, else NULL. ie:
1495 * has the same return value and semantics as radix_tree_lookup().
1496 */
1497 void *radix_tree_tag_clear(struct radix_tree_root *root,
1498 unsigned long index, unsigned int tag)
1499 {
1500 struct radix_tree_node *node, *parent;
1501 unsigned long maxindex;
1502 int uninitialized_var(offset);
1503
1504 radix_tree_load_root(root, &node, &maxindex);
1505 if (index > maxindex)
1506 return NULL;
1507
1508 parent = NULL;
1509
1510 while (radix_tree_is_internal_node(node)) {
1511 parent = entry_to_node(node);
1512 offset = radix_tree_descend(parent, &node, index);
1513 }
1514
1515 if (node)
1516 node_tag_clear(root, parent, tag, offset);
1517
1518 return node;
1519 }
1520 EXPORT_SYMBOL(radix_tree_tag_clear);
1521
1522 /**
1523 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1524 * @root: radix tree root
1525 * @iter: iterator state
1526 * @tag: tag to clear
1527 */
1528 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1529 const struct radix_tree_iter *iter, unsigned int tag)
1530 {
1531 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1532 }
1533
1534 /**
1535 * radix_tree_tag_get - get a tag on a radix tree node
1536 * @root: radix tree root
1537 * @index: index key
1538 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1539 *
1540 * Return values:
1541 *
1542 * 0: tag not present or not set
1543 * 1: tag set
1544 *
1545 * Note that the return value of this function may not be relied on, even if
1546 * the RCU lock is held, unless tag modification and node deletion are excluded
1547 * from concurrency.
1548 */
1549 int radix_tree_tag_get(const struct radix_tree_root *root,
1550 unsigned long index, unsigned int tag)
1551 {
1552 struct radix_tree_node *node, *parent;
1553 unsigned long maxindex;
1554
1555 if (!root_tag_get(root, tag))
1556 return 0;
1557
1558 radix_tree_load_root(root, &node, &maxindex);
1559 if (index > maxindex)
1560 return 0;
1561
1562 while (radix_tree_is_internal_node(node)) {
1563 unsigned offset;
1564
1565 parent = entry_to_node(node);
1566 offset = radix_tree_descend(parent, &node, index);
1567
1568 if (!tag_get(parent, tag, offset))
1569 return 0;
1570 if (node == RADIX_TREE_RETRY)
1571 break;
1572 }
1573
1574 return 1;
1575 }
1576 EXPORT_SYMBOL(radix_tree_tag_get);
1577
1578 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1579 unsigned int shift)
1580 {
1581 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1582 iter->shift = shift;
1583 #endif
1584 }
1585
1586 /* Construct iter->tags bit-mask from node->tags[tag] array */
1587 static void set_iter_tags(struct radix_tree_iter *iter,
1588 struct radix_tree_node *node, unsigned offset,
1589 unsigned tag)
1590 {
1591 unsigned tag_long = offset / BITS_PER_LONG;
1592 unsigned tag_bit = offset % BITS_PER_LONG;
1593
1594 if (!node) {
1595 iter->tags = 1;
1596 return;
1597 }
1598
1599 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1600
1601 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1602 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1603 /* Pick tags from next element */
1604 if (tag_bit)
1605 iter->tags |= node->tags[tag][tag_long + 1] <<
1606 (BITS_PER_LONG - tag_bit);
1607 /* Clip chunk size, here only BITS_PER_LONG tags */
1608 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1609 }
1610 }
1611
1612 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1613 static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1614 void __rcu **slot, struct radix_tree_iter *iter)
1615 {
1616 void *sib = node_to_entry(slot - 1);
1617
1618 while (iter->index < iter->next_index) {
1619 *nodep = rcu_dereference_raw(*slot);
1620 if (*nodep && *nodep != sib)
1621 return slot;
1622 slot++;
1623 iter->index = __radix_tree_iter_add(iter, 1);
1624 iter->tags >>= 1;
1625 }
1626
1627 *nodep = NULL;
1628 return NULL;
1629 }
1630
1631 void __rcu **__radix_tree_next_slot(void __rcu **slot,
1632 struct radix_tree_iter *iter, unsigned flags)
1633 {
1634 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1635 struct radix_tree_node *node = rcu_dereference_raw(*slot);
1636
1637 slot = skip_siblings(&node, slot, iter);
1638
1639 while (radix_tree_is_internal_node(node)) {
1640 unsigned offset;
1641 unsigned long next_index;
1642
1643 if (node == RADIX_TREE_RETRY)
1644 return slot;
1645 node = entry_to_node(node);
1646 iter->node = node;
1647 iter->shift = node->shift;
1648
1649 if (flags & RADIX_TREE_ITER_TAGGED) {
1650 offset = radix_tree_find_next_bit(node, tag, 0);
1651 if (offset == RADIX_TREE_MAP_SIZE)
1652 return NULL;
1653 slot = &node->slots[offset];
1654 iter->index = __radix_tree_iter_add(iter, offset);
1655 set_iter_tags(iter, node, offset, tag);
1656 node = rcu_dereference_raw(*slot);
1657 } else {
1658 offset = 0;
1659 slot = &node->slots[0];
1660 for (;;) {
1661 node = rcu_dereference_raw(*slot);
1662 if (node)
1663 break;
1664 slot++;
1665 offset++;
1666 if (offset == RADIX_TREE_MAP_SIZE)
1667 return NULL;
1668 }
1669 iter->index = __radix_tree_iter_add(iter, offset);
1670 }
1671 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1672 goto none;
1673 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1674 if (next_index < iter->next_index)
1675 iter->next_index = next_index;
1676 }
1677
1678 return slot;
1679 none:
1680 iter->next_index = 0;
1681 return NULL;
1682 }
1683 EXPORT_SYMBOL(__radix_tree_next_slot);
1684 #else
1685 static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1686 void __rcu **slot, struct radix_tree_iter *iter)
1687 {
1688 return slot;
1689 }
1690 #endif
1691
1692 void __rcu **radix_tree_iter_resume(void __rcu **slot,
1693 struct radix_tree_iter *iter)
1694 {
1695 struct radix_tree_node *node;
1696
1697 slot++;
1698 iter->index = __radix_tree_iter_add(iter, 1);
1699 skip_siblings(&node, slot, iter);
1700 iter->next_index = iter->index;
1701 iter->tags = 0;
1702 return NULL;
1703 }
1704 EXPORT_SYMBOL(radix_tree_iter_resume);
1705
1706 /**
1707 * radix_tree_next_chunk - find next chunk of slots for iteration
1708 *
1709 * @root: radix tree root
1710 * @iter: iterator state
1711 * @flags: RADIX_TREE_ITER_* flags and tag index
1712 * Returns: pointer to chunk first slot, or NULL if iteration is over
1713 */
1714 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1715 struct radix_tree_iter *iter, unsigned flags)
1716 {
1717 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1718 struct radix_tree_node *node, *child;
1719 unsigned long index, offset, maxindex;
1720
1721 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1722 return NULL;
1723
1724 /*
1725 * Catch next_index overflow after ~0UL. iter->index never overflows
1726 * during iterating; it can be zero only at the beginning.
1727 * And we cannot overflow iter->next_index in a single step,
1728 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1729 *
1730 * This condition also used by radix_tree_next_slot() to stop
1731 * contiguous iterating, and forbid switching to the next chunk.
1732 */
1733 index = iter->next_index;
1734 if (!index && iter->index)
1735 return NULL;
1736
1737 restart:
1738 radix_tree_load_root(root, &child, &maxindex);
1739 if (index > maxindex)
1740 return NULL;
1741 if (!child)
1742 return NULL;
1743
1744 if (!radix_tree_is_internal_node(child)) {
1745 /* Single-slot tree */
1746 iter->index = index;
1747 iter->next_index = maxindex + 1;
1748 iter->tags = 1;
1749 iter->node = NULL;
1750 __set_iter_shift(iter, 0);
1751 return (void __rcu **)&root->rnode;
1752 }
1753
1754 do {
1755 node = entry_to_node(child);
1756 offset = radix_tree_descend(node, &child, index);
1757
1758 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1759 !tag_get(node, tag, offset) : !child) {
1760 /* Hole detected */
1761 if (flags & RADIX_TREE_ITER_CONTIG)
1762 return NULL;
1763
1764 if (flags & RADIX_TREE_ITER_TAGGED)
1765 offset = radix_tree_find_next_bit(node, tag,
1766 offset + 1);
1767 else
1768 while (++offset < RADIX_TREE_MAP_SIZE) {
1769 void *slot = rcu_dereference_raw(
1770 node->slots[offset]);
1771 if (is_sibling_entry(node, slot))
1772 continue;
1773 if (slot)
1774 break;
1775 }
1776 index &= ~node_maxindex(node);
1777 index += offset << node->shift;
1778 /* Overflow after ~0UL */
1779 if (!index)
1780 return NULL;
1781 if (offset == RADIX_TREE_MAP_SIZE)
1782 goto restart;
1783 child = rcu_dereference_raw(node->slots[offset]);
1784 }
1785
1786 if (!child)
1787 goto restart;
1788 if (child == RADIX_TREE_RETRY)
1789 break;
1790 } while (radix_tree_is_internal_node(child));
1791
1792 /* Update the iterator state */
1793 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1794 iter->next_index = (index | node_maxindex(node)) + 1;
1795 iter->node = node;
1796 __set_iter_shift(iter, node->shift);
1797
1798 if (flags & RADIX_TREE_ITER_TAGGED)
1799 set_iter_tags(iter, node, offset, tag);
1800
1801 return node->slots + offset;
1802 }
1803 EXPORT_SYMBOL(radix_tree_next_chunk);
1804
1805 /**
1806 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1807 * @root: radix tree root
1808 * @results: where the results of the lookup are placed
1809 * @first_index: start the lookup from this key
1810 * @max_items: place up to this many items at *results
1811 *
1812 * Performs an index-ascending scan of the tree for present items. Places
1813 * them at *@results and returns the number of items which were placed at
1814 * *@results.
1815 *
1816 * The implementation is naive.
1817 *
1818 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1819 * rcu_read_lock. In this case, rather than the returned results being
1820 * an atomic snapshot of the tree at a single point in time, the
1821 * semantics of an RCU protected gang lookup are as though multiple
1822 * radix_tree_lookups have been issued in individual locks, and results
1823 * stored in 'results'.
1824 */
1825 unsigned int
1826 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1827 unsigned long first_index, unsigned int max_items)
1828 {
1829 struct radix_tree_iter iter;
1830 void __rcu **slot;
1831 unsigned int ret = 0;
1832
1833 if (unlikely(!max_items))
1834 return 0;
1835
1836 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1837 results[ret] = rcu_dereference_raw(*slot);
1838 if (!results[ret])
1839 continue;
1840 if (radix_tree_is_internal_node(results[ret])) {
1841 slot = radix_tree_iter_retry(&iter);
1842 continue;
1843 }
1844 if (++ret == max_items)
1845 break;
1846 }
1847
1848 return ret;
1849 }
1850 EXPORT_SYMBOL(radix_tree_gang_lookup);
1851
1852 /**
1853 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1854 * @root: radix tree root
1855 * @results: where the results of the lookup are placed
1856 * @indices: where their indices should be placed (but usually NULL)
1857 * @first_index: start the lookup from this key
1858 * @max_items: place up to this many items at *results
1859 *
1860 * Performs an index-ascending scan of the tree for present items. Places
1861 * their slots at *@results and returns the number of items which were
1862 * placed at *@results.
1863 *
1864 * The implementation is naive.
1865 *
1866 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1867 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1868 * protection, radix_tree_deref_slot may fail requiring a retry.
1869 */
1870 unsigned int
1871 radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
1872 void __rcu ***results, unsigned long *indices,
1873 unsigned long first_index, unsigned int max_items)
1874 {
1875 struct radix_tree_iter iter;
1876 void __rcu **slot;
1877 unsigned int ret = 0;
1878
1879 if (unlikely(!max_items))
1880 return 0;
1881
1882 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1883 results[ret] = slot;
1884 if (indices)
1885 indices[ret] = iter.index;
1886 if (++ret == max_items)
1887 break;
1888 }
1889
1890 return ret;
1891 }
1892 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1893
1894 /**
1895 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1896 * based on a tag
1897 * @root: radix tree root
1898 * @results: where the results of the lookup are placed
1899 * @first_index: start the lookup from this key
1900 * @max_items: place up to this many items at *results
1901 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1902 *
1903 * Performs an index-ascending scan of the tree for present items which
1904 * have the tag indexed by @tag set. Places the items at *@results and
1905 * returns the number of items which were placed at *@results.
1906 */
1907 unsigned int
1908 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1909 unsigned long first_index, unsigned int max_items,
1910 unsigned int tag)
1911 {
1912 struct radix_tree_iter iter;
1913 void __rcu **slot;
1914 unsigned int ret = 0;
1915
1916 if (unlikely(!max_items))
1917 return 0;
1918
1919 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1920 results[ret] = rcu_dereference_raw(*slot);
1921 if (!results[ret])
1922 continue;
1923 if (radix_tree_is_internal_node(results[ret])) {
1924 slot = radix_tree_iter_retry(&iter);
1925 continue;
1926 }
1927 if (++ret == max_items)
1928 break;
1929 }
1930
1931 return ret;
1932 }
1933 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1934
1935 /**
1936 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1937 * radix tree based on a tag
1938 * @root: radix tree root
1939 * @results: where the results of the lookup are placed
1940 * @first_index: start the lookup from this key
1941 * @max_items: place up to this many items at *results
1942 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1943 *
1944 * Performs an index-ascending scan of the tree for present items which
1945 * have the tag indexed by @tag set. Places the slots at *@results and
1946 * returns the number of slots which were placed at *@results.
1947 */
1948 unsigned int
1949 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1950 void __rcu ***results, unsigned long first_index,
1951 unsigned int max_items, unsigned int tag)
1952 {
1953 struct radix_tree_iter iter;
1954 void __rcu **slot;
1955 unsigned int ret = 0;
1956
1957 if (unlikely(!max_items))
1958 return 0;
1959
1960 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1961 results[ret] = slot;
1962 if (++ret == max_items)
1963 break;
1964 }
1965
1966 return ret;
1967 }
1968 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1969
1970 /**
1971 * __radix_tree_delete_node - try to free node after clearing a slot
1972 * @root: radix tree root
1973 * @node: node containing @index
1974 * @update_node: callback for changing leaf nodes
1975 * @private: private data to pass to @update_node
1976 *
1977 * After clearing the slot at @index in @node from radix tree
1978 * rooted at @root, call this function to attempt freeing the
1979 * node and shrinking the tree.
1980 */
1981 void __radix_tree_delete_node(struct radix_tree_root *root,
1982 struct radix_tree_node *node,
1983 radix_tree_update_node_t update_node,
1984 void *private)
1985 {
1986 delete_node(root, node, update_node, private);
1987 }
1988
1989 static bool __radix_tree_delete(struct radix_tree_root *root,
1990 struct radix_tree_node *node, void __rcu **slot)
1991 {
1992 void *old = rcu_dereference_raw(*slot);
1993 int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
1994 unsigned offset = get_slot_offset(node, slot);
1995 int tag;
1996
1997 if (is_idr(root))
1998 node_tag_set(root, node, IDR_FREE, offset);
1999 else
2000 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2001 node_tag_clear(root, node, tag, offset);
2002
2003 replace_slot(slot, NULL, node, -1, exceptional);
2004 return node && delete_node(root, node, NULL, NULL);
2005 }
2006
2007 /**
2008 * radix_tree_iter_delete - delete the entry at this iterator position
2009 * @root: radix tree root
2010 * @iter: iterator state
2011 * @slot: pointer to slot
2012 *
2013 * Delete the entry at the position currently pointed to by the iterator.
2014 * This may result in the current node being freed; if it is, the iterator
2015 * is advanced so that it will not reference the freed memory. This
2016 * function may be called without any locking if there are no other threads
2017 * which can access this tree.
2018 */
2019 void radix_tree_iter_delete(struct radix_tree_root *root,
2020 struct radix_tree_iter *iter, void __rcu **slot)
2021 {
2022 if (__radix_tree_delete(root, iter->node, slot))
2023 iter->index = iter->next_index;
2024 }
2025
2026 /**
2027 * radix_tree_delete_item - delete an item from a radix tree
2028 * @root: radix tree root
2029 * @index: index key
2030 * @item: expected item
2031 *
2032 * Remove @item at @index from the radix tree rooted at @root.
2033 *
2034 * Return: the deleted entry, or %NULL if it was not present
2035 * or the entry at the given @index was not @item.
2036 */
2037 void *radix_tree_delete_item(struct radix_tree_root *root,
2038 unsigned long index, void *item)
2039 {
2040 struct radix_tree_node *node = NULL;
2041 void __rcu **slot;
2042 void *entry;
2043
2044 entry = __radix_tree_lookup(root, index, &node, &slot);
2045 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2046 get_slot_offset(node, slot))))
2047 return NULL;
2048
2049 if (item && entry != item)
2050 return NULL;
2051
2052 __radix_tree_delete(root, node, slot);
2053
2054 return entry;
2055 }
2056 EXPORT_SYMBOL(radix_tree_delete_item);
2057
2058 /**
2059 * radix_tree_delete - delete an entry from a radix tree
2060 * @root: radix tree root
2061 * @index: index key
2062 *
2063 * Remove the entry at @index from the radix tree rooted at @root.
2064 *
2065 * Return: The deleted entry, or %NULL if it was not present.
2066 */
2067 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2068 {
2069 return radix_tree_delete_item(root, index, NULL);
2070 }
2071 EXPORT_SYMBOL(radix_tree_delete);
2072
2073 void radix_tree_clear_tags(struct radix_tree_root *root,
2074 struct radix_tree_node *node,
2075 void __rcu **slot)
2076 {
2077 if (node) {
2078 unsigned int tag, offset = get_slot_offset(node, slot);
2079 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2080 node_tag_clear(root, node, tag, offset);
2081 } else {
2082 root_tag_clear_all(root);
2083 }
2084 }
2085
2086 /**
2087 * radix_tree_tagged - test whether any items in the tree are tagged
2088 * @root: radix tree root
2089 * @tag: tag to test
2090 */
2091 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
2092 {
2093 return root_tag_get(root, tag);
2094 }
2095 EXPORT_SYMBOL(radix_tree_tagged);
2096
2097 /**
2098 * idr_preload - preload for idr_alloc()
2099 * @gfp_mask: allocation mask to use for preloading
2100 *
2101 * Preallocate memory to use for the next call to idr_alloc(). This function
2102 * returns with preemption disabled. It will be enabled by idr_preload_end().
2103 */
2104 void idr_preload(gfp_t gfp_mask)
2105 {
2106 __radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE);
2107 }
2108 EXPORT_SYMBOL(idr_preload);
2109
2110 /**
2111 * ida_pre_get - reserve resources for ida allocation
2112 * @ida: ida handle
2113 * @gfp: memory allocation flags
2114 *
2115 * This function should be called before calling ida_get_new_above(). If it
2116 * is unable to allocate memory, it will return %0. On success, it returns %1.
2117 */
2118 int ida_pre_get(struct ida *ida, gfp_t gfp)
2119 {
2120 __radix_tree_preload(gfp, IDA_PRELOAD_SIZE);
2121 /*
2122 * The IDA API has no preload_end() equivalent. Instead,
2123 * ida_get_new() can return -EAGAIN, prompting the caller
2124 * to return to the ida_pre_get() step.
2125 */
2126 preempt_enable();
2127
2128 if (!this_cpu_read(ida_bitmap)) {
2129 struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
2130 if (!bitmap)
2131 return 0;
2132 if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
2133 kfree(bitmap);
2134 }
2135
2136 return 1;
2137 }
2138 EXPORT_SYMBOL(ida_pre_get);
2139
2140 void __rcu **idr_get_free(struct radix_tree_root *root,
2141 struct radix_tree_iter *iter, gfp_t gfp, int end)
2142 {
2143 struct radix_tree_node *node = NULL, *child;
2144 void __rcu **slot = (void __rcu **)&root->rnode;
2145 unsigned long maxindex, start = iter->next_index;
2146 unsigned long max = end > 0 ? end - 1 : INT_MAX;
2147 unsigned int shift, offset = 0;
2148
2149 grow:
2150 shift = radix_tree_load_root(root, &child, &maxindex);
2151 if (!radix_tree_tagged(root, IDR_FREE))
2152 start = max(start, maxindex + 1);
2153 if (start > max)
2154 return ERR_PTR(-ENOSPC);
2155
2156 if (start > maxindex) {
2157 int error = radix_tree_extend(root, gfp, start, shift);
2158 if (error < 0)
2159 return ERR_PTR(error);
2160 shift = error;
2161 child = rcu_dereference_raw(root->rnode);
2162 }
2163
2164 while (shift) {
2165 shift -= RADIX_TREE_MAP_SHIFT;
2166 if (child == NULL) {
2167 /* Have to add a child node. */
2168 child = radix_tree_node_alloc(gfp, node, root, shift,
2169 offset, 0, 0);
2170 if (!child)
2171 return ERR_PTR(-ENOMEM);
2172 all_tag_set(child, IDR_FREE);
2173 rcu_assign_pointer(*slot, node_to_entry(child));
2174 if (node)
2175 node->count++;
2176 } else if (!radix_tree_is_internal_node(child))
2177 break;
2178
2179 node = entry_to_node(child);
2180 offset = radix_tree_descend(node, &child, start);
2181 if (!tag_get(node, IDR_FREE, offset)) {
2182 offset = radix_tree_find_next_bit(node, IDR_FREE,
2183 offset + 1);
2184 start = next_index(start, node, offset);
2185 if (start > max)
2186 return ERR_PTR(-ENOSPC);
2187 while (offset == RADIX_TREE_MAP_SIZE) {
2188 offset = node->offset + 1;
2189 node = node->parent;
2190 if (!node)
2191 goto grow;
2192 shift = node->shift;
2193 }
2194 child = rcu_dereference_raw(node->slots[offset]);
2195 }
2196 slot = &node->slots[offset];
2197 }
2198
2199 iter->index = start;
2200 if (node)
2201 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2202 else
2203 iter->next_index = 1;
2204 iter->node = node;
2205 __set_iter_shift(iter, shift);
2206 set_iter_tags(iter, node, offset, IDR_FREE);
2207
2208 return slot;
2209 }
2210
2211 /**
2212 * idr_destroy - release all internal memory from an IDR
2213 * @idr: idr handle
2214 *
2215 * After this function is called, the IDR is empty, and may be reused or
2216 * the data structure containing it may be freed.
2217 *
2218 * A typical clean-up sequence for objects stored in an idr tree will use
2219 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2220 * free the memory used to keep track of those objects.
2221 */
2222 void idr_destroy(struct idr *idr)
2223 {
2224 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2225 if (radix_tree_is_internal_node(node))
2226 radix_tree_free_nodes(node);
2227 idr->idr_rt.rnode = NULL;
2228 root_tag_set(&idr->idr_rt, IDR_FREE);
2229 }
2230 EXPORT_SYMBOL(idr_destroy);
2231
2232 static void
2233 radix_tree_node_ctor(void *arg)
2234 {
2235 struct radix_tree_node *node = arg;
2236
2237 memset(node, 0, sizeof(*node));
2238 INIT_LIST_HEAD(&node->private_list);
2239 }
2240
2241 static __init unsigned long __maxindex(unsigned int height)
2242 {
2243 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2244 int shift = RADIX_TREE_INDEX_BITS - width;
2245
2246 if (shift < 0)
2247 return ~0UL;
2248 if (shift >= BITS_PER_LONG)
2249 return 0UL;
2250 return ~0UL >> shift;
2251 }
2252
2253 static __init void radix_tree_init_maxnodes(void)
2254 {
2255 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2256 unsigned int i, j;
2257
2258 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2259 height_to_maxindex[i] = __maxindex(i);
2260 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2261 for (j = i; j > 0; j--)
2262 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2263 }
2264 }
2265
2266 static int radix_tree_cpu_dead(unsigned int cpu)
2267 {
2268 struct radix_tree_preload *rtp;
2269 struct radix_tree_node *node;
2270
2271 /* Free per-cpu pool of preloaded nodes */
2272 rtp = &per_cpu(radix_tree_preloads, cpu);
2273 while (rtp->nr) {
2274 node = rtp->nodes;
2275 rtp->nodes = node->parent;
2276 kmem_cache_free(radix_tree_node_cachep, node);
2277 rtp->nr--;
2278 }
2279 kfree(per_cpu(ida_bitmap, cpu));
2280 per_cpu(ida_bitmap, cpu) = NULL;
2281 return 0;
2282 }
2283
2284 void __init radix_tree_init(void)
2285 {
2286 int ret;
2287
2288 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
2289 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2290 sizeof(struct radix_tree_node), 0,
2291 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2292 radix_tree_node_ctor);
2293 radix_tree_init_maxnodes();
2294 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2295 NULL, radix_tree_cpu_dead);
2296 WARN_ON(ret < 0);
2297 }