]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/filemap.c
KVM: SVM: Move spec control call after restore of GS
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63 /*
64 * Lock ordering:
65 *
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
70 *
71 * ->i_mutex
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 *
74 * ->mmap_sem
75 * ->i_mmap_rwsem
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 *
85 * bdi->wb.list_lock
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
89 * ->i_mmap_rwsem
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
110 * ->i_mmap_rwsem
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116 {
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (shadowp)
134 *shadowp = p;
135 }
136 __radix_tree_replace(&mapping->page_tree, node, slot, page,
137 workingset_update_node, mapping);
138 mapping->nrpages++;
139 return 0;
140 }
141
142 static void page_cache_tree_delete(struct address_space *mapping,
143 struct page *page, void *shadow)
144 {
145 int i, nr;
146
147 /* hugetlb pages are represented by one entry in the radix tree */
148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(PageTail(page), page);
152 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
153
154 for (i = 0; i < nr; i++) {
155 struct radix_tree_node *node;
156 void **slot;
157
158 __radix_tree_lookup(&mapping->page_tree, page->index + i,
159 &node, &slot);
160
161 VM_BUG_ON_PAGE(!node && nr != 1, page);
162
163 radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 workingset_update_node, mapping);
166 }
167
168 if (shadow) {
169 mapping->nrexceptional += nr;
170 /*
171 * Make sure the nrexceptional update is committed before
172 * the nrpages update so that final truncate racing
173 * with reclaim does not see both counters 0 at the
174 * same time and miss a shadow entry.
175 */
176 smp_wmb();
177 }
178 mapping->nrpages -= nr;
179 }
180
181 /*
182 * Delete a page from the page cache and free it. Caller has to make
183 * sure the page is locked and that nobody else uses it - or that usage
184 * is safe. The caller must hold the mapping's tree_lock.
185 */
186 void __delete_from_page_cache(struct page *page, void *shadow)
187 {
188 struct address_space *mapping = page->mapping;
189 int nr = hpage_nr_pages(page);
190
191 trace_mm_filemap_delete_from_page_cache(page);
192 /*
193 * if we're uptodate, flush out into the cleancache, otherwise
194 * invalidate any existing cleancache entries. We can't leave
195 * stale data around in the cleancache once our page is gone
196 */
197 if (PageUptodate(page) && PageMappedToDisk(page))
198 cleancache_put_page(page);
199 else
200 cleancache_invalidate_page(mapping, page);
201
202 VM_BUG_ON_PAGE(PageTail(page), page);
203 VM_BUG_ON_PAGE(page_mapped(page), page);
204 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
205 int mapcount;
206
207 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
208 current->comm, page_to_pfn(page));
209 dump_page(page, "still mapped when deleted");
210 dump_stack();
211 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
212
213 mapcount = page_mapcount(page);
214 if (mapping_exiting(mapping) &&
215 page_count(page) >= mapcount + 2) {
216 /*
217 * All vmas have already been torn down, so it's
218 * a good bet that actually the page is unmapped,
219 * and we'd prefer not to leak it: if we're wrong,
220 * some other bad page check should catch it later.
221 */
222 page_mapcount_reset(page);
223 page_ref_sub(page, mapcount);
224 }
225 }
226
227 page_cache_tree_delete(mapping, page, shadow);
228
229 page->mapping = NULL;
230 /* Leave page->index set: truncation lookup relies upon it */
231
232 /* hugetlb pages do not participate in page cache accounting. */
233 if (PageHuge(page))
234 return;
235
236 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
237 if (PageSwapBacked(page)) {
238 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
239 if (PageTransHuge(page))
240 __dec_node_page_state(page, NR_SHMEM_THPS);
241 } else {
242 VM_BUG_ON_PAGE(PageTransHuge(page), page);
243 }
244
245 /*
246 * At this point page must be either written or cleaned by truncate.
247 * Dirty page here signals a bug and loss of unwritten data.
248 *
249 * This fixes dirty accounting after removing the page entirely but
250 * leaves PageDirty set: it has no effect for truncated page and
251 * anyway will be cleared before returning page into buddy allocator.
252 */
253 if (WARN_ON_ONCE(PageDirty(page)))
254 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
255 }
256
257 /**
258 * delete_from_page_cache - delete page from page cache
259 * @page: the page which the kernel is trying to remove from page cache
260 *
261 * This must be called only on pages that have been verified to be in the page
262 * cache and locked. It will never put the page into the free list, the caller
263 * has a reference on the page.
264 */
265 void delete_from_page_cache(struct page *page)
266 {
267 struct address_space *mapping = page_mapping(page);
268 unsigned long flags;
269 void (*freepage)(struct page *);
270
271 BUG_ON(!PageLocked(page));
272
273 freepage = mapping->a_ops->freepage;
274
275 spin_lock_irqsave(&mapping->tree_lock, flags);
276 __delete_from_page_cache(page, NULL);
277 spin_unlock_irqrestore(&mapping->tree_lock, flags);
278
279 if (freepage)
280 freepage(page);
281
282 if (PageTransHuge(page) && !PageHuge(page)) {
283 page_ref_sub(page, HPAGE_PMD_NR);
284 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
285 } else {
286 put_page(page);
287 }
288 }
289 EXPORT_SYMBOL(delete_from_page_cache);
290
291 int filemap_check_errors(struct address_space *mapping)
292 {
293 int ret = 0;
294 /* Check for outstanding write errors */
295 if (test_bit(AS_ENOSPC, &mapping->flags) &&
296 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 ret = -ENOSPC;
298 if (test_bit(AS_EIO, &mapping->flags) &&
299 test_and_clear_bit(AS_EIO, &mapping->flags))
300 ret = -EIO;
301 return ret;
302 }
303 EXPORT_SYMBOL(filemap_check_errors);
304
305 static int filemap_check_and_keep_errors(struct address_space *mapping)
306 {
307 /* Check for outstanding write errors */
308 if (test_bit(AS_EIO, &mapping->flags))
309 return -EIO;
310 if (test_bit(AS_ENOSPC, &mapping->flags))
311 return -ENOSPC;
312 return 0;
313 }
314
315 /**
316 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
317 * @mapping: address space structure to write
318 * @start: offset in bytes where the range starts
319 * @end: offset in bytes where the range ends (inclusive)
320 * @sync_mode: enable synchronous operation
321 *
322 * Start writeback against all of a mapping's dirty pages that lie
323 * within the byte offsets <start, end> inclusive.
324 *
325 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
326 * opposed to a regular memory cleansing writeback. The difference between
327 * these two operations is that if a dirty page/buffer is encountered, it must
328 * be waited upon, and not just skipped over.
329 */
330 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
331 loff_t end, int sync_mode)
332 {
333 int ret;
334 struct writeback_control wbc = {
335 .sync_mode = sync_mode,
336 .nr_to_write = LONG_MAX,
337 .range_start = start,
338 .range_end = end,
339 };
340
341 if (!mapping_cap_writeback_dirty(mapping))
342 return 0;
343
344 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
345 ret = do_writepages(mapping, &wbc);
346 wbc_detach_inode(&wbc);
347 return ret;
348 }
349
350 static inline int __filemap_fdatawrite(struct address_space *mapping,
351 int sync_mode)
352 {
353 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
354 }
355
356 int filemap_fdatawrite(struct address_space *mapping)
357 {
358 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
359 }
360 EXPORT_SYMBOL(filemap_fdatawrite);
361
362 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
363 loff_t end)
364 {
365 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite_range);
368
369 /**
370 * filemap_flush - mostly a non-blocking flush
371 * @mapping: target address_space
372 *
373 * This is a mostly non-blocking flush. Not suitable for data-integrity
374 * purposes - I/O may not be started against all dirty pages.
375 */
376 int filemap_flush(struct address_space *mapping)
377 {
378 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
379 }
380 EXPORT_SYMBOL(filemap_flush);
381
382 /**
383 * filemap_range_has_page - check if a page exists in range.
384 * @mapping: address space within which to check
385 * @start_byte: offset in bytes where the range starts
386 * @end_byte: offset in bytes where the range ends (inclusive)
387 *
388 * Find at least one page in the range supplied, usually used to check if
389 * direct writing in this range will trigger a writeback.
390 */
391 bool filemap_range_has_page(struct address_space *mapping,
392 loff_t start_byte, loff_t end_byte)
393 {
394 pgoff_t index = start_byte >> PAGE_SHIFT;
395 pgoff_t end = end_byte >> PAGE_SHIFT;
396 struct pagevec pvec;
397 bool ret;
398
399 if (end_byte < start_byte)
400 return false;
401
402 if (mapping->nrpages == 0)
403 return false;
404
405 pagevec_init(&pvec, 0);
406 if (!pagevec_lookup(&pvec, mapping, index, 1))
407 return false;
408 ret = (pvec.pages[0]->index <= end);
409 pagevec_release(&pvec);
410 return ret;
411 }
412 EXPORT_SYMBOL(filemap_range_has_page);
413
414 static void __filemap_fdatawait_range(struct address_space *mapping,
415 loff_t start_byte, loff_t end_byte)
416 {
417 pgoff_t index = start_byte >> PAGE_SHIFT;
418 pgoff_t end = end_byte >> PAGE_SHIFT;
419 struct pagevec pvec;
420 int nr_pages;
421
422 if (end_byte < start_byte)
423 return;
424
425 pagevec_init(&pvec, 0);
426 while ((index <= end) &&
427 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
428 PAGECACHE_TAG_WRITEBACK,
429 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
430 unsigned i;
431
432 for (i = 0; i < nr_pages; i++) {
433 struct page *page = pvec.pages[i];
434
435 /* until radix tree lookup accepts end_index */
436 if (page->index > end)
437 continue;
438
439 wait_on_page_writeback(page);
440 ClearPageError(page);
441 }
442 pagevec_release(&pvec);
443 cond_resched();
444 }
445 }
446
447 /**
448 * filemap_fdatawait_range - wait for writeback to complete
449 * @mapping: address space structure to wait for
450 * @start_byte: offset in bytes where the range starts
451 * @end_byte: offset in bytes where the range ends (inclusive)
452 *
453 * Walk the list of under-writeback pages of the given address space
454 * in the given range and wait for all of them. Check error status of
455 * the address space and return it.
456 *
457 * Since the error status of the address space is cleared by this function,
458 * callers are responsible for checking the return value and handling and/or
459 * reporting the error.
460 */
461 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
462 loff_t end_byte)
463 {
464 __filemap_fdatawait_range(mapping, start_byte, end_byte);
465 return filemap_check_errors(mapping);
466 }
467 EXPORT_SYMBOL(filemap_fdatawait_range);
468
469 /**
470 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
471 * @mapping: address space structure to wait for
472 *
473 * Walk the list of under-writeback pages of the given address space
474 * and wait for all of them. Unlike filemap_fdatawait(), this function
475 * does not clear error status of the address space.
476 *
477 * Use this function if callers don't handle errors themselves. Expected
478 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
479 * fsfreeze(8)
480 */
481 int filemap_fdatawait_keep_errors(struct address_space *mapping)
482 {
483 loff_t i_size = i_size_read(mapping->host);
484
485 if (i_size == 0)
486 return 0;
487
488 __filemap_fdatawait_range(mapping, 0, i_size - 1);
489 return filemap_check_and_keep_errors(mapping);
490 }
491 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
492
493 /**
494 * filemap_fdatawait - wait for all under-writeback pages to complete
495 * @mapping: address space structure to wait for
496 *
497 * Walk the list of under-writeback pages of the given address space
498 * and wait for all of them. Check error status of the address space
499 * and return it.
500 *
501 * Since the error status of the address space is cleared by this function,
502 * callers are responsible for checking the return value and handling and/or
503 * reporting the error.
504 */
505 int filemap_fdatawait(struct address_space *mapping)
506 {
507 loff_t i_size = i_size_read(mapping->host);
508
509 if (i_size == 0)
510 return 0;
511
512 return filemap_fdatawait_range(mapping, 0, i_size - 1);
513 }
514 EXPORT_SYMBOL(filemap_fdatawait);
515
516 int filemap_write_and_wait(struct address_space *mapping)
517 {
518 int err = 0;
519
520 if ((!dax_mapping(mapping) && mapping->nrpages) ||
521 (dax_mapping(mapping) && mapping->nrexceptional)) {
522 err = filemap_fdatawrite(mapping);
523 /*
524 * Even if the above returned error, the pages may be
525 * written partially (e.g. -ENOSPC), so we wait for it.
526 * But the -EIO is special case, it may indicate the worst
527 * thing (e.g. bug) happened, so we avoid waiting for it.
528 */
529 if (err != -EIO) {
530 int err2 = filemap_fdatawait(mapping);
531 if (!err)
532 err = err2;
533 } else {
534 /* Clear any previously stored errors */
535 filemap_check_errors(mapping);
536 }
537 } else {
538 err = filemap_check_errors(mapping);
539 }
540 return err;
541 }
542 EXPORT_SYMBOL(filemap_write_and_wait);
543
544 /**
545 * filemap_write_and_wait_range - write out & wait on a file range
546 * @mapping: the address_space for the pages
547 * @lstart: offset in bytes where the range starts
548 * @lend: offset in bytes where the range ends (inclusive)
549 *
550 * Write out and wait upon file offsets lstart->lend, inclusive.
551 *
552 * Note that @lend is inclusive (describes the last byte to be written) so
553 * that this function can be used to write to the very end-of-file (end = -1).
554 */
555 int filemap_write_and_wait_range(struct address_space *mapping,
556 loff_t lstart, loff_t lend)
557 {
558 int err = 0;
559
560 if ((!dax_mapping(mapping) && mapping->nrpages) ||
561 (dax_mapping(mapping) && mapping->nrexceptional)) {
562 err = __filemap_fdatawrite_range(mapping, lstart, lend,
563 WB_SYNC_ALL);
564 /* See comment of filemap_write_and_wait() */
565 if (err != -EIO) {
566 int err2 = filemap_fdatawait_range(mapping,
567 lstart, lend);
568 if (!err)
569 err = err2;
570 } else {
571 /* Clear any previously stored errors */
572 filemap_check_errors(mapping);
573 }
574 } else {
575 err = filemap_check_errors(mapping);
576 }
577 return err;
578 }
579 EXPORT_SYMBOL(filemap_write_and_wait_range);
580
581 void __filemap_set_wb_err(struct address_space *mapping, int err)
582 {
583 errseq_t eseq = __errseq_set(&mapping->wb_err, err);
584
585 trace_filemap_set_wb_err(mapping, eseq);
586 }
587 EXPORT_SYMBOL(__filemap_set_wb_err);
588
589 /**
590 * file_check_and_advance_wb_err - report wb error (if any) that was previously
591 * and advance wb_err to current one
592 * @file: struct file on which the error is being reported
593 *
594 * When userland calls fsync (or something like nfsd does the equivalent), we
595 * want to report any writeback errors that occurred since the last fsync (or
596 * since the file was opened if there haven't been any).
597 *
598 * Grab the wb_err from the mapping. If it matches what we have in the file,
599 * then just quickly return 0. The file is all caught up.
600 *
601 * If it doesn't match, then take the mapping value, set the "seen" flag in
602 * it and try to swap it into place. If it works, or another task beat us
603 * to it with the new value, then update the f_wb_err and return the error
604 * portion. The error at this point must be reported via proper channels
605 * (a'la fsync, or NFS COMMIT operation, etc.).
606 *
607 * While we handle mapping->wb_err with atomic operations, the f_wb_err
608 * value is protected by the f_lock since we must ensure that it reflects
609 * the latest value swapped in for this file descriptor.
610 */
611 int file_check_and_advance_wb_err(struct file *file)
612 {
613 int err = 0;
614 errseq_t old = READ_ONCE(file->f_wb_err);
615 struct address_space *mapping = file->f_mapping;
616
617 /* Locklessly handle the common case where nothing has changed */
618 if (errseq_check(&mapping->wb_err, old)) {
619 /* Something changed, must use slow path */
620 spin_lock(&file->f_lock);
621 old = file->f_wb_err;
622 err = errseq_check_and_advance(&mapping->wb_err,
623 &file->f_wb_err);
624 trace_file_check_and_advance_wb_err(file, old);
625 spin_unlock(&file->f_lock);
626 }
627 return err;
628 }
629 EXPORT_SYMBOL(file_check_and_advance_wb_err);
630
631 /**
632 * file_write_and_wait_range - write out & wait on a file range
633 * @file: file pointing to address_space with pages
634 * @lstart: offset in bytes where the range starts
635 * @lend: offset in bytes where the range ends (inclusive)
636 *
637 * Write out and wait upon file offsets lstart->lend, inclusive.
638 *
639 * Note that @lend is inclusive (describes the last byte to be written) so
640 * that this function can be used to write to the very end-of-file (end = -1).
641 *
642 * After writing out and waiting on the data, we check and advance the
643 * f_wb_err cursor to the latest value, and return any errors detected there.
644 */
645 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
646 {
647 int err = 0, err2;
648 struct address_space *mapping = file->f_mapping;
649
650 if ((!dax_mapping(mapping) && mapping->nrpages) ||
651 (dax_mapping(mapping) && mapping->nrexceptional)) {
652 err = __filemap_fdatawrite_range(mapping, lstart, lend,
653 WB_SYNC_ALL);
654 /* See comment of filemap_write_and_wait() */
655 if (err != -EIO)
656 __filemap_fdatawait_range(mapping, lstart, lend);
657 }
658 err2 = file_check_and_advance_wb_err(file);
659 if (!err)
660 err = err2;
661 return err;
662 }
663 EXPORT_SYMBOL(file_write_and_wait_range);
664
665 /**
666 * replace_page_cache_page - replace a pagecache page with a new one
667 * @old: page to be replaced
668 * @new: page to replace with
669 * @gfp_mask: allocation mode
670 *
671 * This function replaces a page in the pagecache with a new one. On
672 * success it acquires the pagecache reference for the new page and
673 * drops it for the old page. Both the old and new pages must be
674 * locked. This function does not add the new page to the LRU, the
675 * caller must do that.
676 *
677 * The remove + add is atomic. The only way this function can fail is
678 * memory allocation failure.
679 */
680 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
681 {
682 int error;
683
684 VM_BUG_ON_PAGE(!PageLocked(old), old);
685 VM_BUG_ON_PAGE(!PageLocked(new), new);
686 VM_BUG_ON_PAGE(new->mapping, new);
687
688 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
689 if (!error) {
690 struct address_space *mapping = old->mapping;
691 void (*freepage)(struct page *);
692 unsigned long flags;
693
694 pgoff_t offset = old->index;
695 freepage = mapping->a_ops->freepage;
696
697 get_page(new);
698 new->mapping = mapping;
699 new->index = offset;
700
701 spin_lock_irqsave(&mapping->tree_lock, flags);
702 __delete_from_page_cache(old, NULL);
703 error = page_cache_tree_insert(mapping, new, NULL);
704 BUG_ON(error);
705
706 /*
707 * hugetlb pages do not participate in page cache accounting.
708 */
709 if (!PageHuge(new))
710 __inc_node_page_state(new, NR_FILE_PAGES);
711 if (PageSwapBacked(new))
712 __inc_node_page_state(new, NR_SHMEM);
713 spin_unlock_irqrestore(&mapping->tree_lock, flags);
714 mem_cgroup_migrate(old, new);
715 radix_tree_preload_end();
716 if (freepage)
717 freepage(old);
718 put_page(old);
719 }
720
721 return error;
722 }
723 EXPORT_SYMBOL_GPL(replace_page_cache_page);
724
725 static int __add_to_page_cache_locked(struct page *page,
726 struct address_space *mapping,
727 pgoff_t offset, gfp_t gfp_mask,
728 void **shadowp)
729 {
730 int huge = PageHuge(page);
731 struct mem_cgroup *memcg;
732 int error;
733
734 VM_BUG_ON_PAGE(!PageLocked(page), page);
735 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
736
737 if (!huge) {
738 error = mem_cgroup_try_charge(page, current->mm,
739 gfp_mask, &memcg, false);
740 if (error)
741 return error;
742 }
743
744 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
745 if (error) {
746 if (!huge)
747 mem_cgroup_cancel_charge(page, memcg, false);
748 return error;
749 }
750
751 get_page(page);
752 page->mapping = mapping;
753 page->index = offset;
754
755 spin_lock_irq(&mapping->tree_lock);
756 error = page_cache_tree_insert(mapping, page, shadowp);
757 radix_tree_preload_end();
758 if (unlikely(error))
759 goto err_insert;
760
761 /* hugetlb pages do not participate in page cache accounting. */
762 if (!huge)
763 __inc_node_page_state(page, NR_FILE_PAGES);
764 spin_unlock_irq(&mapping->tree_lock);
765 if (!huge)
766 mem_cgroup_commit_charge(page, memcg, false, false);
767 trace_mm_filemap_add_to_page_cache(page);
768 return 0;
769 err_insert:
770 page->mapping = NULL;
771 /* Leave page->index set: truncation relies upon it */
772 spin_unlock_irq(&mapping->tree_lock);
773 if (!huge)
774 mem_cgroup_cancel_charge(page, memcg, false);
775 put_page(page);
776 return error;
777 }
778
779 /**
780 * add_to_page_cache_locked - add a locked page to the pagecache
781 * @page: page to add
782 * @mapping: the page's address_space
783 * @offset: page index
784 * @gfp_mask: page allocation mode
785 *
786 * This function is used to add a page to the pagecache. It must be locked.
787 * This function does not add the page to the LRU. The caller must do that.
788 */
789 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
790 pgoff_t offset, gfp_t gfp_mask)
791 {
792 return __add_to_page_cache_locked(page, mapping, offset,
793 gfp_mask, NULL);
794 }
795 EXPORT_SYMBOL(add_to_page_cache_locked);
796
797 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
798 pgoff_t offset, gfp_t gfp_mask)
799 {
800 void *shadow = NULL;
801 int ret;
802
803 __SetPageLocked(page);
804 ret = __add_to_page_cache_locked(page, mapping, offset,
805 gfp_mask, &shadow);
806 if (unlikely(ret))
807 __ClearPageLocked(page);
808 else {
809 /*
810 * The page might have been evicted from cache only
811 * recently, in which case it should be activated like
812 * any other repeatedly accessed page.
813 * The exception is pages getting rewritten; evicting other
814 * data from the working set, only to cache data that will
815 * get overwritten with something else, is a waste of memory.
816 */
817 if (!(gfp_mask & __GFP_WRITE) &&
818 shadow && workingset_refault(shadow)) {
819 SetPageActive(page);
820 workingset_activation(page);
821 } else
822 ClearPageActive(page);
823 lru_cache_add(page);
824 }
825 return ret;
826 }
827 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
828
829 #ifdef CONFIG_NUMA
830 struct page *__page_cache_alloc(gfp_t gfp)
831 {
832 int n;
833 struct page *page;
834
835 if (cpuset_do_page_mem_spread()) {
836 unsigned int cpuset_mems_cookie;
837 do {
838 cpuset_mems_cookie = read_mems_allowed_begin();
839 n = cpuset_mem_spread_node();
840 page = __alloc_pages_node(n, gfp, 0);
841 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
842
843 return page;
844 }
845 return alloc_pages(gfp, 0);
846 }
847 EXPORT_SYMBOL(__page_cache_alloc);
848 #endif
849
850 /*
851 * In order to wait for pages to become available there must be
852 * waitqueues associated with pages. By using a hash table of
853 * waitqueues where the bucket discipline is to maintain all
854 * waiters on the same queue and wake all when any of the pages
855 * become available, and for the woken contexts to check to be
856 * sure the appropriate page became available, this saves space
857 * at a cost of "thundering herd" phenomena during rare hash
858 * collisions.
859 */
860 #define PAGE_WAIT_TABLE_BITS 8
861 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
862 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
863
864 static wait_queue_head_t *page_waitqueue(struct page *page)
865 {
866 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
867 }
868
869 void __init pagecache_init(void)
870 {
871 int i;
872
873 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
874 init_waitqueue_head(&page_wait_table[i]);
875
876 page_writeback_init();
877 }
878
879 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
880 struct wait_page_key {
881 struct page *page;
882 int bit_nr;
883 int page_match;
884 };
885
886 struct wait_page_queue {
887 struct page *page;
888 int bit_nr;
889 wait_queue_entry_t wait;
890 };
891
892 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
893 {
894 struct wait_page_key *key = arg;
895 struct wait_page_queue *wait_page
896 = container_of(wait, struct wait_page_queue, wait);
897
898 if (wait_page->page != key->page)
899 return 0;
900 key->page_match = 1;
901
902 if (wait_page->bit_nr != key->bit_nr)
903 return 0;
904
905 /* Stop walking if it's locked */
906 if (test_bit(key->bit_nr, &key->page->flags))
907 return -1;
908
909 return autoremove_wake_function(wait, mode, sync, key);
910 }
911
912 static void wake_up_page_bit(struct page *page, int bit_nr)
913 {
914 wait_queue_head_t *q = page_waitqueue(page);
915 struct wait_page_key key;
916 unsigned long flags;
917
918 key.page = page;
919 key.bit_nr = bit_nr;
920 key.page_match = 0;
921
922 spin_lock_irqsave(&q->lock, flags);
923 __wake_up_locked_key(q, TASK_NORMAL, &key);
924 /*
925 * It is possible for other pages to have collided on the waitqueue
926 * hash, so in that case check for a page match. That prevents a long-
927 * term waiter
928 *
929 * It is still possible to miss a case here, when we woke page waiters
930 * and removed them from the waitqueue, but there are still other
931 * page waiters.
932 */
933 if (!waitqueue_active(q) || !key.page_match) {
934 ClearPageWaiters(page);
935 /*
936 * It's possible to miss clearing Waiters here, when we woke
937 * our page waiters, but the hashed waitqueue has waiters for
938 * other pages on it.
939 *
940 * That's okay, it's a rare case. The next waker will clear it.
941 */
942 }
943 spin_unlock_irqrestore(&q->lock, flags);
944 }
945
946 static void wake_up_page(struct page *page, int bit)
947 {
948 if (!PageWaiters(page))
949 return;
950 wake_up_page_bit(page, bit);
951 }
952
953 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
954 struct page *page, int bit_nr, int state, bool lock)
955 {
956 struct wait_page_queue wait_page;
957 wait_queue_entry_t *wait = &wait_page.wait;
958 int ret = 0;
959
960 init_wait(wait);
961 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
962 wait->func = wake_page_function;
963 wait_page.page = page;
964 wait_page.bit_nr = bit_nr;
965
966 for (;;) {
967 spin_lock_irq(&q->lock);
968
969 if (likely(list_empty(&wait->entry))) {
970 __add_wait_queue_entry_tail(q, wait);
971 SetPageWaiters(page);
972 }
973
974 set_current_state(state);
975
976 spin_unlock_irq(&q->lock);
977
978 if (likely(test_bit(bit_nr, &page->flags))) {
979 io_schedule();
980 }
981
982 if (lock) {
983 if (!test_and_set_bit_lock(bit_nr, &page->flags))
984 break;
985 } else {
986 if (!test_bit(bit_nr, &page->flags))
987 break;
988 }
989
990 if (unlikely(signal_pending_state(state, current))) {
991 ret = -EINTR;
992 break;
993 }
994 }
995
996 finish_wait(q, wait);
997
998 /*
999 * A signal could leave PageWaiters set. Clearing it here if
1000 * !waitqueue_active would be possible (by open-coding finish_wait),
1001 * but still fail to catch it in the case of wait hash collision. We
1002 * already can fail to clear wait hash collision cases, so don't
1003 * bother with signals either.
1004 */
1005
1006 return ret;
1007 }
1008
1009 void wait_on_page_bit(struct page *page, int bit_nr)
1010 {
1011 wait_queue_head_t *q = page_waitqueue(page);
1012 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1013 }
1014 EXPORT_SYMBOL(wait_on_page_bit);
1015
1016 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1017 {
1018 wait_queue_head_t *q = page_waitqueue(page);
1019 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1020 }
1021
1022 /**
1023 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1024 * @page: Page defining the wait queue of interest
1025 * @waiter: Waiter to add to the queue
1026 *
1027 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1028 */
1029 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1030 {
1031 wait_queue_head_t *q = page_waitqueue(page);
1032 unsigned long flags;
1033
1034 spin_lock_irqsave(&q->lock, flags);
1035 __add_wait_queue_entry_tail(q, waiter);
1036 SetPageWaiters(page);
1037 spin_unlock_irqrestore(&q->lock, flags);
1038 }
1039 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1040
1041 #ifndef clear_bit_unlock_is_negative_byte
1042
1043 /*
1044 * PG_waiters is the high bit in the same byte as PG_lock.
1045 *
1046 * On x86 (and on many other architectures), we can clear PG_lock and
1047 * test the sign bit at the same time. But if the architecture does
1048 * not support that special operation, we just do this all by hand
1049 * instead.
1050 *
1051 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1052 * being cleared, but a memory barrier should be unneccssary since it is
1053 * in the same byte as PG_locked.
1054 */
1055 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1056 {
1057 clear_bit_unlock(nr, mem);
1058 /* smp_mb__after_atomic(); */
1059 return test_bit(PG_waiters, mem);
1060 }
1061
1062 #endif
1063
1064 /**
1065 * unlock_page - unlock a locked page
1066 * @page: the page
1067 *
1068 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1069 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1070 * mechanism between PageLocked pages and PageWriteback pages is shared.
1071 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1072 *
1073 * Note that this depends on PG_waiters being the sign bit in the byte
1074 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1075 * clear the PG_locked bit and test PG_waiters at the same time fairly
1076 * portably (architectures that do LL/SC can test any bit, while x86 can
1077 * test the sign bit).
1078 */
1079 void unlock_page(struct page *page)
1080 {
1081 BUILD_BUG_ON(PG_waiters != 7);
1082 page = compound_head(page);
1083 VM_BUG_ON_PAGE(!PageLocked(page), page);
1084 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1085 wake_up_page_bit(page, PG_locked);
1086 }
1087 EXPORT_SYMBOL(unlock_page);
1088
1089 /**
1090 * end_page_writeback - end writeback against a page
1091 * @page: the page
1092 */
1093 void end_page_writeback(struct page *page)
1094 {
1095 /*
1096 * TestClearPageReclaim could be used here but it is an atomic
1097 * operation and overkill in this particular case. Failing to
1098 * shuffle a page marked for immediate reclaim is too mild to
1099 * justify taking an atomic operation penalty at the end of
1100 * ever page writeback.
1101 */
1102 if (PageReclaim(page)) {
1103 ClearPageReclaim(page);
1104 rotate_reclaimable_page(page);
1105 }
1106
1107 if (!test_clear_page_writeback(page))
1108 BUG();
1109
1110 smp_mb__after_atomic();
1111 wake_up_page(page, PG_writeback);
1112 }
1113 EXPORT_SYMBOL(end_page_writeback);
1114
1115 /*
1116 * After completing I/O on a page, call this routine to update the page
1117 * flags appropriately
1118 */
1119 void page_endio(struct page *page, bool is_write, int err)
1120 {
1121 if (!is_write) {
1122 if (!err) {
1123 SetPageUptodate(page);
1124 } else {
1125 ClearPageUptodate(page);
1126 SetPageError(page);
1127 }
1128 unlock_page(page);
1129 } else {
1130 if (err) {
1131 struct address_space *mapping;
1132
1133 SetPageError(page);
1134 mapping = page_mapping(page);
1135 if (mapping)
1136 mapping_set_error(mapping, err);
1137 }
1138 end_page_writeback(page);
1139 }
1140 }
1141 EXPORT_SYMBOL_GPL(page_endio);
1142
1143 /**
1144 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1145 * @__page: the page to lock
1146 */
1147 void __lock_page(struct page *__page)
1148 {
1149 struct page *page = compound_head(__page);
1150 wait_queue_head_t *q = page_waitqueue(page);
1151 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1152 }
1153 EXPORT_SYMBOL(__lock_page);
1154
1155 int __lock_page_killable(struct page *__page)
1156 {
1157 struct page *page = compound_head(__page);
1158 wait_queue_head_t *q = page_waitqueue(page);
1159 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1160 }
1161 EXPORT_SYMBOL_GPL(__lock_page_killable);
1162
1163 /*
1164 * Return values:
1165 * 1 - page is locked; mmap_sem is still held.
1166 * 0 - page is not locked.
1167 * mmap_sem has been released (up_read()), unless flags had both
1168 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1169 * which case mmap_sem is still held.
1170 *
1171 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1172 * with the page locked and the mmap_sem unperturbed.
1173 */
1174 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1175 unsigned int flags)
1176 {
1177 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1178 /*
1179 * CAUTION! In this case, mmap_sem is not released
1180 * even though return 0.
1181 */
1182 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1183 return 0;
1184
1185 up_read(&mm->mmap_sem);
1186 if (flags & FAULT_FLAG_KILLABLE)
1187 wait_on_page_locked_killable(page);
1188 else
1189 wait_on_page_locked(page);
1190 return 0;
1191 } else {
1192 if (flags & FAULT_FLAG_KILLABLE) {
1193 int ret;
1194
1195 ret = __lock_page_killable(page);
1196 if (ret) {
1197 up_read(&mm->mmap_sem);
1198 return 0;
1199 }
1200 } else
1201 __lock_page(page);
1202 return 1;
1203 }
1204 }
1205
1206 /**
1207 * page_cache_next_hole - find the next hole (not-present entry)
1208 * @mapping: mapping
1209 * @index: index
1210 * @max_scan: maximum range to search
1211 *
1212 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1213 * lowest indexed hole.
1214 *
1215 * Returns: the index of the hole if found, otherwise returns an index
1216 * outside of the set specified (in which case 'return - index >=
1217 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1218 * be returned.
1219 *
1220 * page_cache_next_hole may be called under rcu_read_lock. However,
1221 * like radix_tree_gang_lookup, this will not atomically search a
1222 * snapshot of the tree at a single point in time. For example, if a
1223 * hole is created at index 5, then subsequently a hole is created at
1224 * index 10, page_cache_next_hole covering both indexes may return 10
1225 * if called under rcu_read_lock.
1226 */
1227 pgoff_t page_cache_next_hole(struct address_space *mapping,
1228 pgoff_t index, unsigned long max_scan)
1229 {
1230 unsigned long i;
1231
1232 for (i = 0; i < max_scan; i++) {
1233 struct page *page;
1234
1235 page = radix_tree_lookup(&mapping->page_tree, index);
1236 if (!page || radix_tree_exceptional_entry(page))
1237 break;
1238 index++;
1239 if (index == 0)
1240 break;
1241 }
1242
1243 return index;
1244 }
1245 EXPORT_SYMBOL(page_cache_next_hole);
1246
1247 /**
1248 * page_cache_prev_hole - find the prev hole (not-present entry)
1249 * @mapping: mapping
1250 * @index: index
1251 * @max_scan: maximum range to search
1252 *
1253 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1254 * the first hole.
1255 *
1256 * Returns: the index of the hole if found, otherwise returns an index
1257 * outside of the set specified (in which case 'index - return >=
1258 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1259 * will be returned.
1260 *
1261 * page_cache_prev_hole may be called under rcu_read_lock. However,
1262 * like radix_tree_gang_lookup, this will not atomically search a
1263 * snapshot of the tree at a single point in time. For example, if a
1264 * hole is created at index 10, then subsequently a hole is created at
1265 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1266 * called under rcu_read_lock.
1267 */
1268 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1269 pgoff_t index, unsigned long max_scan)
1270 {
1271 unsigned long i;
1272
1273 for (i = 0; i < max_scan; i++) {
1274 struct page *page;
1275
1276 page = radix_tree_lookup(&mapping->page_tree, index);
1277 if (!page || radix_tree_exceptional_entry(page))
1278 break;
1279 index--;
1280 if (index == ULONG_MAX)
1281 break;
1282 }
1283
1284 return index;
1285 }
1286 EXPORT_SYMBOL(page_cache_prev_hole);
1287
1288 /**
1289 * find_get_entry - find and get a page cache entry
1290 * @mapping: the address_space to search
1291 * @offset: the page cache index
1292 *
1293 * Looks up the page cache slot at @mapping & @offset. If there is a
1294 * page cache page, it is returned with an increased refcount.
1295 *
1296 * If the slot holds a shadow entry of a previously evicted page, or a
1297 * swap entry from shmem/tmpfs, it is returned.
1298 *
1299 * Otherwise, %NULL is returned.
1300 */
1301 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1302 {
1303 void **pagep;
1304 struct page *head, *page;
1305
1306 rcu_read_lock();
1307 repeat:
1308 page = NULL;
1309 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1310 if (pagep) {
1311 page = radix_tree_deref_slot(pagep);
1312 if (unlikely(!page))
1313 goto out;
1314 if (radix_tree_exception(page)) {
1315 if (radix_tree_deref_retry(page))
1316 goto repeat;
1317 /*
1318 * A shadow entry of a recently evicted page,
1319 * or a swap entry from shmem/tmpfs. Return
1320 * it without attempting to raise page count.
1321 */
1322 goto out;
1323 }
1324
1325 head = compound_head(page);
1326 if (!page_cache_get_speculative(head))
1327 goto repeat;
1328
1329 /* The page was split under us? */
1330 if (compound_head(page) != head) {
1331 put_page(head);
1332 goto repeat;
1333 }
1334
1335 /*
1336 * Has the page moved?
1337 * This is part of the lockless pagecache protocol. See
1338 * include/linux/pagemap.h for details.
1339 */
1340 if (unlikely(page != *pagep)) {
1341 put_page(head);
1342 goto repeat;
1343 }
1344 }
1345 out:
1346 rcu_read_unlock();
1347
1348 return page;
1349 }
1350 EXPORT_SYMBOL(find_get_entry);
1351
1352 /**
1353 * find_lock_entry - locate, pin and lock a page cache entry
1354 * @mapping: the address_space to search
1355 * @offset: the page cache index
1356 *
1357 * Looks up the page cache slot at @mapping & @offset. If there is a
1358 * page cache page, it is returned locked and with an increased
1359 * refcount.
1360 *
1361 * If the slot holds a shadow entry of a previously evicted page, or a
1362 * swap entry from shmem/tmpfs, it is returned.
1363 *
1364 * Otherwise, %NULL is returned.
1365 *
1366 * find_lock_entry() may sleep.
1367 */
1368 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1369 {
1370 struct page *page;
1371
1372 repeat:
1373 page = find_get_entry(mapping, offset);
1374 if (page && !radix_tree_exception(page)) {
1375 lock_page(page);
1376 /* Has the page been truncated? */
1377 if (unlikely(page_mapping(page) != mapping)) {
1378 unlock_page(page);
1379 put_page(page);
1380 goto repeat;
1381 }
1382 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1383 }
1384 return page;
1385 }
1386 EXPORT_SYMBOL(find_lock_entry);
1387
1388 /**
1389 * pagecache_get_page - find and get a page reference
1390 * @mapping: the address_space to search
1391 * @offset: the page index
1392 * @fgp_flags: PCG flags
1393 * @gfp_mask: gfp mask to use for the page cache data page allocation
1394 *
1395 * Looks up the page cache slot at @mapping & @offset.
1396 *
1397 * PCG flags modify how the page is returned.
1398 *
1399 * @fgp_flags can be:
1400 *
1401 * - FGP_ACCESSED: the page will be marked accessed
1402 * - FGP_LOCK: Page is return locked
1403 * - FGP_CREAT: If page is not present then a new page is allocated using
1404 * @gfp_mask and added to the page cache and the VM's LRU
1405 * list. The page is returned locked and with an increased
1406 * refcount. Otherwise, NULL is returned.
1407 *
1408 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1409 * if the GFP flags specified for FGP_CREAT are atomic.
1410 *
1411 * If there is a page cache page, it is returned with an increased refcount.
1412 */
1413 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1414 int fgp_flags, gfp_t gfp_mask)
1415 {
1416 struct page *page;
1417
1418 repeat:
1419 page = find_get_entry(mapping, offset);
1420 if (radix_tree_exceptional_entry(page))
1421 page = NULL;
1422 if (!page)
1423 goto no_page;
1424
1425 if (fgp_flags & FGP_LOCK) {
1426 if (fgp_flags & FGP_NOWAIT) {
1427 if (!trylock_page(page)) {
1428 put_page(page);
1429 return NULL;
1430 }
1431 } else {
1432 lock_page(page);
1433 }
1434
1435 /* Has the page been truncated? */
1436 if (unlikely(page->mapping != mapping)) {
1437 unlock_page(page);
1438 put_page(page);
1439 goto repeat;
1440 }
1441 VM_BUG_ON_PAGE(page->index != offset, page);
1442 }
1443
1444 if (page && (fgp_flags & FGP_ACCESSED))
1445 mark_page_accessed(page);
1446
1447 no_page:
1448 if (!page && (fgp_flags & FGP_CREAT)) {
1449 int err;
1450 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1451 gfp_mask |= __GFP_WRITE;
1452 if (fgp_flags & FGP_NOFS)
1453 gfp_mask &= ~__GFP_FS;
1454
1455 page = __page_cache_alloc(gfp_mask);
1456 if (!page)
1457 return NULL;
1458
1459 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1460 fgp_flags |= FGP_LOCK;
1461
1462 /* Init accessed so avoid atomic mark_page_accessed later */
1463 if (fgp_flags & FGP_ACCESSED)
1464 __SetPageReferenced(page);
1465
1466 err = add_to_page_cache_lru(page, mapping, offset,
1467 gfp_mask & GFP_RECLAIM_MASK);
1468 if (unlikely(err)) {
1469 put_page(page);
1470 page = NULL;
1471 if (err == -EEXIST)
1472 goto repeat;
1473 }
1474 }
1475
1476 return page;
1477 }
1478 EXPORT_SYMBOL(pagecache_get_page);
1479
1480 /**
1481 * find_get_entries - gang pagecache lookup
1482 * @mapping: The address_space to search
1483 * @start: The starting page cache index
1484 * @nr_entries: The maximum number of entries
1485 * @entries: Where the resulting entries are placed
1486 * @indices: The cache indices corresponding to the entries in @entries
1487 *
1488 * find_get_entries() will search for and return a group of up to
1489 * @nr_entries entries in the mapping. The entries are placed at
1490 * @entries. find_get_entries() takes a reference against any actual
1491 * pages it returns.
1492 *
1493 * The search returns a group of mapping-contiguous page cache entries
1494 * with ascending indexes. There may be holes in the indices due to
1495 * not-present pages.
1496 *
1497 * Any shadow entries of evicted pages, or swap entries from
1498 * shmem/tmpfs, are included in the returned array.
1499 *
1500 * find_get_entries() returns the number of pages and shadow entries
1501 * which were found.
1502 */
1503 unsigned find_get_entries(struct address_space *mapping,
1504 pgoff_t start, unsigned int nr_entries,
1505 struct page **entries, pgoff_t *indices)
1506 {
1507 void **slot;
1508 unsigned int ret = 0;
1509 struct radix_tree_iter iter;
1510
1511 if (!nr_entries)
1512 return 0;
1513
1514 rcu_read_lock();
1515 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1516 struct page *head, *page;
1517 repeat:
1518 page = radix_tree_deref_slot(slot);
1519 if (unlikely(!page))
1520 continue;
1521 if (radix_tree_exception(page)) {
1522 if (radix_tree_deref_retry(page)) {
1523 slot = radix_tree_iter_retry(&iter);
1524 continue;
1525 }
1526 /*
1527 * A shadow entry of a recently evicted page, a swap
1528 * entry from shmem/tmpfs or a DAX entry. Return it
1529 * without attempting to raise page count.
1530 */
1531 goto export;
1532 }
1533
1534 head = compound_head(page);
1535 if (!page_cache_get_speculative(head))
1536 goto repeat;
1537
1538 /* The page was split under us? */
1539 if (compound_head(page) != head) {
1540 put_page(head);
1541 goto repeat;
1542 }
1543
1544 /* Has the page moved? */
1545 if (unlikely(page != *slot)) {
1546 put_page(head);
1547 goto repeat;
1548 }
1549 export:
1550 indices[ret] = iter.index;
1551 entries[ret] = page;
1552 if (++ret == nr_entries)
1553 break;
1554 }
1555 rcu_read_unlock();
1556 return ret;
1557 }
1558
1559 /**
1560 * find_get_pages - gang pagecache lookup
1561 * @mapping: The address_space to search
1562 * @start: The starting page index
1563 * @nr_pages: The maximum number of pages
1564 * @pages: Where the resulting pages are placed
1565 *
1566 * find_get_pages() will search for and return a group of up to
1567 * @nr_pages pages in the mapping. The pages are placed at @pages.
1568 * find_get_pages() takes a reference against the returned pages.
1569 *
1570 * The search returns a group of mapping-contiguous pages with ascending
1571 * indexes. There may be holes in the indices due to not-present pages.
1572 *
1573 * find_get_pages() returns the number of pages which were found.
1574 */
1575 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1576 unsigned int nr_pages, struct page **pages)
1577 {
1578 struct radix_tree_iter iter;
1579 void **slot;
1580 unsigned ret = 0;
1581
1582 if (unlikely(!nr_pages))
1583 return 0;
1584
1585 rcu_read_lock();
1586 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1587 struct page *head, *page;
1588 repeat:
1589 page = radix_tree_deref_slot(slot);
1590 if (unlikely(!page))
1591 continue;
1592
1593 if (radix_tree_exception(page)) {
1594 if (radix_tree_deref_retry(page)) {
1595 slot = radix_tree_iter_retry(&iter);
1596 continue;
1597 }
1598 /*
1599 * A shadow entry of a recently evicted page,
1600 * or a swap entry from shmem/tmpfs. Skip
1601 * over it.
1602 */
1603 continue;
1604 }
1605
1606 head = compound_head(page);
1607 if (!page_cache_get_speculative(head))
1608 goto repeat;
1609
1610 /* The page was split under us? */
1611 if (compound_head(page) != head) {
1612 put_page(head);
1613 goto repeat;
1614 }
1615
1616 /* Has the page moved? */
1617 if (unlikely(page != *slot)) {
1618 put_page(head);
1619 goto repeat;
1620 }
1621
1622 pages[ret] = page;
1623 if (++ret == nr_pages)
1624 break;
1625 }
1626
1627 rcu_read_unlock();
1628 return ret;
1629 }
1630
1631 /**
1632 * find_get_pages_contig - gang contiguous pagecache lookup
1633 * @mapping: The address_space to search
1634 * @index: The starting page index
1635 * @nr_pages: The maximum number of pages
1636 * @pages: Where the resulting pages are placed
1637 *
1638 * find_get_pages_contig() works exactly like find_get_pages(), except
1639 * that the returned number of pages are guaranteed to be contiguous.
1640 *
1641 * find_get_pages_contig() returns the number of pages which were found.
1642 */
1643 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1644 unsigned int nr_pages, struct page **pages)
1645 {
1646 struct radix_tree_iter iter;
1647 void **slot;
1648 unsigned int ret = 0;
1649
1650 if (unlikely(!nr_pages))
1651 return 0;
1652
1653 rcu_read_lock();
1654 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1655 struct page *head, *page;
1656 repeat:
1657 page = radix_tree_deref_slot(slot);
1658 /* The hole, there no reason to continue */
1659 if (unlikely(!page))
1660 break;
1661
1662 if (radix_tree_exception(page)) {
1663 if (radix_tree_deref_retry(page)) {
1664 slot = radix_tree_iter_retry(&iter);
1665 continue;
1666 }
1667 /*
1668 * A shadow entry of a recently evicted page,
1669 * or a swap entry from shmem/tmpfs. Stop
1670 * looking for contiguous pages.
1671 */
1672 break;
1673 }
1674
1675 head = compound_head(page);
1676 if (!page_cache_get_speculative(head))
1677 goto repeat;
1678
1679 /* The page was split under us? */
1680 if (compound_head(page) != head) {
1681 put_page(head);
1682 goto repeat;
1683 }
1684
1685 /* Has the page moved? */
1686 if (unlikely(page != *slot)) {
1687 put_page(head);
1688 goto repeat;
1689 }
1690
1691 /*
1692 * must check mapping and index after taking the ref.
1693 * otherwise we can get both false positives and false
1694 * negatives, which is just confusing to the caller.
1695 */
1696 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1697 put_page(page);
1698 break;
1699 }
1700
1701 pages[ret] = page;
1702 if (++ret == nr_pages)
1703 break;
1704 }
1705 rcu_read_unlock();
1706 return ret;
1707 }
1708 EXPORT_SYMBOL(find_get_pages_contig);
1709
1710 /**
1711 * find_get_pages_tag - find and return pages that match @tag
1712 * @mapping: the address_space to search
1713 * @index: the starting page index
1714 * @tag: the tag index
1715 * @nr_pages: the maximum number of pages
1716 * @pages: where the resulting pages are placed
1717 *
1718 * Like find_get_pages, except we only return pages which are tagged with
1719 * @tag. We update @index to index the next page for the traversal.
1720 */
1721 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1722 int tag, unsigned int nr_pages, struct page **pages)
1723 {
1724 struct radix_tree_iter iter;
1725 void **slot;
1726 unsigned ret = 0;
1727
1728 if (unlikely(!nr_pages))
1729 return 0;
1730
1731 rcu_read_lock();
1732 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1733 &iter, *index, tag) {
1734 struct page *head, *page;
1735 repeat:
1736 page = radix_tree_deref_slot(slot);
1737 if (unlikely(!page))
1738 continue;
1739
1740 if (radix_tree_exception(page)) {
1741 if (radix_tree_deref_retry(page)) {
1742 slot = radix_tree_iter_retry(&iter);
1743 continue;
1744 }
1745 /*
1746 * A shadow entry of a recently evicted page.
1747 *
1748 * Those entries should never be tagged, but
1749 * this tree walk is lockless and the tags are
1750 * looked up in bulk, one radix tree node at a
1751 * time, so there is a sizable window for page
1752 * reclaim to evict a page we saw tagged.
1753 *
1754 * Skip over it.
1755 */
1756 continue;
1757 }
1758
1759 head = compound_head(page);
1760 if (!page_cache_get_speculative(head))
1761 goto repeat;
1762
1763 /* The page was split under us? */
1764 if (compound_head(page) != head) {
1765 put_page(head);
1766 goto repeat;
1767 }
1768
1769 /* Has the page moved? */
1770 if (unlikely(page != *slot)) {
1771 put_page(head);
1772 goto repeat;
1773 }
1774
1775 pages[ret] = page;
1776 if (++ret == nr_pages)
1777 break;
1778 }
1779
1780 rcu_read_unlock();
1781
1782 if (ret)
1783 *index = pages[ret - 1]->index + 1;
1784
1785 return ret;
1786 }
1787 EXPORT_SYMBOL(find_get_pages_tag);
1788
1789 /**
1790 * find_get_entries_tag - find and return entries that match @tag
1791 * @mapping: the address_space to search
1792 * @start: the starting page cache index
1793 * @tag: the tag index
1794 * @nr_entries: the maximum number of entries
1795 * @entries: where the resulting entries are placed
1796 * @indices: the cache indices corresponding to the entries in @entries
1797 *
1798 * Like find_get_entries, except we only return entries which are tagged with
1799 * @tag.
1800 */
1801 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1802 int tag, unsigned int nr_entries,
1803 struct page **entries, pgoff_t *indices)
1804 {
1805 void **slot;
1806 unsigned int ret = 0;
1807 struct radix_tree_iter iter;
1808
1809 if (!nr_entries)
1810 return 0;
1811
1812 rcu_read_lock();
1813 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1814 &iter, start, tag) {
1815 struct page *head, *page;
1816 repeat:
1817 page = radix_tree_deref_slot(slot);
1818 if (unlikely(!page))
1819 continue;
1820 if (radix_tree_exception(page)) {
1821 if (radix_tree_deref_retry(page)) {
1822 slot = radix_tree_iter_retry(&iter);
1823 continue;
1824 }
1825
1826 /*
1827 * A shadow entry of a recently evicted page, a swap
1828 * entry from shmem/tmpfs or a DAX entry. Return it
1829 * without attempting to raise page count.
1830 */
1831 goto export;
1832 }
1833
1834 head = compound_head(page);
1835 if (!page_cache_get_speculative(head))
1836 goto repeat;
1837
1838 /* The page was split under us? */
1839 if (compound_head(page) != head) {
1840 put_page(head);
1841 goto repeat;
1842 }
1843
1844 /* Has the page moved? */
1845 if (unlikely(page != *slot)) {
1846 put_page(head);
1847 goto repeat;
1848 }
1849 export:
1850 indices[ret] = iter.index;
1851 entries[ret] = page;
1852 if (++ret == nr_entries)
1853 break;
1854 }
1855 rcu_read_unlock();
1856 return ret;
1857 }
1858 EXPORT_SYMBOL(find_get_entries_tag);
1859
1860 /*
1861 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1862 * a _large_ part of the i/o request. Imagine the worst scenario:
1863 *
1864 * ---R__________________________________________B__________
1865 * ^ reading here ^ bad block(assume 4k)
1866 *
1867 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1868 * => failing the whole request => read(R) => read(R+1) =>
1869 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1870 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1871 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1872 *
1873 * It is going insane. Fix it by quickly scaling down the readahead size.
1874 */
1875 static void shrink_readahead_size_eio(struct file *filp,
1876 struct file_ra_state *ra)
1877 {
1878 ra->ra_pages /= 4;
1879 }
1880
1881 /**
1882 * do_generic_file_read - generic file read routine
1883 * @filp: the file to read
1884 * @ppos: current file position
1885 * @iter: data destination
1886 * @written: already copied
1887 *
1888 * This is a generic file read routine, and uses the
1889 * mapping->a_ops->readpage() function for the actual low-level stuff.
1890 *
1891 * This is really ugly. But the goto's actually try to clarify some
1892 * of the logic when it comes to error handling etc.
1893 */
1894 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1895 struct iov_iter *iter, ssize_t written)
1896 {
1897 struct address_space *mapping = filp->f_mapping;
1898 struct inode *inode = mapping->host;
1899 struct file_ra_state *ra = &filp->f_ra;
1900 pgoff_t index;
1901 pgoff_t last_index;
1902 pgoff_t prev_index;
1903 unsigned long offset; /* offset into pagecache page */
1904 unsigned int prev_offset;
1905 int error = 0;
1906
1907 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1908 return 0;
1909 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1910
1911 index = *ppos >> PAGE_SHIFT;
1912 prev_index = ra->prev_pos >> PAGE_SHIFT;
1913 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1914 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1915 offset = *ppos & ~PAGE_MASK;
1916
1917 for (;;) {
1918 struct page *page;
1919 pgoff_t end_index;
1920 loff_t isize;
1921 unsigned long nr, ret;
1922
1923 cond_resched();
1924 find_page:
1925 if (fatal_signal_pending(current)) {
1926 error = -EINTR;
1927 goto out;
1928 }
1929
1930 page = find_get_page(mapping, index);
1931 if (!page) {
1932 page_cache_sync_readahead(mapping,
1933 ra, filp,
1934 index, last_index - index);
1935 page = find_get_page(mapping, index);
1936 if (unlikely(page == NULL))
1937 goto no_cached_page;
1938 }
1939 if (PageReadahead(page)) {
1940 page_cache_async_readahead(mapping,
1941 ra, filp, page,
1942 index, last_index - index);
1943 }
1944 if (!PageUptodate(page)) {
1945 /*
1946 * See comment in do_read_cache_page on why
1947 * wait_on_page_locked is used to avoid unnecessarily
1948 * serialisations and why it's safe.
1949 */
1950 error = wait_on_page_locked_killable(page);
1951 if (unlikely(error))
1952 goto readpage_error;
1953 if (PageUptodate(page))
1954 goto page_ok;
1955
1956 if (inode->i_blkbits == PAGE_SHIFT ||
1957 !mapping->a_ops->is_partially_uptodate)
1958 goto page_not_up_to_date;
1959 /* pipes can't handle partially uptodate pages */
1960 if (unlikely(iter->type & ITER_PIPE))
1961 goto page_not_up_to_date;
1962 if (!trylock_page(page))
1963 goto page_not_up_to_date;
1964 /* Did it get truncated before we got the lock? */
1965 if (!page->mapping)
1966 goto page_not_up_to_date_locked;
1967 if (!mapping->a_ops->is_partially_uptodate(page,
1968 offset, iter->count))
1969 goto page_not_up_to_date_locked;
1970 unlock_page(page);
1971 }
1972 page_ok:
1973 /*
1974 * i_size must be checked after we know the page is Uptodate.
1975 *
1976 * Checking i_size after the check allows us to calculate
1977 * the correct value for "nr", which means the zero-filled
1978 * part of the page is not copied back to userspace (unless
1979 * another truncate extends the file - this is desired though).
1980 */
1981
1982 isize = i_size_read(inode);
1983 end_index = (isize - 1) >> PAGE_SHIFT;
1984 if (unlikely(!isize || index > end_index)) {
1985 put_page(page);
1986 goto out;
1987 }
1988
1989 /* nr is the maximum number of bytes to copy from this page */
1990 nr = PAGE_SIZE;
1991 if (index == end_index) {
1992 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1993 if (nr <= offset) {
1994 put_page(page);
1995 goto out;
1996 }
1997 }
1998 nr = nr - offset;
1999
2000 /* If users can be writing to this page using arbitrary
2001 * virtual addresses, take care about potential aliasing
2002 * before reading the page on the kernel side.
2003 */
2004 if (mapping_writably_mapped(mapping))
2005 flush_dcache_page(page);
2006
2007 /*
2008 * When a sequential read accesses a page several times,
2009 * only mark it as accessed the first time.
2010 */
2011 if (prev_index != index || offset != prev_offset)
2012 mark_page_accessed(page);
2013 prev_index = index;
2014
2015 /*
2016 * Ok, we have the page, and it's up-to-date, so
2017 * now we can copy it to user space...
2018 */
2019
2020 ret = copy_page_to_iter(page, offset, nr, iter);
2021 offset += ret;
2022 index += offset >> PAGE_SHIFT;
2023 offset &= ~PAGE_MASK;
2024 prev_offset = offset;
2025
2026 put_page(page);
2027 written += ret;
2028 if (!iov_iter_count(iter))
2029 goto out;
2030 if (ret < nr) {
2031 error = -EFAULT;
2032 goto out;
2033 }
2034 continue;
2035
2036 page_not_up_to_date:
2037 /* Get exclusive access to the page ... */
2038 error = lock_page_killable(page);
2039 if (unlikely(error))
2040 goto readpage_error;
2041
2042 page_not_up_to_date_locked:
2043 /* Did it get truncated before we got the lock? */
2044 if (!page->mapping) {
2045 unlock_page(page);
2046 put_page(page);
2047 continue;
2048 }
2049
2050 /* Did somebody else fill it already? */
2051 if (PageUptodate(page)) {
2052 unlock_page(page);
2053 goto page_ok;
2054 }
2055
2056 readpage:
2057 /*
2058 * A previous I/O error may have been due to temporary
2059 * failures, eg. multipath errors.
2060 * PG_error will be set again if readpage fails.
2061 */
2062 ClearPageError(page);
2063 /* Start the actual read. The read will unlock the page. */
2064 error = mapping->a_ops->readpage(filp, page);
2065
2066 if (unlikely(error)) {
2067 if (error == AOP_TRUNCATED_PAGE) {
2068 put_page(page);
2069 error = 0;
2070 goto find_page;
2071 }
2072 goto readpage_error;
2073 }
2074
2075 if (!PageUptodate(page)) {
2076 error = lock_page_killable(page);
2077 if (unlikely(error))
2078 goto readpage_error;
2079 if (!PageUptodate(page)) {
2080 if (page->mapping == NULL) {
2081 /*
2082 * invalidate_mapping_pages got it
2083 */
2084 unlock_page(page);
2085 put_page(page);
2086 goto find_page;
2087 }
2088 unlock_page(page);
2089 shrink_readahead_size_eio(filp, ra);
2090 error = -EIO;
2091 goto readpage_error;
2092 }
2093 unlock_page(page);
2094 }
2095
2096 goto page_ok;
2097
2098 readpage_error:
2099 /* UHHUH! A synchronous read error occurred. Report it */
2100 put_page(page);
2101 goto out;
2102
2103 no_cached_page:
2104 /*
2105 * Ok, it wasn't cached, so we need to create a new
2106 * page..
2107 */
2108 page = page_cache_alloc_cold(mapping);
2109 if (!page) {
2110 error = -ENOMEM;
2111 goto out;
2112 }
2113 error = add_to_page_cache_lru(page, mapping, index,
2114 mapping_gfp_constraint(mapping, GFP_KERNEL));
2115 if (error) {
2116 put_page(page);
2117 if (error == -EEXIST) {
2118 error = 0;
2119 goto find_page;
2120 }
2121 goto out;
2122 }
2123 goto readpage;
2124 }
2125
2126 out:
2127 ra->prev_pos = prev_index;
2128 ra->prev_pos <<= PAGE_SHIFT;
2129 ra->prev_pos |= prev_offset;
2130
2131 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2132 file_accessed(filp);
2133 return written ? written : error;
2134 }
2135
2136 /**
2137 * generic_file_read_iter - generic filesystem read routine
2138 * @iocb: kernel I/O control block
2139 * @iter: destination for the data read
2140 *
2141 * This is the "read_iter()" routine for all filesystems
2142 * that can use the page cache directly.
2143 */
2144 ssize_t
2145 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2146 {
2147 struct file *file = iocb->ki_filp;
2148 ssize_t retval = 0;
2149 size_t count = iov_iter_count(iter);
2150
2151 if (!count)
2152 goto out; /* skip atime */
2153
2154 if (iocb->ki_flags & IOCB_DIRECT) {
2155 struct address_space *mapping = file->f_mapping;
2156 struct inode *inode = mapping->host;
2157 loff_t size;
2158
2159 size = i_size_read(inode);
2160 if (iocb->ki_flags & IOCB_NOWAIT) {
2161 if (filemap_range_has_page(mapping, iocb->ki_pos,
2162 iocb->ki_pos + count - 1))
2163 return -EAGAIN;
2164 } else {
2165 retval = filemap_write_and_wait_range(mapping,
2166 iocb->ki_pos,
2167 iocb->ki_pos + count - 1);
2168 if (retval < 0)
2169 goto out;
2170 }
2171
2172 file_accessed(file);
2173
2174 retval = mapping->a_ops->direct_IO(iocb, iter);
2175 if (retval >= 0) {
2176 iocb->ki_pos += retval;
2177 count -= retval;
2178 }
2179 iov_iter_revert(iter, count - iov_iter_count(iter));
2180
2181 /*
2182 * Btrfs can have a short DIO read if we encounter
2183 * compressed extents, so if there was an error, or if
2184 * we've already read everything we wanted to, or if
2185 * there was a short read because we hit EOF, go ahead
2186 * and return. Otherwise fallthrough to buffered io for
2187 * the rest of the read. Buffered reads will not work for
2188 * DAX files, so don't bother trying.
2189 */
2190 if (retval < 0 || !count || iocb->ki_pos >= size ||
2191 IS_DAX(inode))
2192 goto out;
2193 }
2194
2195 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2196 out:
2197 return retval;
2198 }
2199 EXPORT_SYMBOL(generic_file_read_iter);
2200
2201 #ifdef CONFIG_MMU
2202 /**
2203 * page_cache_read - adds requested page to the page cache if not already there
2204 * @file: file to read
2205 * @offset: page index
2206 * @gfp_mask: memory allocation flags
2207 *
2208 * This adds the requested page to the page cache if it isn't already there,
2209 * and schedules an I/O to read in its contents from disk.
2210 */
2211 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2212 {
2213 struct address_space *mapping = file->f_mapping;
2214 struct page *page;
2215 int ret;
2216
2217 do {
2218 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2219 if (!page)
2220 return -ENOMEM;
2221
2222 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2223 if (ret == 0)
2224 ret = mapping->a_ops->readpage(file, page);
2225 else if (ret == -EEXIST)
2226 ret = 0; /* losing race to add is OK */
2227
2228 put_page(page);
2229
2230 } while (ret == AOP_TRUNCATED_PAGE);
2231
2232 return ret;
2233 }
2234
2235 #define MMAP_LOTSAMISS (100)
2236
2237 /*
2238 * Synchronous readahead happens when we don't even find
2239 * a page in the page cache at all.
2240 */
2241 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2242 struct file_ra_state *ra,
2243 struct file *file,
2244 pgoff_t offset)
2245 {
2246 struct address_space *mapping = file->f_mapping;
2247
2248 /* If we don't want any read-ahead, don't bother */
2249 if (vma->vm_flags & VM_RAND_READ)
2250 return;
2251 if (!ra->ra_pages)
2252 return;
2253
2254 if (vma->vm_flags & VM_SEQ_READ) {
2255 page_cache_sync_readahead(mapping, ra, file, offset,
2256 ra->ra_pages);
2257 return;
2258 }
2259
2260 /* Avoid banging the cache line if not needed */
2261 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2262 ra->mmap_miss++;
2263
2264 /*
2265 * Do we miss much more than hit in this file? If so,
2266 * stop bothering with read-ahead. It will only hurt.
2267 */
2268 if (ra->mmap_miss > MMAP_LOTSAMISS)
2269 return;
2270
2271 /*
2272 * mmap read-around
2273 */
2274 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2275 ra->size = ra->ra_pages;
2276 ra->async_size = ra->ra_pages / 4;
2277 ra_submit(ra, mapping, file);
2278 }
2279
2280 /*
2281 * Asynchronous readahead happens when we find the page and PG_readahead,
2282 * so we want to possibly extend the readahead further..
2283 */
2284 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2285 struct file_ra_state *ra,
2286 struct file *file,
2287 struct page *page,
2288 pgoff_t offset)
2289 {
2290 struct address_space *mapping = file->f_mapping;
2291
2292 /* If we don't want any read-ahead, don't bother */
2293 if (vma->vm_flags & VM_RAND_READ)
2294 return;
2295 if (ra->mmap_miss > 0)
2296 ra->mmap_miss--;
2297 if (PageReadahead(page))
2298 page_cache_async_readahead(mapping, ra, file,
2299 page, offset, ra->ra_pages);
2300 }
2301
2302 /**
2303 * filemap_fault - read in file data for page fault handling
2304 * @vmf: struct vm_fault containing details of the fault
2305 *
2306 * filemap_fault() is invoked via the vma operations vector for a
2307 * mapped memory region to read in file data during a page fault.
2308 *
2309 * The goto's are kind of ugly, but this streamlines the normal case of having
2310 * it in the page cache, and handles the special cases reasonably without
2311 * having a lot of duplicated code.
2312 *
2313 * vma->vm_mm->mmap_sem must be held on entry.
2314 *
2315 * If our return value has VM_FAULT_RETRY set, it's because
2316 * lock_page_or_retry() returned 0.
2317 * The mmap_sem has usually been released in this case.
2318 * See __lock_page_or_retry() for the exception.
2319 *
2320 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2321 * has not been released.
2322 *
2323 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2324 */
2325 int filemap_fault(struct vm_fault *vmf)
2326 {
2327 int error;
2328 struct file *file = vmf->vma->vm_file;
2329 struct address_space *mapping = file->f_mapping;
2330 struct file_ra_state *ra = &file->f_ra;
2331 struct inode *inode = mapping->host;
2332 pgoff_t offset = vmf->pgoff;
2333 pgoff_t max_off;
2334 struct page *page;
2335 int ret = 0;
2336
2337 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2338 if (unlikely(offset >= max_off))
2339 return VM_FAULT_SIGBUS;
2340
2341 /*
2342 * Do we have something in the page cache already?
2343 */
2344 page = find_get_page(mapping, offset);
2345 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2346 /*
2347 * We found the page, so try async readahead before
2348 * waiting for the lock.
2349 */
2350 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2351 } else if (!page) {
2352 /* No page in the page cache at all */
2353 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2354 count_vm_event(PGMAJFAULT);
2355 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2356 ret = VM_FAULT_MAJOR;
2357 retry_find:
2358 page = find_get_page(mapping, offset);
2359 if (!page)
2360 goto no_cached_page;
2361 }
2362
2363 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2364 put_page(page);
2365 return ret | VM_FAULT_RETRY;
2366 }
2367
2368 /* Did it get truncated? */
2369 if (unlikely(page->mapping != mapping)) {
2370 unlock_page(page);
2371 put_page(page);
2372 goto retry_find;
2373 }
2374 VM_BUG_ON_PAGE(page->index != offset, page);
2375
2376 /*
2377 * We have a locked page in the page cache, now we need to check
2378 * that it's up-to-date. If not, it is going to be due to an error.
2379 */
2380 if (unlikely(!PageUptodate(page)))
2381 goto page_not_uptodate;
2382
2383 /*
2384 * Found the page and have a reference on it.
2385 * We must recheck i_size under page lock.
2386 */
2387 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2388 if (unlikely(offset >= max_off)) {
2389 unlock_page(page);
2390 put_page(page);
2391 return VM_FAULT_SIGBUS;
2392 }
2393
2394 vmf->page = page;
2395 return ret | VM_FAULT_LOCKED;
2396
2397 no_cached_page:
2398 /*
2399 * We're only likely to ever get here if MADV_RANDOM is in
2400 * effect.
2401 */
2402 error = page_cache_read(file, offset, vmf->gfp_mask);
2403
2404 /*
2405 * The page we want has now been added to the page cache.
2406 * In the unlikely event that someone removed it in the
2407 * meantime, we'll just come back here and read it again.
2408 */
2409 if (error >= 0)
2410 goto retry_find;
2411
2412 /*
2413 * An error return from page_cache_read can result if the
2414 * system is low on memory, or a problem occurs while trying
2415 * to schedule I/O.
2416 */
2417 if (error == -ENOMEM)
2418 return VM_FAULT_OOM;
2419 return VM_FAULT_SIGBUS;
2420
2421 page_not_uptodate:
2422 /*
2423 * Umm, take care of errors if the page isn't up-to-date.
2424 * Try to re-read it _once_. We do this synchronously,
2425 * because there really aren't any performance issues here
2426 * and we need to check for errors.
2427 */
2428 ClearPageError(page);
2429 error = mapping->a_ops->readpage(file, page);
2430 if (!error) {
2431 wait_on_page_locked(page);
2432 if (!PageUptodate(page))
2433 error = -EIO;
2434 }
2435 put_page(page);
2436
2437 if (!error || error == AOP_TRUNCATED_PAGE)
2438 goto retry_find;
2439
2440 /* Things didn't work out. Return zero to tell the mm layer so. */
2441 shrink_readahead_size_eio(file, ra);
2442 return VM_FAULT_SIGBUS;
2443 }
2444 EXPORT_SYMBOL(filemap_fault);
2445
2446 void filemap_map_pages(struct vm_fault *vmf,
2447 pgoff_t start_pgoff, pgoff_t end_pgoff)
2448 {
2449 struct radix_tree_iter iter;
2450 void **slot;
2451 struct file *file = vmf->vma->vm_file;
2452 struct address_space *mapping = file->f_mapping;
2453 pgoff_t last_pgoff = start_pgoff;
2454 unsigned long max_idx;
2455 struct page *head, *page;
2456
2457 rcu_read_lock();
2458 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2459 start_pgoff) {
2460 if (iter.index > end_pgoff)
2461 break;
2462 repeat:
2463 page = radix_tree_deref_slot(slot);
2464 if (unlikely(!page))
2465 goto next;
2466 if (radix_tree_exception(page)) {
2467 if (radix_tree_deref_retry(page)) {
2468 slot = radix_tree_iter_retry(&iter);
2469 continue;
2470 }
2471 goto next;
2472 }
2473
2474 head = compound_head(page);
2475 if (!page_cache_get_speculative(head))
2476 goto repeat;
2477
2478 /* The page was split under us? */
2479 if (compound_head(page) != head) {
2480 put_page(head);
2481 goto repeat;
2482 }
2483
2484 /* Has the page moved? */
2485 if (unlikely(page != *slot)) {
2486 put_page(head);
2487 goto repeat;
2488 }
2489
2490 if (!PageUptodate(page) ||
2491 PageReadahead(page) ||
2492 PageHWPoison(page))
2493 goto skip;
2494 if (!trylock_page(page))
2495 goto skip;
2496
2497 if (page->mapping != mapping || !PageUptodate(page))
2498 goto unlock;
2499
2500 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2501 if (page->index >= max_idx)
2502 goto unlock;
2503
2504 if (file->f_ra.mmap_miss > 0)
2505 file->f_ra.mmap_miss--;
2506
2507 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2508 if (vmf->pte)
2509 vmf->pte += iter.index - last_pgoff;
2510 last_pgoff = iter.index;
2511 if (alloc_set_pte(vmf, NULL, page))
2512 goto unlock;
2513 unlock_page(page);
2514 goto next;
2515 unlock:
2516 unlock_page(page);
2517 skip:
2518 put_page(page);
2519 next:
2520 /* Huge page is mapped? No need to proceed. */
2521 if (pmd_trans_huge(*vmf->pmd))
2522 break;
2523 if (iter.index == end_pgoff)
2524 break;
2525 }
2526 rcu_read_unlock();
2527 }
2528 EXPORT_SYMBOL(filemap_map_pages);
2529
2530 int filemap_page_mkwrite(struct vm_fault *vmf)
2531 {
2532 struct page *page = vmf->page;
2533 struct inode *inode = file_inode(vmf->vma->vm_file);
2534 int ret = VM_FAULT_LOCKED;
2535
2536 sb_start_pagefault(inode->i_sb);
2537 vma_file_update_time(vmf->vma);
2538 lock_page(page);
2539 if (page->mapping != inode->i_mapping) {
2540 unlock_page(page);
2541 ret = VM_FAULT_NOPAGE;
2542 goto out;
2543 }
2544 /*
2545 * We mark the page dirty already here so that when freeze is in
2546 * progress, we are guaranteed that writeback during freezing will
2547 * see the dirty page and writeprotect it again.
2548 */
2549 set_page_dirty(page);
2550 wait_for_stable_page(page);
2551 out:
2552 sb_end_pagefault(inode->i_sb);
2553 return ret;
2554 }
2555 EXPORT_SYMBOL(filemap_page_mkwrite);
2556
2557 const struct vm_operations_struct generic_file_vm_ops = {
2558 .fault = filemap_fault,
2559 .map_pages = filemap_map_pages,
2560 .page_mkwrite = filemap_page_mkwrite,
2561 };
2562
2563 /* This is used for a general mmap of a disk file */
2564
2565 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2566 {
2567 struct address_space *mapping = file->f_mapping;
2568
2569 if (!mapping->a_ops->readpage)
2570 return -ENOEXEC;
2571 file_accessed(file);
2572 vma->vm_ops = &generic_file_vm_ops;
2573 return 0;
2574 }
2575
2576 /*
2577 * This is for filesystems which do not implement ->writepage.
2578 */
2579 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2580 {
2581 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2582 return -EINVAL;
2583 return generic_file_mmap(file, vma);
2584 }
2585 #else
2586 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2587 {
2588 return -ENOSYS;
2589 }
2590 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2591 {
2592 return -ENOSYS;
2593 }
2594 #endif /* CONFIG_MMU */
2595
2596 EXPORT_SYMBOL(generic_file_mmap);
2597 EXPORT_SYMBOL(generic_file_readonly_mmap);
2598
2599 static struct page *wait_on_page_read(struct page *page)
2600 {
2601 if (!IS_ERR(page)) {
2602 wait_on_page_locked(page);
2603 if (!PageUptodate(page)) {
2604 put_page(page);
2605 page = ERR_PTR(-EIO);
2606 }
2607 }
2608 return page;
2609 }
2610
2611 static struct page *do_read_cache_page(struct address_space *mapping,
2612 pgoff_t index,
2613 int (*filler)(void *, struct page *),
2614 void *data,
2615 gfp_t gfp)
2616 {
2617 struct page *page;
2618 int err;
2619 repeat:
2620 page = find_get_page(mapping, index);
2621 if (!page) {
2622 page = __page_cache_alloc(gfp | __GFP_COLD);
2623 if (!page)
2624 return ERR_PTR(-ENOMEM);
2625 err = add_to_page_cache_lru(page, mapping, index, gfp);
2626 if (unlikely(err)) {
2627 put_page(page);
2628 if (err == -EEXIST)
2629 goto repeat;
2630 /* Presumably ENOMEM for radix tree node */
2631 return ERR_PTR(err);
2632 }
2633
2634 filler:
2635 err = filler(data, page);
2636 if (err < 0) {
2637 put_page(page);
2638 return ERR_PTR(err);
2639 }
2640
2641 page = wait_on_page_read(page);
2642 if (IS_ERR(page))
2643 return page;
2644 goto out;
2645 }
2646 if (PageUptodate(page))
2647 goto out;
2648
2649 /*
2650 * Page is not up to date and may be locked due one of the following
2651 * case a: Page is being filled and the page lock is held
2652 * case b: Read/write error clearing the page uptodate status
2653 * case c: Truncation in progress (page locked)
2654 * case d: Reclaim in progress
2655 *
2656 * Case a, the page will be up to date when the page is unlocked.
2657 * There is no need to serialise on the page lock here as the page
2658 * is pinned so the lock gives no additional protection. Even if the
2659 * the page is truncated, the data is still valid if PageUptodate as
2660 * it's a race vs truncate race.
2661 * Case b, the page will not be up to date
2662 * Case c, the page may be truncated but in itself, the data may still
2663 * be valid after IO completes as it's a read vs truncate race. The
2664 * operation must restart if the page is not uptodate on unlock but
2665 * otherwise serialising on page lock to stabilise the mapping gives
2666 * no additional guarantees to the caller as the page lock is
2667 * released before return.
2668 * Case d, similar to truncation. If reclaim holds the page lock, it
2669 * will be a race with remove_mapping that determines if the mapping
2670 * is valid on unlock but otherwise the data is valid and there is
2671 * no need to serialise with page lock.
2672 *
2673 * As the page lock gives no additional guarantee, we optimistically
2674 * wait on the page to be unlocked and check if it's up to date and
2675 * use the page if it is. Otherwise, the page lock is required to
2676 * distinguish between the different cases. The motivation is that we
2677 * avoid spurious serialisations and wakeups when multiple processes
2678 * wait on the same page for IO to complete.
2679 */
2680 wait_on_page_locked(page);
2681 if (PageUptodate(page))
2682 goto out;
2683
2684 /* Distinguish between all the cases under the safety of the lock */
2685 lock_page(page);
2686
2687 /* Case c or d, restart the operation */
2688 if (!page->mapping) {
2689 unlock_page(page);
2690 put_page(page);
2691 goto repeat;
2692 }
2693
2694 /* Someone else locked and filled the page in a very small window */
2695 if (PageUptodate(page)) {
2696 unlock_page(page);
2697 goto out;
2698 }
2699 goto filler;
2700
2701 out:
2702 mark_page_accessed(page);
2703 return page;
2704 }
2705
2706 /**
2707 * read_cache_page - read into page cache, fill it if needed
2708 * @mapping: the page's address_space
2709 * @index: the page index
2710 * @filler: function to perform the read
2711 * @data: first arg to filler(data, page) function, often left as NULL
2712 *
2713 * Read into the page cache. If a page already exists, and PageUptodate() is
2714 * not set, try to fill the page and wait for it to become unlocked.
2715 *
2716 * If the page does not get brought uptodate, return -EIO.
2717 */
2718 struct page *read_cache_page(struct address_space *mapping,
2719 pgoff_t index,
2720 int (*filler)(void *, struct page *),
2721 void *data)
2722 {
2723 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2724 }
2725 EXPORT_SYMBOL(read_cache_page);
2726
2727 /**
2728 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2729 * @mapping: the page's address_space
2730 * @index: the page index
2731 * @gfp: the page allocator flags to use if allocating
2732 *
2733 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2734 * any new page allocations done using the specified allocation flags.
2735 *
2736 * If the page does not get brought uptodate, return -EIO.
2737 */
2738 struct page *read_cache_page_gfp(struct address_space *mapping,
2739 pgoff_t index,
2740 gfp_t gfp)
2741 {
2742 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2743
2744 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2745 }
2746 EXPORT_SYMBOL(read_cache_page_gfp);
2747
2748 /*
2749 * Performs necessary checks before doing a write
2750 *
2751 * Can adjust writing position or amount of bytes to write.
2752 * Returns appropriate error code that caller should return or
2753 * zero in case that write should be allowed.
2754 */
2755 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2756 {
2757 struct file *file = iocb->ki_filp;
2758 struct inode *inode = file->f_mapping->host;
2759 unsigned long limit = rlimit(RLIMIT_FSIZE);
2760 loff_t pos;
2761
2762 if (!iov_iter_count(from))
2763 return 0;
2764
2765 /* FIXME: this is for backwards compatibility with 2.4 */
2766 if (iocb->ki_flags & IOCB_APPEND)
2767 iocb->ki_pos = i_size_read(inode);
2768
2769 pos = iocb->ki_pos;
2770
2771 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2772 return -EINVAL;
2773
2774 if (limit != RLIM_INFINITY) {
2775 if (iocb->ki_pos >= limit) {
2776 send_sig(SIGXFSZ, current, 0);
2777 return -EFBIG;
2778 }
2779 iov_iter_truncate(from, limit - (unsigned long)pos);
2780 }
2781
2782 /*
2783 * LFS rule
2784 */
2785 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2786 !(file->f_flags & O_LARGEFILE))) {
2787 if (pos >= MAX_NON_LFS)
2788 return -EFBIG;
2789 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2790 }
2791
2792 /*
2793 * Are we about to exceed the fs block limit ?
2794 *
2795 * If we have written data it becomes a short write. If we have
2796 * exceeded without writing data we send a signal and return EFBIG.
2797 * Linus frestrict idea will clean these up nicely..
2798 */
2799 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2800 return -EFBIG;
2801
2802 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2803 return iov_iter_count(from);
2804 }
2805 EXPORT_SYMBOL(generic_write_checks);
2806
2807 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2808 loff_t pos, unsigned len, unsigned flags,
2809 struct page **pagep, void **fsdata)
2810 {
2811 const struct address_space_operations *aops = mapping->a_ops;
2812
2813 return aops->write_begin(file, mapping, pos, len, flags,
2814 pagep, fsdata);
2815 }
2816 EXPORT_SYMBOL(pagecache_write_begin);
2817
2818 int pagecache_write_end(struct file *file, struct address_space *mapping,
2819 loff_t pos, unsigned len, unsigned copied,
2820 struct page *page, void *fsdata)
2821 {
2822 const struct address_space_operations *aops = mapping->a_ops;
2823
2824 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2825 }
2826 EXPORT_SYMBOL(pagecache_write_end);
2827
2828 ssize_t
2829 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2830 {
2831 struct file *file = iocb->ki_filp;
2832 struct address_space *mapping = file->f_mapping;
2833 struct inode *inode = mapping->host;
2834 loff_t pos = iocb->ki_pos;
2835 ssize_t written;
2836 size_t write_len;
2837 pgoff_t end;
2838
2839 write_len = iov_iter_count(from);
2840 end = (pos + write_len - 1) >> PAGE_SHIFT;
2841
2842 if (iocb->ki_flags & IOCB_NOWAIT) {
2843 /* If there are pages to writeback, return */
2844 if (filemap_range_has_page(inode->i_mapping, pos,
2845 pos + iov_iter_count(from)))
2846 return -EAGAIN;
2847 } else {
2848 written = filemap_write_and_wait_range(mapping, pos,
2849 pos + write_len - 1);
2850 if (written)
2851 goto out;
2852 }
2853
2854 /*
2855 * After a write we want buffered reads to be sure to go to disk to get
2856 * the new data. We invalidate clean cached page from the region we're
2857 * about to write. We do this *before* the write so that we can return
2858 * without clobbering -EIOCBQUEUED from ->direct_IO().
2859 */
2860 written = invalidate_inode_pages2_range(mapping,
2861 pos >> PAGE_SHIFT, end);
2862 /*
2863 * If a page can not be invalidated, return 0 to fall back
2864 * to buffered write.
2865 */
2866 if (written) {
2867 if (written == -EBUSY)
2868 return 0;
2869 goto out;
2870 }
2871
2872 written = mapping->a_ops->direct_IO(iocb, from);
2873
2874 /*
2875 * Finally, try again to invalidate clean pages which might have been
2876 * cached by non-direct readahead, or faulted in by get_user_pages()
2877 * if the source of the write was an mmap'ed region of the file
2878 * we're writing. Either one is a pretty crazy thing to do,
2879 * so we don't support it 100%. If this invalidation
2880 * fails, tough, the write still worked...
2881 */
2882 invalidate_inode_pages2_range(mapping,
2883 pos >> PAGE_SHIFT, end);
2884
2885 if (written > 0) {
2886 pos += written;
2887 write_len -= written;
2888 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2889 i_size_write(inode, pos);
2890 mark_inode_dirty(inode);
2891 }
2892 iocb->ki_pos = pos;
2893 }
2894 iov_iter_revert(from, write_len - iov_iter_count(from));
2895 out:
2896 return written;
2897 }
2898 EXPORT_SYMBOL(generic_file_direct_write);
2899
2900 /*
2901 * Find or create a page at the given pagecache position. Return the locked
2902 * page. This function is specifically for buffered writes.
2903 */
2904 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2905 pgoff_t index, unsigned flags)
2906 {
2907 struct page *page;
2908 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2909
2910 if (flags & AOP_FLAG_NOFS)
2911 fgp_flags |= FGP_NOFS;
2912
2913 page = pagecache_get_page(mapping, index, fgp_flags,
2914 mapping_gfp_mask(mapping));
2915 if (page)
2916 wait_for_stable_page(page);
2917
2918 return page;
2919 }
2920 EXPORT_SYMBOL(grab_cache_page_write_begin);
2921
2922 ssize_t generic_perform_write(struct file *file,
2923 struct iov_iter *i, loff_t pos)
2924 {
2925 struct address_space *mapping = file->f_mapping;
2926 const struct address_space_operations *a_ops = mapping->a_ops;
2927 long status = 0;
2928 ssize_t written = 0;
2929 unsigned int flags = 0;
2930
2931 do {
2932 struct page *page;
2933 unsigned long offset; /* Offset into pagecache page */
2934 unsigned long bytes; /* Bytes to write to page */
2935 size_t copied; /* Bytes copied from user */
2936 void *fsdata;
2937
2938 offset = (pos & (PAGE_SIZE - 1));
2939 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2940 iov_iter_count(i));
2941
2942 again:
2943 /*
2944 * Bring in the user page that we will copy from _first_.
2945 * Otherwise there's a nasty deadlock on copying from the
2946 * same page as we're writing to, without it being marked
2947 * up-to-date.
2948 *
2949 * Not only is this an optimisation, but it is also required
2950 * to check that the address is actually valid, when atomic
2951 * usercopies are used, below.
2952 */
2953 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2954 status = -EFAULT;
2955 break;
2956 }
2957
2958 if (fatal_signal_pending(current)) {
2959 status = -EINTR;
2960 break;
2961 }
2962
2963 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2964 &page, &fsdata);
2965 if (unlikely(status < 0))
2966 break;
2967
2968 if (mapping_writably_mapped(mapping))
2969 flush_dcache_page(page);
2970
2971 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2972 flush_dcache_page(page);
2973
2974 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2975 page, fsdata);
2976 if (unlikely(status < 0))
2977 break;
2978 copied = status;
2979
2980 cond_resched();
2981
2982 iov_iter_advance(i, copied);
2983 if (unlikely(copied == 0)) {
2984 /*
2985 * If we were unable to copy any data at all, we must
2986 * fall back to a single segment length write.
2987 *
2988 * If we didn't fallback here, we could livelock
2989 * because not all segments in the iov can be copied at
2990 * once without a pagefault.
2991 */
2992 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2993 iov_iter_single_seg_count(i));
2994 goto again;
2995 }
2996 pos += copied;
2997 written += copied;
2998
2999 balance_dirty_pages_ratelimited(mapping);
3000 } while (iov_iter_count(i));
3001
3002 return written ? written : status;
3003 }
3004 EXPORT_SYMBOL(generic_perform_write);
3005
3006 /**
3007 * __generic_file_write_iter - write data to a file
3008 * @iocb: IO state structure (file, offset, etc.)
3009 * @from: iov_iter with data to write
3010 *
3011 * This function does all the work needed for actually writing data to a
3012 * file. It does all basic checks, removes SUID from the file, updates
3013 * modification times and calls proper subroutines depending on whether we
3014 * do direct IO or a standard buffered write.
3015 *
3016 * It expects i_mutex to be grabbed unless we work on a block device or similar
3017 * object which does not need locking at all.
3018 *
3019 * This function does *not* take care of syncing data in case of O_SYNC write.
3020 * A caller has to handle it. This is mainly due to the fact that we want to
3021 * avoid syncing under i_mutex.
3022 */
3023 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3024 {
3025 struct file *file = iocb->ki_filp;
3026 struct address_space * mapping = file->f_mapping;
3027 struct inode *inode = mapping->host;
3028 ssize_t written = 0;
3029 ssize_t err;
3030 ssize_t status;
3031
3032 /* We can write back this queue in page reclaim */
3033 current->backing_dev_info = inode_to_bdi(inode);
3034 err = file_remove_privs(file);
3035 if (err)
3036 goto out;
3037
3038 err = file_update_time(file);
3039 if (err)
3040 goto out;
3041
3042 if (iocb->ki_flags & IOCB_DIRECT) {
3043 loff_t pos, endbyte;
3044
3045 written = generic_file_direct_write(iocb, from);
3046 /*
3047 * If the write stopped short of completing, fall back to
3048 * buffered writes. Some filesystems do this for writes to
3049 * holes, for example. For DAX files, a buffered write will
3050 * not succeed (even if it did, DAX does not handle dirty
3051 * page-cache pages correctly).
3052 */
3053 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3054 goto out;
3055
3056 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3057 /*
3058 * If generic_perform_write() returned a synchronous error
3059 * then we want to return the number of bytes which were
3060 * direct-written, or the error code if that was zero. Note
3061 * that this differs from normal direct-io semantics, which
3062 * will return -EFOO even if some bytes were written.
3063 */
3064 if (unlikely(status < 0)) {
3065 err = status;
3066 goto out;
3067 }
3068 /*
3069 * We need to ensure that the page cache pages are written to
3070 * disk and invalidated to preserve the expected O_DIRECT
3071 * semantics.
3072 */
3073 endbyte = pos + status - 1;
3074 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3075 if (err == 0) {
3076 iocb->ki_pos = endbyte + 1;
3077 written += status;
3078 invalidate_mapping_pages(mapping,
3079 pos >> PAGE_SHIFT,
3080 endbyte >> PAGE_SHIFT);
3081 } else {
3082 /*
3083 * We don't know how much we wrote, so just return
3084 * the number of bytes which were direct-written
3085 */
3086 }
3087 } else {
3088 written = generic_perform_write(file, from, iocb->ki_pos);
3089 if (likely(written > 0))
3090 iocb->ki_pos += written;
3091 }
3092 out:
3093 current->backing_dev_info = NULL;
3094 return written ? written : err;
3095 }
3096 EXPORT_SYMBOL(__generic_file_write_iter);
3097
3098 /**
3099 * generic_file_write_iter - write data to a file
3100 * @iocb: IO state structure
3101 * @from: iov_iter with data to write
3102 *
3103 * This is a wrapper around __generic_file_write_iter() to be used by most
3104 * filesystems. It takes care of syncing the file in case of O_SYNC file
3105 * and acquires i_mutex as needed.
3106 */
3107 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3108 {
3109 struct file *file = iocb->ki_filp;
3110 struct inode *inode = file->f_mapping->host;
3111 ssize_t ret;
3112
3113 inode_lock(inode);
3114 ret = generic_write_checks(iocb, from);
3115 if (ret > 0)
3116 ret = __generic_file_write_iter(iocb, from);
3117 inode_unlock(inode);
3118
3119 if (ret > 0)
3120 ret = generic_write_sync(iocb, ret);
3121 return ret;
3122 }
3123 EXPORT_SYMBOL(generic_file_write_iter);
3124
3125 /**
3126 * try_to_release_page() - release old fs-specific metadata on a page
3127 *
3128 * @page: the page which the kernel is trying to free
3129 * @gfp_mask: memory allocation flags (and I/O mode)
3130 *
3131 * The address_space is to try to release any data against the page
3132 * (presumably at page->private). If the release was successful, return '1'.
3133 * Otherwise return zero.
3134 *
3135 * This may also be called if PG_fscache is set on a page, indicating that the
3136 * page is known to the local caching routines.
3137 *
3138 * The @gfp_mask argument specifies whether I/O may be performed to release
3139 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3140 *
3141 */
3142 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3143 {
3144 struct address_space * const mapping = page->mapping;
3145
3146 BUG_ON(!PageLocked(page));
3147 if (PageWriteback(page))
3148 return 0;
3149
3150 if (mapping && mapping->a_ops->releasepage)
3151 return mapping->a_ops->releasepage(page, gfp_mask);
3152 return try_to_free_buffers(page);
3153 }
3154
3155 EXPORT_SYMBOL(try_to_release_page);