]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/compaction.c
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched...
[mirror_ubuntu-artful-kernel.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/sched/signal.h>
16 #include <linux/backing-dev.h>
17 #include <linux/sysctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include <linux/page_owner.h>
24 #include "internal.h"
25
26 #ifdef CONFIG_COMPACTION
27 static inline void count_compact_event(enum vm_event_item item)
28 {
29 count_vm_event(item);
30 }
31
32 static inline void count_compact_events(enum vm_event_item item, long delta)
33 {
34 count_vm_events(item, delta);
35 }
36 #else
37 #define count_compact_event(item) do { } while (0)
38 #define count_compact_events(item, delta) do { } while (0)
39 #endif
40
41 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/compaction.h>
45
46 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
47 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
48 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
49 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
50
51 static unsigned long release_freepages(struct list_head *freelist)
52 {
53 struct page *page, *next;
54 unsigned long high_pfn = 0;
55
56 list_for_each_entry_safe(page, next, freelist, lru) {
57 unsigned long pfn = page_to_pfn(page);
58 list_del(&page->lru);
59 __free_page(page);
60 if (pfn > high_pfn)
61 high_pfn = pfn;
62 }
63
64 return high_pfn;
65 }
66
67 static void map_pages(struct list_head *list)
68 {
69 unsigned int i, order, nr_pages;
70 struct page *page, *next;
71 LIST_HEAD(tmp_list);
72
73 list_for_each_entry_safe(page, next, list, lru) {
74 list_del(&page->lru);
75
76 order = page_private(page);
77 nr_pages = 1 << order;
78
79 post_alloc_hook(page, order, __GFP_MOVABLE);
80 if (order)
81 split_page(page, order);
82
83 for (i = 0; i < nr_pages; i++) {
84 list_add(&page->lru, &tmp_list);
85 page++;
86 }
87 }
88
89 list_splice(&tmp_list, list);
90 }
91
92 static inline bool migrate_async_suitable(int migratetype)
93 {
94 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
95 }
96
97 #ifdef CONFIG_COMPACTION
98
99 int PageMovable(struct page *page)
100 {
101 struct address_space *mapping;
102
103 VM_BUG_ON_PAGE(!PageLocked(page), page);
104 if (!__PageMovable(page))
105 return 0;
106
107 mapping = page_mapping(page);
108 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
109 return 1;
110
111 return 0;
112 }
113 EXPORT_SYMBOL(PageMovable);
114
115 void __SetPageMovable(struct page *page, struct address_space *mapping)
116 {
117 VM_BUG_ON_PAGE(!PageLocked(page), page);
118 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
119 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
120 }
121 EXPORT_SYMBOL(__SetPageMovable);
122
123 void __ClearPageMovable(struct page *page)
124 {
125 VM_BUG_ON_PAGE(!PageLocked(page), page);
126 VM_BUG_ON_PAGE(!PageMovable(page), page);
127 /*
128 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
129 * flag so that VM can catch up released page by driver after isolation.
130 * With it, VM migration doesn't try to put it back.
131 */
132 page->mapping = (void *)((unsigned long)page->mapping &
133 PAGE_MAPPING_MOVABLE);
134 }
135 EXPORT_SYMBOL(__ClearPageMovable);
136
137 /* Do not skip compaction more than 64 times */
138 #define COMPACT_MAX_DEFER_SHIFT 6
139
140 /*
141 * Compaction is deferred when compaction fails to result in a page
142 * allocation success. 1 << compact_defer_limit compactions are skipped up
143 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
144 */
145 void defer_compaction(struct zone *zone, int order)
146 {
147 zone->compact_considered = 0;
148 zone->compact_defer_shift++;
149
150 if (order < zone->compact_order_failed)
151 zone->compact_order_failed = order;
152
153 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
154 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
155
156 trace_mm_compaction_defer_compaction(zone, order);
157 }
158
159 /* Returns true if compaction should be skipped this time */
160 bool compaction_deferred(struct zone *zone, int order)
161 {
162 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
163
164 if (order < zone->compact_order_failed)
165 return false;
166
167 /* Avoid possible overflow */
168 if (++zone->compact_considered > defer_limit)
169 zone->compact_considered = defer_limit;
170
171 if (zone->compact_considered >= defer_limit)
172 return false;
173
174 trace_mm_compaction_deferred(zone, order);
175
176 return true;
177 }
178
179 /*
180 * Update defer tracking counters after successful compaction of given order,
181 * which means an allocation either succeeded (alloc_success == true) or is
182 * expected to succeed.
183 */
184 void compaction_defer_reset(struct zone *zone, int order,
185 bool alloc_success)
186 {
187 if (alloc_success) {
188 zone->compact_considered = 0;
189 zone->compact_defer_shift = 0;
190 }
191 if (order >= zone->compact_order_failed)
192 zone->compact_order_failed = order + 1;
193
194 trace_mm_compaction_defer_reset(zone, order);
195 }
196
197 /* Returns true if restarting compaction after many failures */
198 bool compaction_restarting(struct zone *zone, int order)
199 {
200 if (order < zone->compact_order_failed)
201 return false;
202
203 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
204 zone->compact_considered >= 1UL << zone->compact_defer_shift;
205 }
206
207 /* Returns true if the pageblock should be scanned for pages to isolate. */
208 static inline bool isolation_suitable(struct compact_control *cc,
209 struct page *page)
210 {
211 if (cc->ignore_skip_hint)
212 return true;
213
214 return !get_pageblock_skip(page);
215 }
216
217 static void reset_cached_positions(struct zone *zone)
218 {
219 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
220 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
221 zone->compact_cached_free_pfn =
222 pageblock_start_pfn(zone_end_pfn(zone) - 1);
223 }
224
225 /*
226 * This function is called to clear all cached information on pageblocks that
227 * should be skipped for page isolation when the migrate and free page scanner
228 * meet.
229 */
230 static void __reset_isolation_suitable(struct zone *zone)
231 {
232 unsigned long start_pfn = zone->zone_start_pfn;
233 unsigned long end_pfn = zone_end_pfn(zone);
234 unsigned long pfn;
235
236 zone->compact_blockskip_flush = false;
237
238 /* Walk the zone and mark every pageblock as suitable for isolation */
239 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
240 struct page *page;
241
242 cond_resched();
243
244 if (!pfn_valid(pfn))
245 continue;
246
247 page = pfn_to_page(pfn);
248 if (zone != page_zone(page))
249 continue;
250
251 clear_pageblock_skip(page);
252 }
253
254 reset_cached_positions(zone);
255 }
256
257 void reset_isolation_suitable(pg_data_t *pgdat)
258 {
259 int zoneid;
260
261 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
262 struct zone *zone = &pgdat->node_zones[zoneid];
263 if (!populated_zone(zone))
264 continue;
265
266 /* Only flush if a full compaction finished recently */
267 if (zone->compact_blockskip_flush)
268 __reset_isolation_suitable(zone);
269 }
270 }
271
272 /*
273 * If no pages were isolated then mark this pageblock to be skipped in the
274 * future. The information is later cleared by __reset_isolation_suitable().
275 */
276 static void update_pageblock_skip(struct compact_control *cc,
277 struct page *page, unsigned long nr_isolated,
278 bool migrate_scanner)
279 {
280 struct zone *zone = cc->zone;
281 unsigned long pfn;
282
283 if (cc->ignore_skip_hint)
284 return;
285
286 if (!page)
287 return;
288
289 if (nr_isolated)
290 return;
291
292 set_pageblock_skip(page);
293
294 pfn = page_to_pfn(page);
295
296 /* Update where async and sync compaction should restart */
297 if (migrate_scanner) {
298 if (pfn > zone->compact_cached_migrate_pfn[0])
299 zone->compact_cached_migrate_pfn[0] = pfn;
300 if (cc->mode != MIGRATE_ASYNC &&
301 pfn > zone->compact_cached_migrate_pfn[1])
302 zone->compact_cached_migrate_pfn[1] = pfn;
303 } else {
304 if (pfn < zone->compact_cached_free_pfn)
305 zone->compact_cached_free_pfn = pfn;
306 }
307 }
308 #else
309 static inline bool isolation_suitable(struct compact_control *cc,
310 struct page *page)
311 {
312 return true;
313 }
314
315 static void update_pageblock_skip(struct compact_control *cc,
316 struct page *page, unsigned long nr_isolated,
317 bool migrate_scanner)
318 {
319 }
320 #endif /* CONFIG_COMPACTION */
321
322 /*
323 * Compaction requires the taking of some coarse locks that are potentially
324 * very heavily contended. For async compaction, back out if the lock cannot
325 * be taken immediately. For sync compaction, spin on the lock if needed.
326 *
327 * Returns true if the lock is held
328 * Returns false if the lock is not held and compaction should abort
329 */
330 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
331 struct compact_control *cc)
332 {
333 if (cc->mode == MIGRATE_ASYNC) {
334 if (!spin_trylock_irqsave(lock, *flags)) {
335 cc->contended = true;
336 return false;
337 }
338 } else {
339 spin_lock_irqsave(lock, *flags);
340 }
341
342 return true;
343 }
344
345 /*
346 * Compaction requires the taking of some coarse locks that are potentially
347 * very heavily contended. The lock should be periodically unlocked to avoid
348 * having disabled IRQs for a long time, even when there is nobody waiting on
349 * the lock. It might also be that allowing the IRQs will result in
350 * need_resched() becoming true. If scheduling is needed, async compaction
351 * aborts. Sync compaction schedules.
352 * Either compaction type will also abort if a fatal signal is pending.
353 * In either case if the lock was locked, it is dropped and not regained.
354 *
355 * Returns true if compaction should abort due to fatal signal pending, or
356 * async compaction due to need_resched()
357 * Returns false when compaction can continue (sync compaction might have
358 * scheduled)
359 */
360 static bool compact_unlock_should_abort(spinlock_t *lock,
361 unsigned long flags, bool *locked, struct compact_control *cc)
362 {
363 if (*locked) {
364 spin_unlock_irqrestore(lock, flags);
365 *locked = false;
366 }
367
368 if (fatal_signal_pending(current)) {
369 cc->contended = true;
370 return true;
371 }
372
373 if (need_resched()) {
374 if (cc->mode == MIGRATE_ASYNC) {
375 cc->contended = true;
376 return true;
377 }
378 cond_resched();
379 }
380
381 return false;
382 }
383
384 /*
385 * Aside from avoiding lock contention, compaction also periodically checks
386 * need_resched() and either schedules in sync compaction or aborts async
387 * compaction. This is similar to what compact_unlock_should_abort() does, but
388 * is used where no lock is concerned.
389 *
390 * Returns false when no scheduling was needed, or sync compaction scheduled.
391 * Returns true when async compaction should abort.
392 */
393 static inline bool compact_should_abort(struct compact_control *cc)
394 {
395 /* async compaction aborts if contended */
396 if (need_resched()) {
397 if (cc->mode == MIGRATE_ASYNC) {
398 cc->contended = true;
399 return true;
400 }
401
402 cond_resched();
403 }
404
405 return false;
406 }
407
408 /*
409 * Isolate free pages onto a private freelist. If @strict is true, will abort
410 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
411 * (even though it may still end up isolating some pages).
412 */
413 static unsigned long isolate_freepages_block(struct compact_control *cc,
414 unsigned long *start_pfn,
415 unsigned long end_pfn,
416 struct list_head *freelist,
417 bool strict)
418 {
419 int nr_scanned = 0, total_isolated = 0;
420 struct page *cursor, *valid_page = NULL;
421 unsigned long flags = 0;
422 bool locked = false;
423 unsigned long blockpfn = *start_pfn;
424 unsigned int order;
425
426 cursor = pfn_to_page(blockpfn);
427
428 /* Isolate free pages. */
429 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
430 int isolated;
431 struct page *page = cursor;
432
433 /*
434 * Periodically drop the lock (if held) regardless of its
435 * contention, to give chance to IRQs. Abort if fatal signal
436 * pending or async compaction detects need_resched()
437 */
438 if (!(blockpfn % SWAP_CLUSTER_MAX)
439 && compact_unlock_should_abort(&cc->zone->lock, flags,
440 &locked, cc))
441 break;
442
443 nr_scanned++;
444 if (!pfn_valid_within(blockpfn))
445 goto isolate_fail;
446
447 if (!valid_page)
448 valid_page = page;
449
450 /*
451 * For compound pages such as THP and hugetlbfs, we can save
452 * potentially a lot of iterations if we skip them at once.
453 * The check is racy, but we can consider only valid values
454 * and the only danger is skipping too much.
455 */
456 if (PageCompound(page)) {
457 unsigned int comp_order = compound_order(page);
458
459 if (likely(comp_order < MAX_ORDER)) {
460 blockpfn += (1UL << comp_order) - 1;
461 cursor += (1UL << comp_order) - 1;
462 }
463
464 goto isolate_fail;
465 }
466
467 if (!PageBuddy(page))
468 goto isolate_fail;
469
470 /*
471 * If we already hold the lock, we can skip some rechecking.
472 * Note that if we hold the lock now, checked_pageblock was
473 * already set in some previous iteration (or strict is true),
474 * so it is correct to skip the suitable migration target
475 * recheck as well.
476 */
477 if (!locked) {
478 /*
479 * The zone lock must be held to isolate freepages.
480 * Unfortunately this is a very coarse lock and can be
481 * heavily contended if there are parallel allocations
482 * or parallel compactions. For async compaction do not
483 * spin on the lock and we acquire the lock as late as
484 * possible.
485 */
486 locked = compact_trylock_irqsave(&cc->zone->lock,
487 &flags, cc);
488 if (!locked)
489 break;
490
491 /* Recheck this is a buddy page under lock */
492 if (!PageBuddy(page))
493 goto isolate_fail;
494 }
495
496 /* Found a free page, will break it into order-0 pages */
497 order = page_order(page);
498 isolated = __isolate_free_page(page, order);
499 if (!isolated)
500 break;
501 set_page_private(page, order);
502
503 total_isolated += isolated;
504 cc->nr_freepages += isolated;
505 list_add_tail(&page->lru, freelist);
506
507 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
508 blockpfn += isolated;
509 break;
510 }
511 /* Advance to the end of split page */
512 blockpfn += isolated - 1;
513 cursor += isolated - 1;
514 continue;
515
516 isolate_fail:
517 if (strict)
518 break;
519 else
520 continue;
521
522 }
523
524 if (locked)
525 spin_unlock_irqrestore(&cc->zone->lock, flags);
526
527 /*
528 * There is a tiny chance that we have read bogus compound_order(),
529 * so be careful to not go outside of the pageblock.
530 */
531 if (unlikely(blockpfn > end_pfn))
532 blockpfn = end_pfn;
533
534 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
535 nr_scanned, total_isolated);
536
537 /* Record how far we have got within the block */
538 *start_pfn = blockpfn;
539
540 /*
541 * If strict isolation is requested by CMA then check that all the
542 * pages requested were isolated. If there were any failures, 0 is
543 * returned and CMA will fail.
544 */
545 if (strict && blockpfn < end_pfn)
546 total_isolated = 0;
547
548 /* Update the pageblock-skip if the whole pageblock was scanned */
549 if (blockpfn == end_pfn)
550 update_pageblock_skip(cc, valid_page, total_isolated, false);
551
552 cc->total_free_scanned += nr_scanned;
553 if (total_isolated)
554 count_compact_events(COMPACTISOLATED, total_isolated);
555 return total_isolated;
556 }
557
558 /**
559 * isolate_freepages_range() - isolate free pages.
560 * @start_pfn: The first PFN to start isolating.
561 * @end_pfn: The one-past-last PFN.
562 *
563 * Non-free pages, invalid PFNs, or zone boundaries within the
564 * [start_pfn, end_pfn) range are considered errors, cause function to
565 * undo its actions and return zero.
566 *
567 * Otherwise, function returns one-past-the-last PFN of isolated page
568 * (which may be greater then end_pfn if end fell in a middle of
569 * a free page).
570 */
571 unsigned long
572 isolate_freepages_range(struct compact_control *cc,
573 unsigned long start_pfn, unsigned long end_pfn)
574 {
575 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
576 LIST_HEAD(freelist);
577
578 pfn = start_pfn;
579 block_start_pfn = pageblock_start_pfn(pfn);
580 if (block_start_pfn < cc->zone->zone_start_pfn)
581 block_start_pfn = cc->zone->zone_start_pfn;
582 block_end_pfn = pageblock_end_pfn(pfn);
583
584 for (; pfn < end_pfn; pfn += isolated,
585 block_start_pfn = block_end_pfn,
586 block_end_pfn += pageblock_nr_pages) {
587 /* Protect pfn from changing by isolate_freepages_block */
588 unsigned long isolate_start_pfn = pfn;
589
590 block_end_pfn = min(block_end_pfn, end_pfn);
591
592 /*
593 * pfn could pass the block_end_pfn if isolated freepage
594 * is more than pageblock order. In this case, we adjust
595 * scanning range to right one.
596 */
597 if (pfn >= block_end_pfn) {
598 block_start_pfn = pageblock_start_pfn(pfn);
599 block_end_pfn = pageblock_end_pfn(pfn);
600 block_end_pfn = min(block_end_pfn, end_pfn);
601 }
602
603 if (!pageblock_pfn_to_page(block_start_pfn,
604 block_end_pfn, cc->zone))
605 break;
606
607 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
608 block_end_pfn, &freelist, true);
609
610 /*
611 * In strict mode, isolate_freepages_block() returns 0 if
612 * there are any holes in the block (ie. invalid PFNs or
613 * non-free pages).
614 */
615 if (!isolated)
616 break;
617
618 /*
619 * If we managed to isolate pages, it is always (1 << n) *
620 * pageblock_nr_pages for some non-negative n. (Max order
621 * page may span two pageblocks).
622 */
623 }
624
625 /* __isolate_free_page() does not map the pages */
626 map_pages(&freelist);
627
628 if (pfn < end_pfn) {
629 /* Loop terminated early, cleanup. */
630 release_freepages(&freelist);
631 return 0;
632 }
633
634 /* We don't use freelists for anything. */
635 return pfn;
636 }
637
638 /* Similar to reclaim, but different enough that they don't share logic */
639 static bool too_many_isolated(struct zone *zone)
640 {
641 unsigned long active, inactive, isolated;
642
643 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
644 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
645 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
646 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
647 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
648 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
649
650 return isolated > (inactive + active) / 2;
651 }
652
653 /**
654 * isolate_migratepages_block() - isolate all migrate-able pages within
655 * a single pageblock
656 * @cc: Compaction control structure.
657 * @low_pfn: The first PFN to isolate
658 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
659 * @isolate_mode: Isolation mode to be used.
660 *
661 * Isolate all pages that can be migrated from the range specified by
662 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
663 * Returns zero if there is a fatal signal pending, otherwise PFN of the
664 * first page that was not scanned (which may be both less, equal to or more
665 * than end_pfn).
666 *
667 * The pages are isolated on cc->migratepages list (not required to be empty),
668 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
669 * is neither read nor updated.
670 */
671 static unsigned long
672 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
673 unsigned long end_pfn, isolate_mode_t isolate_mode)
674 {
675 struct zone *zone = cc->zone;
676 unsigned long nr_scanned = 0, nr_isolated = 0;
677 struct lruvec *lruvec;
678 unsigned long flags = 0;
679 bool locked = false;
680 struct page *page = NULL, *valid_page = NULL;
681 unsigned long start_pfn = low_pfn;
682 bool skip_on_failure = false;
683 unsigned long next_skip_pfn = 0;
684
685 /*
686 * Ensure that there are not too many pages isolated from the LRU
687 * list by either parallel reclaimers or compaction. If there are,
688 * delay for some time until fewer pages are isolated
689 */
690 while (unlikely(too_many_isolated(zone))) {
691 /* async migration should just abort */
692 if (cc->mode == MIGRATE_ASYNC)
693 return 0;
694
695 congestion_wait(BLK_RW_ASYNC, HZ/10);
696
697 if (fatal_signal_pending(current))
698 return 0;
699 }
700
701 if (compact_should_abort(cc))
702 return 0;
703
704 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
705 skip_on_failure = true;
706 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
707 }
708
709 /* Time to isolate some pages for migration */
710 for (; low_pfn < end_pfn; low_pfn++) {
711
712 if (skip_on_failure && low_pfn >= next_skip_pfn) {
713 /*
714 * We have isolated all migration candidates in the
715 * previous order-aligned block, and did not skip it due
716 * to failure. We should migrate the pages now and
717 * hopefully succeed compaction.
718 */
719 if (nr_isolated)
720 break;
721
722 /*
723 * We failed to isolate in the previous order-aligned
724 * block. Set the new boundary to the end of the
725 * current block. Note we can't simply increase
726 * next_skip_pfn by 1 << order, as low_pfn might have
727 * been incremented by a higher number due to skipping
728 * a compound or a high-order buddy page in the
729 * previous loop iteration.
730 */
731 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
732 }
733
734 /*
735 * Periodically drop the lock (if held) regardless of its
736 * contention, to give chance to IRQs. Abort async compaction
737 * if contended.
738 */
739 if (!(low_pfn % SWAP_CLUSTER_MAX)
740 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
741 &locked, cc))
742 break;
743
744 if (!pfn_valid_within(low_pfn))
745 goto isolate_fail;
746 nr_scanned++;
747
748 page = pfn_to_page(low_pfn);
749
750 if (!valid_page)
751 valid_page = page;
752
753 /*
754 * Skip if free. We read page order here without zone lock
755 * which is generally unsafe, but the race window is small and
756 * the worst thing that can happen is that we skip some
757 * potential isolation targets.
758 */
759 if (PageBuddy(page)) {
760 unsigned long freepage_order = page_order_unsafe(page);
761
762 /*
763 * Without lock, we cannot be sure that what we got is
764 * a valid page order. Consider only values in the
765 * valid order range to prevent low_pfn overflow.
766 */
767 if (freepage_order > 0 && freepage_order < MAX_ORDER)
768 low_pfn += (1UL << freepage_order) - 1;
769 continue;
770 }
771
772 /*
773 * Regardless of being on LRU, compound pages such as THP and
774 * hugetlbfs are not to be compacted. We can potentially save
775 * a lot of iterations if we skip them at once. The check is
776 * racy, but we can consider only valid values and the only
777 * danger is skipping too much.
778 */
779 if (PageCompound(page)) {
780 unsigned int comp_order = compound_order(page);
781
782 if (likely(comp_order < MAX_ORDER))
783 low_pfn += (1UL << comp_order) - 1;
784
785 goto isolate_fail;
786 }
787
788 /*
789 * Check may be lockless but that's ok as we recheck later.
790 * It's possible to migrate LRU and non-lru movable pages.
791 * Skip any other type of page
792 */
793 if (!PageLRU(page)) {
794 /*
795 * __PageMovable can return false positive so we need
796 * to verify it under page_lock.
797 */
798 if (unlikely(__PageMovable(page)) &&
799 !PageIsolated(page)) {
800 if (locked) {
801 spin_unlock_irqrestore(zone_lru_lock(zone),
802 flags);
803 locked = false;
804 }
805
806 if (!isolate_movable_page(page, isolate_mode))
807 goto isolate_success;
808 }
809
810 goto isolate_fail;
811 }
812
813 /*
814 * Migration will fail if an anonymous page is pinned in memory,
815 * so avoid taking lru_lock and isolating it unnecessarily in an
816 * admittedly racy check.
817 */
818 if (!page_mapping(page) &&
819 page_count(page) > page_mapcount(page))
820 goto isolate_fail;
821
822 /*
823 * Only allow to migrate anonymous pages in GFP_NOFS context
824 * because those do not depend on fs locks.
825 */
826 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
827 goto isolate_fail;
828
829 /* If we already hold the lock, we can skip some rechecking */
830 if (!locked) {
831 locked = compact_trylock_irqsave(zone_lru_lock(zone),
832 &flags, cc);
833 if (!locked)
834 break;
835
836 /* Recheck PageLRU and PageCompound under lock */
837 if (!PageLRU(page))
838 goto isolate_fail;
839
840 /*
841 * Page become compound since the non-locked check,
842 * and it's on LRU. It can only be a THP so the order
843 * is safe to read and it's 0 for tail pages.
844 */
845 if (unlikely(PageCompound(page))) {
846 low_pfn += (1UL << compound_order(page)) - 1;
847 goto isolate_fail;
848 }
849 }
850
851 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
852
853 /* Try isolate the page */
854 if (__isolate_lru_page(page, isolate_mode) != 0)
855 goto isolate_fail;
856
857 VM_BUG_ON_PAGE(PageCompound(page), page);
858
859 /* Successfully isolated */
860 del_page_from_lru_list(page, lruvec, page_lru(page));
861 inc_node_page_state(page,
862 NR_ISOLATED_ANON + page_is_file_cache(page));
863
864 isolate_success:
865 list_add(&page->lru, &cc->migratepages);
866 cc->nr_migratepages++;
867 nr_isolated++;
868
869 /*
870 * Record where we could have freed pages by migration and not
871 * yet flushed them to buddy allocator.
872 * - this is the lowest page that was isolated and likely be
873 * then freed by migration.
874 */
875 if (!cc->last_migrated_pfn)
876 cc->last_migrated_pfn = low_pfn;
877
878 /* Avoid isolating too much */
879 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
880 ++low_pfn;
881 break;
882 }
883
884 continue;
885 isolate_fail:
886 if (!skip_on_failure)
887 continue;
888
889 /*
890 * We have isolated some pages, but then failed. Release them
891 * instead of migrating, as we cannot form the cc->order buddy
892 * page anyway.
893 */
894 if (nr_isolated) {
895 if (locked) {
896 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
897 locked = false;
898 }
899 putback_movable_pages(&cc->migratepages);
900 cc->nr_migratepages = 0;
901 cc->last_migrated_pfn = 0;
902 nr_isolated = 0;
903 }
904
905 if (low_pfn < next_skip_pfn) {
906 low_pfn = next_skip_pfn - 1;
907 /*
908 * The check near the loop beginning would have updated
909 * next_skip_pfn too, but this is a bit simpler.
910 */
911 next_skip_pfn += 1UL << cc->order;
912 }
913 }
914
915 /*
916 * The PageBuddy() check could have potentially brought us outside
917 * the range to be scanned.
918 */
919 if (unlikely(low_pfn > end_pfn))
920 low_pfn = end_pfn;
921
922 if (locked)
923 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
924
925 /*
926 * Update the pageblock-skip information and cached scanner pfn,
927 * if the whole pageblock was scanned without isolating any page.
928 */
929 if (low_pfn == end_pfn)
930 update_pageblock_skip(cc, valid_page, nr_isolated, true);
931
932 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
933 nr_scanned, nr_isolated);
934
935 cc->total_migrate_scanned += nr_scanned;
936 if (nr_isolated)
937 count_compact_events(COMPACTISOLATED, nr_isolated);
938
939 return low_pfn;
940 }
941
942 /**
943 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
944 * @cc: Compaction control structure.
945 * @start_pfn: The first PFN to start isolating.
946 * @end_pfn: The one-past-last PFN.
947 *
948 * Returns zero if isolation fails fatally due to e.g. pending signal.
949 * Otherwise, function returns one-past-the-last PFN of isolated page
950 * (which may be greater than end_pfn if end fell in a middle of a THP page).
951 */
952 unsigned long
953 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
954 unsigned long end_pfn)
955 {
956 unsigned long pfn, block_start_pfn, block_end_pfn;
957
958 /* Scan block by block. First and last block may be incomplete */
959 pfn = start_pfn;
960 block_start_pfn = pageblock_start_pfn(pfn);
961 if (block_start_pfn < cc->zone->zone_start_pfn)
962 block_start_pfn = cc->zone->zone_start_pfn;
963 block_end_pfn = pageblock_end_pfn(pfn);
964
965 for (; pfn < end_pfn; pfn = block_end_pfn,
966 block_start_pfn = block_end_pfn,
967 block_end_pfn += pageblock_nr_pages) {
968
969 block_end_pfn = min(block_end_pfn, end_pfn);
970
971 if (!pageblock_pfn_to_page(block_start_pfn,
972 block_end_pfn, cc->zone))
973 continue;
974
975 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
976 ISOLATE_UNEVICTABLE);
977
978 if (!pfn)
979 break;
980
981 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
982 break;
983 }
984
985 return pfn;
986 }
987
988 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
989 #ifdef CONFIG_COMPACTION
990
991 /* Returns true if the page is within a block suitable for migration to */
992 static bool suitable_migration_target(struct compact_control *cc,
993 struct page *page)
994 {
995 if (cc->ignore_block_suitable)
996 return true;
997
998 /* If the page is a large free page, then disallow migration */
999 if (PageBuddy(page)) {
1000 /*
1001 * We are checking page_order without zone->lock taken. But
1002 * the only small danger is that we skip a potentially suitable
1003 * pageblock, so it's not worth to check order for valid range.
1004 */
1005 if (page_order_unsafe(page) >= pageblock_order)
1006 return false;
1007 }
1008
1009 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1010 if (migrate_async_suitable(get_pageblock_migratetype(page)))
1011 return true;
1012
1013 /* Otherwise skip the block */
1014 return false;
1015 }
1016
1017 /*
1018 * Test whether the free scanner has reached the same or lower pageblock than
1019 * the migration scanner, and compaction should thus terminate.
1020 */
1021 static inline bool compact_scanners_met(struct compact_control *cc)
1022 {
1023 return (cc->free_pfn >> pageblock_order)
1024 <= (cc->migrate_pfn >> pageblock_order);
1025 }
1026
1027 /*
1028 * Based on information in the current compact_control, find blocks
1029 * suitable for isolating free pages from and then isolate them.
1030 */
1031 static void isolate_freepages(struct compact_control *cc)
1032 {
1033 struct zone *zone = cc->zone;
1034 struct page *page;
1035 unsigned long block_start_pfn; /* start of current pageblock */
1036 unsigned long isolate_start_pfn; /* exact pfn we start at */
1037 unsigned long block_end_pfn; /* end of current pageblock */
1038 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1039 struct list_head *freelist = &cc->freepages;
1040
1041 /*
1042 * Initialise the free scanner. The starting point is where we last
1043 * successfully isolated from, zone-cached value, or the end of the
1044 * zone when isolating for the first time. For looping we also need
1045 * this pfn aligned down to the pageblock boundary, because we do
1046 * block_start_pfn -= pageblock_nr_pages in the for loop.
1047 * For ending point, take care when isolating in last pageblock of a
1048 * a zone which ends in the middle of a pageblock.
1049 * The low boundary is the end of the pageblock the migration scanner
1050 * is using.
1051 */
1052 isolate_start_pfn = cc->free_pfn;
1053 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1054 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1055 zone_end_pfn(zone));
1056 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1057
1058 /*
1059 * Isolate free pages until enough are available to migrate the
1060 * pages on cc->migratepages. We stop searching if the migrate
1061 * and free page scanners meet or enough free pages are isolated.
1062 */
1063 for (; block_start_pfn >= low_pfn;
1064 block_end_pfn = block_start_pfn,
1065 block_start_pfn -= pageblock_nr_pages,
1066 isolate_start_pfn = block_start_pfn) {
1067 /*
1068 * This can iterate a massively long zone without finding any
1069 * suitable migration targets, so periodically check if we need
1070 * to schedule, or even abort async compaction.
1071 */
1072 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1073 && compact_should_abort(cc))
1074 break;
1075
1076 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1077 zone);
1078 if (!page)
1079 continue;
1080
1081 /* Check the block is suitable for migration */
1082 if (!suitable_migration_target(cc, page))
1083 continue;
1084
1085 /* If isolation recently failed, do not retry */
1086 if (!isolation_suitable(cc, page))
1087 continue;
1088
1089 /* Found a block suitable for isolating free pages from. */
1090 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1091 freelist, false);
1092
1093 /*
1094 * If we isolated enough freepages, or aborted due to lock
1095 * contention, terminate.
1096 */
1097 if ((cc->nr_freepages >= cc->nr_migratepages)
1098 || cc->contended) {
1099 if (isolate_start_pfn >= block_end_pfn) {
1100 /*
1101 * Restart at previous pageblock if more
1102 * freepages can be isolated next time.
1103 */
1104 isolate_start_pfn =
1105 block_start_pfn - pageblock_nr_pages;
1106 }
1107 break;
1108 } else if (isolate_start_pfn < block_end_pfn) {
1109 /*
1110 * If isolation failed early, do not continue
1111 * needlessly.
1112 */
1113 break;
1114 }
1115 }
1116
1117 /* __isolate_free_page() does not map the pages */
1118 map_pages(freelist);
1119
1120 /*
1121 * Record where the free scanner will restart next time. Either we
1122 * broke from the loop and set isolate_start_pfn based on the last
1123 * call to isolate_freepages_block(), or we met the migration scanner
1124 * and the loop terminated due to isolate_start_pfn < low_pfn
1125 */
1126 cc->free_pfn = isolate_start_pfn;
1127 }
1128
1129 /*
1130 * This is a migrate-callback that "allocates" freepages by taking pages
1131 * from the isolated freelists in the block we are migrating to.
1132 */
1133 static struct page *compaction_alloc(struct page *migratepage,
1134 unsigned long data,
1135 int **result)
1136 {
1137 struct compact_control *cc = (struct compact_control *)data;
1138 struct page *freepage;
1139
1140 /*
1141 * Isolate free pages if necessary, and if we are not aborting due to
1142 * contention.
1143 */
1144 if (list_empty(&cc->freepages)) {
1145 if (!cc->contended)
1146 isolate_freepages(cc);
1147
1148 if (list_empty(&cc->freepages))
1149 return NULL;
1150 }
1151
1152 freepage = list_entry(cc->freepages.next, struct page, lru);
1153 list_del(&freepage->lru);
1154 cc->nr_freepages--;
1155
1156 return freepage;
1157 }
1158
1159 /*
1160 * This is a migrate-callback that "frees" freepages back to the isolated
1161 * freelist. All pages on the freelist are from the same zone, so there is no
1162 * special handling needed for NUMA.
1163 */
1164 static void compaction_free(struct page *page, unsigned long data)
1165 {
1166 struct compact_control *cc = (struct compact_control *)data;
1167
1168 list_add(&page->lru, &cc->freepages);
1169 cc->nr_freepages++;
1170 }
1171
1172 /* possible outcome of isolate_migratepages */
1173 typedef enum {
1174 ISOLATE_ABORT, /* Abort compaction now */
1175 ISOLATE_NONE, /* No pages isolated, continue scanning */
1176 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1177 } isolate_migrate_t;
1178
1179 /*
1180 * Allow userspace to control policy on scanning the unevictable LRU for
1181 * compactable pages.
1182 */
1183 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1184
1185 /*
1186 * Isolate all pages that can be migrated from the first suitable block,
1187 * starting at the block pointed to by the migrate scanner pfn within
1188 * compact_control.
1189 */
1190 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1191 struct compact_control *cc)
1192 {
1193 unsigned long block_start_pfn;
1194 unsigned long block_end_pfn;
1195 unsigned long low_pfn;
1196 struct page *page;
1197 const isolate_mode_t isolate_mode =
1198 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1199 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1200
1201 /*
1202 * Start at where we last stopped, or beginning of the zone as
1203 * initialized by compact_zone()
1204 */
1205 low_pfn = cc->migrate_pfn;
1206 block_start_pfn = pageblock_start_pfn(low_pfn);
1207 if (block_start_pfn < zone->zone_start_pfn)
1208 block_start_pfn = zone->zone_start_pfn;
1209
1210 /* Only scan within a pageblock boundary */
1211 block_end_pfn = pageblock_end_pfn(low_pfn);
1212
1213 /*
1214 * Iterate over whole pageblocks until we find the first suitable.
1215 * Do not cross the free scanner.
1216 */
1217 for (; block_end_pfn <= cc->free_pfn;
1218 low_pfn = block_end_pfn,
1219 block_start_pfn = block_end_pfn,
1220 block_end_pfn += pageblock_nr_pages) {
1221
1222 /*
1223 * This can potentially iterate a massively long zone with
1224 * many pageblocks unsuitable, so periodically check if we
1225 * need to schedule, or even abort async compaction.
1226 */
1227 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1228 && compact_should_abort(cc))
1229 break;
1230
1231 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1232 zone);
1233 if (!page)
1234 continue;
1235
1236 /* If isolation recently failed, do not retry */
1237 if (!isolation_suitable(cc, page))
1238 continue;
1239
1240 /*
1241 * For async compaction, also only scan in MOVABLE blocks.
1242 * Async compaction is optimistic to see if the minimum amount
1243 * of work satisfies the allocation.
1244 */
1245 if (cc->mode == MIGRATE_ASYNC &&
1246 !migrate_async_suitable(get_pageblock_migratetype(page)))
1247 continue;
1248
1249 /* Perform the isolation */
1250 low_pfn = isolate_migratepages_block(cc, low_pfn,
1251 block_end_pfn, isolate_mode);
1252
1253 if (!low_pfn || cc->contended)
1254 return ISOLATE_ABORT;
1255
1256 /*
1257 * Either we isolated something and proceed with migration. Or
1258 * we failed and compact_zone should decide if we should
1259 * continue or not.
1260 */
1261 break;
1262 }
1263
1264 /* Record where migration scanner will be restarted. */
1265 cc->migrate_pfn = low_pfn;
1266
1267 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1268 }
1269
1270 /*
1271 * order == -1 is expected when compacting via
1272 * /proc/sys/vm/compact_memory
1273 */
1274 static inline bool is_via_compact_memory(int order)
1275 {
1276 return order == -1;
1277 }
1278
1279 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1280 const int migratetype)
1281 {
1282 unsigned int order;
1283 unsigned long watermark;
1284
1285 if (cc->contended || fatal_signal_pending(current))
1286 return COMPACT_CONTENDED;
1287
1288 /* Compaction run completes if the migrate and free scanner meet */
1289 if (compact_scanners_met(cc)) {
1290 /* Let the next compaction start anew. */
1291 reset_cached_positions(zone);
1292
1293 /*
1294 * Mark that the PG_migrate_skip information should be cleared
1295 * by kswapd when it goes to sleep. kcompactd does not set the
1296 * flag itself as the decision to be clear should be directly
1297 * based on an allocation request.
1298 */
1299 if (cc->direct_compaction)
1300 zone->compact_blockskip_flush = true;
1301
1302 if (cc->whole_zone)
1303 return COMPACT_COMPLETE;
1304 else
1305 return COMPACT_PARTIAL_SKIPPED;
1306 }
1307
1308 if (is_via_compact_memory(cc->order))
1309 return COMPACT_CONTINUE;
1310
1311 /* Compaction run is not finished if the watermark is not met */
1312 watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
1313
1314 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1315 cc->alloc_flags))
1316 return COMPACT_CONTINUE;
1317
1318 /* Direct compactor: Is a suitable page free? */
1319 for (order = cc->order; order < MAX_ORDER; order++) {
1320 struct free_area *area = &zone->free_area[order];
1321 bool can_steal;
1322
1323 /* Job done if page is free of the right migratetype */
1324 if (!list_empty(&area->free_list[migratetype]))
1325 return COMPACT_SUCCESS;
1326
1327 #ifdef CONFIG_CMA
1328 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1329 if (migratetype == MIGRATE_MOVABLE &&
1330 !list_empty(&area->free_list[MIGRATE_CMA]))
1331 return COMPACT_SUCCESS;
1332 #endif
1333 /*
1334 * Job done if allocation would steal freepages from
1335 * other migratetype buddy lists.
1336 */
1337 if (find_suitable_fallback(area, order, migratetype,
1338 true, &can_steal) != -1)
1339 return COMPACT_SUCCESS;
1340 }
1341
1342 return COMPACT_NO_SUITABLE_PAGE;
1343 }
1344
1345 static enum compact_result compact_finished(struct zone *zone,
1346 struct compact_control *cc,
1347 const int migratetype)
1348 {
1349 int ret;
1350
1351 ret = __compact_finished(zone, cc, migratetype);
1352 trace_mm_compaction_finished(zone, cc->order, ret);
1353 if (ret == COMPACT_NO_SUITABLE_PAGE)
1354 ret = COMPACT_CONTINUE;
1355
1356 return ret;
1357 }
1358
1359 /*
1360 * compaction_suitable: Is this suitable to run compaction on this zone now?
1361 * Returns
1362 * COMPACT_SKIPPED - If there are too few free pages for compaction
1363 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1364 * COMPACT_CONTINUE - If compaction should run now
1365 */
1366 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1367 unsigned int alloc_flags,
1368 int classzone_idx,
1369 unsigned long wmark_target)
1370 {
1371 unsigned long watermark;
1372
1373 if (is_via_compact_memory(order))
1374 return COMPACT_CONTINUE;
1375
1376 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1377 /*
1378 * If watermarks for high-order allocation are already met, there
1379 * should be no need for compaction at all.
1380 */
1381 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1382 alloc_flags))
1383 return COMPACT_SUCCESS;
1384
1385 /*
1386 * Watermarks for order-0 must be met for compaction to be able to
1387 * isolate free pages for migration targets. This means that the
1388 * watermark and alloc_flags have to match, or be more pessimistic than
1389 * the check in __isolate_free_page(). We don't use the direct
1390 * compactor's alloc_flags, as they are not relevant for freepage
1391 * isolation. We however do use the direct compactor's classzone_idx to
1392 * skip over zones where lowmem reserves would prevent allocation even
1393 * if compaction succeeds.
1394 * For costly orders, we require low watermark instead of min for
1395 * compaction to proceed to increase its chances.
1396 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1397 * suitable migration targets
1398 */
1399 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1400 low_wmark_pages(zone) : min_wmark_pages(zone);
1401 watermark += compact_gap(order);
1402 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1403 ALLOC_CMA, wmark_target))
1404 return COMPACT_SKIPPED;
1405
1406 return COMPACT_CONTINUE;
1407 }
1408
1409 enum compact_result compaction_suitable(struct zone *zone, int order,
1410 unsigned int alloc_flags,
1411 int classzone_idx)
1412 {
1413 enum compact_result ret;
1414 int fragindex;
1415
1416 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1417 zone_page_state(zone, NR_FREE_PAGES));
1418 /*
1419 * fragmentation index determines if allocation failures are due to
1420 * low memory or external fragmentation
1421 *
1422 * index of -1000 would imply allocations might succeed depending on
1423 * watermarks, but we already failed the high-order watermark check
1424 * index towards 0 implies failure is due to lack of memory
1425 * index towards 1000 implies failure is due to fragmentation
1426 *
1427 * Only compact if a failure would be due to fragmentation. Also
1428 * ignore fragindex for non-costly orders where the alternative to
1429 * a successful reclaim/compaction is OOM. Fragindex and the
1430 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1431 * excessive compaction for costly orders, but it should not be at the
1432 * expense of system stability.
1433 */
1434 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1435 fragindex = fragmentation_index(zone, order);
1436 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1437 ret = COMPACT_NOT_SUITABLE_ZONE;
1438 }
1439
1440 trace_mm_compaction_suitable(zone, order, ret);
1441 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1442 ret = COMPACT_SKIPPED;
1443
1444 return ret;
1445 }
1446
1447 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1448 int alloc_flags)
1449 {
1450 struct zone *zone;
1451 struct zoneref *z;
1452
1453 /*
1454 * Make sure at least one zone would pass __compaction_suitable if we continue
1455 * retrying the reclaim.
1456 */
1457 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1458 ac->nodemask) {
1459 unsigned long available;
1460 enum compact_result compact_result;
1461
1462 /*
1463 * Do not consider all the reclaimable memory because we do not
1464 * want to trash just for a single high order allocation which
1465 * is even not guaranteed to appear even if __compaction_suitable
1466 * is happy about the watermark check.
1467 */
1468 available = zone_reclaimable_pages(zone) / order;
1469 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1470 compact_result = __compaction_suitable(zone, order, alloc_flags,
1471 ac_classzone_idx(ac), available);
1472 if (compact_result != COMPACT_SKIPPED)
1473 return true;
1474 }
1475
1476 return false;
1477 }
1478
1479 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1480 {
1481 enum compact_result ret;
1482 unsigned long start_pfn = zone->zone_start_pfn;
1483 unsigned long end_pfn = zone_end_pfn(zone);
1484 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1485 const bool sync = cc->mode != MIGRATE_ASYNC;
1486
1487 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1488 cc->classzone_idx);
1489 /* Compaction is likely to fail */
1490 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1491 return ret;
1492
1493 /* huh, compaction_suitable is returning something unexpected */
1494 VM_BUG_ON(ret != COMPACT_CONTINUE);
1495
1496 /*
1497 * Clear pageblock skip if there were failures recently and compaction
1498 * is about to be retried after being deferred.
1499 */
1500 if (compaction_restarting(zone, cc->order))
1501 __reset_isolation_suitable(zone);
1502
1503 /*
1504 * Setup to move all movable pages to the end of the zone. Used cached
1505 * information on where the scanners should start (unless we explicitly
1506 * want to compact the whole zone), but check that it is initialised
1507 * by ensuring the values are within zone boundaries.
1508 */
1509 if (cc->whole_zone) {
1510 cc->migrate_pfn = start_pfn;
1511 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1512 } else {
1513 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1514 cc->free_pfn = zone->compact_cached_free_pfn;
1515 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1516 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1517 zone->compact_cached_free_pfn = cc->free_pfn;
1518 }
1519 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1520 cc->migrate_pfn = start_pfn;
1521 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1522 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1523 }
1524
1525 if (cc->migrate_pfn == start_pfn)
1526 cc->whole_zone = true;
1527 }
1528
1529 cc->last_migrated_pfn = 0;
1530
1531 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1532 cc->free_pfn, end_pfn, sync);
1533
1534 migrate_prep_local();
1535
1536 while ((ret = compact_finished(zone, cc, migratetype)) ==
1537 COMPACT_CONTINUE) {
1538 int err;
1539
1540 switch (isolate_migratepages(zone, cc)) {
1541 case ISOLATE_ABORT:
1542 ret = COMPACT_CONTENDED;
1543 putback_movable_pages(&cc->migratepages);
1544 cc->nr_migratepages = 0;
1545 goto out;
1546 case ISOLATE_NONE:
1547 /*
1548 * We haven't isolated and migrated anything, but
1549 * there might still be unflushed migrations from
1550 * previous cc->order aligned block.
1551 */
1552 goto check_drain;
1553 case ISOLATE_SUCCESS:
1554 ;
1555 }
1556
1557 err = migrate_pages(&cc->migratepages, compaction_alloc,
1558 compaction_free, (unsigned long)cc, cc->mode,
1559 MR_COMPACTION);
1560
1561 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1562 &cc->migratepages);
1563
1564 /* All pages were either migrated or will be released */
1565 cc->nr_migratepages = 0;
1566 if (err) {
1567 putback_movable_pages(&cc->migratepages);
1568 /*
1569 * migrate_pages() may return -ENOMEM when scanners meet
1570 * and we want compact_finished() to detect it
1571 */
1572 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1573 ret = COMPACT_CONTENDED;
1574 goto out;
1575 }
1576 /*
1577 * We failed to migrate at least one page in the current
1578 * order-aligned block, so skip the rest of it.
1579 */
1580 if (cc->direct_compaction &&
1581 (cc->mode == MIGRATE_ASYNC)) {
1582 cc->migrate_pfn = block_end_pfn(
1583 cc->migrate_pfn - 1, cc->order);
1584 /* Draining pcplists is useless in this case */
1585 cc->last_migrated_pfn = 0;
1586
1587 }
1588 }
1589
1590 check_drain:
1591 /*
1592 * Has the migration scanner moved away from the previous
1593 * cc->order aligned block where we migrated from? If yes,
1594 * flush the pages that were freed, so that they can merge and
1595 * compact_finished() can detect immediately if allocation
1596 * would succeed.
1597 */
1598 if (cc->order > 0 && cc->last_migrated_pfn) {
1599 int cpu;
1600 unsigned long current_block_start =
1601 block_start_pfn(cc->migrate_pfn, cc->order);
1602
1603 if (cc->last_migrated_pfn < current_block_start) {
1604 cpu = get_cpu();
1605 lru_add_drain_cpu(cpu);
1606 drain_local_pages(zone);
1607 put_cpu();
1608 /* No more flushing until we migrate again */
1609 cc->last_migrated_pfn = 0;
1610 }
1611 }
1612
1613 }
1614
1615 out:
1616 /*
1617 * Release free pages and update where the free scanner should restart,
1618 * so we don't leave any returned pages behind in the next attempt.
1619 */
1620 if (cc->nr_freepages > 0) {
1621 unsigned long free_pfn = release_freepages(&cc->freepages);
1622
1623 cc->nr_freepages = 0;
1624 VM_BUG_ON(free_pfn == 0);
1625 /* The cached pfn is always the first in a pageblock */
1626 free_pfn = pageblock_start_pfn(free_pfn);
1627 /*
1628 * Only go back, not forward. The cached pfn might have been
1629 * already reset to zone end in compact_finished()
1630 */
1631 if (free_pfn > zone->compact_cached_free_pfn)
1632 zone->compact_cached_free_pfn = free_pfn;
1633 }
1634
1635 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1636 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1637
1638 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1639 cc->free_pfn, end_pfn, sync, ret);
1640
1641 return ret;
1642 }
1643
1644 static enum compact_result compact_zone_order(struct zone *zone, int order,
1645 gfp_t gfp_mask, enum compact_priority prio,
1646 unsigned int alloc_flags, int classzone_idx)
1647 {
1648 enum compact_result ret;
1649 struct compact_control cc = {
1650 .nr_freepages = 0,
1651 .nr_migratepages = 0,
1652 .total_migrate_scanned = 0,
1653 .total_free_scanned = 0,
1654 .order = order,
1655 .gfp_mask = gfp_mask,
1656 .zone = zone,
1657 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1658 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1659 .alloc_flags = alloc_flags,
1660 .classzone_idx = classzone_idx,
1661 .direct_compaction = true,
1662 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1663 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1664 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1665 };
1666 INIT_LIST_HEAD(&cc.freepages);
1667 INIT_LIST_HEAD(&cc.migratepages);
1668
1669 ret = compact_zone(zone, &cc);
1670
1671 VM_BUG_ON(!list_empty(&cc.freepages));
1672 VM_BUG_ON(!list_empty(&cc.migratepages));
1673
1674 return ret;
1675 }
1676
1677 int sysctl_extfrag_threshold = 500;
1678
1679 /**
1680 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1681 * @gfp_mask: The GFP mask of the current allocation
1682 * @order: The order of the current allocation
1683 * @alloc_flags: The allocation flags of the current allocation
1684 * @ac: The context of current allocation
1685 * @mode: The migration mode for async, sync light, or sync migration
1686 *
1687 * This is the main entry point for direct page compaction.
1688 */
1689 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1690 unsigned int alloc_flags, const struct alloc_context *ac,
1691 enum compact_priority prio)
1692 {
1693 int may_perform_io = gfp_mask & __GFP_IO;
1694 struct zoneref *z;
1695 struct zone *zone;
1696 enum compact_result rc = COMPACT_SKIPPED;
1697
1698 /*
1699 * Check if the GFP flags allow compaction - GFP_NOIO is really
1700 * tricky context because the migration might require IO
1701 */
1702 if (!may_perform_io)
1703 return COMPACT_SKIPPED;
1704
1705 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1706
1707 /* Compact each zone in the list */
1708 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1709 ac->nodemask) {
1710 enum compact_result status;
1711
1712 if (prio > MIN_COMPACT_PRIORITY
1713 && compaction_deferred(zone, order)) {
1714 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1715 continue;
1716 }
1717
1718 status = compact_zone_order(zone, order, gfp_mask, prio,
1719 alloc_flags, ac_classzone_idx(ac));
1720 rc = max(status, rc);
1721
1722 /* The allocation should succeed, stop compacting */
1723 if (status == COMPACT_SUCCESS) {
1724 /*
1725 * We think the allocation will succeed in this zone,
1726 * but it is not certain, hence the false. The caller
1727 * will repeat this with true if allocation indeed
1728 * succeeds in this zone.
1729 */
1730 compaction_defer_reset(zone, order, false);
1731
1732 break;
1733 }
1734
1735 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1736 status == COMPACT_PARTIAL_SKIPPED))
1737 /*
1738 * We think that allocation won't succeed in this zone
1739 * so we defer compaction there. If it ends up
1740 * succeeding after all, it will be reset.
1741 */
1742 defer_compaction(zone, order);
1743
1744 /*
1745 * We might have stopped compacting due to need_resched() in
1746 * async compaction, or due to a fatal signal detected. In that
1747 * case do not try further zones
1748 */
1749 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1750 || fatal_signal_pending(current))
1751 break;
1752 }
1753
1754 return rc;
1755 }
1756
1757
1758 /* Compact all zones within a node */
1759 static void compact_node(int nid)
1760 {
1761 pg_data_t *pgdat = NODE_DATA(nid);
1762 int zoneid;
1763 struct zone *zone;
1764 struct compact_control cc = {
1765 .order = -1,
1766 .total_migrate_scanned = 0,
1767 .total_free_scanned = 0,
1768 .mode = MIGRATE_SYNC,
1769 .ignore_skip_hint = true,
1770 .whole_zone = true,
1771 .gfp_mask = GFP_KERNEL,
1772 };
1773
1774
1775 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1776
1777 zone = &pgdat->node_zones[zoneid];
1778 if (!populated_zone(zone))
1779 continue;
1780
1781 cc.nr_freepages = 0;
1782 cc.nr_migratepages = 0;
1783 cc.zone = zone;
1784 INIT_LIST_HEAD(&cc.freepages);
1785 INIT_LIST_HEAD(&cc.migratepages);
1786
1787 compact_zone(zone, &cc);
1788
1789 VM_BUG_ON(!list_empty(&cc.freepages));
1790 VM_BUG_ON(!list_empty(&cc.migratepages));
1791 }
1792 }
1793
1794 /* Compact all nodes in the system */
1795 static void compact_nodes(void)
1796 {
1797 int nid;
1798
1799 /* Flush pending updates to the LRU lists */
1800 lru_add_drain_all();
1801
1802 for_each_online_node(nid)
1803 compact_node(nid);
1804 }
1805
1806 /* The written value is actually unused, all memory is compacted */
1807 int sysctl_compact_memory;
1808
1809 /*
1810 * This is the entry point for compacting all nodes via
1811 * /proc/sys/vm/compact_memory
1812 */
1813 int sysctl_compaction_handler(struct ctl_table *table, int write,
1814 void __user *buffer, size_t *length, loff_t *ppos)
1815 {
1816 if (write)
1817 compact_nodes();
1818
1819 return 0;
1820 }
1821
1822 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1823 void __user *buffer, size_t *length, loff_t *ppos)
1824 {
1825 proc_dointvec_minmax(table, write, buffer, length, ppos);
1826
1827 return 0;
1828 }
1829
1830 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1831 static ssize_t sysfs_compact_node(struct device *dev,
1832 struct device_attribute *attr,
1833 const char *buf, size_t count)
1834 {
1835 int nid = dev->id;
1836
1837 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1838 /* Flush pending updates to the LRU lists */
1839 lru_add_drain_all();
1840
1841 compact_node(nid);
1842 }
1843
1844 return count;
1845 }
1846 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1847
1848 int compaction_register_node(struct node *node)
1849 {
1850 return device_create_file(&node->dev, &dev_attr_compact);
1851 }
1852
1853 void compaction_unregister_node(struct node *node)
1854 {
1855 return device_remove_file(&node->dev, &dev_attr_compact);
1856 }
1857 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1858
1859 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1860 {
1861 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1862 }
1863
1864 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1865 {
1866 int zoneid;
1867 struct zone *zone;
1868 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1869
1870 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1871 zone = &pgdat->node_zones[zoneid];
1872
1873 if (!populated_zone(zone))
1874 continue;
1875
1876 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1877 classzone_idx) == COMPACT_CONTINUE)
1878 return true;
1879 }
1880
1881 return false;
1882 }
1883
1884 static void kcompactd_do_work(pg_data_t *pgdat)
1885 {
1886 /*
1887 * With no special task, compact all zones so that a page of requested
1888 * order is allocatable.
1889 */
1890 int zoneid;
1891 struct zone *zone;
1892 struct compact_control cc = {
1893 .order = pgdat->kcompactd_max_order,
1894 .total_migrate_scanned = 0,
1895 .total_free_scanned = 0,
1896 .classzone_idx = pgdat->kcompactd_classzone_idx,
1897 .mode = MIGRATE_SYNC_LIGHT,
1898 .ignore_skip_hint = true,
1899 .gfp_mask = GFP_KERNEL,
1900
1901 };
1902 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1903 cc.classzone_idx);
1904 count_compact_event(KCOMPACTD_WAKE);
1905
1906 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1907 int status;
1908
1909 zone = &pgdat->node_zones[zoneid];
1910 if (!populated_zone(zone))
1911 continue;
1912
1913 if (compaction_deferred(zone, cc.order))
1914 continue;
1915
1916 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1917 COMPACT_CONTINUE)
1918 continue;
1919
1920 cc.nr_freepages = 0;
1921 cc.nr_migratepages = 0;
1922 cc.total_migrate_scanned = 0;
1923 cc.total_free_scanned = 0;
1924 cc.zone = zone;
1925 INIT_LIST_HEAD(&cc.freepages);
1926 INIT_LIST_HEAD(&cc.migratepages);
1927
1928 if (kthread_should_stop())
1929 return;
1930 status = compact_zone(zone, &cc);
1931
1932 if (status == COMPACT_SUCCESS) {
1933 compaction_defer_reset(zone, cc.order, false);
1934 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1935 /*
1936 * We use sync migration mode here, so we defer like
1937 * sync direct compaction does.
1938 */
1939 defer_compaction(zone, cc.order);
1940 }
1941
1942 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1943 cc.total_migrate_scanned);
1944 count_compact_events(KCOMPACTD_FREE_SCANNED,
1945 cc.total_free_scanned);
1946
1947 VM_BUG_ON(!list_empty(&cc.freepages));
1948 VM_BUG_ON(!list_empty(&cc.migratepages));
1949 }
1950
1951 /*
1952 * Regardless of success, we are done until woken up next. But remember
1953 * the requested order/classzone_idx in case it was higher/tighter than
1954 * our current ones
1955 */
1956 if (pgdat->kcompactd_max_order <= cc.order)
1957 pgdat->kcompactd_max_order = 0;
1958 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1959 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1960 }
1961
1962 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1963 {
1964 if (!order)
1965 return;
1966
1967 if (pgdat->kcompactd_max_order < order)
1968 pgdat->kcompactd_max_order = order;
1969
1970 /*
1971 * Pairs with implicit barrier in wait_event_freezable()
1972 * such that wakeups are not missed in the lockless
1973 * waitqueue_active() call.
1974 */
1975 smp_acquire__after_ctrl_dep();
1976
1977 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1978 pgdat->kcompactd_classzone_idx = classzone_idx;
1979
1980 if (!waitqueue_active(&pgdat->kcompactd_wait))
1981 return;
1982
1983 if (!kcompactd_node_suitable(pgdat))
1984 return;
1985
1986 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1987 classzone_idx);
1988 wake_up_interruptible(&pgdat->kcompactd_wait);
1989 }
1990
1991 /*
1992 * The background compaction daemon, started as a kernel thread
1993 * from the init process.
1994 */
1995 static int kcompactd(void *p)
1996 {
1997 pg_data_t *pgdat = (pg_data_t*)p;
1998 struct task_struct *tsk = current;
1999
2000 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2001
2002 if (!cpumask_empty(cpumask))
2003 set_cpus_allowed_ptr(tsk, cpumask);
2004
2005 set_freezable();
2006
2007 pgdat->kcompactd_max_order = 0;
2008 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2009
2010 while (!kthread_should_stop()) {
2011 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2012 wait_event_freezable(pgdat->kcompactd_wait,
2013 kcompactd_work_requested(pgdat));
2014
2015 kcompactd_do_work(pgdat);
2016 }
2017
2018 return 0;
2019 }
2020
2021 /*
2022 * This kcompactd start function will be called by init and node-hot-add.
2023 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2024 */
2025 int kcompactd_run(int nid)
2026 {
2027 pg_data_t *pgdat = NODE_DATA(nid);
2028 int ret = 0;
2029
2030 if (pgdat->kcompactd)
2031 return 0;
2032
2033 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2034 if (IS_ERR(pgdat->kcompactd)) {
2035 pr_err("Failed to start kcompactd on node %d\n", nid);
2036 ret = PTR_ERR(pgdat->kcompactd);
2037 pgdat->kcompactd = NULL;
2038 }
2039 return ret;
2040 }
2041
2042 /*
2043 * Called by memory hotplug when all memory in a node is offlined. Caller must
2044 * hold mem_hotplug_begin/end().
2045 */
2046 void kcompactd_stop(int nid)
2047 {
2048 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2049
2050 if (kcompactd) {
2051 kthread_stop(kcompactd);
2052 NODE_DATA(nid)->kcompactd = NULL;
2053 }
2054 }
2055
2056 /*
2057 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2058 * not required for correctness. So if the last cpu in a node goes
2059 * away, we get changed to run anywhere: as the first one comes back,
2060 * restore their cpu bindings.
2061 */
2062 static int kcompactd_cpu_online(unsigned int cpu)
2063 {
2064 int nid;
2065
2066 for_each_node_state(nid, N_MEMORY) {
2067 pg_data_t *pgdat = NODE_DATA(nid);
2068 const struct cpumask *mask;
2069
2070 mask = cpumask_of_node(pgdat->node_id);
2071
2072 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2073 /* One of our CPUs online: restore mask */
2074 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2075 }
2076 return 0;
2077 }
2078
2079 static int __init kcompactd_init(void)
2080 {
2081 int nid;
2082 int ret;
2083
2084 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2085 "mm/compaction:online",
2086 kcompactd_cpu_online, NULL);
2087 if (ret < 0) {
2088 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2089 return ret;
2090 }
2091
2092 for_each_node_state(nid, N_MEMORY)
2093 kcompactd_run(nid);
2094 return 0;
2095 }
2096 subsys_initcall(kcompactd_init)
2097
2098 #endif /* CONFIG_COMPACTION */